Органические полимеры это: Органические полимеры, их свойства, определение, таблицы с характеристиками

alexxlab | 31.07.1988 | 0 | Разное

Содержание

Органические полимеры: виды, состав, применение

Основные характеристики

На сегодняшний день существует множество видов неорганических полимеров, как природных, так и синтетических, которые обладают различными составом, свойствами, сферой применения и агрегатного состояния.

Современный уровень развития химической промышленности позволяет производить неорганические полимеры в больших объемах. Чтобы получить такой материал нужно создать условия повышенного давления и высокой температуры. Сырьем для производства выступает чистое вещество, которое поддается процессу полимеризации.

Полимеры бора

Неорганические полимеры характерны тем, что обладают повышенной прочностью, гибкостью, тяжело поддаются воздействию химических веществ и устойчивы к высоким температурам. Но некоторые виды могут быть хрупкими и не обладать эластичностью, но при этом достаточно прочными. Наиболее известными из них считаются графит, керамика, асбест, минеральное стекло, слюда, кварц и алмаз.

Наиболее распространенные полимеры в основе имеют цепочки таких элементов, как кремний и алюминий. Это связано с распространенностью этих элементов в природе, особенно кремния. Наиболее известные среди них такие неорганические полимеры как силикаты и алюмосиликаты.

Свойства и характеристики разнятся не только в зависимости от химического состава полимера, но и от молекулярной массы, степени полимеризации, строения атомной структуры и полидисперсности.

Большинство неорганических соединений характеризуются такими показателями:

  1. Эластичность. Такая характеристика, как эластичность, показывает возможность материала увеличится в размерах под воздействием сторонней силы и вернутся в изначальное состояние после снятия нагрузки. Например, каучук способен увеличиться в семь-восемь раз без изменения структуры и различных повреждений. Возврат формы и размеров возможен благодаря сохранению расположения макромолекул в составе, перемещаются лишь отдельные их сегменты.
  2. Кристаллическая структура. От расположения в пространстве составных элементов, что называется кристаллической структурой, и их взаимодействия зависят свойства и особенности материала. Исходя из этих параметров, полимеры разделяют на кристаллические и аморфные.

Кристаллические имеют стабильную структуру, в которой соблюдается определенное расположение макромолекул. Аморфные состоят из макромолекул ближнего порядка, которые только в отдельных зонах имеют стабильную структуру.

Структура и степень кристаллизации зависит от нескольких факторов, таких как температура кристаллизации, молекулярная масса и концентрированность раствора полимера.

  1. Стеклообразность. Это свойство характерно для аморфных полимеров, которые при снижении температуры или повышении давления обретают стеклообразную структуру. В таком случае прекращается тепловое движение макромолекул. Температурные интервалы, при которых происходит процесс стеклообразования, зависит от типа полимера, его структуры и свойств структурных элементов.
  2. Вязкотекучее состояние. Это свойство, при котором происходят необратимые изменения формы и объема материала под воздействием сторонних сил. В вязотекущем состоянии структурные элементы перемещаются в линейном направлении, что становится причиной изменения его формы.

Строение неорганических полимеров

Такое свойство очень важно в некоторых сферах промышленности. Наиболее часто его используют при переработки термопластов с помощью таких методов как литье под давлением, экструзия, вакуум-формирования и других

При этом полимер расплавляется при повышенных температурах и высоком давлении.

Способ полимеризации

Еще одна классификация полимеров – по способу получения. Существуют такие способы получения ВМС:

  • Полимеризация, которая может проходить с использованием ионного механизма реакции и свободнорадикального.
  • Поликонденсация.

Полимеризацией называется процесс образования макромолекул путем последовательного соединения мономерных звеньев. Ими обычно являются низкомолекулярные вещества с кратными связями и циклическими группами. Во время реакции следует разрыв двойной связи или связи в циклической группе, и происходит образование новых между этими мономерами. Если в реакции участвуют мономеры одного вида, она называется гомополимеризацией. При использовании разных видов мономеров происходит реакция сополимеризации.

Реакция полимеризации – это цепная реакция, которая может протекать самопроизвольно, однако для ее ускорения применяются активные вещества. При свободнорадикальном механизме процесс протекает в несколько стадий:

  • Инициирование. На данной стадии путем светового, теплового, химического или какого-либо другого воздействия образуются в системе активные группы – радикалы.
  • Рост длины цепи. Эта стадия характеризуется присоединением следующих мономеров к радикалам с образованием новых радикалов.
  • Обрыв цепи получается при взаимодействии активных групп с образованием неактивных макромолекул.

Невозможно контролировать момент обрыва цепи, и поэтому образующиеся макромолекулы отличаются разной молекулярной массой.

Принцип действия ионного механизма реакции полимеризации такой же, как и свободнорадикального. Но здесь в качестве активных центров выступают катионы и анионы, поэтому различают катионную и анионную полимеризацию. В промышленности радикальной полимеризацией получают важнейшие полимеры: полиэтилен, полистирол и многие другие. Ионная полимеризация применяется при производстве синтетических каучуков.

Производство синтетики

Человечество использует разные методы выработки искусственных полимеров:

  1. своеобразное вытягивание их из органических низкомолекулярных соединений;
  2. переработка естественной органики в неестественные материалы.

В качестве изначального продукта для образования синтетических цепей берут различные материалы, являющиеся конечными результатами от переработки газовых элементов, нефтепродуктов и каменного угля (фенолы, ацетилены, бензолы и этилены). Результат в целом зависит от внешности исходных веществ. По их обозначению дается и название полимеру.

Синтетические полимеры образуются методом синтезирующей реакции. Волокна вырабатывают из расплава, а также из раствора по сухому или мокрому методу.

Применение синтетических волокон набирает крупные обороты в отличие от выпуска искусственных волокон. Объясняется это доступностью первичного сырья и обширностью их свойств и полезных качеств. Это позволяет получать продукты с различными свойствами, в то время как возможности модифицировать свойства искусственных волокон крайне малы и даже иногда отсутствуют.

Характеристики неорганических полимеров

При создании полимерных материалов за основу качеств конечного продукта берут:

  • гибкость и эластичность;
  • прочность на сжатие, кручение, разрыв;
  • агрегатное состояние; температурная стойкость;
  • электропроводность;
  • способность пропускать свет и т.д.

при изготовлении берут чистое вещество, подвергают его специфическим процессам полимеризации, и на выходе получают синтетические (неорганические) полимеры, которые:

  1. Выдерживают запредельные температуры.
  2. Способны принимать изначальную форму после деформации под действием внешних механических сил.
  3. Становятся стеклообразными при нагревании до критической температуры.
  4. Способны менять структуру при переходе от объемной к плоскостной, чем обеспечивается вязкость.

Способность преобразовываться используется при формовом литье. После остывания неорганические полимеры твердеют, и приобретают также различные качества от прочного твердого до гибкого, эластичного. При этом обеспечивается экологическая безопасность, чем не может похвастаться обычный пластик. Полимерные материалы не вступают в реакцию с кислородом, а прочные связи исключают высвобождение молекул.

Сополимеры

Полимеры, изготовленные из разных мономеров или химически связанных молекул разных полимеров, называют сополимерами. Например, ударопрочный полистирол является сополимером полистирол−полибутадиен.

Сополимеры различаются по строению, технологии изготовления и получаемым свойствам. На 2014 год созданы технологии:

  • статистические сополимеры, образованные цепочками, содержащими химические группы различной природы, получают путём полимеризации смеси нескольких исходных мономеров;
  • чередующиеся сополимеры характеризуются цепочками, в которых чередуются радикалы разных мономеров;
  • привитые сополимеры образуются путём прикрепления цепочек молекул второго мономера сбоку к макромолекулам, образованным из основного мономера;
  • гребнеобразными сополимерами называют привитые сополимеры с очень длинными боковыми цепочками;
  • блок-сополимеры построены из достаточно протяжённых цепочек (блоков) одного мономера, соединённых по концам с достаточно протяжёнными цепочками другого мономера.

Свойства сополимеров

Гребнеобразные сополимеры можно составить из материалов с разными свойствами, что даёт такому сополимеру принципиально новые свойства, например, жидкокристаллические.

В блок-сополимерах, составленных из компонент с разными свойствами, возникают суперрешетки, построенные из выделившихся в отдельную фазу блоков различной химической природы. Размеры блоков зависят от соотношения исходных мономеров. Так, хрупкому полистиролу добавляют устойчивость к растяжению до 40 % путём сополимеризации с 5−10 % полибутадиена, и получается ударопрочный полистирол, а при 19 % полистирола в полибутадиене материал демонстрирует каучукоподобное поведение.

Образование полимеров

В природе биологические полимеры или биополимеры получаются естественным путем в процессе жизнедеятельности растительных и животных организмов. Искусственные же полимеры производят как правило нефтехимические и газохимические предприятия путем двух основных видов химических реакций: полимеризации и поликонденсации

Полимеризация – это процесс синтеза полимера путем присоединения повторяющихся цепочек молекул (звеньев) мономера к активному центру роста макромолекулы высокомолекулярного соединения. В упрощенном виде механизм полимеризации можно расписать по следующим стадиям:

  • образование центров полимеризации;
  • рост макромолекул полимера при присоединения очередных звеньев;
  • возникновение новых центров полимеризации на других молекулы и их интенсивный рост;
  • возникновение разветвленных молекул полимеров;
  • прекращение роста макромолекул.

Обычно полимеризация не возникает при нормальных условиях. Для начала химического процесса полимеризации на низкомолекулярное сырье оказывают разнообразные методы воздействия в зависимости от каждого конкретного техпроцесса: воздействие светом или другим типом облучением, повышенным давление, высокими температурами. При этом, наиболее эффективно процесс идет в среде катализатора, подбираемого для каждого конкретного процесса получения определенного полимера персонально. При образовании полимеров при помощи полимеризации не выделяется побочных веществ реакции, химический состав веществ остается неизменным, но меняется структура связей в веществе.

Рис. 2 Завод по производству полиэтилена

Поликонденсация – это процесс синтеза полимеров из низкомолекулярных веществ при помощи перегруппировки атомов выделения побочных продуктов поликонденсации. Это могут быть различные низкомолекулярные соединения, например вода. Методом поликонденсации выпускают такие крупнотоннажные полимеры, как полиуретаны, поликарбонаты, фенолоальдегидные смолы.

Типы переработки полимеров в изделия

Несмотря на то, что в повседневной жизни термин «переработка пластмасс» используется в значении сбора и вторичного производства изделий из уже использованного пластика, на самом деле у термина несколько другой смысл. Переработкой полимеров называют получение готовых изделий из синтезированных ранее полимеров, в том числе первичных.

Переработка полимеров, как правило происходит при высоких температурах от 150 до 500 градусов Цельсия в зависимости от природы конкретного полимера. Исключение составляют некоторые термореактивные пластики, например двухкомпонентные разновидности эпоксидных смол или пенополиуретана, которые реагируют при комнатной температуре. При переработке в полимер могут вводить разные добавки (в случае, например, не применяющегося в качестве чистого вещества ПВХ, добавки практически обязательны) для лучшей перерабатываемости, придания пластмассе нужных свойств или удешевления продукта. Наиболее употребляемыми аддитивами (добавками для полимеров) являются , например, наполнители, красители, стабилизаторы, пластификаторы, модификаторы, нуклеаторы и т. д.

Классификация

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • Органические полимеры.
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
  • Неорганические полимеры. Они не содержат в повторяющемся звене связей C-C, но способны содержать органические радикалы, как боковые заместители.

Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов, например, стеклопластиков. Возможны композиционные материалы, все компоненты которых — полимеры (с разным составом и свойствами).

По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных — высокомолекулярных (см. ).

Органические полимеры: виды, состав, применение

Поликонденсация

Процесс образования высокомолекулярного соединения с отделением в качестве побочного продукта каких-то низкомолекулярных веществ – поликонденсация, которая отличается от полимеризации еще тем, что элементный состав образующейся макромолекулы не соответствует составу начальных веществ, участвующих в реакции. В них могут участвовать только соединения с функциональными группами, которые, взаимодействуя, отщепляют молекулу простого вещества и образуют новую связь. При поликонденсации бифункциональных соединений образуются линейные полимеры. Когда в реакции участвуют полифункциональные соединения, образуются ВМС с разветвленной или даже пространственной структурой. Образующиеся в процессе реакции низкомолекулярные вещества тоже взаимодействуют с промежуточными продуктами, вызывая обрыв цепи. Поэтому их лучше удалять из зоны реакции.

Определенные полимеры нельзя получить известными способами полимеризации или поликонденсации, так как нет требуемых исходных мономеров, способных участвовать в них. В этом случае синтез полимера ведется с участием высокомолекулярных соединений, содержащих функциональные группы, которые способны реагировать друг с другом.

С каждым днем усложняется классификация полимеров, так как появляется все больше новых видов этих удивительных веществ с заранее заданными свойствами, и человек уже не мыслит своей жизни без них. Однако возникает другая проблема, не менее важная – возможность их легкой и дешевой утилизации

Решение этой проблемы очень важно для существования планеты

Применение

Благодаря преимуществам полимерных материалов перед другими видами сырья, их использование с каждым годом становится более популярным. Применение полимеров встречается повсюду: в легкой и тяжелой индустрии, сельскохозяйственной и медицинской отрасли. Каждый день приходится сталкиваться с продукцией из полимерных материалов.

При строительстве зданий стали заменять металлические конструкции – пластиковыми. Это окна, армирующие сетки, а также приспособления и инструмент. Геосинтетические материалы широко используются при возведении дорог.

С помощью сеток из синтетических материалов изготавливают поддерживающую оснастку вьющимся растениям для сельского хозяйства. Устройство декоративных заборов с применением пластика также стало популярным благодаря устойчивости к коррозии, которой обладает полимерная сетка.

Геотекстиль и геомембрана используют при возведении бассейнов и искусственных водоемов. Такие полимеры защищают мембрану от грунта и обладают гидроизоляцией.

Упаковка различных товаров производится с помощью полимерных пленок и других видов упаковок, как в супермаркете, так и на рынке. Изготовление несущих конструкций авто- и мототехники позволяет облегчить вес транспортных средств и избежать пагубного воздействия коррозии.

Применение полимерных материалов в производстве и быту становится все популярнее с каждым годом. Низкая стоимость и желаемые технические параметры сырья постепенно вытесняют привычные изделия текстильной, строительной и даже металлургической промышленности. Удобство обработки и химические свойства полимерных изделий повышают качество и продлевают срок службы привычных предметов, создающих комфортные условия для активной жизнедеятельности человека.

Рейтинг: /5 –
голосов

Полимеризация

Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.

Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–Ch3–Ch3–)n

Характерные признаки полимеризации.
  1. В основе полимеризации лежит реакция присоединения.
  2. Полимеризация – цепная реакция, включает стадии инициирования, роста и обрыва цепи.
  3. Элементный состав (молекулярные формулы) мономера и полимера одинаков.

Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.

Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.

Например, схема сополимеризации этилена с пропиленом:

Важнейшие синтетические полимеры

Изображение с портала orgchem.ru

Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:

ПолимерМономерХарактеристики полимераПрименение полимера
Полиэтилен (–СН2–СН2–)nЭтиленСН2=СН2Синтетический, линейный, термопластичный, химически стойкийУпаковка, тара
ПолипропиленПропиленСН2=СН–СН3Синтетический, линейный, термопластичный, химически стойкийТрубы, упаковка, ткань (нетканый материал)
ПоливинилхлоридВинилхлоридСН2=СН–СlСинтетический линейный полимер, термопластичныйНатяжные потолки, окна, пленка, трубы, полы, изолента и т. д
ПолистиролСтиролСинтетический линейный полимер, термопластичныйУпаковка, посуда, потолочные панели
Полиметилметакрилат

Метиловый эфир метакриловой кислоты

Синтетический линейный полимер, термопластичныйОчки, корпуса фар и светильников, душевые кабины, мебель и т.д
Тефлон(политетрафторэтилен)ТетрафторэтиленСинтетический линейный полимер. Термопластичный (t = 260-3200C)

Обладает очень высокой химической стойкостью

Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция
Искусственный каучук Мономер: бутадиен-1,3 (дивинил)Синтетический, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Натуральный каучук Мономер: 2-метилбутадиен-1,3Природный, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Хлоропреновый каучук Мономер: 2-хлорбутадиен-1,3Синтетический, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Бутадиен-стирольный каучук Мономеры: бутадиен-1,3 и стиролСинтетический, эластомерРезина, изоляция, различные материалы, ракетное топливо
ПолиакрилонитрилАкрилонитрилСинтетический, линейныйВолокна, пластмассы

Что такое неорганические полимеры

Более распространены неорганические полимеры природного происхождения, содержащиеся в земной коре

Чаще всего это продукт синтеза элементов III-VI группы периодической системы Менделеева. Неорганическими они называются потому, что в основе лежат неорганические главные цепи и не имеют органические боковые радикалы. Связи появляются в результате одного из двух процессов — поликонденсация или полимеризация.

Говоря обобщенно, неорганические полимеры – это искусственно синтезированные материалы, которые пришли на смену природным. При этом создатели преследовали цель сделать их дешевле. Современные полимеры превосходят имеющиеся природные аналоги по своим характеристикам. Были созданы материалы, которыми природа не обладает вовсе. Это обеспечивает их популярность и разнообразие.

Классификация полимеров

Есть довольно большое количество показателей, по которым синтетические полимерные материалы могут классифицироваться. При этом классификация затрагивает и основные эксплуатационные качества. Именно поэтому рассмотрим разновидности полимерных материалов подробнее.

Классификация проводится по агрегатному состоянию:

  1. Твердые. Практически все люди знакомы с полимерами, так как они используются при изготовлении корпусов бытовой техники и других предметов быты. Другое название этого материала – пластмасса. В твердой форме полимерный материал обладает достаточно высокой прочностью и пластичностью.
  2. Эластичные материалы. Высокая эластичность структуры получила применение при производстве резины, поролона, силикона и других подобных материалов. Большая часть встречается в строительстве в качестве изоляции, что также связано с основными эксплуатационными качествами.
  3. Жидкости. На основе полимеров производится достаточно большое количество самых различных жидких веществ, большая часть которых также применима в строительстве. Примером назовем краски, лаки, герметики и многое другое.


Жидкие полимеры — краски


Эластичные полимеры — резиновое покрытие

Различные виды полимерных материалов обладают разными эксплуатационными качествами. Именно поэтому следует рассматривать их особенности. Есть в продаже полимеры, которые до соединения находятся в жидком состоянии, но после вступления в реакцию становятся твердыми.

Классификация полимеров по происхождению:

  1. Искусственные вещества, характеризующиеся высокомолекулярной массой.
  2. Биополимеры, которые еще называют природными.
  3. Синтетические.

Большее распространение получили полимерные материалы синтетического происхождения, так как за счет смешивания самых различных веществ достигаются исключительные эксплуатационные качества. Искусственные полимеры сегодня встречаются практически в каждом доме.

Классификация синтетических материалов проводится также по особенностям молекулярной сетки:

  1. Линейные.
  2. Разветвленные.
  3. Пространственные.

Варианты структуры полимеров

Классификация проводится и по природе гетероатома:

  1. В главную цепь может входить атом кислорода. Подобное строение цепочки позволяет получить сложные и простые полиэфиры и перекиси.
  2. ВМС, которые характеризуются наличием атома серы в основной цепочке. За счет подобного строения получают политиоэфиры.
  3. Можно встретить и соединения, в главной цепочке которых есть атомы фосфора.
  4. В главную цепочку могут входить и атомы кислорода и с азотом. Наиболее распространенным примером подобного строения можно назвать полиуретаны.
  5. Полиамины и полиамиды – яркие представители полимерных материалов, которые в своей главной цепочке имеют атомы азота.

Кроме этого выделяют две большие группы полимерных материалов:

  1. Карбоцепные – вариант, который имеет основную цепочку макромолекулы ВМС с одним атомом углерода.
  2. Гетероцепные – структура, которая кроме атома углерода имеет и атомы других веществ.

Существует просто огромное количество разновидностей карбоцепных полимеров:

  1. Высокомолекулярные соединения, которые называют тефлоном.
  2. Полимерные спирты.
  3. Структуры с насыщенными главными цепочками.
  4. Цепочки с насыщенными основными связями, которые представлены полиэтиленом и полипропиленом. Отметим, что сегодня подобные разновидности полимеров получили просто огромное распространение, их применяют при производстве строительных материалов и других вещей.
  5. ВМС, которые получаются на основе переработки спиртов.
  6. Вещества, полученные при переработке карбоновой кислоты.
  7. Вещества, полученные на основе нитрилов.
  8. Материалы, которые были получены на основе ароматических углеводородов. Самым распространенным представителем этой группы является полистирол. Он получил широкое применение по причине высоких изоляционных качеств. Сегодня полистирол используют для изоляции жилых и нежилых помещений, транспортных средств и другой техники.

Полимеры

Вся приведенная выше информация определяет то, что существует просто огромное количество разновидностей полимерных материалов. Этот момент также определяет их широкое распространение, применение практически во всех отраслях промышленности и сферах деятельности человека.

Полиэфирные и акриловые смолы

В сфере производства синтетических смол и пластмасс выделяется такая разновидность, как полиэфирные составы. Этот материал создается в процессе переработки спиртов. Такая смола позволяет создать менее прочное соединение, чем эпоксидный состав. Но благодаря особенностям производства полиэфирные разновидности стоят дешевле. При этом с подобными смолами проще работать.

Самыми крупными потребителями продукции этого типа являются отрасли авто- и кораблестроения, производство осветительной техники. Полиэфирные смолы также нужны при производстве перегородок, душевых кабин и подоконников. Представленный материал легко гнется после затвердевания, может быть окрашен при помощи соответствующих составов.

Акриловые синтетические смолы применяются в ходе производства пластмасс, мозаики, искусственного камня. Также подобные составы широко применяются в ходе строительно-ремонтных работ в ванных комнатах, душевых, при обустройстве фонтанов, душевых кабинок и прочего. Акриловая смола становится твердой быстро. Материал менее токсичен, чем перечисленные ранее составы.

Акриловые смолы применяют в качестве самостоятельного материала или при изготовлении иных составов. В них добавляют песок, мраморную крошку, а также различные пигменты. Поэтому акрил может иметь самые разные оттенки. В эту смолу можно добавить не более 50% дополнительных компонентов.

Акрил требует применения отвердителя. После процесса полимеризации состав получается абсолютно непористым, что значительно повышает эксплуатационные качества. Это значительно расширяет область применения материала. Из-за отсутствия пор в составе изделие не будет окрашиваться при попадании на поверхность красящих веществ. Если из акрила сделана столешница, сок свеклы не оставит на ней следа. Материал способен выдержать нагрев до 70 ºС. Формы для изготовления подобной продукции изготавливают из гипса, силикона или стекла.

Сополимеры [ править | править код ]

Полимеры, изготовленные из разных мономеров или химически связанных молекул разных полимеров, называют сополимерами. Например, ударопрочный полистирол является сополимером полистирол−полибутадиен .

Сополимеры различаются по строению, технологии изготовления и получаемым свойствам. На 2014 год созданы технологии :

  • статистические сополимеры, образованные цепочками, содержащими химические группы различной природы, получают путём полимеризации смеси нескольких исходных мономеров;
  • чередующиеся сополимеры характеризуются цепочками, в которых чередуются радикалы разных мономеров;
  • привитые сополимеры образуются путём прикрепления цепочек молекул второго мономера сбоку к макромолекулам, образованным из основного мономера;
  • гребнеобразными сополимерами называют привитые сополимеры с очень длинными боковыми цепочками;
  • блок-сополимеры построены из достаточно протяжённых цепочек (блоков) одного мономера, соединённых по концам с достаточно протяжёнными цепочками другого мономера.

Свойства сополимеров

Гребнеобразные сополимеры можно составить из материалов с разными свойствами, что даёт такому сополимеру принципиально новые свойства, например, жидкокристаллические .

В блок-сополимерах, составленных из компонент с разными свойствами, возникают суперрешетки, построенные из выделившихся в отдельную фазу блоков различной химической природы. Размеры блоков зависят от соотношения исходных мономеров. Так, хрупкому полистиролу добавляют устойчивость к растяжению до 40 % путём сополимеризации с 5−10 % полибутадиена, и получается ударопрочный полистирол, а при 19 % полистирола в полибутадиене материал демонстрирует каучукоподобное поведение .

Виды полимеров

Существует множество классификаций полимеров по различным признакам (химической природе, термостойкости, строению цепи и так далее). В ниже приведенной таблице коротко рассмотрим основные виды полимеров. Классификация полимеров

ПринципВидыОпределениеПримеры
По происхождению (возникновению)Природные (натуральные)Те, что встречаются в естественных условиях, в природе. Созданы природой.ДНК, РНК, белки, крахмал, янтарь, шелк, целлюлоза, каучук натуральный
СинтетическиеПолучены в лабораторных условиях человеком, не имеют отношения к природе.ПВХ, полиэтилен, фенолформальдегидные смолы, полипропилен, полиуретан и другие
ИскусственныеСозданы человеком в лабораторных условиях, но на основе природных полимеров. Целлулоид, ацетатцеллюлоза, нитроцеллюлоза
С точки зрения химической природыОрганической природыБольшая часть всех известных полимеров. В основе мономер органического вещества (состоит из атомов С, возможно включение атомов N, S, O, P и других).Все синтетические полимеры
Неорганической природыОснову составляют такие элементы, как Si, Ge, O, P, S, H и другие. Свойства полимеров: не бывают эластичными, не образуют макроцепей.Полисиланы, полидихлорфосфазен, полигерманы, поликремниевые кислоты
Элементоорганической природыСмесь органических и неорганических полимеров. Главная цепь — неорганика, боковые — органика.Полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.
Различие главной цепочкиГомоцепныеГлавная цепь представлена либо углеродом, либо кремнием.Полисиланы, полистирол, полиэтилен и другие.
ГетероцепныеОсновной остов из разных атомов. Полимеры примеры — полиамиды, белки, этиленгликоль.

Также различают полимеры линейного, сетчатого и разветвленного строения. Основа полимеров позволяет быть им термопластичными или термореактивными. Также они имеют различия по способности к деформации при обычных условиях.

Полистирол

Полистирол – пример самого распространенного термопластичного полимера. На вид он бесцветный, прозрачный и твердый. Полистирол является более прочным и жестким материалом, имеет большую рабочую температуру использования и меньшую склонность к старению по сравнению с полиэтиленом. Считается хорошим электрическим изолятором и обладает высокой водоотталкивающей способностью. Очень стоек к щелочным и кислотным средам, не подвержен плесени и грибкам.

Полистирол хорошо растворяется в углеводородах, сложных эфирах. Он очень хрупкий и хорошо горит.

Для увеличения прочности полистирол соединяют с другими полимерами или каучуком. Готовые изделия и заготовки из полистирола легко поддаются обработке. Детали изготавливаются при помощи литья жидкого компонента либо способом выдавливания под давлением.

Из полистирола изготавливают лабораторную химическую посуду, трубки, нити, пленки и ленты. Широко используется материал в электротехнике при производстве изоляторов и, в первую очередь, защитной оболочки на электрические провода. Для промышленной дальнейшей обработки материал первоначально выпускается в листах и в виде крошки, которые в дальнейшем могут служить сырьем для конечных деталей и механизмов.

Полистирол популярен в процессе сополимеризации, когда смешивают два и более полимера. Получаются материалы, которым придаются дополнительные полезные свойства своих компонентов. Как правило, это прочность, огнестойкость, стойкость к растрескиванию. Жидкий полистирол с растворителем применяется при производстве клеев и клеевых основ. Широко используется в строительстве при производстве пенополистирола. Из данного материала выпускаются теплоизоляционные блоки.

Пенополистирол используется для теплоизоляции холодильных установок, продуктовых витрин и другого торгового оборудования. Данный материал внешне напоминает застывшую пену. Хорошо выдерживает повышенную влажность, не подвержен гниению, стоек к образованию бактерий и грибков. Может использоваться при температуре до + 70С градусов. Главный недостаток пенополистирола – повышенная горючесть.

Применяется как термо- и звукоизоляционный материал при производстве бытовок, а также различной бытовой и промышленной техники, в пищевой промышленности – для изоляции камер хранилищ, трюмов плавучих средств и помещений для хранения продуктов питания при отрицательных температурах до -35С градусов. Используется также в производстве упаковочного материала.

Как получить органический полимер

Существует 3 основных способа получения органического полимера в ARK: Survival Evolved : убивая выпадающих существ, собирая некоторые из определенных прирученных существ или измельчая определенные предметы с помощью промышленного измельчителя. Существуют более конкретные и высокоэффективные методы, но перечисленные ниже являются менее утомительными и опасными.

Существа, при убийстве выпадающие из органического полимера

Этот метод фарма для желаемого ресурса, вероятно, будет наиболее трудоемким и трудным, если у игроков нет прирученных существ или оружия, которые могут нанести большой урон целям. Даже в этом случае это все равно будет наименее эффективным способом получения органического полимера, хотя и самым простым. Вот все существа, из которых при убийстве выпадает органический полимер :

  • Mantis
  • Kairuku
  • Hesperornis
  • Каркинос
  • Червь смерти

После того, как существо убито и разграблено, игроки могут получить еще больше органического полимера из трупов, ударив их бензопилой, мечом или деревянной дубинкой, аналогично тому, как добывают древесину из дерева с помощью других инструментов.

Существа, которые собирают amp; Производство органических полимеров

Поскольку ИИ многих существ может позволить им бродить, собирать корм, охотиться и собирать ресурсы самостоятельно, игроки могут позволить своим союзникам, не являющимся людьми, помочь в получении большего количества этого ресурса. Просто не забывайте время от времени проверять их запасы, чтобы собрать у них товары. Вот существа, которые могут собирать органический полимер :

  • лютый медведь
  • лютоволк
  • Пелагорнис

Саблезубый Тигр

Тилаколео
Теризинозавр
Богомол

Следует отметить, что лучшее прирученное существо для пассивного получения органического полимера является ахатина, гигантская улитка. Вместо того, чтобы просто собирать органический полимер из дикой природы, ахатина фактически производит этот материал. Пока ахатины бродят, они естественным образом производят 4 органических полимера каждые 5 часов, поэтому обязательно проверяйте их инвентарь один или два раза в день.

Предметы, которые можно уничтожить из-за органического полимера

Все предметы, сделанные из обычного полимера, можно разбить на органический полимер, если их бросить в промышленную шлифовальную машину, и поэтому игроки должны выбросить старые предметы, которые больше не нужны, в дробилку, чтобы переработать их.

Процесс и скорость разложения полимеров

Сильные стороны полимеров, такие как стабильность, стойкость, инерция, представляют опасность для экосистемы, загрязненной пластиковыми отходами.

Время разложения пластика в зависимости от факторов окружающей среды может составлять до 450 лет.

При преобразовании более крупных деталей в макроскопические они распадаются, часто под механическим воздействием, на большее число мелких частиц. Различия фрагментации (механической), разложения (химической), выветривания (физической) и биотической деградации полимеров:

  • в случае фрагментации часть размером 1 см³ распадается на 1000 фрагментов размером 1 мм, а затем в 1 миллион частиц размером 100 мкм. Процесс происходит до тех пор, пока исходный пластик не станет невидимым для человеческого глаза;
  • физическое выветривание также описывает распад на более мелкие фрагменты без существенных изменений. В процессе присутствуют такие факторы, как температура, давление, которые разрушают материал;
  • в случае химического разложения полимеры реагируют в зависимости от pH, солености или ультрафиолетового излучения, с другими веществами или, если они полностью разложены, с конечными продуктами, такими как CO², нитраты, вода;
  • биотическую деградацию стимулирует энергетический обмен организмов – источник углерода. Метаболизм приводит к полной деградации органических молекул.

Классификация

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • Органические полимеры.
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
  • Неорганические полимеры. Они не содержат в повторяющемся звене связей C-C, но способны содержать органические радикалы, как боковые заместители.

Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов, например, стеклопластиков. Возможны композиционные материалы, все компоненты которых — полимеры (с разным составом и свойствами).

По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных — высокомолекулярных (см. ).

Особенности

Синтетические полимеры имеют в своей основе низкомолекулярные органические соединения (мономеры), которые в результате реакций полимеризации или поликонденсации образуют длинные цепочки. Расположение и конфигурация молекулярный цепей, тип их связи во многом определяют механические характеристики полимеров.

Искусственные и синтетические полимеры обладают радом специфических особенностей. На первом месте следует отметить их высокую эластичность и упругость – способность противостоять деформациям и восстанавливать первоначальную форму. Пример – полиамид, резина. Полиуретановая нить – эластан, способна без разрыва изменять свою длину на 800 % и затем восстанавливать первоначальный размер. Наличие длинных молекулярных цепочек в структуре синтетических материалов обусловило низкую хрупкость пластиковых изделий. В большинстве случаев увеличение хрупкости у некоторых типов пластмасс происходит при понижении температуры. Органические материалы практически полностью лишены этого недостатка.

Указанные свойства дополняются высокой коррозионной стойкостью, износостойкостью. Большинство известных полимеров имеют высокое электрическое сопротивление, низкую теплопроводность.

Отмечая высокие эксплуатационные и технологические качества, нельзя забывать и про отрицательные стороны:

  • Сложность утилизации. Вторичное использование допускает только термопластичный материал и только в случае правильной сортировки. Смесь полимеров с различным химическим составом вторичной переработке не подлежит. В природе пластики разлагаются чрезвычайно медленно – вплоть до десятков и сотен лет. При сжигании некоторых типов пластмасс в атмосферу выделяется большое количество высокотоксичных веществ и соединений. Особенно это касается пластиков, содержащих галогены. Наиболее известный материал такого типа – поливинилхлорид (ПВХ).
  • Слабая устойчивость к ультрафиолетовому излучению. Под действием ультрафиолетовых лучей длинные полимерные цепочки разрушаются, увеличивается хрупкость изделий, снижается прочность, холодостойкость.
  • Трудность или невозможность соединения отдельных типов синтетических материалов.

Пластмассы

Химические свойства полимеров показывают их высокую стойкость к агрессивным веществам, но в ряде случаев затрудняет использование клеевых составов. Поэтому для термопластичных полимеров используют метод сварки – соединение разогретых элементов. Некоторые вещества, например, фторопласты, вообще не подлежат соединениям, кроме механических.

Химические свойства полимеров

Химические свойства полимеров отличаются от таковых у низкомолекулярных веществ. Это объясняется размером молекулы, наличием различных функциональных группировок в ее составе, общим запасом энергии активации.

В целом можно выделить несколько основных типов реакций, характерных для полимеров:

  1. Реакции, которые будут определяться функциональной группой. То есть если в состав полимера входит группа ОН, характерная для спиртов, значит, и реакции, в которые они будут вступать, будут идентичны таковым у спиртов (дегидратация, окисление, восстановление, дегидрирование и так далее).
  2. Взаимодействие с НМС (низкомолекулярными соединениями).
  3. Реакции полимеров между собой с образованием сшитых сетей макромолекул (сетчатые полимеры, разветвленные).
  4. Реакции между функциональными группировками в пределах одной макромолекулы полимера.
  5. Распад макромолекулы на мономеры (деструкция цепи).

Все перечисленные реакции имеют в практике большое значение для получения полимеров с заранее заданными и удобными человеку свойствами. Химия полимеров позволяет создавать термоустойчивые, кислотно и щелочеупорные материалы, обладающие при этом достаточной эластичностью и стабильностью.

Прогрессивные материалы для устройств

1285

Добавить в закладки

Сибирские исследователи предсказали двумерный сверхпроводящий органический полимер. Он будет применяться в квантовых компьютерах. 

Специалисты из Сибирского федерального университета вошли в состав международной группы. Вместе с коллегами они изучили двумерные полимеры на основе тетраоксо[8]циркулена и атомов s-металлов таблицы Менделеева через квантово-химическое моделирование. В результате исследовани они выяснили, что модификация поверхности полимера тетраоксо[8]циркулена атомами кальция приводит к возникновению сверхпроводимости при температуре ниже 14,5 К. Также формируется возможная реализация двухуровневой системы на атомах Ca. Она перспективна в построении квантовых битов и в последующей реализации в квантовых компьютерах. Работа ученых опубликована в журнале Nanoscale.

Необходимость разработки новых материалов с уникальными свойствами обусловлена прогрессом в создании современных устройств. Так, использование органических мономеров для создания двумерных листов (полимеров) дает возможность гибко проектировать и оптимизировать функциональные устройства. Это связано с тем, что свойства таких структур зависят от нескольких параметров: от типа выбранного мономера, от способа связывания мономеров в полимер и от размера полученного материала. Кроме того, материалы обладают дополнительным преимуществом – они эластичнее, чем более хрупкие неорганические листы. Пористые органические полимеры позволяют равномерно внедрять атомы металла в свою структуру. Это позволяет расширить их функциональные характеристики. Специалисты помещали в поры полимера атомы различных s-металлов и изучали свойства таких наноструктур.

«Наиболее интересные свойства были обнаружены при модификации полимера атомами кальция, в котором удалось реализовать уникальное квантовое состояние (S = ½), что делает такие материалы перспективным для создания элементов квантовых компьютеров — кубитов. Одним из ключевых параметров при построении магнитных кубитов является время жизни квантовой суперпозиции состояний, которое строго зависит от спинового состояния. Материалы с активными центрами в спиновом состоянии S = ½ считаются наиболее перспективными» — говорит Людмила Бегунович, сотрудник Международного научно-исследовательского центра спектроскопии и квантовой химии СФУ.

Ученые объясняют преимущества использования в качестве кубитов металлорганического полимера. Они заключаются в том, что в отличии от традиционно предлагаемых молекулярных магнитов (металлоорганических молекул c магнитными свойствами), которые должны быть точно и упорядочено расположены на подложке, активные центры (атомы кальция) равномерно и равноудаленно встроены в структуру полимера. Это значительно упрощает их использование в создании устройств. Также полимеры обладают сверхпроводимостью с критической температурой перехода в сверхпроводящее состояние 14,5 К.

«Сочетание сверхпроводимости и потенциально большого времени жизни состояния спиновой суперпозиции в кальции делает данный материал особенно перспективным для применения в области обработки квантовой информации. Мы ожидаем, что сверхпроводимость может быть реализована в других ковалентных органических полимерах через механизм легирования, как это было сделано ранее в многочисленных углеродных и углеводородных кристаллах. Сверхпроводники, изготавливаемые на основе металлорганических полимеров, обещают быть дешевле в производстве по сравнению с существующими сверхпроводниками на основе чистых металлов, сплавов и керамики, а реализация квантовых битов проще и элегантнее» — говорит руководитель исследования 

Артём Куклин.

Фото: graphanecrys.jpg

Автор Евгения Черноскулова

СФУ квантовые компьютеры металлорганические полимеры органические полимеры полимеры

Источник: СФУ

Информация предоставлена Информационным агентством “Научная Россия”. Свидетельство о регистрации СМИ: ИА № ФС77-62580, выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций 31 июля 2015 года.

НАУКА ДЕТЯМ

Россия-1 о лауреатах Нобелевской премии по химии 2022

21:30 / Химия

Завершился первый сезон проекта «Женщины: Школа наставничества»

19:00 / Наука и общество

Разработан керамический материал с памятью формы

18:55 / Инженерия

На комплексе NICA начат четвертый цикл пусконаладки

17:30 / Физика

Нижегородские ученые разработали износостойкое покрытие для деталей машин и механизмов

16:30 / Новые технологии

Работников агропромышленного комплекса наградили на выставке «Золотая осень»

16:04 / Новые технологии, Экология, Экономика

Подготовку африканистов и востоковедов обсудили на попечительском совете Института стран Азии и Африки

15:50 / Наука и общество, Образование

Петли на ДНК защитили клетки от мутаций

15:30 / Биология

Российские химики усовершенствовали фильтры для опреснения морской воды

15:13 / Новые технологии, Физика, Химия

Сквер перед входом в Пушкинский музей получил имя Ирины Антоновой

15:00 / Наука и общество

Памяти великого ученого. Наука в глобальном мире. “Очевиднное – невероятное” эфир 10.05.2008

04.03.2019

Памяти великого ученого. Нанотехнологии. “Очевидное – невероятное” эфир 3.08.2002

04.03.2019

Вспоминая Сергея Петровича Капицу

14.02.2017

Смотреть все

Микропористые органические полимеры: конструкция, синтез и действие

. 2010; 293:1-33.

дои: 10.1007/128_2009_5.

Цзя-Син Цзян 1 , Эндрю I Купер

принадлежность

  • 1 Факультет химии и Центр исследования материалов, Ливерпульский университет, Crown Street, Liverpool L693BX, Великобритания.
  • PMID: 21618741
  • DOI: 10. 1007/128_2009_5

Цзя-Син Цзян и соавт. Top Curr Chem. 2010.

. 2010; 293:1-33.

дои: 10.1007/128_2009_5.

Авторы

Цзя-Син Цзян 1 , Эндрю I Купер

принадлежность

  • 1 Химический факультет и Центр исследования материалов Ливерпульского университета, Краун-стрит, Ливерпуль L69 3BX, Великобритания.
  • PMID: 21618741
  • DOI: 10.1007/128_2009_5

Абстрактный

Микропористые органические полимеры (МОП) можно определить как материалы с размером пор в среднем менее 2 нм, которые состоят из легких неметаллических элементов, таких как C, H, O, N и B.

Здесь мы описываем основные классы MOP, которые удобно подразделять на аморфные и кристаллические группы. Мы представляем обзор синтеза этих материалов, а также некоторые общие критерии проектирования для производства СС с большой площадью поверхности и объемом микропор. Преимущества и недостатки MOP по отношению к неорганическим материалам, таким как цеолиты, и гибридным материалам, таким как металлоорганические каркасы, обсуждаются повсюду, особенно с точки зрения практических применений, таких как катализ, разделение и хранение газа. Мы также обсуждаем будущие возможности в этой области, а также возможность обнаружения «неизведанных» МОР среди большого количества полимеров с жесткой основной цепью и сетей, о которых сообщается в литературе.

Похожие статьи

  • Легкая карбонизация микропористых органических полимеров в иерархически пористые углероды, предназначенные для эффективного поглощения CO2 при низких давлениях.

    Гу С., Хе Дж., Чжу И., Ван З., Чен Д., Ю. Г., Пань С., Гуань Дж., Тао К. Гу С. и др. Интерфейсы приложений ACS. 20 июля 2016 г.; 8(28):18383-92. doi: 10.1021/acsami.6b05170. Epub 2016 5 июля. Интерфейсы приложений ACS. 2016. PMID: 27332739

  • Микропористые органические полимеры для хранения и разделения газа.

    Chang Z, Zhang DS, Chen Q, Bu XH. Чанг Зи и др. Phys Chem Chem Phys. 2013 21 апреля; 15 (15): 5430-42. дои: 10.1039/c3cp50517k. Phys Chem Chem Phys. 2013. PMID: 23463163

  • Металлоорганические каркасы как платформы для функциональных материалов.

    Цуй Ю, Ли Б, Хе Х, Чжоу В, Чен Б, Цянь Г. Цуй Ю и др. Acc Chem Res. 2016 15 марта; 49 (3): 483-93. doi: 10.1021/acs.accounts. 5b00530. Epub 2016 15 февраля. Acc Chem Res. 2016. PMID: 26878085

  • Цифрово-интеллектуальный дизайн микропористых органических полимеров.

    Ян Л., Сунь Л., Чжао И., Сунь Дж., Дэн К., Ван Х., Дэн В. Ян Л. и др. Phys Chem Chem Phys. 2021 20 октября; 23(40):22835-22853. дои: 10.1039/d1cp03456a. Phys Chem Chem Phys. 2021. PMID: 34633004 Обзор.

  • Материалы с наноразмерной пористостью: применение в энергетике и окружающей среде.

    Бханджа П., Бхаумик А. Бханджа П. и др. Рек. хим. 2019 февраля; 19 (2-3): 333-346. doi: 10.1002/tcr.201800030. Epub 2018 2 июля. Рек. хим. 2019. PMID: 29962057 Обзор.

Посмотреть все похожие статьи

Цитируется

  • Кинетика образования микропористого политриазина в дифенилсульфоне.

    Галухин А, Николаев И, Носов Р, Вязовкин С. Галухин А и др. Молекулы. 2022 3 июня; 27 (11): 3605. doi: 10,3390/молекулы27113605. Молекулы. 2022. PMID: 35684538 Бесплатная статья ЧВК.

  • Каталитически активные ковалентные органические каркасы на основе имина для детоксикации имитаторов нервно-паралитических агентов в водных средах.

    Роуэла С., Хиль-Сан Миллан Р., Манченьо М.Дж., Рамос М.М., Сегура Х.Л., Наварро ХАР, Самора Ф. Роуэла С. и др. Материалы (Базель). 2019 19 июня; 12 (12): 1974. дои: 10.3390/ma12121974. Материалы (Базель). 2019. PMID: 31248117 Бесплатная статья ЧВК.

  • Микро- и ультрамикропористые каркасы на основе адамантана для эффективной адсорбции малых газов и токсичных органических паров.

    Цзян В., Юэ Х., Шаттлворт П.С., Се П., Ли С., Го Дж. Цзян В. и др. Полимеры (Базель). 2019 13 марта; 11 (3): 486. doi: 10.3390/polym11030486. Полимеры (Базель). 2019. PMID: 30960470 Бесплатная статья ЧВК.

  • Высокоэффективное удаление аммиака из серии кислых пористых полимеров Бренстеда: исследование химических и структурных вариаций.

    Барин Г., Петерсон Г.В., Кроселла В., Сюй Дж., Колвелл К.А., Нэнди А., Реймер Дж.А., Бордига С., Лонг Дж.Р. Барин Г. и соавт. хим. наук. 2017 1 июня; 8 (6): 4399-4409. дои: 10.1039/c6sc05079d. Epub 2017 27 апр. хим. наук. 2017. PMID: 30155218 Бесплатная статья ЧВК.

  • Полые микропористые органические капсулы.

    Ли Б., Ян С., Ся Л., Маджид М. И., Тан Б. Ли Б и др. Научный доклад 2013; 3: 2128. дои: 10.1038/srep02128. Научный представитель 2013. PMID: 23820511 Бесплатная статья ЧВК.

Просмотреть все статьи “Цитируется по”

Analytical Pyrolysis of Natural Organic Polymers, Volume 20

Select country/regionUnited States of AmericaUnited KingdomAfghanistanÅland IslandsAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBrazilBritish Indian Ocean TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCanary IslandsCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCook IslandsCosta RicaCroatiaCubaCuraçaoCyprusCzech RepublicDemocratic Республика КонгоДанияДжибутиДоминикаДоминиканская РеспубликаЭквадорЕгипетСальвадорЭкваториальная ГвинеяЭритреяЭстонияЭфиопияФолклендские (Мальвинские) островаФарерские островаФедеративные Штаты МикронезияФиджиФинляндияФранцияФранцузская ГвианаФранцузская ПолинезияГабонГамбияГрузияГерманияГанаGi braltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKuwaitKyrgyzstanLaoLatviaLesothoLiberiaLibyaLiechtensteinLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNiueNorfolk IslandNorth KoreaNorthern Mariana IslandsNorwayOmanPakistanPalauPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRéunionRomaniaRwandaSaint BarthélemySaint HelenaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomal iaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth KoreaSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTimor LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUruguayUS Virgin IslandsUzbekistanVanuatuVatican CityVenezuelaVietnamWallis and FutunaWestern SaharaYemenZambiaZimbabwe

Варианты покупки

Bundle (Hardcover, Ebook) 50% скидка $ 595,00 $ 297,50

Печать – Hardcover $ 295,00 Avilable

$ 300. 00

. Нет минимального заказа

Описание

Аналитический пиролиз является одним из многих инструментов, используемых для изучения природных органических полимеров. В этой книге в трех частях описывается методология аналитического пиролиза, результаты пиролиза различных биополимеров и несколько практических применений аналитического пиролиза природных органических полимеров и их композиционных материалов. Аналитическая методология пиролиза охватывает два отдельных предмета: приборы, используемые для пиролиза, и аналитические методы, применяемые для анализа продуктов пиролиза. Приведены различные пиролитические методы и аналитические приборы, обычно сочетающиеся с устройствами для пиролиза. Описание результатов пиролиза биополимеров и некоторых химически модифицированных природных органических полимеров составляет основу книги. Описаны основные продукты пиролиза многих соединений, а также предполагаемые механизмы их пиролиза. В этой части сделана попытка максимально подробно представить химию процесса пиролиза природных органических полимеров. Применение аналитического пиролиза включает такие темы, как обнаружение полимера, используемое, например, в криминалистике, выяснение структуры конкретных полимеров и идентификация. малых молекул, присутствующих в полимерах (антиоксиданты, пластификаторы и др.). Кроме того, деградация при нагревании представляет большой интерес во многих практических приложениях, касающихся физических свойств полимеров. Композитные полимерные материалы применяются в области классификации микроорганизмов, изучения различных биологических образцов, изучения ископаемых материалов и т. д. Аналитический пиролиз также может быть использован для получения информации о площади горения с образованием пиролизатов сложного состава. Их анализ важен в связи с вопросами здоровья, экологическими проблемами, вкусовыми качествами продуктов питания и сигарет. Особенности этой книги: • Представляет аналитический пиролиз как единую тему, а не как конгломерат научных статей. • Организованно собирает воедино большой объем доступной информации в этой конкретной области. • Предоставляет оригинальные результаты, касающиеся вопросов с относительно скудной информацией в литературе. • Дает оригинальные взгляды на такие вопросы, как параллель между пиролитическим процессом и фрагментацией ионов в масс-спектрометрии. • Включает роль пиролиза в процессе горения. Три части книги состоят из 18 глав, каждая из которых разделена на разделы. Некоторые разделы дополнительно разделены по конкретным темам. Ссылки даны для каждой главы, и были предприняты усилия, чтобы включить как можно больше из имеющейся репрезентативной информации. Также включены несколько неопубликованных личных результатов.

Содержание

  • Часть 1: Введение в аналитический пиролиз. 1. Введение и номенклатура. Пиролиз как химический процесс. Область применения аналитического пиролиза. Аналитический пиролиз применительно к природным органическим полимерам. 2. Химия пиролитического процесса. Общие замечания. Реакции элиминации при пиролизе. Перегруппировки, происходящие при пиролизе. Окисления и восстановления, происходящие при пиролизе. Замещения и присоединения, происходящие при пиролизе. Типичная деградация полимеров при пиролизе. Пиролиз в присутствии дополнительных реагентов или с катализаторами. 3. Физико-химические аспекты пиролитического процесса. Термодинамические факторы в пиролитических химических реакциях. Кинетические факторы пиролитических химических реакций. Модели, пытающиеся описать кинетику пиролитических процессов твердых образцов. Кинетика пиролиза однородных повторяющихся полимеров. Пиролитические процессы по сравнению с горением. Процесс пиролиза по сравнению с фрагментацией ионов в масс-спектрометрии. Теоретические подходы к химическим пиролитическим реакциям. 4. Приборы для пиролиза. Контроль температуры пиролитического процесса. Пиролизеры с точкой Кюри. Пиролизеры накала с резистивным нагревом. Печи пиролизерные. Радиационный нагрев (лазер) пиролизеры. Другие типы пиролизеров. Сравнение аналитических характеристик различных типов пиролизеров. 5. Аналитические методы, используемые при пиролизе. Выбор методики анализа и перенос пиролизата на аналитический прибор. Пиролизно-газовая хроматография (Py-GC). Масс-спектрометры как детекторы в пиролизной газовой хроматографии. Методы пиролизной масс-спектрометрии (Py-MS). Интерпретация данных пиролиза – масс-спектрометрия (Py-MS). Инфракрасная спектроскопия (ИК), используемая в качестве метода обнаружения пиролиза. Другие аналитические методы в пиролизе. Часть 2: Аналитический пиролиз органических биополимеров. 6. Аналитический пиролиз политерпенов. Натуральный каучук. Вулканизированная резина. Другие политерпены. 7. Аналитический пиролиз полимерных углеводов. Моносахариды, полисахариды и общие аспекты их пиролиза. Целлюлоза. Химически модифицированные целлюлозы. Амилоза и амилопектин. пектины. Камеди и слизи. Гемицеллюлозы и другие растительные полисахариды. Полисахариды водорослей. Микробные полисахариды. Липолисахариды с клеточной поверхности бактерий. Полисахариды грибов. Гликоген. Хитин. Протеогликаны. 8. Аналитический пиролиз полимерных материалов с липидными фрагментами. Классификация сложных липидов и аналитический пиролиз простых липидов. Сложные липиды. 9. Аналитический пиролиз лигнинов. Лигнин. Лигноцеллюлозные материалы. Химически модифицированные лигнины. 10. Аналитический пиролиз полимерных дубильных веществ. Дубильные вещества полимерные. 11. Аналитический пиролиз карамельных красителей и полимеров Майяра Браунинга. Пиролиз карамельных красителей. Сахароаммиачные и сахароаминные полимеры для подрумянивания. Сахарно-аминокислотные полимеры для подрумянивания. 12. Аналитический пиролиз белков. Белковая структура пиролиза аминокислот. Пептиды. Простые белки. Конъюгированные белки. 13. Нуклеиновые кислоты. Классификация нуклеиновых кислот и пиролиз олигонуклеотидов. Пиролиз нуклеиновых кислот. Пиролиз комплексов Pt-ДНК. 14. Аналитический пиролиз некоторых органических геополимеров. Гумин, гуминовые кислоты и фульвокислоты. Каменный уголь. Торф. Керогены. 15. Аналитический пиролиз других природных органических полимеров. Необычные органические полимеры. Разнообразие органических полимеров. Часть 3: Применение аналитического пиролиза на композитных природных органических материалах. 16. Аналитический пиролиз растительного сырья. Дерево. Листья и другие части растений. Разлагающиеся и субископаемые растительные материалы. Целлюлозно-бумажный. 17. Аналитический пиролиз микроорганизмов. Характеристика микроорганизмов пиролитическими методами. Использование пиролитических методов для обнаружения биомассы. 18. Другие применения аналитического пиролиза. Пиролитические методы, применяемые в патологии. Пиролитические методы, используемые в характеристике пищевых продуктов. Пиролитические методы, используемые в криминалистике, археологии и искусстве. Пиролиз используется для характеристики отходов.

Подробная информация о продукте

  • Количество страниц: 510
  • Язык: английский
  • Copyright: © Elsevier Science 1998
  • Опубликовано: 11 ноября 1998
  • IMMENT: Elsevier Science.0021 ISBN электронной книги: 9780080527161

Об авторе

С. К. Молдовяну

Д-р Сербан К. Молдовяну — старший научный сотрудник R. J. Reynolds Tobacco Co. Его исследовательская деятельность сосредоточена на различных аспектах хроматографического анализа, включая разработку методов хроматографического анализа. с помощью ГХ/МС, ВЭЖХ и ЖХ/МС/МС натуральных продуктов и сигаретного дыма. Он также проводил исследования по пиролизу различных полимеров и малых молекул. У него более 130 публикаций в рецензируемых журналах, 12 книг и несколько вкладов в главы. Он является членом редколлегии Журнала аналитических методов в химии.

Принадлежности и опыт

RJ Reynolds Tobacco Co., Уинстон-Салем, Северная Каролина, США

Рейтинги и обзоры

Написать отзыв

В настоящее время нет отзывов для “Аналитический пиролиз органических полимеров”

3 самые распространенные органические полимеры?

`;

Наиболее распространенными органическими полимерами на Земле являются целлюлоза (составляющая ~30% неископаемого органического углерода), лигнин (~30%), гемицеллюлоза, пектин, хитин и кератин. Целлюлоза является наиболее распространенным из органических полимеров в клеточных стенках растений, на долю которых приходится большая часть наземной биомассы. Всего около 33% растительного вещества составляет целлюлоза. Хлопок на 90% состоит из целлюлозы, а древесина на 50%.

Целлюлоза известна тем, что является самым распространенным полимером на Земле. Используется в каждом растении, выделяется некоторыми бактериями в виде биопленки. Целлюлоза является основным компонентом картона и бумаги. Для производства бумаги ее измельчают в целлюлозу, отбеливают, а затем формуют в листы. Для большинства животных, таких как люди, целлюлоза неперевариваема и является «пищевым волокном», которое действует как наполнитель для наших фекалий. У некоторых животных, таких как жвачные животные и термиты, в кишечнике живут особые бактерии, помогающие расщеплять клетчатку и делать ее удобоваримой.

Другие органические полимеры, обнаруженные в больших количествах в растениях, включают гемицеллюлозу, лигнин и пектин. Они составляют основную часть сосудистых растений и выполняют различные функции. Например, гемицеллюлоза некристаллическая, в отличие от целлюлозы, состоит из более коротких молекулярных цепей и имеет разветвленную структуру, в отличие от целлюлозы. Лигнин составляет от четверти до трети сухой массы древесины, что делает его вторым по распространенности органическим полимером.

Не считая растений, наиболее распространенными органическими полимерами являются хитин и кератин, именно в таком порядке. Хитин образует большую часть клеточных стенок грибов и экзоскелетов всех членистоногих, включая насекомых и ракообразных, которых чрезвычайно много. Количество хитина, обнаруженного в природе, вероятно, превышает сухую массу всей наземной биомассы позвоночных. Насекомые постоянно массово производят и выбрасывают его при линьке.

Кератин является одним из наиболее знакомых нам органических полимеров, поскольку он составляет большую часть твердых, но неминерализованных структур рептилий, птиц, земноводных и млекопитающих. Примечательно, что кератин является основным компонентом ногтей и волос у млекопитающих, чешуи и когтей у рептилий, многих частей птиц, включая перья, и вместе с хитином составляет экзоскелет членистоногих.

Майкл — давний участник AllTheScience, специализирующийся на темах, связанных с палеонтологией, физика, биология, астрономия, химия и футуризм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *