Плазмотрон что такое – Плазмотрон: принцип работы и конструкция

alexxlab | 11.10.2019 | 0 | Разное

Содержание

принцип работы, что им можно делать и как резать металл

Плазменная резка – одна из наиболее современных эффективных технологий, позволяющая работать с металлом, а также с некоторыми материалами, не проводящими ток, в том числе древесиной, пластиком и камнем.

Неудивительно, что метод пользуется спросом и активно применяется в различных сферах деятельности, в ЖКХ, в строительстве, промышленности. Главным устройством во всем процессе является плазморез, продуцирующий дугу, сформированную плазмой огромной температуры.

Дуга позволяет вести работу с высокой точностью, проводить раскрой не только по прямым линиям, но и формировать сложные фигуры.

Чтобы разобраться в тонкостях всего процесса, рассмотрим подробнее конструкцию устройства, а также основные принципы, на которых построено его функционирование.

Конструкция

Плазморезка сформирована следующими элементами:

1. Элемент питания, который отвечает за подачу тока той или иной силы. В качестве элемента применяют либо трансформаторы, либо инверторы.

Первый вариант характеризуется значительной массой, зато почти неуязвим для колебаний напряжения, а также дает возможность осуществлять рез металлических заготовок огромной толщины.

Инвертор – хороший выбор в том случае, если манипуляции ведутся с не слишком толстыми заготовками. Они экономичны в отношении потребления энергии, характеризуются высоким КПД и рекомендуются для использования в частном хозяйстве.

2. Плазмотрон. Основной элемент, посредством которого и ведется рез.

Корпус детали скрывает электрод, отвечающий за формирование мощной дуги. Сделан электрод из тугоплавкого металла, благодаря чему исключены его деформации и разрушения вследствие высокотемпературных нагрузок. Как правило, используется гафний, как наиболее прочный и безопасный материал.

На конце находится сопло, формирующее струю плазмы, с легкостью разрезающую заготовку.

Производительность и мощность устройства, во многом, определяется именно диаметром сопла. Чем шире сопло, тем больше воздуха оно пропускает за единицу времени, а увеличение объемов воздуха непосредственно увеличивает производительность. Наиболее распространенный диаметр – 3 миллиметра.

Точность работы зависит от конфигурации сопла, для проведения наиболее тонкой работы следует подбирать удлиненный элемент.

3. Компрессор. Его главная задача – нагнетание воздуха, без которого плазменный резак по металлу просто не может функционировать. Процесс построен на использовании газа для формирования плазменной струи и защиты.

Если сила тока устройства ограничена 200А, то необходим просто сжатый воздух, его достаточно и для отвода лишнего тепла, и для формирования струи. Такая модель – оптимальное решение в случаях, когда режутся заготовки не толще 5 сантиметров.

Установки промышленного типа используют не обычный сжатый воздух, а концентрированные газовые смеси на основе гелия, водорода, азота.

4. Комплекс кабелей и шлангов соединяет все модули между собой. Шланги транспортируют сжатый воздух, кабеля передают электрический ток.

Смотрите полезное видео, устройство и как работает плазменная резка:

Рабочий принцип

Теперь изучим непосредственно принцип работы устройства.

Когда оператор нажимает на клавишу розжига, элемент питания подает ток на плазмотрон. Это приводит к формированию первичной дуги огромной температуры, которая составляет от 6 до 8 тысяч градусов.

Формирование дуги между наконечником электрода и сопла происходит из-за того, что крайне трудно добиться такого результата непосредственно между заготовкой и электродом. Более того, если работа ведется с материалом, характеризующимся изолирующими свойствами, это просто невозможно.

Когда сформирована первичная дуга, к ней подается воздушная смесь. Данный воздух контактирует с ней, его температура растет, а объем – увеличивается, причем увеличение может быть даже стократным. Вдобавок к этому, воздух теряет свои диэлектрические свойства, ионизируется.

За счет того, что сопло имеет сужение к своему окончанию, воздушный поток разгоняется до 2-3 метров в секунду и вырывается наружу, имея температуру почти в 30 тысяч градусов. Из-за высокой степени ионизации и огромной температуры воздух называется плазмой, показатель электрической проводимости которой равняется этому параметру у обрабатываемого металла.

В момент соприкосновения с обрабатываемой поверхностью первичная дуга угасает, а дальнейшая работа ведется уже за счет вновь образованной режущей дуги. Именно она плавит или прожигает материал. Рез получается ровным, так как мощный воздушный поток сдувает с поверхности все появляющиеся частички.

Такое описание того, как работает система, является наиболее простым и распространенным.

Области применения

Теперь рассмотрим, что им можно делать:

  • Оперативный рез больших объемов материалов.
  • Изготовление листовых деталей, характеризующихся сложностью геометрии, вплоть до ювелирной и приборостроительной отрасли, где требуется максимальное соответствие исходным чертежам.

Штамповка в такой ситуации не применяется, так как данная технология, хоть и дешево, не обеспечивает достаточной точности. Плазморез же, несмотря на огромную температуру струи, нагревает обрабатываемый элемент точечно, что полностью исключает вероятность температурной деформации.

  • Монтаж металлических конструкций. Плазморез исключает нужду в применении баллонов со сжатым кислородом и ацетиленом, что повышает степень безопасности и удобства, в особенности, если дело касается осуществления операций на высоте.
  • Рез сталей высокой степени легирования. Механические способы в данном случае не подходят, так как прочность сталей огромна, инструмент, способный эффективно резать листы на их основе, будет стоить очень дорого, а изнашиваться – очень быстро.

Получается, что сферы использования разнообразны. Выполнение в металлических листах отверстий любой конфигурации, резка труб, уголков и заготовок другого сечения, обработка кромок кованых изделий с целью “спаивания” металла и закрытия его структуры – для всего этого плазморез подходит оптимально.

Основные инструкции

Несколько правил, позволяющие понять, как резать плазморезом эффективно и безопасно:

  1. Необходимо контролировать расположение катодного пятна, оно должно соответствовать центру электрода. Достигается такая точность вихревой подачей воздуха. Отклонения в подаче приводят к тому, что происходит смещение плазменной дуги, она теряет стабильность горения. В некоторых случаях формируется вторая дуга, а в самой сложной ситуации устройство просто ломается.
  2. Контроль над воздушным расходом дает возможность корректировать скорость потока плазмы, варьировать производительность.
  3. Скорость реза напрямую влияет на толщину. Чем выше скорость, тем тоньше рез, ее уменьшение увеличивает ширину. Аналогичных результатов, большей ширины, можно достичь и увеличением силы тока.

Смотрите видео-урок работы плазморезом:

Заключение

Итак, мы разобрались, что такое плазморез.

Можно сделать вывод, что в ситуации, когда вам регулярно приходится работать с металлическими элементами, резать арматуру, трубы или другие детали, его помощь окажется полезной. Так что расходы на его покупку будут полностью компенсированы удобством и эффективностью дальнейшей работы.

Загрузка...

plavitmetall.ru

105 фото конструкции и примеров работы устройством

Плазмотрон или как его еще называют плазморез – это неотъемлемый атрибут любого производства или строительства. В быту он почти не используется, поскольку есть другие более доступные по цене устройства для резки металла, например, болгарка. А в машиностроении, при обработке профиля и стальных конструкций без плазмотрона не обойтись.

Краткое содержимое статьи:

Достоинства плазмотрона

Плазматрон обладает следующими достоинствами:

  • Эффективность работы.
  • Универсальность. Может работать с любыми металлами.
  • Отсутствие необходимости в предварительной подготовке заготовки. Очистка от загрязнения, снятие старой краски – всего этого не нужно делать.
  • Высококачественный срез. Для среза, выполненного плазморезом, характерны точность, ровность, отсутствие окалины. Также почти не нужна последующая обработка.
  • Минимум тепловых деформаций металлических заготовок.
  • Безопасность эксплуатации. В процессе работы не применяются газовые баллоны.
  • Возможность создания криволинейных срезов.
  • Экологическая безопасность.

Благодаря многочисленным достоинствам плазмотрона, он широко применяется в промышленности, будь то изготовление кронштейнов, дверных блоков, вентиляции или отопления.


Отрицательные стороны применения плазменного резака

Ограничение в толщине металлических деталей, предназначенных для резки. 10 см – это максимально допустимое значение для самых современных устройств подобного типа.

Строгое требование к размещению плазмотрона относительно обрабатываемого листа металла. Оборудование должно размещаться строго перпендикулярно.

Отсутствие возможности применения двух аппаратов для резки, подключённых к одному устройству.

Разновидности плазморезов

Выбор плазмореза зависит от планируемой области его применения. Это объясняется тем, что различные виды имеют различную конструкцию. Оборудование по плазменной резке делится на устройства, работающие:

  • в среде защитных газов;
  • в среде окислительных газов;
  • со смесями;
  • в газожидкостных стабилизаторах;
  • с магнитной и водной стабилизацией.

Помимо этого, существуют следующие виды плазмотронов:


Инверторные. Основная их особенность – экономичность и возможность резки металла толщиной до 3 см. Также их преимуществами являются небольшие размеры и стабильность горения электрической дуги.

Трансформаторные. Ими можно резать металлические листы толщиной до 8 см. Они менее экономичны и КПД у них ниже.

Также в зависимости от типа контакта, выделяют контактные и бесконтактные плазменные резаки.

Есть ещё классификация по области применения и требуемому напряжению. Здесь, как показано на фото плазмотронов, они могут быть:

  • Бытовыми. Их работа происходит от сети напряжением 220 В.
  • Промышленные. Требуют подключения к трёхфазной сети с напряжением 380 В.

Какой плазмотрон лучше зависит от его назначения и конкретных задач, которые вы планируете с его помощью решать.


Принцип действия плазменных резаков и их конструкция

Принцип работы плазмотрона заключается в расплавлении металла и выдувания его из места среза.

Устройство плазмотрона следующее:

  • Источник питания.
  • Система шлангов.
  • Компрессор.
  • Плазменный резак (плазмотрон), внутри него находится электрод из бериллия, циркония или гафния.

Рекомендации по выбору плазмореза

Покупая плазморез, нужно учитывать следующие моменты:

  • Универсальность.
  • Вид устройства.
  • Сила тока.
  • Максимально возможная толщина металла, резку которого можно провести данным агрегатом.
  • Наибольшее время беспрерывной работы и частота необходимых перерывов.
  • Тип компрессора (встроенный или внешний).
  • Частота, с которой потребуется заменять расходные материалы.
  • Удобство эксплуатации.

Также немаловажным нюансом является название фирмы-изготовителя. Лучше выбирать плазмотрон от проверенных производителей. Известный бренд послужит гарантией качества оборудования.

Помните, что у плазмореза довольно большая мощность. Ваша сеть может не справиться с подобной нагрузкой. Поэтому заранее проверьте ее устойчивость.

Работая с плазмотрезом, обязательно соблюдайте требования безопасности – вовремя заменяйте расходники, не работайте с прибором в мороз.

Фото плазмотрона

Также рекомендуем посетить:

zdesinstrument.ru

вид и устройство плазмотрона, принцип работы резака и советы по выбору

Первые плазменные станки были изобретены в 50-х годах XX века. Оборудование было громоздким и дорогостоящим, использовалось оно только в некоторых отраслях промышленности. Но уже к концу двадцатого столетия плазменная резка металла стала доступной, и спрос на неё вырос.

Сегодня этот вид резки занимает одно из лидирующих мест в металлообрабатывающей отрасли. Оборудование, применяемое в технологии плазменной резки металла, постоянно модернизируется, становясь всё более практичным и удобным.

Виды и способы плазменной резки

Плазменной называется резка металла под большим потоком плазмы, которая образуется за счёт обдува газом электрической дуги. Нагреваясь, газ ионизируется на положительные и отрицательные частицы. Температура потока плазмы достигает нескольких тысяч градусов.

По видам плазменная резка бывает:

  • разделительная;
  • поверхностная.

При разделительной резке электрод утопает в разрезе металла. Угол между поверхностью металла и электродом должен быть от 60° до 90°, а при поверхностной он не может быть более 30°.

Существует два способа резки:

  • при помощи плазменной дуги;
  • при помощи плазменной струи.

При первом способе дуга горит между неплавящимся электродом и разрезаемым металлом. При втором — между формирующимся наконечником плазматрона и электродом. Изделие не включается в электрическую цепь при плазменной струе.

Для обработки металлов широко применяется плазменно-дуговая резка, а для обработки неметаллических заготовок — обработка плазменной струёй.

Классификация плазмотронов

Плазмотроны для резки металла делятся на электродуговые, высокочастотные и комбинированные.

По виду образования дуги:

  1. С дугой прямого действия, которая горит между металлическим изделием и неплавящимся электродом. Источник питания — постоянный ток.
  2. С дугой косвенного действия. Не связанная с изделием, она возбуждается и горит между анодом-соплом и катодом-электродом. Питание осуществляется переменным током.

По виду охлаждения:

  • воздушное;
  • водяное.

Более популярным является водяное охлаждение плазмотрона, так как теплоёмкость воздуха ниже, чем воды. Водяное охлаждение позволяет устанавливать на сопло и электрод высокие тепловые нагрузки, что увеличивает производительность плазменной сварки. Недостаток этого вида охлаждения состоит в усложнении конструкции самого устройства и необходимости постоянной подачи чистой воды.

По способу стабилизации дуги:

  • водяной;
  • вихревой;
  • двойной;
  • аксиальный одинарный;
  • магнитный.

Водяной способ стабилизации дуги сложен по конструкции, имеет ненадёжную систему автоматической подачи и регулирования электрода.

Наиболее простыми и распространёнными являются вихревой, двойной и аксиальный одинарный виды стабилизации дуги. Магнитный способ стабилизации дуги не очень эффективен. Он создаёт малый сжимающий столб дуги, устройство сложное в эксплуатации.

По виду электрода для работы с металлом:

  • газозащищённые;
  • расходуемые;
  • плёнкозащищённые.

Чаще других используются газозащищенные катоды с вольфрамовым стержнем. Расходуемые — это графитовые катоды. Из циркония, запрессованного в медной обойме, изготавливаются плёнкозащищенные электроды.

Устройство аппарата для резки плазмой

По своей сущности плазмотрон представляет собой генератор плазмы. Это надёжное и компактное устройство, в котором легко регулируется пуск, мощность и остановка рабочих режимов.

Плазмотрон состоит из конструктивных элементов:

  1. Кожух.
  2. Корпус фторопластовый.
  3. Электродный узел.
  4. Механизм закрутки воздушного потока.
  5. Втулка изоляционная.
  6. Электрод.
  7. Гайка сопла.
  8. Сопло.

Основными расходными материалами прибора являются сопло и электрод. Они изнашиваются с одинаковой интенсивностью, поэтому менять их следует одновременно. Несвоевременная замена повлияет на качество реза и приведёт к износу остальных элементов устройства.

Кожух применяется для защиты прибора от металлической пыли и брызг металла. Кожух и плазмотрон периодически необходимо чистить от загрязнений.

Принцип работы устройства

Перед работой нужно убедиться, что у компрессора достаточный показатель давления, а у водяных устройств жидкость разогрета до необходимой температуры.

  1. От источника питания после нажатия на кнопку «розжиг» подаётся ток высокой частоты. Внутри прибора образуется дежурная электрическая дуга, весь канал заполняет столб дуги.
  2. Сжатый воздух начинает поступать в камеру устройства. Проходя через электрическую дугу, он нагревается и увеличивается в объёме, перестаёт быть диэлектриком и проводит ток.
  3. Со скоростью от 2 до 3 м/с из сопла прибора начинает вырываться поток воздуха, температура которого может достигать 30 тысяч градусов. Этот раскалённый воздух и является плазмой.
  4. Вместо дежурной зажигается режущая дуга, которая, соприкасаясь с заготовкой металла, разогревает её в месте реза. В зоне плавки появляется рез, а образующиеся на заготовке частички расплавленного металла от потока воздуха разлетаются.
  5. Отпустив кнопку «розжиг», горение дуги прекращается.
  6. По краям реза отбивается шлак, при необходимости изделие зачищается от него.

Базовое знание принципа работы плазмотрона не только поможет понять, как управлять процессом резки, но и сделает работу лёгкой, а рез — ровным и красивым.

Типы плазмотронов

На предприятиях широко применяется автоматическая и ручная резка плазмой.

Резать металл можно различными типами приборов.

  1. Плазменные резаки для резки металлов. В эту группу входит воздушно-плазменный и газоплазменный резак. Воздушно-плазменный резак выделяется простой конструкцией и применяется для резки чёрных металлов. Он может работать как от однофазной, так и трёхфазной сети. Газоплазменный аппарат работает на водяном паре, для образования плазмы применяется водород, аргон, кислород, азот.
  2. Индукционный резак. Это высокочастотное устройство, работающее по принципу индуктивно-связанной плазмы с температурой до 6000 К и высокой плотностью электронов.
  3. Комбинированные аппараты. Представлены симбиозом токов высокой частоты и электрической дуги. Электрический разряд сжимается под воздействием магнитного поля.
  4. Газовые устройства, работающее за счёт сжатия столба дуги плазмообразующим газом.
  5. Водяные устройства, рабочим телом которых является паровой газ. Высокотемпературный водяной пар способствует ускоренному сгоранию углерода.
  6. Магнитные резаки. Такие приборы малоэффективны и не пользуются популярностью. Их основное преимущество в том, что регулировка сжатия электрической дуги осуществляется без потери газа.

В зависимости от типа плазмотрона можно без труда обрабатывать сталь любых видов, в том числе металлы с высоким тепловым расширением, а также материалы, которые электрический ток не проводят.

Преимущества и недостатки технологии резки

Эта технология по сравнению с прочими способами обработки имеет свои преимущества.

  1. Высокая производительность, лёгкость освоения.
  2. Плазменная резка обладает высокой точностью и разнообразием линий реза.
  3. Обрабатываемая поверхность не требует дополнительной шлифовки.
  4. В процессе работы загрязнение окружающей среды минимальное.
  5. Используемое ручное оборудование мобильно, имеет малый вес и габариты.

К недостаткам этого метода можно отнести небольшую, до 100 мм, толщину среза. Нельзя работать одновременно двумя приборами, а также отклоняться от перпендикулярности среза.

Выбор плазмотрона

Чтобы правильно выбрать аппарат для плазменной резки металла, нужно определиться, какими характеристиками должен обладать прибор. Исходными данными могут быть:

  • автоматизированный или ручной способ резки;
  • продолжительность работы;
  • расход электрической энергии;
  • толщина металла;
  • тип металла;
  • с какой частотой осуществляется замена расходных материалов;
  • отзывы пользователей об оборудовании и производителях.

Хорошим вариантом оптимальной цены и мощности является модель Сварог CUN 40 B (R 34). Это лёгкий и компактный прибор, который применяется в раскрое тонколистовых металлов менее 0,12 см. Он прост в управлении, неприхотлив в эксплуатации, расход сжатого воздуха минимальный.

К аппаратам с наилучшими показателями энергосбережения можно отнести модель AURORA PRO AIRFORCE 60 IGBT. Он подойдёт для резки материала, проводящего ток. Принцип работы основан на бесконтактном поджиге дуги. Результатом проведения резки является качественная работа без деформации металла.

Для резки толстого металла подойдёт модель BRIMA CUT 120. Устройство используется при резке цветного, углеродистого, нержавеющего металла и меди. Толщина металла может доходить до 35 мм. Он имеет встроенную регулировку дуги и плавно изменяет рабочие параметры устройства.

Как самостоятельно собрать плазменный резак из инвертора читайте в этой статье.

Как самостоятельно собрать плазменный резак из инвертора читайте в этой статье.

Безопасность эксплуатации прибора

Перед работой с устройством необходимо изучить паспорт производителя и нормативную документацию по технике безопасности ГОСТ 12 .3.003−86.

  1. Обслуживание оборудования и ремонт должны осуществляться с отключённой сетью.
  2. На рабочем месте не должно быть легковоспламеняющихся жидкостей и горючих материалов.
  3. Рабочее место необходимо обеспечить средствами пожаротушения, хорошо проветривать, а при необходимости следует установить искусственную вентиляцию.
  4. Специалист должен использовать при работе специальную одеждой, обувьюи другие средства защиты.
  5. При резке лучше использовать специальные столы, которые оснащены системой для удаления газов и пара.
  6. Если работы проводятся на открытом воздухе, необходим навес.
  7. Нельзя оставлять плазматрон долгое время включённым.

Соблюдение безопасности при эксплуатации прибора поможет избежать профессиональных заболеваний и травм.

obrabotkametalla.info

Плазмотрон Википедия

Плазменная горелка

Плазмотро́н — техническое устройство, в котором при протекании электрического тока через разрядный промежуток образуется плазма, используемая для обработки материалов или как источник света и тепла. Буквально, плазмотрон означает — генератор (производитель) плазмы.

История создания[ | ]

Первые плазмотроны появились в середине 20-го века в связи с появлением устойчивых в условиях высоких температур материалов и расширением производства тугоплавких металлов. Другой причиной появления плазмотронов явилась элементарная потребность в источниках тепла большой мощности. Замечательными особенностями плазмотрона как инструмента современной технологии являются:

  • Получение сверхвысоких температур (до 150 000 °C, в среднем получают 10 000-30 000 °C), недостижимых при сжигании химического топлива.
  • Компактность и надёжность.
  • Лёгкое регулирование мощности, лёгкий пуск и остановка рабочего режима плазмотрона.

Типы применяемых плазмотронов[ | ]

Электродуговые:

  • С прямой дугой.
  • С косвенной дугой.
  • С электролитическим электродом (электродами).
  • С вращающейся дугой.
  • С вращающимися электродами.

Высокочастотные:

  • Индукционные
  • Ёмкостные

Комбинированные:

Работают при совместном действии токов высоких частот (ТВЧ) и при горении дугового разряда, в том числе с сжатием разряда магнитным полем.

Области использования плазмотронов[ | ]

  • сварка и резка металлов и тугоплавких материалов
  • нанесение ионно-плазменных защитных покрытий на различные материалы (см. Плазменное напыление)
  • нанесение керамических термобарьерных, электроизоляционных покрытий на металлы (см. Плазменное напыление)
  • подогрев металла в ковшах при мартеновском производстве
  • получение нанодисперсных порошков металлов и их соединений для металлургии
  • двигатели космических аппаратов
  • термическое обезвреживание высокотоксичных органических отходов
  • Синтез химических соединений (например синтез оксидов азота и др., см. Плазмохимия)
  • Накачка мощных газовых лазеров.
  • Плазменная проходка крепких горных пород.
  • Безмазутная растопка пылеугольных котлов электростанций.
  • Расплавление и рафинирование (очистка) металлов при плазменно-дуговом переплаве.

ru-wiki.ru

ПЛАЗМАТРОН - это... Что такое ПЛАЗМАТРОН?

(от плазма и ...трон), плазменный генератор, - газоразрядное устройство для получения струи "холодной" (с темп-рой порядка 104 К) плазмы. Наиболее распространены электродуговые и ВЧ П. В первых рабочий газ (водород, азот, аргон, гелий и т. д.) превращается в плазму в дуговом разряде между тугоплавким катодом (вольфрам, молибден, спец. сплавы) и водоохлаждаемым медным анодом, выполненным в виде узкого кольца - сопла. С помощью соленоида в разрядной камере П. создаётся сильное магн. поле, перпендикулярное плоскости сопла и вынуждающее токовый канал дуги непрерывно вращаться, обегая анодное кольцо (к-рое в противном случае расплавилось бы). Часто рабочий газ подаётся в камеру по спиральным каналам, в результате чего образуется газовый вихрь, обдувающий столб дуги: более холодный газ под действием центробежных сил оттесняется к стенкам камеры, изолируя их от контакта с дугой (стабилизация дуги газовой "закруткой".). Проходя через сопло, не ионизованные в камере атомы (молекулы) газа ионизуются вращающимся участком дуги. Темп-pa плазмы на срезе сопла, в зависимости от типа и режима работы электродугового П., заключена в пределах 3000 25 000 К. Плазма дуговых П. неизбежно содержит частицы в-ва электродов. Более "чистую" плазму дают ВЧ П. В одних типах ВЧ П. рабочий газ ионизуется в безэлектродном высокочастотном разряде, возбуждавмом в камере электромагн. полем катушки-индуктора. В других ВЧ П. (П. на коронном разряде, П. с высокочастотной короной) имеются кольцевой электрод (сопло) и второй электрод в виде тонкого острия. Интенсивность ионизации у острия максимальна, т. к. напряжённость электрич. поля вблизи него более высока по сравнению с др. участками разряда. Рабочие частоты ВЧ П. измеряются десятками МГц; темп-pa плазмы в центре разрядной области 10 000 - 15 000 К. Созданы также СВЧ П. с рабочими частотами в тыс. и десятки тыс. МГц; в качестве питающих их генераторов применяются магнетроны. В ВЧ П., как и в дуговых, часто используют газовую "закрутку". Это позволяет изготовлять камеры П. из материалов с низкой термостойкостью (напр., из обычного или органич. стекла). См. рис. П. являются осн. источником "холодной" плазмы в совр. технике (напр., в плазмохимической технологии, плазменной металлургии).

Схемы дуговых плазматронов: а - осевой; б - коаксиальный; в - с тороидальными электродами; г - двустороннего истечения; о - с внешней плазменной дугой; е - эрозионный; 1 - источник электропитания; 2 - разряд; 3 - плазменная струя; 4 - электроды; 5 - разрядная камера; 6 - соленоиды; 7 - обрабатываемое тело

Схемы высокочастотных плазматронов: а - индукционный; б - ёмкостный; в - факельный; г - сверхвысокочастотный; 1 - источник электропитания; 2 - разряд; 3 - плазменная струя; 4 - индуктор; 5 - разрядная камера; 6 электроды; 7 - волновод

К ст. Плазматрон. Плазменная струя на срезе cопла>>

Большой энциклопедический политехнический словарь. 2004.

dic.academic.ru

Плазмотрон — Википедия. Что такое Плазмотрон

Плазменная горелка

Плазмотро́н — техническое устройство, в котором при протекании электрического тока через разрядный промежуток образуется плазма, используемая для обработки материалов или как источник света и тепла. Буквально, плазмотрон означает — генератор плазмы.

История создания

Первые плазмотроны появились в середине 20-го века в связи с появлением устойчивых в условиях высоких температур материалов и расширением производства тугоплавких металлов. Другой причиной появления плазмотронов явилась элементарная потребность в источниках тепла большой мощности. Замечательными особенностями плазмотрона как инструмента современной технологии являются:

  • Получение сверхвысоких температур (до 150 000 °C, в среднем получают 10 000-30 000 °C), недостижимых при сжигании химического топлива.
  • Компактность и надёжность.
  • Лёгкое регулирование мощности, лёгкий пуск и остановка рабочего режима плазмотрона.

Типы применяемых плазмотронов

Электродуговые:

  • С прямой дугой.
  • С косвенной дугой.
  • С электролитическим электродом (электродами).
  • С вращающейся дугой.
  • С вращающимися электродами.

Высокочастотные:

  • Индукционные
  • Ёмкостные

Комбинированные:

Работают при совместном действии токов высоких частот (ТВЧ) и при горении дугового разряда, в том числе с сжатием разряда магнитным полем.

Области использования плазмотронов

  • сварка и резка металлов и тугоплавких материалов
  • нанесение ионно-плазменных защитных покрытий на различные материалы (см. Плазменное напыление)
  • нанесение керамических термобарьерных, электроизоляционных покрытий на металлы (см. Плазменное напыление)
  • подогрев металла в ковшах при мартеновском производстве
  • получение нанодисперсных порошков металлов и их соединений для металлургии
  • двигатели космических аппаратов
  • термическое обезвреживание высокотоксичных органических отходов
  • Синтез химических соединений (например синтез оксидов азота и др., см. Плазмохимия)
  • Накачка мощных газовых лазеров.
  • Плазменная проходка крепких горных пород.
  • Безмазутная растопка пылеугольных котлов электростанций.
  • Расплавление и рафинирование (очистка) металлов при плазменно-дуговом переплаве.

Особенности применяемых материалов в конструкции

Дуговые плазмотроны

Плазменная горелка дугового плазмотрона имеет по меньшей мере один анод и один катод, к которым подключают источник питания постоянного тока. Для охлаждения используют каналы, омываемые обычно водой.

Устройство плазмотрона с продольной стабилизацией дуги

Высокочастотные плазмотроны

Высокочастотные плазмотроны являются безэлектродными и используют индуктивную или ёмкостную связь с источником мощности. Поскольку для прохождения высокочастотной мощности сквозь стенки разрядной камеры, последняя должна быть выполнена из непроводящих материалов, в качестве таковых, как правило используется кварцевое стекло или керамика. Поскольку для поддержания безэлектродного разряда не требуется электрического контакта плазмы с электродами, применяют газодинамическую изоляцию стенок от плазменной струи, что позволяет избежать их чрезмерного нагрева и ограничиться воздушным охлаждением.

Устройство промышленного высокочастотного индукционного плазмотрона

Применение таких химически устойчивых материалов позволяет использовать в качестве рабочего тела воздух, кислород, пары воды, аргон, азот и другие газы.

СВЧ плазмотроны

Плазмотроны данного типа основаны на сверхвысокочастотном разряде, как правило в резонаторе, сквозь который продувается плазмообразующий газ.

Литература

  • Жуков М.Ф. Электродуговые нагреватели газа (плазмотроны). — М.: Наука, 1973. — 232 с.

Ю. П. Конюшная. Открытия советских учёных. — Ч. 1. — М.: Изд-во МГУ, 1988.

  • Попов В. Ф., Горин Ю. Н. Процессы и установки электронно-ионной технологии. — М.: Высш. шк., 1988. — 255 с. — ISBN 5-06-001480-0.
  • Виноградов М.И., Маишев Ю.П. Вакуумные процессы и оборудование ионно - и электронно-лучевой технологии. — М.: Машиностроение, 1989. — 56 с. — ISBN 5-217-00726-5.

Примечания

Ссылки

wiki.sc

плазмотрон - это... Что такое плазмотрон?

  • плазмотрон — плазмотрон …   Орфографический словарь-справочник

  • плазмотрон — плазматрон, генератор, плазмобур Словарь русских синонимов. плазмотрон сущ., кол во синонимов: 4 • генератор (63) • …   Словарь синонимов

  • ПЛАЗМОТРОН — (плазматрон, плазменный генератор), газоразрядное устройство для получения «низкотемпературной» (T»104 К) плазмы. Физ. исследования по созданию П. начались в 10 х гг. 20 в., однако широкое использование П. в пром. и лаб. практике относится к кон …   Физическая энциклопедия

  • ПЛАЗМОТРОН — (от плазма и...трон) (плазматрон), газоразрядное высокочастотное или дуговое устройство для получения плазмы с температурой 103 104 К. В высокочастотном плазмотроне плазмообразующее вещество нагревается обычно вихревыми токами, в дуговом проходя… …   Современная энциклопедия

  • ПЛАЗМОТРОН — (от плазма и ...трон) (плазматрон плазменный генератор), газоразрядное устройство для получения низкотемпературной плазмы (Т ? 104К). Распространены высокочастотные и дуговые плазмотроны. В высокочастотных плазмотронах (мощностью до 1 МВт)… …   Большой Энциклопедический словарь

  • плазмотрон — см. плазматрон. Толковый словарь иностранных слов Л. П. Крысина. М: Русский язык, 1998 …   Словарь иностранных слов русского языка

  • плазмотрон — Устройство, в котором газ нагревается до температуры, при которой он становится проводником электрического тока. [ГОСТ 16382 87] Тематики электротермическое оборудование …   Справочник технического переводчика

  • Плазмотрон — (от плазма и ...трон) (плазматрон), газоразрядное высокочастотное или дуговое устройство для получения плазмы с температурой 103 104 К. В высокочастотном плазмотроне плазмообразующее вещество нагревается обычно вихревыми токами, в дуговом проходя …   Иллюстрированный энциклопедический словарь

  • Плазмотрон — [plasmatron, plasma generator] газозарядное устройство для получения струи или дуги низкотемпературной (103 105 К) плазмы. Исследования по созданию плазмотрона начались с XX в., но их широкое промышленное использование в конце 1950 х гг., по… …   Энциклопедический словарь по металлургии

  • плазмотрон — (плазматрон, плазменный генератор), газоразрядное устройство для получения низкотемпературной (порядка 10⁴ К) плазмы. Плазмотроны используются гл. обр. в промышленности в качестве нагревательных устройств, но их также применяют и в плазменных… …   Энциклопедия техники

  • плазмотрон — а; м. [от греч. plasma вылепленное, оформленное и сл. (элек)трон] Устройство для получения плазмы (2 зн.) в промышленных и технических целях. * * * плазмотрон (от плазма и ...трон) (плазматрон, плазменный генератор), газоразрядное устройство для… …   Энциклопедический словарь

  • dic.academic.ru

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о