Определить теплопроводность: Теплопроводность определение, назначение, cвойства, разновидности, размеры, технические характеристики

alexxlab | 31.08.1994 | 0 | Разное

Содержание

Методы определения теплопроводности

Теплопроводность — важнейшая теплофизическая характеристика материалов. Её необходимо учитывать при конструировании нагревательных устройств, выборе толщины защитных покрытий, учёте тепловых потерь. Если под рукой или в наличии нет соответствующего справочника, а состав материала точно не известен, его теплопроводность необходимо вычислить или измерить экспериментально.

Составляющие теплопроводности материалов

Теплопроводность характеризует процесс теплопереноса в однородном теле с определёнными габаритными размерами. Поэтому исходными параметрами для измерения служат:

  1. Площадь в направлении, перпендикулярном направлению теплового потока.
  2. Время, в течение которого происходит перенос тепловой энергии.
  3. Температурный перепад между отдельными, наиболее удалёнными друг от друга частями детали или исследуемого образца.
  4. Мощность теплового источника.

Для соблюдения максимальной точности результатов требуется создать стационарные (установившиеся во времени) условия теплопередачи. В этом случае фактором времени можно пренебречь.

Измерители теплопроводности на нашем сайте.

Определить теплопроводность можно двумя способами — абсолютным и относительным.

Абсолютный метод оценки теплопроводности

В данном случае определяется непосредственное значение теплового потока, который направляется на исследуемый образец. Чаще всего образец принимается стержневым или пластинчатым, хотя в некоторых случаях (например, при определении теплопроводности коаксиально размещённых элементов) он может иметь вид полого цилиндра. Недостаток пластинчатых образцов — необходимость в строгой плоскопараллельности противоположных поверхностей.

Поэтому для металлов, характеризующихся высокой теплопроводностью, чаще принимают образец в форме стержня.

Суть замеров состоит в следующем. На противоположных поверхностях поддерживаются постоянные температуры, возникающие от источника тепла, который расположен строго перпендикулярно к одной из поверхностей образца.

В этом случае искомый параметр теплопроводности λ составит
 λ=(Q*d)/F(T2-T1), Вт/м∙К, где:
Q — мощность теплового потока;
d — толщина образца;
F — площадь образца, на которую воздействует тепловой поток;

Т1 и Т2 — температуры на поверхностях образца.

Поскольку мощность теплового потока для электронагревателей может быть выражена через их мощность UI, а для измерения температуры могут быть использованы подключённые к образцу термодатчики, то вычислить показатель теплопроводности λ не составит особых трудностей.

Для того, чтобы исключить непроизводительные потери тепла, и повысить точность метода, узел образца и нагревателя следует поместить в эффективный теплоизолирующий объём, например, в сосуд Дьюара.

Относительный метод определения теплопроводности

Исключить из рассмотрения фактор мощности теплового потока можно, если использовать один из способов сравнительной оценки. С этой целью между стержнем, теплопроводность которого требуется определить, и источником тепла помещают эталонный образец, теплопроводность материала которого λ3 известна.

Для исключения погрешностей измерения образцы плотно прижимаются друг к другу. Противоположный конец измеряемого образца погружается в охлаждающую ванну, после чего к обоим стержням подключаются по две термопары.

Далее включают нагреватель, и по достижении стационарного состояния, измеряют разницу температур между термопарами испытуемого образца и образца-эталона.

Теплопроводность вычисляется из выражения
λ=λ3(d(T13-T23)/d3(T1-T2)), где:
d — расстояние между термопарами в исследуемом образце;
d3 — расстояние между термопарами в образце-эталоне;
T13 и T23 — показания термопар, установленных в образце-эталоне;
Т1 и Т2 — показания термопар, установленных в исследуемом образце.

Теплопроводность можно определить и по известной электропроводности γ материала образца. Для этого в качестве испытуемого образца принимают проводник из проволоки, на концах которого любым способом поддерживается постоянная температура.

Через проводник пропускается постоянный электрический ток силой I, причём клеммный контакт должен приближаться к идеальному.

По достижении стационарного теплового состояния температурный максимум Tmax будет располагаться посредине образца, с минимальными значениями Т1 и Т2 на его торцах. Измерив разность потенциалов U между крайними точками образца, значение теплопроводности можно установить из зависимости 

Точность оценки теплопроводности возрастает с возрастанием длины испытуемого образца, а также с увеличением силы тока, который пропускается через него.

Относительные методы измерения теплопроводности точнее абсолютных, и более удобны в практическом применении, однако требуют существенных затрат времени на выполнение замеров. Это связано с длительностью установления стационарного теплового состояния в образце, теплопроводность которого определяется.

Все публикации
Архив по годам: 2015; 2016;

Коэффициент теплопроводности материалов таблица, формулы

Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого. Эквивалентная теплопроводимость строительных материалов и утеплителей

 

Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).

Содержание

  1. Как рассчитать теплопроводность по закону Фурье
  2. Электропроводность и коэффициент теплопередачи
  3. Коэффициент теплопроводности газовой среды
  4. Теплопроводимость в газовой разреженной среде

Как рассчитать теплопроводность по закону Фурье

В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:

q = − ϰ х grad х (T), где:

  • q – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
  • ϰ – удельный коэффициент теплопроводности материала;
  • T – температура материала.
Перенос тепла в неравновесной термодинамической системе

 

Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:

  • P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
  • P ­– общая мощность потерь теплоотдачи;
  • S – сечение предмета;
  • ΔT – разница температуры по стыкам сторон предмета;
  • l – расстояние между стыками сторон предмета – длина фигуры.
Связь коэффициента теплопроводимости с электропроводностью материалов

 

Электропроводность и коэффициент теплопередачи

Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:

Κ / σ = π2 / 3 х (К / e)2 х T, где:

  • К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
  • e – заряд электрона;
  • T – термодинамическая температура предмета.

Коэффициент теплопроводности газовой среды

В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:

ϰ ~ 1/3 х p х cv х Λλ х v, где:

  • pv – плотность газовой среды;
  • cv – удельная емкость тепловой энергии при одном и том же объеме тела;
  • Λλ – расстояние свободного перемещения молекул в газовой среде;
  • v – скорость передачи тепла.
Что такое теплопроводимость

 

Или:

ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:

  • i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
  • К – коэффициент Больцмана;
  • μ – отношение массы газа к количеству молей газа;
  • T – термодинамическая температура;
  • d – ⌀ молекул газа;
  • R – универсальный коэффициент для газовой среды.

Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.

Теплопроводимость в газовой разреженной среде

Газовая среда и теплопроводность

 

Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:

ϰ ~ 1/3 х p х cv х l х v, где:

i – объем резервуара;

Р – уровень давления в резервуаре.

Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними. Что такое тепловое излучение

 

При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:

τ х ∂q / ∂t = − (q + ϰ х ∇T) .

Если ре­лак­са­ция τ мгновенная, то формула превращается в закон Фурье.

Ориентировочная таблица теплопроводности материалов:

Основа Значение теплопроводности, Вт/(м•К)
Жесткий графен 4840 +/ 440 – 5300 +/ 480
Алмаз 1001-2600
Графит 278,4-2435
Бора арсенид 200-2000
SiC 490
Ag 430
Cu 401
BeO 370
Au 320
Al 202-236
AlN 200
BN 180
Si 150
Cu3Zn2 97-111
Cr 107
Fe 92
Pt 70
Sn 67
ZnO 54
 Черная сталь 47-58
Pb 35,3
Нержавейка Теплопроводность стали – 15
SiO2 8
Высококачественные термостойкие пасты 5-12
Гранит

(состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %)

2,4
Бетонный раствор без заполнителей 1,75
Бетонный раствор со щебнем или с гравием 1,51
Базальт

(состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %)

1,3
Стекло

(состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т. д.)

1-1,15
Термостойкая паста КПТ-8 0,7
Бетонный раствор с наполнителем из песка, без щебня или гравия 0,7
Вода чистая 0,6
Силикатный

или красный кирпич

0,2-0,7
Масла

на основе силикона

0,16
Пенобетон 0,05-0,3
Газобетон 0,1-0,3
Дерево Теплопроводность дерева – 0,15
Масла

на основе нефти

0,125
Снег 0,10-0,15
ПП с группой горючести Г1 0,039-0,051
ЭППУ с группой горючести Г3, Г4 0,03-0,033
Стеклянная вата 0,032-0,041
Вата каменная 0,035-0,04
Воздушная атмосфера (300 К, 100 кПа) 0,022
Гель

на основе воздуха

0,017
Аргон (Ar) 0,017
Вакуумная среда 0

Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла.  В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.

Таблица теплопроводимости стройматериалов

 

Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.

Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.

  • При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
  • Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.

Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры). Ориентировочные показатели коэффициентов теплопроводимости

 

В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.

Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:

Стройматериалы Коэффициент теплопроводимости, Вт/(м2•К)
Плиты из алебастра 0,47
Al 230
Шифер асбоцементный 0,35
Асбест (волокно, ткань) 0,15
Асбоцемент 1,76
Асбоцементные изделия 0,35
Асфальт 0,73
Асфальт для напольного покрытия 0,84
Бакелит 0,24
Бетон с заполнителем щебнем 1,3
Бетон с заполнителем песком 0,7
Пористый бетон – пено- и газобетон 1,4
Сплошной бетон 1,75
Термоизоляционный бетон 0,18
Битумная масса 0,47
Бумажные материалы 0,14
Рыхлая минвата 0,046
Тяжелая минвата 0,05
Вата – теплоизолятор на основе хлопка 0,05
Вермикулит в плитах или листах 0,1
Войлок 0,046
Гипс 0,35
Глиноземы 2,33
Гравийный заполнитель 0,93
Гранитный или базальтовый заполнитель 3,5
Влажный грунт, 10% 1,75
Влажный грунт, 20% 2,1
Песчаники 1,16
Сухая почва 0,4
Уплотненный грунт 1,05
Гудроновая масса 0,3
Доска строительная 0,15
Фанерные листы 0,15
Твердые породы дерева 0,2
ДСП 0,2
Дюралюминиевые изделия 160
Железобетонные изделия 1,72
Зола 0,15
Известняковые блоки 1,71
Раствор на песке и извести 0,87
Смола вспененная 0,037
Природный камень 1,4
Картонные листы из нескольких слоев 0,14
Каучук пористый 0,035
Каучук 0,042
Каучук с фтором 0,053
Керамзитобетонные блоки 0,22
Красный кирпич 0,13
Пустотелый кирпич 0,44
Полнотелый кирпич 0,81
Сплошной кирпич 0,67
Шлакокирпич 0,58
Плиты на основе кремнезема 0,07
Латунные изделия 110
Лед при температуре 00С 2,21
Лед при температуре -200С 2,44
Лиственное дерево при влажности 15% 0,15
Медные изделия 380
Мипора 0,086
Опилки для засыпки 0,096
Сухие опилки 0,064
ПВХ 0,19
Пенобетон 0,3
Пенопласт марки ПС-1 0,036
Пенопласт марки ПС-4 0,04
Пенопласт марки ПХВ-1 0,05
Пенопласт марки ФРП 0,044
ППУ марки ПС-Б 0,04
ППУ марки ПС-БС 0,04
Лист из пенополиуретана 0,034
Панель из пенополиуретана 0,024
Облегченное пеностекло 0,06
Тяжелое вспененное стекло 0,08
Пергаминовые изделия 0,16
Перлитовые изделия 0,051
Плиты на цементе и перлите 0,085
Влажный песок 0% 0,33
Влажный песок 0% 0,97
Влажный песок 20% 1,33
Обожженный камень 1,52
Керамическая плитка 1,03
Плитка марки ПМТБ-2 0,035
Полистирол 0,081
Поролон 0,04
Раствор на основе цемента без песка 0,47
Плита из натуральной пробки 0,042
Легкие листы из натуральной пробки 0,034
Тяжелые листы из натуральной пробки 0,05
Резиновые изделия 0,15
Рубероид 0,17
Сланец 2,100
Снег 1,5
Хвойная древесина влажностью 15% 0,15
Хвойная смолистая древесина влажностью 15% 0,23
Стальные изделия 52
Стеклянные изделия 1,15
Утеплитель стекловата 0,05
Стекловолоконные утеплители 0,034
Стеклотекстолитовые изделия 0,31
Стружка 0,13
Тефлоновое покрытие 0,26
Толь 0,24
Плита на основе цементного раствора 1,93
Цементно-песчаный раствор 1,24
Чугунные изделия 57
Шлак в гранулах 0,14
Шлак зольный 0,3
Шлакобетонные блоки 0,65
Сухие штукатурные смеси 0,22
Штукатурный раствор на основе цемента 0,95
Эбонитовые изделия 0,15
Влажность и теплопроводимость – зависимость

 

Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах  будет абсолютный вакуум.

Что такое теплопроводность? Как это измеряется? – TAL

Автор: Джон Клиффорд, стажер-химик

Что такое теплопроводность?

Рисунок 1: Теплопередача за счет теплопроводности плоской стенки, показывающая важность теплопроводности в теплопередаче

Теплопроводность — это свойство, описывающее способность материала проводить тепло. Он часто обозначается как k и имеет единицы СИ W/m·K (Ватт на метр по Кельвину). Теплопроводность является ключевым параметром при измерении кондуктивной теплопередачи.

Тепло может передаваться тремя способами: теплопроводностью, конвекцией и излучением. Весь теплообмен происходит, когда между двумя областями существует разница температур; проводимость отличается тем, что теплота «проходит через тело самого вещества» [1]. Внутри твердых тел конвекция отсутствует, а излучение обычно незначительно, а это означает, что проводимость чрезвычайно важна для описания теплового поведения.

Поскольку проводимость происходит через вещество, она может происходить либо внутри объекта, либо через два контактирующих материала. Определяющая формула кондуктивной теплопередачи описывается законом теплопроводности Фурье:

q = -k ∇T

Где q — тепловой поток (Вт/м 2 ), ∇T — градиент температуры (К/м), k — тепловой поток. проводимость [2]. Это математически демонстрирует, что теплопередача линейно пропорциональна градиенту температуры, а теплопроводность материала представляет собой константу пропорциональности. Это означает, что он может иметь большое влияние на скорость теплопередачи.

Поскольку теплопроводность является физическим свойством, она будет меняться в зависимости от типа, структуры и состояния материала. Точно так же это также функция температуры, которую важно учитывать в приложениях, где температура может сильно варьироваться, например, в электронном управлении температурой [3]. Точно так же обратной величиной теплопроводности является тепловое удельное сопротивление, которое является внутренним свойством, указывающим на эффективность материала в качестве изолятора [1].

Электропроводность твердых тел может сильно различаться. Например, металлы обычно очень теплопроводны из-за делокализованного движения электронов в металлической связи. Это способствует более быстрому нагреву металлов, чем другие материалы, такие как пластик или стекло.

Рис. 2. Медные листы, металл с высокой теплопроводностью, часто используемый в промышленности

Однако все твердые тела, включая металлы, проводят тепло за счет вибрации между соседними атомами. Некоторые твердые материалы, такие как пенополистирол, имеют низкую  k и действуют как изоляторы. Частично это связано с низким значением k для воздуха, содержащегося в пустотах этих материалов [4]. Для получения дополнительной информации о теории теплопроводности см. видео ниже:

Одним из примеров важности теплопроводности является область полимерных композитов и добавок. Полимеры все чаще используются в радиаторах от электроники до биомедицинских устройств и автомобильных деталей.

Рисунок 3: Термопаста, теплопроводящий материал, изготовленный с использованием проводящих добавок для эффективного отвода тепла

Однако для того, чтобы заменить металлы и керамику в этих термочувствительных устройствах, теплопроводность должна быть улучшена. Это достигается за счет использования добавок, повышающих проводимость, таких как медь, серебро, углеродные нанотрубки и графен. Затем эти композиты можно использовать для управления температурным режимом, поскольку повышенная проводимость будет более эффективно отводить тепло от чувствительных материалов. Однако проблемы с распределением наполнителя в полимерной матрице могут изменить ее термические свойства. Следовательно, необходимо протестировать и количественно оценить тепловые характеристики, чтобы убедиться, что композит функционирует так, как задумано [5].

Как это измеряется?

Рис. 4. Датчик C-Therm с модифицированным плоскостным источником переходных процессов (MTPS) — быстрый и точный способ измерения теплопроводности время от 1 до 3 секунд. Теплопроводность и эффузивность измеряются напрямую и работают в диапазоне от -50 до 200°C. Он соответствует ASTM D7984 и рекомендуется для твердых тел, жидкостей, порошков и паст [6]. Это широко используется из-за быстрого времени тестирования и простоты подготовки образцов.

Рис. 5. Датчик плоскостного источника переходного процесса (TPS), двусторонний датчик для более опытных пользователей

Датчик плоского источника переходного процесса представляет собой двусторонний датчик горячего диска. Он может одновременно определять теплопроводность, температуропроводность и рассчитывать удельную теплоемкость по одному измерению. Он работает при температуре от -50 до 300°C, соответствует стандарту ISO 22007-2 и рекомендуется для твердых веществ [6].

Рис. 6. Датчик линейного источника переходных процессов (TLS), рекомендуется для расплавов полимеров и геологических применений

Наконец, в методе переходного линейного источника используется датчик типа игольчатого зонда, который полностью погружается в материал, нагревая его в радиальном направлении. Это измерение обычно занимает от 2 до 10 минут и лучше всего подходит для таких вещей, как расплавы полимеров, почва, гравий или вязкие жидкости. Соответствует ASTM D5334, D5930 и IEEE 442-1981 [6].

Дополнительная информация:

Дополнительная информация об испытаниях на теплопроводность

Услуги по проведению испытаний по контракту

______________________________________________________________________

Ссылки:

[1] Карслоу, Х.С. и Джагер, Дж. К. (1959). Теплопроводность в твердых телах . Оксфорд. https://books.google.ca/books/about/Conduction_of_Heat_in_Solids.html?id=y20sAAAAYAAJ&redir_esc=y

[2] Бергман, Т.Л. и Лавин, А.С. (2017). Основы тепломассообмена . Джон Уайли и сыновья. https://www.wiley.com/en-us/Fundamentals+of+Heat+and+Mass+Transfer%2C+8th+Edition-p-9781119353881

[3] C-Therm Technologies. (2022). Терморегулирование в электромобилях . https://ctherm.com/resources/tech-library/thermal-management-in-electric-vehicles/

[4] Geankoplis, CJ, Hersel, AA, & Lepek, DH (2018). Принципы процессов транспортировки и разделения . Пирсон Образование. https://www.pearson.com/store/p/transport-processes-and-separation-process-principles/P100002515416/9780137459377

[5] C-Therm Technologies. (2022). Проводящие полимеры . Ctherm.com. https://ctherm.com/applications/polymers/

[6] C-Therm Technologies. (2022). Специальный отчет: Выбор метода определения теплопроводности . https://ctherm.com/methodreviewwp/ 

Экспериментальная установка для определения теплопроводности

В этой статье вы можете узнать больше об экспериментальном определении теплопроводности материалов с использованием пара и льда.

  • 1 Теплопроводность
  • 2 Принцип измерения
  • 3 Недостатки данной экспериментальной установки
    • 3.1 Нет чистой теплопроводности
    • 3.2 Нет одномерного теплопроводности
    • 3.3 Температурная зависимость теплопроводности
  • 4 Генерация одномерных тепловых потоков

Теплопроводность является хорошей мерой теплопроводности

3 900 или плохо материал проводит тепло. Коэффициент теплопроводности λ описывает зависимость между температурным градиентом ΔT на расстоянии Δx и результирующей скоростью теплового потока Q* через площадь A:

\begin{align}
&\boxed{\dot Q =\lambda \cdot A \cdot \frac{\Delta T}{\Delta x}} ~~~~~\text{and}~~~~ ~[\lambda]=\frac{\text{W}}{\text{m} \cdot \text{K}} ~~~~~\text{теплопроводность}\\[5px]
\end{align }

Подробную информацию об этом уравнении, также известном как закон Фурье, можно найти в статье о теплопроводности. В этой статье мы сосредоточимся только на экспериментальном определении теплопроводности, которое основано на приведенном выше уравнении:

\begin{align}
\label{a}
&\boxed{\lambda =\frac{\dot Q \cdot \Delta x}{\Delta T \cdot A}}
\end{align}

Чтобы определить теплопроводность λ материала толщиной Δx и площадью A, необходимо сначала применить разность температур ΔT и определить результирующую скорость теплового потока Q*.

Принцип измерения

Далее будет представлен относительно простой эксперимент, с помощью которого можно определить теплопроводность образца материала.

Анимация: Экспериментальная установка для измерения теплопроводности

Для этой цели используется пластинчатый образец, для материала которого необходимо определить теплопроводность. В показанном случае это металлическая пластина. Эта металлическая пластина толщиной Δx = 10 мм нагревается с одной стороны и охлаждается с другой. На рисунках ниже показана экспериментальная установка.

Рисунок: Экспериментальная установка для измерения теплопроводностиРисунок: Испытательная установка для экспериментального определения теплопроводности с паровой камерой и ледяной глыбой

Нагрев осуществляется горячим паром, который при конденсации на пластине создает температуру ровно 100 °C. Для регулирования температуры холодной стороны используется блок льда, который при таянии создает на пластине температуру ровно 0 °С. Это приводит к падению температуры ΔT = 100 °C по толщине пластины.

Рис. Градиент температуры в образце

Скорость теплового потока определяется количеством талой воды. Для этого талая вода за определенное время собирается и взвешивается. Используя удельную теплоту плавления льда q f =334 кДж/кг и массы талой воды m за время Δt, расход тепла Q* через пластину-образец определяется следующим образом:

\begin{align}
&\dot Q=\frac{ Q}{\Delta t} = \frac{q_s \cdot m}{\Delta t}
\end{align}

Если, например, лед массой m = 50 г растает за время Δt = 17 с , то согласно верхней формуле получается расход тепла Q* = 982 Дж/с.

Однако отсчет времени и сбор талой воды не следует начинать сразу же после того, как на образец была помещена ледяная глыба. В первую очередь необходимо установить стационарное состояние, т.е. нужно выждать некоторое время, пока температуры в материале перестанут изменяться и установится постоянный во времени температурный градиент. Теплопроводность относится только к таким устойчивые состояния , где скорость теплового потока постоянна во времени. Однако изменение температуры во время нагревания образца описывается так называемой температуропроводностью (хотя обе величины связаны между собой). Это распространение температуры представляет собой так называемое нестационарное состояние , в котором скорость теплового потока не является постоянной во времени. В приведенном ниже моделировании установившееся состояние достигается примерно через 10 секунд.

Анимация: распределение температуры в образце (двумерный тепловой поток)

В качестве дополнительной величины для расчета теплопроводности также требуется площадь А, через которую проходит тепловой поток. Это соответствует контактной поверхности ледяной глыбы. Примечание: Не вся поверхность плиты может быть использована в качестве основы, так как тепловой поток, необходимый для плавления ледяной глыбы, проходит только через область, где находится ледяная глыба. Тепловые потоки вне этой области, считающиеся одномерными, передаются воздуху и не учитываются процессом плавления (об этом позже).

Рисунок: Тепловой поток, необходимый для таяния ледяной глыбы

При диаметре ледяной глыбы, например, 5 см, получается площадь A = 0,00196 м².

Теперь, когда определены все важные параметры (толщина образца, падение температуры, площадь и скорость теплового потока), можно, наконец, определить теплопроводность используемого образца материала в соответствии с уравнением (\ref{a}). При этих заданных значениях теплопроводность λ = 50 Вт/(м⋅K).

\begin{align}
&\lambda =\frac{\dot Q \cdot \Delta x}{\Delta T \cdot A} = \frac{982 \frac{\text{J}}{\text{s}} \cdot 0,01 \ text{ m}}{100 \text{ K} \cdot 0,00196 \text{ m²}} = 50 \frac{\text{W}}{\text{m}\cdot \text{K}}
\end{ align}

Минусы этой экспериментальной установки

Нет чистой теплопроводности

При экспериментальном определении теплопроводности следует отметить, что теплопроводность по определению относится только к передаче тепла посредством теплопроводности, а не конвекции или излучения! Однако в случае материалов, содержащих газы (например, газобетон автоклавного твердения), тепловой конвекции в газовых порах избежать нельзя. Тепловое излучение также может проникать в материал при определенных обстоятельствах. Эти механизмы теплопередачи (непреднамеренно) учитываются при экспериментальном определении теплопроводности. Однако влияние теплового излучения можно свести к минимуму, если образец сделать максимально толстым, чтобы излучение почти не проникало в образец. Однако у этого есть еще один недостаток, как будет показано ниже.

Отсутствие одномерного теплового потока

Еще одним недостатком описанного эксперимента является то, что во время проведения эксперимента через материал отсутствует одномерный тепловой поток, как того требует закон Фурье в макроскопическом масштабе. Тепло, так сказать, протекает не прямо через образец, а также поступает в зону теплопроводности (зону измерения) сбоку. Таким образом, тепловой поток основан на большей площади поверхности на горячей нижней стороне образца, чем на верхней стороне, где расположен блок льда (см. рисунок ниже). Этот эффект двумерного теплового потока оказывает меньшее влияние на результат, чем тоньше материал образца по сравнению с поверхностью. При этом, однако, возрастает влияние теплового излучения, так как оно сильнее проникает в тонкие образцы, чем в толстые.

На рисунке ниже показано упрощенное моделирование распределения температуры и, следовательно, теплового потока. Моделирование проводилось при постоянной температуре внизу пластины и постоянной температуре вверху. Предполагалось, что температуры по отношению к ледяной глыбе и окружающей среде резко ограничены. Моделирование показывает формирование двумерного теплового потока так, как это происходит в реальности. Для сравнения на рисунке также показан одномерный тепловой поток, поскольку он фактически требуется для выполнения закона Фурье.

Рисунок: Распределение температуры в образце (двумерный тепловой поток)

Температурная зависимость теплопроводности

Другой недостаток описанного метода относится к регулировке температур. Строго говоря, теплопроводность не является константой материала, а зависит от температуры. Таким образом, метод измеряет среднюю теплопроводность только в диапазоне от 0 °C до 100 °C. Более детальное исследование зависимости теплопроводности от температуры при такой экспериментальной установке невозможно. При использовании пара и льда температуры фиксированы и не могут быть изменены.

Генерация одномерных тепловых потоков

Чтобы определение коэффициента теплопроводности по уравнению (\ref{a}) было вообще корректным, должен быть обеспечен одномерный тепловой поток. Этого можно достичь, например, за счет регулирования температуры за пределами фактической зоны теплопроводности (зоны измерения). Температуру выбирают идентично температуре охлаждаемой стороны. Поэтому пластину с образцом вокруг блока льда также доводят до температуры 0 °C.

Рисунок: Распределение температуры в образце при использовании ограждения для создания одномерного теплового потока

Конечно, здесь нельзя использовать ледяное кольцо, потому что оно также растает и, таким образом, будет учтено при расчете теплового потока. проводимость. Это только увеличило бы первоначальную ледяную глыбу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *