Модуль юнга для стали 3: Модуль упругости стали: таблица, характеристики

alexxlab | 31.03.2023 | 0 | Разное

Содержание

Модуль Юнга (упругости) для стали и других материалов: определение, смысл


Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м2 или в Па.

Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (1012Па)

Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.

Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.

График теста на растяжение

E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

E=α/ε

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Общее понятие

При любом внешнем воздействии на предмет, внутри его возникают встречные силы, компенсирующие внешние. Для идеальных систем, находящихся в равновесии, силы равномерно распределены и равны, что позволяет сохранить форму предмета. Реальные системы не подчиняются таким правилам, что может привести к их деформации. Оценивая прочность материалов, говорят об их упругости.

Определение модуля Юнга твердых тел

Упругие материалы – это те, которые после прекращения внешнего воздействия, восстанавливают свою первоначальную форму.

Читать также: Стремянка для обрезки деревьев

Внутренние силы распределены равномерно по всей площади поперечного сечения предмета, имеют свою интенсивность, которая выражается количественно, называется напряжением (р) и измеряется в Н/м 2 или по международной системе Па.

Напряжение имеет свою пространственную направленность: перпендикулярно площади сечения предмета – нормальное напряжение (σz) и лежащая в плоскости сечения – касательное напряжение (τz).

Опыт с пружинными весами

Модуль упругости (Е) как единицу измерения отношения материала к линейной деформации, и нормальное напряжение связывает формула закона Гука:

где ε – относительное удлинение или деформация.

Преобразовав формулу (1) для выражения из нее нормального напряжения, можно увидеть, что Е является постоянной при относительном удлинении, и называется коэффициентом жесткости, а его единицы измерения Па, кгс/мм 2 или Н/м 2 :

Модуль упругости – это единица измерения отношения напряжения, создаваемого в материале, к линейной деформации, такой как, растяжение и сжатие.

В справочных материалах размерность модуля упругости выражается в МПа, так как деформация имеет довольно малое значение. А зависимость между этими величинами обратно пропорциональная. Таким образом, Е имеет высокое значение, определяемое 107-109.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.

Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.

Виды деформации

Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.

В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Δl = α * (lF) / S

Величину, обратную α, и называют модулем Юнга:

1/α = E

Относительная деформация:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

ε=α σ

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

σ = ε/α = E ε

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.

Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l

Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Способы определения и контроля показателей прочности металлов

Развитие металлургии и других сопутствующих направлений по изготовлению предметов из металла обязано созданию оружия. Сначала научились выплавлять цветные металлы, но прочность изделий была относительно невысокой. Только с появлением железа и его сплавов началось изучение их свойств.

Первые мечи для придания им твердости и прочности делали довольно тяжелыми. Воинам приходилось брать их в обе руки, чтобы управляться с ними.

Со временем появились новые сплавы, разрабатывались технологии производства. Легкие сабли и шпаги пришли на замену тяжеловесному оружию. Параллельно создавались орудия труда.

С повышением прочностных характеристик совершенствовались инструменты и способы производства.

Виды нагрузок

При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.

  • Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.
  • Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.
  • Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.
  • Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.
  • Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.

В середине XVII века одновременно в нескольких странах начались исследования материалов. Предлагались самые разные методики по определению прочностных характеристик. Английский исследователь Роберт Гук (1660 г.) сформулировал основные положения закона по удлинению упругих тел в результате приложения нагрузки (закона Гука). Введены и понятия:

  1. Напряжения σ, которое в механике измеряется в виде нагрузки, приложенной к определенной площади (кгс/см², Н/м², Па).
  2. Модуля упругости Е, который определяет способность твердого тела деформироваться под действием нагружения (приложения силы в заданном направлении). Единицы измерения также определяются в кгс/см² (Н/м², Па).

Формула по закону Гука записывается в виде ε = σz/E, где:

  • ε – относительное удлинение;
  • σz – нормальное напряжение.

Демонстрация закона Гука для упругих тел:

Из приведенной зависимости выводится значение Е для определенного материала опытным путем, Е = σz/ε.

Модуль упругости – это постоянная величина, характеризующая сопротивление тела и его конструкционного материала при нормальной растягивающей или сжимающей нагрузке.

В теории прочности принято понятие модуль упругости Юнга. Это английский исследователь дал более конкретное описание способам изменения прочностных показателей при нормальных нагружениях.

Значения модуля упругости для некоторых материалов приведены в таблице 1.

Таблица 1: Модуль упругости для металлов и сплавов

Наименование материалаЗначение модуля упругости, 10¹²·Па
Алюминий65…72
Дюралюминий69…76
Железо, содержание углерода менее 0,08 %165…186
Латунь88…99
Медь (Cu, 99 %)107…110
Никель200…210
Олово32…38
Свинец14…19
Серебро78…84
Серый чугун110…130
Сталь190…210
Стекло65…72
Титан112…120
Хром300…310

Модуль упругости для разных марок стали

Металлурги разработали несколько сотен марок сталей. Им свойственны разные значения прочности. В таблице 2 показаны характеристики для наиболее распространенных сталей.

Таблица 2: Упругость сталей

Наименование сталиЗначение модуля упругости, 10¹²·Па
Сталь низкоуглеродистая165…180
Сталь 3179…189
Сталь 30194…205
Сталь 45211…223
Сталь 40Х240…260
65Г235…275
Х12МФ310…320
9ХС, ХВГ275…302
4Х5МФС305…315
3Х3М3Ф285…310
Р6М5305…320
Р9320…330
Р18325…340
Р12МФ5297…310
У7, У8302…315
У9, У10320…330
У11325…340
У12, У13310…315

: закон Гука, модуль упругости.

Модули прочности

Кроме нормального нагружения, существуют и иные силовые воздействия на материалы.

Модуль сдвига G определяет жесткость. Эта характеристика показывает предельное значение нагрузки изменению формы предмета.

Модуль объемной упругости К определяет упругие свойства материала изменить объем. При любой деформации происходит изменение формы предмета.

Коэффициент Пуассона μ определяет изменения отношение величины относительного сжатия к растяжению. Эта величина зависит только от свойств материала.

Для разных сталей значения указанных модулей приведены в таблице 3.

Таблица 3: Модули прочности для сталей

Наименование сталиМодуль упругости Юнга, 10¹²·ПаМодуль сдвига G, 10¹²·ПаМодуль объемной упругости, 10¹²·ПаКоэффициент Пуассона, 10¹²·Па
Сталь низкоуглеродистая165…18087…9145…49154…168
Сталь 3179…18993…10249…52164…172
Сталь 30194…205105…10872…77182…184
Сталь 45211…223115…13076…81192…197
Сталь 40Х240…260118…12584…87210…218
65Г235…275112…12481…85208…214
Х12МФ310…320143…15094…98285…290
9ХС, ХВГ275…302135…14587…92264…270
4Х5МФС305…315147…16096…100291…295
3Х3М3Ф285…310135…15092…97268…273
Р6М5305…320147…15198…102294…300
Р9320…330155…162104…110301…312
Р18325…340140…149105…108308…318
Р12МФ5297…310147…15298…102276…280
У7, У8302…315154…160100…106286…294
У9, У10320…330160…165104…112305…311
У11325…340162…17098…104306…314
У12, У13310…315155…16099…106298…304

Для других материалов значения прочностных характеристик указывают в специальной литературе. Однако, в некоторых случаях проводят индивидуальные исследования. Особенно актуальны подобные исследования для строительных материалов. На предприятиях, где выпускают железобетонные изделия, регулярно проводят испытания по определению предельных значений.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Материалмодуль Юнга E, ГПа
Алюминий70
Бронза75-125
Вольфрам350
Графен1000
Латунь95
Лёд3
Медь110
Свинец18
Серебро80
Серый чугун110
Сталь200/210
Стекло70

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Модуль упругости для разных марок стали

Металлурги разработали несколько сотен марок сталей. Им свойственны разные значения прочности. В таблице 2 показаны характеристики для наиболее распространенных сталей.

Таблица 2: Упругость сталей

Наименование сталиЗначение модуля упругости, 10¹²·Па
Сталь низкоуглеродистая165…180
Сталь 3179…189
Сталь 30194…205
Сталь 45211…223
Сталь 40Х240…260
65Г235…275
Х12МФ310…320
9ХС, ХВГ275…302
4Х5МФС305…315
3Х3М3Ф285…310
Р6М5305…320
Р9320…330
Р18325…340
Р12МФ5297…310
У7, У8302…315
У9, У10320…330
У11325…340
У12, У13310…315

Видео: закон Гука, модуль упругости.

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться.

Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.

Инструмент для определения предела прочности

Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Испытание на растяжение

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σраст в МПа:

Материалыσраст
Бор57000,083
Графит23900,023
Сапфир14950,030
Стальная проволока4150,01
Стекловолокно3500,034
Конструкционная сталь600,003
Нейлон480,0025

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала . А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства . Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.

Запас прочности

Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Показатель предела нагрузки на сталь

Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.

Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу — стали. Также будут рассмотрены эти показатели у других материалов, ради примера.

Модуль упругости — что это?

Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

  • Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
  • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
  • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
  • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

  1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. 2 .

  • И напоследок коэффициент Пуассона для стали равен значению 0,3
  • Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

    Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

    Общее понятие

    Модуль упругости (также известный как модуль Юнга) — один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).

    В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.

    Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.

    Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.

    Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы — чугун, бетон — сжимают до появления трещин.

    Дополнительные характеристики механических свойств

    Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:

    • Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
    • Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
    • Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
    • Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
    • Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
    • Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.

    Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.

    У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.

    Общие понятия

    Модуль упругости (модуль Юнга) — это показатель механического свойства материала, характеризующий его сопротивляемость деформации растяжения . Иными словами, это значение пластичности материала. Чем выше значения модуля упругости, тем меньше будет какой-либо стержень растягиваться при иных равных нагрузках (площадь сечения, величина нагрузки и другие).

    Модуль Юнга в теории упругости обозначается буквой Е. Он является составляющей закона Гука (о деформации упругих тел). Эта величина связывает возникающее в образце напряжение и его деформацию.

    Измеряется эта величина согласно стандартной международной системе единиц в МПа (Мегапаскалях)

    . Но инженеры на практике больше склоняются к применению размерности кгс/см2.

    Опытным путём осуществляется определение этого показателя в научных лабораториях. Сутью этого метода является разрыв гантелеобразных образцов материала на специальном оборудовании. Узнав удлинение и натяжение, при которых образец разрушился, делят переменные данные друг на друга. Полученная величина и является модулем (Юнга) упругости.

    Таким образом определяется только модуль Юнга материалов упругих: медь, сталь и прочее. А материалы хрупкие сжимают до того момента, пока не появятся трещины: бетон, чугун и им подобные.

    Эксперимент по модулям стали и молодых – 656 слов

    СОДЕРЖАНИЕ

    1. ВВЕДЕНИЕ
    2. Экспериментальный метод
    3. Результаты
    4. Обсуждение
    5. Заключение
    6. . . Применение стали в этих целях объясняется ее физическими, химическими, электрическими и механическими свойствами (Эль-Риди, 2017). Некоторыми механическими свойствами стали, которые определяют ее конкретное использование, являются твердость, прочность на растяжение, эластичность, свариваемость и обрабатываемость (Бхадури, 2018).

      Механические свойства стали определяются химическим составом и производственными процессами. Следовательно, сталь может обрабатываться по-разному, чтобы соответствовать требованиям различных применений в гражданском строительстве, которые включают сварку, сверление, ковку, термообработку и механическую обработку.

      Ожидаемый модуль Юнга стали должен составлять от 190 до 210 ГПа (Rao, 2017). И наоборот, максимально допустимое значение предела текучести составляет 650 МПа. Предел текучести можно описать как значение растягивающего напряжения, при котором не менее 95 % образцов стали имеют 90 % вероятность высокого предела текучести.

      Экспериментальный метод

      Для испытания на растяжение был предоставлен кусок стального стержня. Образец был установлен в захватах испытательной машины Zwick Roell z250, которая управлялась программным обеспечением testExpert II. На образец был установлен экстензометр для контроля растяжения образца. Испытание продолжалось до тех пор, пока образец не разрушился. Нагрузка, растяжение и отклонение траверсы регистрировались программой во время испытания и преобразовывались программой в значения напряжения и деформации. Выходные данные использовались для расчета таких параметров, как предел текучести, предел прочности при растяжении, испытательное напряжение 0,1% и модуль Юнга.

      Результаты

      На рис. 1 показана кривая напряжение-деформация, полученная в ходе эксперимента. Предел текучести визуализировался на кривой как максимальное напряжение непосредственно перед небольшим снижением. Его значение составило 540 МПа. Максимальная зарегистрированная прочность представляет собой предел прочности при растяжении и составляет 622 МПа. Напряжение в конце эксперимента дало предел прочности и составило 504,56 МПа.

      Рис. 1: Кривая напряжение-деформация, полученная в результате испытаний.

      Кривая напряжение-деформация была построена повторно в диапазоне деформации от 0 до 1% для расчета модуля Юнга и доказательства напряжения 0,1%, что представлено на рисунке 2.

      Рис. 2: Кривая напряжения-деформации стали при деформации до 1%.

      Из рисунка 3 видно, что зависимость между напряжением и деформацией была линейной до деформации приблизительно 0,21%. Следовательно, любые две точки между нулем и этой точкой можно использовать для вычисления модуля Юнга с помощью следующего уравнения:

      Модуль Юнга = градиент прямолинейного участка кривой напряжения-деформации

      = y 2 -y 1 2 1 где (х 1 , у 1 ) и (x 2 , y 2 ) — координаты двух точек на прямой.

      = (188,313-18,3887)/ (0,0814096- 0,0042)

      = 169,9243/ 0,0772096

      = 2,201,04 МПа

      = 2,201 ГПа

      . кривой, которая составляла примерно 435 МПа. Сводка общих результатов представлена ​​в Таблице 1.

      Таблица 1: Результаты напряжения при растяжении.

      Наблюдаемое значение модуля Юнга составило 2,201 ГПа, что ниже ожидаемого диапазона 190 и 215 ГПа. Это наблюдение означает, что он имел низкую эластичность и подвержен деформации при малых силах (Chen, Gandhi, Lee, & Wagoner, 2016). Наблюдаемый предел текучести составил 540 МПа, что находится в ожидаемых пределах, учитывая, что максимально допустимое значение составляет 650 МПа (Hajibagheri, Heidari, & Amini, 2019).

      В эксперименте был испытан только один образец стали. Следовательно, результаты не являются репрезентативными для согласованности всей партии, из которой был взят образец. Необходимо проанализировать более одного образца, провести статистическую оценку результатов, прежде чем сделать вывод о том, находятся ли свойства при растяжении в ожидаемом диапазоне.

      Заключение

      Испытывался только один стальной образец. Наблюдаемый модуль Юнга оказался ниже ожидаемого. Однако другие параметры прочности на растяжение соответствовали требованиям, предъявляемым к арматурной стали. Необходимо провести дополнительные испытания с использованием большего количества образцов, чтобы установить свойства при растяжении.

      Ссылки

      Бхадури, А. (2018). Механические свойства и обработка металлов и сплавов . Восточные ворота, Сингапур: Springer Nature Singapore.

      Чен, З., Ганди, У., Ли, Дж., и Вагонер, Р. Х. (2016). Изменение и постоянство модуля Юнга в стали. Журнал технологии обработки материалов , 227 , 227-243.

      Эль-Риди, Массачусетс (2017). Сталежелезобетонные конструкции: оценка и ремонт коррозии . Бока-Ратон, Флорида: CRC Press.

      Хаджибагери, Х. Р., Хейдари, А., и Амини, Р. (2019). Экспериментальная взаимосвязь предела текучести и предела прочности при растяжении с твердостью труб из высокопрочной стали APIX70. Модарес Машиностроение , 19 (1), 85-93.

      Рао, П. Д. (2017). Сопротивление материалов: Практический подход (Том 1). Хайдарабад, Индия: Universities Press.

      Этот отчет об эксперименте Стила и модуля Юнга был написан и представлен вашим коллегой. ученик. Вы можете использовать его для исследовательских и справочных целей, чтобы написать свою собственную статью; однако ты должны цитировать его соответственно.

      Запрос на удаление

      Если вы являетесь владельцем авторских прав на эту статью и больше не хотите, чтобы ваша работа публиковалась на IvyPanda.

      Запросить удаление

      сил – Почему модуль Юнга не зависит от длины и диаметра?

      спросил

      Изменено 2 года, 10 месяцев назад

      Просмотрено 12 тысяч раз

      $\begingroup$

      В этом вопросе:

      Модуль Юнга стали определяется по длине стальной проволоки и имеет значение $E$. Другой опыт проводят с проволокой из той же стали, но половинной длины и половинного диаметра.

      Какое значение модуля Юнга получается во 2-м опыте?

      Я знаю, что модуль Юнга является внутренним свойством объекта. Но что меня смутило, так это то, что когда я вычислил модуль Юнга для второго эксперимента, я получил 2E$. Но ответ был $E$ вместо $2E$.

      Однако моя мысль продолжала лежать на уравнении: $$\text{модуль Юнга} = \frac{\text{сила}\times\text{длина}}{\text{расширение}\times\text{площадь}}$$

      Длина не изменяется и диаметр влияют на значение модуля Юнга? Как это может быть внутренней ценностью объекта?

      • силы
      • упругость
      • механика сплошной среды

      $\endgroup$

      $\begingroup$

      Каким образом из предоставленной информации вы “рассчитали модуль Юнга для 2-го эксперимента”?
      Вы не можете предположить, что во втором эксперименте сила и удлинение такие же, как в первом эксперименте, потому что это не так.
      При заданной силе удлинение во втором эксперименте будет в два раза больше, чем в первом эксперименте.

      Обновление в ответ на комментарий

      $\text{расширение}_1 = \dfrac{\text{сила}\times\text{длина}}{\text{модуль Юнга}\times\text{площадь} } $

      $\text{расширение}_2 = \dfrac{\text{сила}\times\frac{\text{длина}}{2}}{\text{модуль Юнга}\times\frac{\text{ площадь}}{4}}=2\times\text{расширение}_1$

      $\endgroup$

      4

      $\begingroup$

      Этот вопрос был задан около 3 лет назад, и к настоящему времени вы, возможно, тоже прошли A-уровни, поэтому этот ответ может показаться вам сейчас неактуальным.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *