Насос центробежный характеристики: основные параметры и принцип работы

alexxlab | 14.05.2023 | 0 | Разное

Содержание

Технические характеристики насосов ЦНС

Насосное оборудование ЦНС и ЦНСг – это многоступенчатые секционные центробежные насосы, которые имеют горизонтальную конструкцию и предназначены для перекачивания чистой холодной и горячей воды. Существуют и другие разновидности этих агрегатов, используемые для перемещения масла и нефтепродуктов. Каждая модель обладает набором характеристик, которые и определяют сферу ее применения.

Использование центробежного насосного оборудования

Насосы типа ЦНС и агрегаты на их основе часто используются в теплоэнергетической промышленности для того, чтобы подавать питательную воду в паровые котельные теплоэлектроцентрали (ТЭЦ) небольшой мощности, в системы горячего водоснабжения, отопления и т.п.

Такое оборудование предназначено для того, чтобы перекачивать воду, которая имеет водородный показатель рН в диапазоне от 7 до 8,5, с массовой долей механических примесей не более 0,1%, размером твердых частиц до 0,1 мм.

Центробежные секционные насосы работают с подпором от двух до шести метров. Если такой подпор отсутствует, то кавитация быстро разрушает насосное оборудование. В случае установки для перекачивания воды температурой выше 45 градусов Цельсия нужно будет повышать подпор.

Характеристики центробежных секционных насосов

Насос ЦНС представлен на рынке широким модельным рядом. Модели отличаются между собой мощностью, напором, частотой вращения и подачей. Кроме того, каждый агрегат имеет определенные размеры. Изучить характеристики центробежных секционных насосов вы можете с помощью таблицы.

Модель насоса

Подача (м3/час)

Напор (м)

Частота вращения (об/мин)

Мощность (кВт)

ЦНС 13-70

13,00

70,00

2 950

5,2

13-105

13,00

105,00

2 950

7,7

13-140

13,00

140,00

2 950

10,3

13-210

13,00

210,00

2 950

15,2

13-315

13,00

315,00

2 950

22,8

38-44

38,00

44,00

2 950

6,8

38-66

38,00

66,00

2 950

10,2

38-132

38,00

132,00

2 950

19,8

60-200

60,00

200,00

1 475

51,00

60-66

60,00

66,00

2 950

15,7

60-231

60,00

231,00

2 950

53,2

180-255

180,00

255,00

1 475

178

180-297

180,00

297,00

1 475

208

180-340

180,00

340,00

1 475

238

300-1040

300,00

1040,00

2 950

1 140

300-120

300,00

120,00

1 475

140

300-600

300,00

600,00

1 475

700

850-360

850,00

360,00

1 500

1 157

850-960

850,00

960,00

1500

3 086

В таблице представлены характеристики только части насосного оборудования. Более подробно ознакомиться с модельным рядом, параметрами конкретного оборудования вы можете на нашем сайте или связавшись по телефону с менеджером.

Для всех насосов такого типа значение максимально допустимого давления на входе составляет не более 3 кгс/см2. Для системы горячего водоснабжения предназначены насосы ЦНСг. Они перекачивают воду температурой до 105 градусов Цельсия. Минимальное давление воды в них на входе равно 1 кгс/см2.

Насосы для масла и нефти

На основе оборудования ЦНС производятся и выпускаются насосы ЦНСм (для перекачки масла) и ЦНСн (для перекачивания нефти). Первые не предназначены для работы со взрывоопасными жидкостями. Они имеют сальниковое уплотнение и используются

для перекачки масла в системе турбоагрегатов.

Оборудование ЦНСн используется для перекачки обводненной газонасыщенной смеси, а также товарной нефти при температуре 0 – 45 градусов Цельсия в системах нефтепромыслового сбора и транспортировки.

Насос ЦНС – это специализированное оборудование, каждая модель которого применяется в определенной отрасли, выполняет конкретную функцию. Так что выбор этих агрегатов зависит от применения.

Центробежный насос для воды – описание, работа, преимущества

Центробежный насос для воды на сегодняшний день является одним из самых востребованных агрегатов.

Это оборудование широко используется и в промышленности и для бытовых нужд, поэтому центробежные агрегаты представлены на рынке широкой линейкой производителей – Grundfos, Wilo, Dab, Джилекс, водолей и многими другими.

В этой статье рассмотрим принцип работы, устройство, разнообразные типы и модели оборудования, а так же где лучше применять конкретный водяной центробежный насос.

Содержание статьи

  • Принцип действия
  • Характеристика
  • Схема центробежного насоса и основные типы
  • Устройство и монтаж
  • Область применения и эксплуатация

Работа центробежного насоса (насоса ЦН) основана на принципе силового взаимодействия лопасти с обтекающим её потоком. Название центробежный насос берет от процесса передачи механической энергии от рабочего тела к потоку.

В центробежном агрегате поток жидкости имеет в области лопастного колеса радиальное направление, и поэтому создаются условия для работы центробежных сил.

Вращение колеса центробежного насоса в потоке жидкости создает разность давлений по обе стороны каждой лопасти и, следовательно, силовое взаимодействие потока с лопастным колесом.

Силы давления лопастей на поток создают вынужденное вращательное и поступательное движение жидкости, увеличивая её давление и скорость, т.е. механическую энергию.

Приращение энергии в лопастном колесе зависит от сочетания скоростей протекания потока, скорости вращения колеса, его размеров и формы, т.е. от сочетания конструкции, размеров, числа оборотов и подачи. При постоянном числе оборотов каждому значению подачи лопастного агрегата соответствует определенный напор.

Принцип работы центробежного насоса, описанный выше относится и к агрегатам погружного и поверхностного типов.

На сегодняшний день этот тип насосного оборудования является самым популярным и продаваемым благодаря большому количеству преимуществ:
  широкий диапазон расходно-напорных характеристик;
  простая конструкция;
  быстрый монтаж;
  длительный срок службы;
  легкость технического обслуживания

Но нельзя обойти и недостатки центробежных насосов:
  невозможность создания больших давлений;
  отсутствие самовсасывания – перед запуском насос должен быть заполнен водой;
  среднее значение КПД – около 45 – 55 %.

Характеристика центробежного насоса

График напор – подача (производительность) изображается плавной кривой. Такая кривая называется характеристика центробежного насоса.

Дополнительно на графике характеристики может быть указана мощность, минимальное давление, коэффициент полезного действия(КПД) и сила тока во всем диапазоне.

Все эти характеристики очень важны при выборе каждой конкретной модели, а если Вы приобретаете насосное оборудование, которое будет работать на общую трассу(например для котельных), то без характеристики не обойтись.

Все параметры конкретного центробежного насоса: напор, подача, мощность и т.д. получают в процессе испытания на стенде. Разберем их по очереди.

Напор – показывает на какую высоту центробежный насос способен поднять столб воды, необходим при расчет сопротивления, которое необходимо преодолевать оборудованию. Измеряется в метрах.

Подача(производительность) центробежного насоса – отображает с какой скоростью будет подаваться жидкость. Выражается в м3/ч или л/ч.

Ток и мощность центробежного насоса – характеризуют затраты электроэнергии на агрегат.

Схема центробежного насоса

В процессе эксплуатации центробежного насосного агрегата для перекачки воды возникает необходимость резко увеличить подачу или давление в системе. Это легко сделать организовав системы центробежных насосов – изменив число совместно работающих центробежных аппаратов.

Совместная работа нескольких насосов на общую систему является одним из возможных методов регулирования параметров работы.

Рассмотрим подробнее упомянутые выше способы параллельной и последовательной работы центробежных насосов для воды.

Параллельная работа центробежных насосов

Параллельная работа нескольких машин на общую систему применяется для резкого увеличения подачи.

В большинстве случаев параллельная работа оборудования используется при установке резервного агрегата, например монтаж резервного насоса отопления в параллель к основному.

При этой схеме размещения общая производительность системы центробежных насосов складывается из суммы подач обоих агрегатов. Другими словами если вы установите 2 насоса с производительностью, например 3 3/ч и включите их вместе, то подача в трубопроводе будет равняться 6 м3/ч.

Для параллельной работы наиболее подходящими являются насосы с одинаковыми напорными характеристиками. Однако параллельно могут работать центробежные устройства с различными характеристиками, а также устройства разных типов, например, центробежные и поршневые.

Последовательная работа

Последовательная работа насосов применяется для резкого увеличения напора в системе при незначительном увеличении подачи. При этом возможны случаи, когда насосы цн располагаются в непосредственной близости один от другого и когда насосы цн удалены на значительное расстояние. В первом случае корпус второго агрегата должен воспринимать полное давление первого агрегата.

При такой схеме установки производительность не изменяется, но общий напор равняется сумме напоров 2 установленных единиц.

Последовательное соединение механизмов экономически оправдано при крутых характеристиках системы с малым значением напора. Регулирование дросселированием при последовательном включении экономически неоправданно. Целесообразнее использовать регулирование изменением частоты вращения одного из насосов.

Число последовательно включенных насосов лимитируется прочностью корпусов и надежностью работы концевых уплотнений.

Типы центробежных насосов

Оборудование этого класса принято классифицировать по множеству разнообразных параметров, но несмотря на прочие деления основные типы центробежных насосов это:
  осевые,
  консольный,
  погружной,
  вихревой,
  напорный (бустерный),
  водокольцевой,
  шламовый,
  дренажный,
  фекальный,
  скважинный и другие.

При классификации по уровню создаваемого давления выделяют модели:
  низкого,
  среднего,
  высокого давления.

По количеству рабочих колес модели центробежных насосов бывают:
  одноступенчатые,
  многоступенчатые.

По рабочему положению вала оборудование бывает:   горизонтальное,
  вертикальное.

Насосы центробежные консольные

Центробежные консольные насосы цн выпускаются по ГОСТ. Устройство центробежного насоса консольного типа выглядит следующим образом.

Базовой деталью машины является опорный кронштейн, в котором на двух шарикоподшипниках устанавливают вал. К кронштейну шпильками крепят спиральный корпус, напорный патрубок которого направлен вертикально вверх. В корпусе выполняются отверстия для выпуска воздуха, слива воды и подсоединения манометров.

На консольном конце вала крепят рабочее колесо. Со стороны входной воронки колеса корпус центробежного насоса закрывают крышкой с входным патрубком, обеспечивающим подвод жидкости к рабочему колесу.

Концевое уплотнение насоса сальникового типа, которое при необходимости можно заменить торцевым уплотнением. Незначительные осевые усилия воспринимаются шарикоподшипниками, которые смазываются консистентной смазкой.

Насос с электродвигателем устанавливают на общей плите и соединяют упругой муфтой.

Насосы центробежные консольные широко представлены на рынке, существует несколько разновидностей таких устройств. Подробное описание их конструкции и отличий, а так же технические характеристики мы собрали в этой статье.

Одноступенчатый центробежный насос для отопления

Бытовой центробежный насос для отопления выполняется в двух модификациях – «с мокрым» и «с сухим ротором».

Одноступенчатые насосы с мокрым ротором рассчитаны на постоянный контакт с перекачиваемой жидкостью. Перекачиваемая среда обеспечивает смазывание подшипников и уплотнений, а также снимает лишнее тепло с подшипников и электродвигателя. Конструктивно такие насосы компактны, но характеризуются низкими показателями по мощности. Их используют в качестве насосов подкачки для увеличения давления и в системах отопления.

Одноступенчатые насосы с сухим ротором, отличаются тем, что двигатель вынесен за конструкцию насоса и соединяется с гидравлической частью посредством соединительной муфты.

Такие агрегаты обладают лучшими расходно-напорными характеристиками, большими размерами и высоким уровнем шума. Основное их назначение – централизованные системы подачи воды и отопление.

Насос центробежный погружной

Насос водяной центробежный погружной или скважинный – это ещё одна модификация этого типа оборудования. Оно широко применяется для обеспечения водой частных домов и загородных участков.

Мы собрали для Вас все материалы по центробежным насосам для колодца и скважины в статье про скважинные насосы.

Многоступенчатый насос

Каждому лопастному колесу в агрегате соответствует элементарный насос.

Соединение таких элементарных конструкций в одном агрегате может быть параллельным и последовательным.

При параллельном соединении каждое лопастное колесо подает небольшую часть от общей подачи. Общий поток в агрегате делится на ряд параллельных струй. Такой центробежный насос для воды называется многопоточным.

На входе в многопоточную конструкцию поток делится на две части и поступает в лопастное колесо с двух сторон. Лопастное колесо в этой конструкции представляет собой объединение в одной детали двух лопастных колес, расположенных симметрично.

При выходе из лопастного колеса обе части потока вновь соединяются и поступают в спиральный отвод.

Входной и выходной патрубки машины расположенные в нижней части корпуса, направлены горизонтально в противоположные стороны. Аппарат имеет двусторонние выносные опоры, которые крепятся к его корпусу и фиксируются штифтами. Ротор конструкции опирается на подшипники качения или скольжения в зависимости от размера самой конструкции.

Такая конструкция машины очень компактна и обладает рядом преимуществ.

При последовательном соединении каждое лопастное колесо создает лишь часть полного напора при полной подаче. Напор в центробежном насосе при такой схеме соединения нарастает ступенями.

Такой тип конструкции насоса называется многоступенчатым. Он позволяет увеличить напор во столько раз, сколько у него ступеней. Все колеса многоступенчатого механизма насажены на общий вал и образуют единый ротор насоса.

Корпус механизма имеет торцовый разъем в горизонтальной плоскости. Входной и выходной патрубки расположены в нижней части корпуса и направлены горизонтально в противоположные стороны. Ступени насоса соединены между собой переводными каналами каналами и трубами.

Рабочее колесо, расположенное на первой ступени, обычно имеет повышенную всасывающую способность или двусторонний вход.

Опорами ротора устройства могут быть как подшипники качения, так и подшипники скольжения, устанавливаемые в разъемные корпуса.

Система уравновешивания осевого давления, подшипники, сальники объединяются в одном общем для всех ступеней корпусе, что придает машине компактность, уменьшает вес и снижает стоимость.

Устройство и монтаж

Устройство центробежного насоса в общем случае представляет собой следующую конструкцию:

Насос состоит из крышки корпуса поз.1, корпуса поз.2, нагнетательного патрубка поз.3, всасывающего патрубка поз.11 и свободно вращающегося в нем лопастного колеса поз. 4. Лопастное колесо поз.4 представляет собой камеру, в которой расположена система лопастей.

Центробежный насос не сможет работ без двигателя поз.8, который преобразует электрическую энергию в механическую – вращение ротора.

При вращении колеса лопасти приводят протекающий поток во вращательное движение, увеличивая этим его механическую энергию. Корпус центробежного насоса поз. 2 служит для конструктивного объединения всех элементов в насосе, для подвода жидкости к лопастному колесу, отвода потока от него и для преобразования скорости энергии потока, выходящего из колеса в давление.

Для предупреждения обратного возврата жидкости из области нагнетания в область всасывания через пространство между колесом и корпусом служит уплотнение. Зазор в таком уплотнении делается как можно меньшим для исключения обратных протечек жидкости.

Рабочее колесо центробежного насоса закреплено на валу поз.5, который одновременно служит проводником механической энергии от двигателя. Вал насоса и двигателя соединены муфтой поз.6.

В месте прохода вала через отверстие из корпуса расположено сальниковое уплотнение поз 10, предупреждающее вытекание жидкости из корпуса наружу. Вал опирается на подшипники поз.9, которые воспринимают как радиальную так и осевую нагрузки, возникающие вследствие действия гидравлических сил и вала.

Особенности монтажа

В зависимости от типа устанавливаемого агрегата выбирается конкретная технология на монтаж центробежного насоса. В общем случае установка начинается с закладывания фундамента, которым может служить бетонная плита и стальная рама.

Фундамент центробежного насоса выверяется по высоте относительно общей реперной точки. Далее корпус агрегата закрепляется болтами на раме.

Самой сложной процедурой монтажа является центрирование насосного агрегата и электродвигателя (если оборудование поставляется раздельно), а также центрирование электронасоса и трубопровода.

В случае установки моделей вертикального исполнения плиты фундамента выверяются по высоте с помощью линейки и в горизонтальном направлении с помощью строительного уровня.

Заканчивается монтаж центробежных насосов выравниваем бетонного основания там, где его необходимо подлить. Далее проверяются сальниковые набивки оборудования и устанавливается дополнительное охлаждение (в случае необходимости).

Затем производится пробный пуск и выход на рабочие параметры.

Область применения и эксплуатация центробежных насосов

Бытовые центробежные насосы для воды широко используются в повседневной жизни и не только в системах коммунального хозяйства, но и на частных загородных участках и огородах.

Например:
  Агрегаты этого типа ежедневно подают воду в автономную систему водоснабжения частного дома из колодца или скважины.
  Они способны обеспечивать полив или орошение загородного участка. А так же использоваться как отдельно, так и быть счастью автоматизированной системы полива.
  Центробежный бытовой насос может устанавливаться в систему отопления обеспечения беспрерывной циркуляции теплоносителя. Применение специальных моделей центробежных насосов в качестве элемента системы отопления позволяет значительно повысить эффективность ее работы, а также снизить затраты на энергоносители.
  Дренажные модели используются для откачивания воды при затоплении подвальных помещений и погребов, а так же удаления скопившейся жидкости с территории приусадебного участка, очистки колодцев от иловых отложений, осушения септиков и сточных ям.

Центробежные насосы удобны для непосредственного соединения с быстроходными типами современных электромоторов. Вследствие вращения лопастного колеса с постоянным числом оборотов скорости потока жидкости в центробежных насосах могут быть значительно более высокими чем в поршневых.

Центробежные машины при тех же значениях подачи получаются значительнее компактнее, легче и дешевле.

Коэффициент полезного действия (КПД) центробежной машины при среднем напоре не уступает КПД поршневого аппарата, поэтому в области низких и средних напоров и больших подач применяют исключительно лопастные насосы.

Эксплуатация центробежных насосов

Универсальных правил, регламентирующих перечень работ для каждой модели оборудования нет, конкретные рекомендации к Вашему агрегату описаны в сопроводительной документации, такой как паспорт или руководство по обслуживанию.

Общими рекомендациями для всех типов электронасосов могут служить:
  соблюдение сроков проведения технического обслуживания,
  соблюдение интенсивности нагрузок, таких как контроль перекачиваемой жидкости (её вязкость, температура, наличие загрязнений в перекачиваемой среде и т.д.).
  контроль параметров электросети – напряжение и силы тока.
  контроль внешних параметров окружающей среды, таких как влажность и температура окружающего воздуха.

Чем в более тяжелых условиях работает оборудование, тем чаще его необходимо проверять. В этом случае при появлении каких либо отклонений от нормальной работы Вы сможете вовремя предпринять меры и избежать дополнительных расходов, которые могут появиться в случае поломки или выхода агрегата из строя.

Вместе со статьей “Центробежный насос для воды – описание, работа, преимущества” читают:

Центробежные насосы | Инженерная библиотека

На этой странице представлена ​​глава о центробежных насосах из «Руководства по основам DOE: термодинамика, теплопередача и поток жидкости», DOE-HDBK-1012/3-92, Министерство энергетики США, июнь 1992 г.

Другие связанные главы из «Справочника по основам Министерства энергетики: термодинамика, теплопередача и поток жидкости» можно увидеть справа.

Центробежные насосы являются одним из наиболее распространенных компонентов гидравлических систем. Чтобы понять, как работает жидкостная система, содержащая центробежный насос, необходимо понять соотношение напора и расхода для центробежного насоса.

Преобразование энергии в центробежном насосе

Жидкость, поступающая в центробежный насос, немедленно направляется в область низкого давления в центре или в глазу рабочего колеса. Когда крыльчатка и лопасти вращаются, они передают импульс поступающей жидкости. Передача импульса движущейся жидкости увеличивает скорость жидкости. По мере увеличения скорости жидкости увеличивается ее кинетическая энергия. Жидкость с высокой кинетической энергией вытесняется из зоны рабочего колеса и поступает в улитку.

Улитка представляет собой область с постоянно увеличивающейся площадью поперечного сечения, предназначенную для преобразования кинетической энергии жидкости в давление жидкости. Механизм этого преобразования энергии такой же, как и при дозвуковом течении через расширяющуюся часть сопла. Математический анализ течения через улитку основан на общем уравнении энергии, уравнении неразрывности и уравнении, связывающем внутренние свойства системы. Ключевыми параметрами, влияющими на преобразование энергии, являются расширяющаяся площадь поперечного сечения улитки, более высокое противодавление в системе на выходе из улитки и несжимаемый дозвуковой поток жидкости. В результате взаимозависимости этих параметров течение жидкости в улитке, подобно дозвуковому течению в расширяющемся сопле, испытывает уменьшение скорости и увеличение давления.

Рабочие характеристики центробежного насоса

Обычно центробежный насос создает относительно небольшое увеличение давления в жидкости. Это увеличение давления может составлять от нескольких десятков до нескольких сотен фунтов на квадратный дюйм в центробежном насосе с одноступенчатым рабочим колесом. Термин PSID (перепад силы в фунтах на квадратный дюйм) эквивалентен ΔP. В данном контексте это разница давлений между всасыванием и нагнетанием насоса. PSID также можно использовать для описания перепада давления на компоненте системы (сетчатые фильтры, теплообменники, клапаны, деминерализаторы и т. д.). Когда центробежный насос работает с постоянной скоростью, увеличение противодавления системы на текущий поток вызывает уменьшение величины объемного расхода, который может поддерживать центробежный насос.

Анализ взаимосвязи между объемным расходом (\( \dot{V} \)), который может поддерживать центробежный насос, и перепадом давления на насосе (ΔP насоса ) основан на различных физических характеристиках насоса и системная жидкость. Переменные, оцениваемые инженерами-конструкторами для определения этой взаимосвязи, включают эффективность насоса, мощность, подаваемую на насос, скорость вращения, диаметр рабочего колеса и лопастей, плотность и вязкость жидкости. Результат этого сложного анализа для типичного центробежного насоса, работающего с одной конкретной скоростью, показан на графике на рисунке 7.

Напор насоса по вертикальной оси представляет собой разницу между противодавлением в системе и входным давлением насоса (ΔP насоса ). Объемный расход (\( \dot{V} \)), на горизонтальной оси, представляет собой скорость, с которой жидкость протекает через насос. График предполагает одну конкретную скорость (N) для рабочего колеса насоса.

Кавитация

Когда перекачиваемая жидкость попадает в проушину центробежного насоса, давление значительно снижается. Чем больше скорость потока через насос, тем больше это падение давления. Если перепад давления достаточно велик или если температура жидкости достаточно высока, перепад давления может быть достаточным для того, чтобы жидкость испарилась, когда локальное давление падает ниже давления насыщения для перекачиваемой жидкости. Эти пузырьки пара увлекаются жидкостью вдоль крыльчатки насоса. По мере уменьшения скорости потока давление жидкости увеличивается. Это приводит к тому, что пузырьки пара внезапно схлопываются на внешних частях крыльчатки. Образование этих пузырьков пара и их последующее схлопывание составляет кавитация .

Кавитация может быть очень серьезной проблемой для центробежных насосов. Некоторые насосы могут быть рассчитаны на работу с ограниченным уровнем кавитации. Большинство центробежных насосов не могут выдерживать кавитацию в течение значительных периодов времени; они повреждены эрозией крыльчатки, вибрацией или какой-либо другой проблемой, вызванной кавитацией.

Чистый положительный напор всасывания

Можно предотвратить кавитацию во время работы насоса, контролируя чистый положительный напор на всасывании насоса. Чистый положительный кавитационный запас (NPSH) для насоса представляет собой разницу между давлением всасывания и давлением насыщения перекачиваемой жидкости. NPSH используется для измерения того, насколько жидкость близка к условиям насыщения. Уравнение 3-19 можно использовать для расчета чистого положительного напора на всасывании, доступного для насоса. Единицами NPSH являются футы водяного столба.

NPSH = P всасывание − P насыщение

(3-19)

где:

Р всасывание = давление всасывания насоса
P насыщенность = давление насыщения жидкости

Поддерживая доступный NPSH на уровне, превышающем NPSH, требуемый производителем насоса, можно избежать кавитации.


PDH Classroom предлагает курс повышения квалификации на основе этой справочной страницы центробежных насосов. Этот курс можно использовать для выполнения кредитных требований PDH для поддержания вашей лицензии PE.

Теперь, когда вы прочитали эту справочную страницу, заработайте за это признание!

Просмотреть курс сейчас:

Просмотреть курс


Законы о насосах

Центробежные насосы обычно подчиняются так называемым законам насоса. Эти законы гласят, что расход или производительность прямо пропорциональны скорости насоса; напор нагнетания прямо пропорционален квадрату скорости насоса; а мощность, необходимая двигателю насоса, прямо пропорциональна кубу скорости насоса. Эти законы резюмируются в следующих уравнениях. 93 $$

(3-22)

где:

нет = скорость рабочего колеса насоса (об/мин)
\(\точка{V}\) = объемный расход насоса (галлонов в минуту или футов 3 /час)
Н р = напор, развиваемый насосом (псид или футы)
Р = мощность насоса (кВт)
93 = P_2 $$

(3-25)

Пример:  Законы о насосах

Насос охлаждающей воды работает со скоростью 1800 об/мин. Его расход составляет 400 галлонов в минуту при напоре 48 футов. Мощность насоса составляет 45 кВт. Определите расход насоса, напор и требования к мощности, если скорость насоса увеличивается до 3600 об/мин.

Решение:

Скорость потока

$$ \begin{выравнивание} \dot{V}_2 &=& \dot{V}_1 \left({n_2 \over n_1}\right) \nonnumber \\ &=& (400 ~\text{gpm}) \left({ 3600 ~\text{rpm} \over 1800 ~\text{rpm} }\right) \nonumber \\ &=& 800 ~\text{гал/мин} \end{эквнаррай} $$ 93 \номер \\ &=& 360 ~\text{кВт} \end{эквнаррай} $$

Можно построить характеристическую кривую для новой скорости насоса на основе кривой для его исходной скорости. Техника заключается в том, чтобы взять несколько точек на исходной кривой и применить законы насоса для определения нового напора и расхода при новой скорости. Кривая зависимости напора насоса от скорости потока, полученная в результате изменения скорости насоса, графически представлена ​​на Рисунке 8.

Рисунок 8: Изменение скорости центробежного насоса

Кривая характеристик системы

В главе о потерях напора было установлено, что как потери на трение, так и незначительные потери в трубопроводных системах пропорциональны квадрату скорости потока. Поскольку скорость потока прямо пропорциональна объемному расходу, потери напора в системе должны быть прямо пропорциональны квадрату объемного расхода. Из этой зависимости можно построить кривую зависимости потери напора системы от объемного расхода. Кривая потери напора для типичной системы трубопроводов имеет форму параболы, как показано на рисунке 9..

Рис. 9: Типичная кривая потери напора системы

Рабочая точка системы

Точка, в которой насос работает в данной системе трубопроводов, зависит от скорости потока и потери напора в этой системе. Для данной системы объемный расход сравнивается с потерями напора системы на характеристической кривой системы. Построив кривую характеристики системы и кривую характеристики насоса в одной и той же системе координат, можно определить точку, в которой должен работать насос. Например, на рисунке 10 рабочая точка центробежного насоса в исходной системе обозначена пересечением кривой насоса и кривой системы (h Ло ).

Рисунок 10: Рабочая точка центробежного насоса

Система имеет скорость потока, равную \( \dot{V}_o \) и общую потерю напора в системе, равную ΔP o . Чтобы поддерживать расход (\( \dot{V}_o \)), напор насоса должен быть равен ΔP o . В системе, описываемой системной кривой (h L1 ), в системе был открыт клапан для уменьшения сопротивления системы потоку. Для этой системы насос поддерживает большой расход (\( \dot{V}_1 \)) при меньшем напоре насоса (ΔP 1 ).

Система с несколькими центробежными насосами

Типичный центробежный насос имеет относительно небольшое количество движущихся частей и может быть легко адаптирован к различным первичным двигателям. Эти первичные двигатели включают электродвигатели переменного и постоянного тока, дизельные двигатели, паровые турбины и воздушные двигатели. Центробежные насосы обычно имеют небольшие размеры и обычно могут быть построены по относительно низкой цене. Кроме того, центробежные насосы обеспечивают высокий объемный расход при относительно низком давлении.

Для увеличения объемного расхода в системе или для компенсации больших гидравлических сопротивлений центробежные насосы часто используются параллельно или последовательно. На рис. 11 показаны два идентичных центробежных насоса, работающих параллельно с одинаковой скоростью.

Рисунок 11: Кривая характеристики насоса для двух идентичных центробежных насосов, используемых параллельно

Центробежных насосов, установленных параллельно

Поскольку вход и выход каждого насоса, показанного на рис. 11, находятся в одинаковых точках системы, каждый насос должен создавать один и тот же напор. Однако общий расход в системе является суммой индивидуальных расходов каждого насоса.

Когда кривая характеристики системы рассматривается параллельно с кривой для насосов, рабочая точка на пересечении двух кривых представляет более высокий объемный расход, чем для одного насоса, и большую потерю напора в системе. Как показано на рисунке 12, большая потеря напора в системе происходит при увеличении скорости жидкости в результате увеличения объемного расхода. Из-за большего напора системы объемный расход фактически в два раза меньше, чем при использовании одного насоса.

Рисунок 12: Рабочая точка для двух параллельных центробежных насосов

Центробежные насосы в серии

Центробежные насосы используются последовательно, чтобы компенсировать большую потерю напора в системе, чем один насос может компенсировать по отдельности. Как показано на рис. 13, два идентичных центробежных насоса, работающих с одинаковой скоростью и с одинаковым объемным расходом, обеспечивают один и тот же напор насоса. Поскольку вход второго насоса является выходом первого насоса, напор, создаваемый обоими насосами, представляет собой сумму отдельных напоров. Объемный расход от входа первого насоса до выхода второго остается прежним.

Рис. 13: Кривая характеристики насоса для двух идентичных центробежных насосов, используемых в серии

Как показано на рис. 14, последовательное подключение двух насосов фактически не удваивает сопротивление потоку в системе. Два насоса обеспечивают адекватный напор для новой системы, а также поддерживают несколько более высокий объемный расход.

Рисунок 14: Рабочая точка для двух центробежных насосов в серии

PDH Classroom предлагает курс повышения квалификации на основе этой справочной страницы центробежных насосов. Этот курс можно использовать для выполнения кредитных требований PDH для поддержания вашей лицензии PE.

Теперь, когда вы прочитали эту справочную страницу, заработайте за это признание!

Просмотреть курс сейчас:

Просмотреть курс



Характеристики центробежного насоса | ЭДИБОН®

Лаборатории

Общее описание

Характеристики центробежного насоса FME13, разработанные EDIBON, позволяют изучить несколько характеристик центробежных насосов, таких как эффективность, последовательное/параллельное соединение и т. д. Скамья (FME00) и базовая гидравлическая система подачи (FME00/B). Он оснащен двумя манометрами давления типа Бурдона, расположенными на входе и выходе из насоса. Еще один находится в выпускном приспособлении, входящем в комплект поставки устройства.

Насос приводится в действие трехфазным асинхронным двигателем, скорость которого можно изменять с помощью вариатора скорости.

Агрегат имеет дисплей визуализации, позволяющий узнать число оборотов и потребляемую мощность.

В комплект входит выпускной аксессуар с манометром, клапаном управления потоком и диффузором.

Панель управления вариатора позволяет изменять скорость насоса и пуск.

Упражнения и практические занятия под руководством

ПРАКТИЧЕСКИЕ УПРАЖНЕНИЯ ПОД РУКОВОДСТВОМ, ВКЛЮЧЕННЫЕ В РУКОВОДСТВО

  1. Получение кривых H(Q), N(Q), Eff%(Q) центробежного насоса.
  2. Изготовление карты центробежного насоса.
  3. Представление размерных кривых H*, N* и об/мин*.
  4. Последовательное соединение двух насосов с одинаковыми характеристиками.
  5. Последовательное соединение двух насосов с разными характеристиками.
  6. Параллельное соединение двух насосов с одинаковыми характеристиками.
  7. Параллельное соединение двух насосов с разными характеристиками.

НЕОБХОДИМЫЕ ЭЛЕМЕНТЫ

  • FME00
  • FME00/B

ДОСТУПНЫ ПОДОБНЫЕ УСТРОЙСТВА

  • КПСС

    В наличии

    8.7.1.- НАСОСЫ

    PBCC

    Центробежный насос с компьютерным управлением

    Настольный центробежный насос с компьютерным управлением, “PBCC”, представляет собой настольную установку, состоящую из центробежного насоса с компьютерным управлением, бака питательной воды, циркуляционных труб, регулирующих клапанов, а также достаточного количества элементов управления для насоса.

    • FME12

      В наличии

      8.1.6.- ГИДРАВЛИЧЕСКИЕ МАШИНЫ: НАСОСЫ

      FME12

      Серийные/параллельные насосы

      Блок последовательных/параллельных насосов “FME12”, разработанный EDIBON, позволяет исследовать соединение между двумя последовательными/параллельными центробежными насосами, получать характеристические кривые, а также рассчитывать расход воды. Он состоит из …

      • ПБСПК

        В наличии

        8.7.1.- НАСОСЫ

        PBSPC

        Скамья с последовательными/параллельными насосами, управляемая компьютером

        Стенд с компьютерным управлением последовательными/параллельными насосами, «PBSPC», предназначен для демонстрации эксплуатационных преимуществ параллельной или последовательной работы в зависимости от требуемой нагрузки. Этот агрегат состоит из двух центробежных насосов, бака питательной воды,…

        • ПБСПБ

          В наличии

          8.7.1.- НАСОСЫ

          ПБСПБ

          Серийные/параллельные насосы

          Стенд с последовательными/параллельными насосами “PBSPB” предназначен для демонстрации эксплуатационных преимуществ параллельной или последовательной работы в зависимости от требуемой нагрузки. Эта установка состоит из двух центробежных насосов, бака питательной воды, циркуляционных труб,..

          • ПКБ

            В наличии

            8. 7.1.- НАСОСЫ

            PBCB

            Центробежный насос

            Стенд центробежного насоса “PBCB” представляет собой настольную установку, состоящую из центробежного насоса, бака питательной воды, циркуляционных труб, регулирующих клапанов, а также достаточного количества элементов управления для опытов с насосом: двух манометров и датчик расхода.А…

            ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

            • ЛИФЛУБА

              В наличии

              8.1.7.- ГИДРАВЛИЧЕСКИЕ МАШИНЫ: ТУРБИНЫ

              LIFLUBA

              Комплексная лаборатория базовой гидромеханики

              Гидравлика — это область науки, изучающая механические свойства жидкостей, а механика жидкостей обеспечивает основу для гидравлики. Создавая LIFLUBA (Интегрированная лаборатория базовой механики жидкостей), EDIBON пытается дать ответ на…

              • FME12

                В наличии

                8.1.6.- ГИДРАВЛИЧЕСКИЕ МАШИНЫ: НАСОСЫ

                FME12

                Серийные/параллельные насосы

                Блок последовательных/параллельных насосов “FME12”, разработанный EDIBON, позволяет исследовать соединение между двумя последовательными/параллельными центробежными насосами, получать характеристические кривые, а также рассчитывать расход воды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *