Подключение пускового конденсатора к электродвигателю: Как подключить конденсатор к электродвигателю | Полезные статьи
alexxlab | 04.07.1990 | 0 | Разное
Как подключить электродвигатель с 380 на 220: способы и схемы
Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.
Общие правила
Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.
Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:
- 660/380 В;
- 380/220 В;
- 220/127 В.
Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.
Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой, будут иметь плавный пуск, а треугольник сможет выдать большую мощность.
Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.
Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.
Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.
Способы и схемы подключения
В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.
Без конденсаторов
Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.
Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.
Работа схемы производится следующим образом:
- при подаче напряжения на ввод провода подключаются к двум точкам мотора;
- напряжение на третью точку треугольника подается через времязадающую R-C цепочку;
- магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
- после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.
Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:
С конденсаторами
Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий. Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.
Схема включения с конденсаторамиКак видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками, а к третей та же фаза подключается через контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.
Включение асинхронного электродвигателя происходит по такому принципу:
- Нажатием кнопки Пуск приводятся в движение две пары контактов – SA1 и SA2, после чего в обмотках начинает протекать электроток;
- После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
- Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.
Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.
С реверсом
Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.
Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:
Включение трехфазного двигателя с реверсомКак видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.
Используя пускатель
Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.
Схема включения через магнитный пускательКак видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор Спуск. При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.
Как подбирать конденсаторы?
Если вы собрались подключить электродвигатель, то выбор конденсатора осуществляется по таким принципам:
- Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор.
Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
- Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
- Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:
Таблица: определение емкости конденсаторов
Мощность трехфазного электродвигателя, кВт | 0,4 | 0,6 | 0,8 | 1,1 | 1,5 | 2,2 |
Минимальная емкость конденсатора Ср , мкф | 40 | 60 | 80 | 100 | 150 | 230 |
Емкость пускового конденсатора (Сп), мкф | 80 | 120 | 160 | 200 | 250 | 300 |
Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:
Сраб = (2800*I)/U — для включения трехфазного двигателя звездой
Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником
где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.
Видео в помощь
Как подключить конденсатор с 4 контактами
Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Так что если вы не уверены, лучше определить тип самостоятельно. Отличить асинхронный и коллекторный двигатели можно по строению.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Как проверить пусковой конденсатор
- Расчет емкости конденсатора для трехфазного двигателя
Как подключить однофазный двигатель - Подключение трехфазного двигателя к однофазной сети
- Назначение и подключение пусковых конденсаторов для электродвигателей
- Как подключить однофазный асинхронный двигатель через конденсатор?
- Как выбрать конденсатор для электродвигателя
- Какие конденсаторы нужны для запуска электродвигателя?
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.
Как проверить пусковой конденсатор
На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть.
Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.
В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.
В этом случае движок гудит, ротор остается на месте. Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга. Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:. Рассмотрим, как подключить однофазный двигатель.
С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.
Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно. Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться.
Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку.
В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты. Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор. Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.
Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.
В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.
Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше.
Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.
Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим. Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно распределительная коробка на корпусе электродвигателя.
В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.
Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:. Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации.
Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.
Перейти к основному содержанию. Войти на сайт. Запомнить меня. Войдите через социальные сети нажав на соответствующий значок:. Главная Электрооборудование Электродвигатели Как подключить однофазный асинхронный двигатель через конденсатор? Похожие статьи: Однофазные электродвигатели в Что такое плавный пуск электродвигателя? Что такое шаговый двигатель и как он работает?
Лошкарев Владимир Александрович Инженер радиотехнических систем. Сколько денег вы тратите на ремонтные работы в год?
Расчет емкости конденсатора для трехфазного двигателя
Подключение трехфазного двигателя к однофазной сети Начала и концы обмоток различные варианты Схемы подключения трехфазного двигателя в однофазную сеть Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в электрических градусов уложены проводники обмоток, начала и концы которых C1, C2, C3, C4, C5 и C6 выведены в распределительную коробку. Обмотки могут быть соединены по схеме “звезда” концы обмоток соединены между собой, к их началам подводится питающее напряжение или “треугольник” концы одной обмотки соединены с началом другой. Подключение трехфазного двигателя по схеме треугольник. Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник. Положение контактов в распределительной коробке трехфазного двигателя. Подключение трехфазного двигателя по схеме звезда.
Вы узнаете как правильно подключить однофазные электродвигатели на еще может выходить дополнительно пара контактов от термозащиты. . от этого электродвигателя, может все 4 и без конденсатора?.
Как подключить однофазный двигатель
На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются. В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой. В этом случае движок гудит, ротор остается на месте. Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга. Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:. Рассмотрим, как подключить однофазный двигатель.
Подключение трехфазного двигателя к однофазной сети
В прошлой статье Я рассказывал как подключить и запустить двигатель на Вольт в однофазной электросети В. Его можно успешно использовать в других целях в домашнем хозяйстве, например для привода точила, полировального станка, газонокосилки и т. В электрических дрелях, перфораторах, болгарках и некоторых моделях стиральных машин автоматов используется синхронный коллекторный двигатель. А оставшиеся 2 конца присоединить к электропитанию Вольт.
Но рабочее напряжение бытовой сети у нас В. И для того, чтобы подключить промышленный трехфазный двигатель к обычной потребительской сети, используются фазосдвигающие элементы:.
Назначение и подключение пусковых конденсаторов для электродвигателей
Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.
Как подключить однофазный асинхронный двигатель через конденсатор?
Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения например, трехфазный двигатель к однофазной сети? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию сверлильному или наждачному станку и пр. В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать. Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача — снимать поляризацию, то есть заряд близкорасположенных проводников.
Основой такой схемы может служить конденсатор. Простые способы подключения электродвигателя; Схема подключения «треугольник»; Схема подключения . С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее . (голосов: 6, в среднем: 4,00 из 5).
Как выбрать конденсатор для электродвигателя
Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика.
Какие конденсаторы нужны для запуска электродвигателя?
ВИДЕО ПО ТЕМЕ: Пусковые конденсаторы. Как подобрать и подключить.
Если у движока 4 выхода и мне надо подключить р п кондесатора, и с двумя кнопками пуск и реверс как подключит мне, можете помочь? Помочь могу, конечно. Но сначала определите какой у вас движок, скорей всего однофазный. Посмотрите на моём канале видео Как определить тип двигателя.
Конденсаторы CBB60 — металлизированные полипропиленовые пленочные конденсаторы постоянной ёмкости в герметизированном цилиндрическом корпусе.
Нередки случаи, когда необходимо подключить электродвигатель к сети вольт — это происходит при попытках приобщить оборудование к своим нуждам, но схема не отвечает техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на вольт. Почему так происходит? Например, в гараже необходимо подключение асинхронного электродвигателя на вольт, который рассчитан на три фазы. Без этого КПД будет меньше, по сравнению с трехфазной схемой подключения. Когда в однофазных движках присутствует только одна обмотка, мы наблюдаем картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для пуска не происходит, пока собственноручно не раскрутить вал.
Есть 2 типа однофазных асинхронных двигателей — бифилярные с пусковой обмоткой и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.
Как подключить электродвигатель в сеть 220В
Как подключить электродвигатель
Приобрели электродвигатель и не знаете, как его подключить? Сейчас такой проблемы не существует, все моторы подключаются довольно легко, в клеммной коробке для этого все предусмотрено. Но если вы желаете разобраться или у вас электродвигатель старого образца эта инструкция научит вас, как правильно установить агрегат, измерить характеристики мощности и числа оборотов системы, и использовать полученные показатели.
Как подключается электродвигатель
Для электродвигателей однофазных
Вариант пусковой обмотки
1) Купите кнопку ПНВС. Вещь пригодится для объединения контактов и при их последующем перенаправлении.
2) Определите, какой вид у каждой отдельной обмотки. Виды обмоток: пусковая, рабочая. Найдите 3-4 провода от вывода двигателя.
3) Общий выход характеризуется наибольшим сопротивлением, у пусковой обмотки показатели заметно ниже, то, что осталось – и есть рабочая обмотка.
• Перед началом работы убедитесь в исправности каждого элемента рабочей системы.
• Измерьте резистентность каждой пары обмотки.
Это вариант для 3-х проводов. «Комплект» из 4-х и более проводов проверяется попарно. В этом случае соедините рабочий и пусковой провод, затем выведите общий. Получается ситуация с 3 проводами.
4) Остались провода, с которыми нужно продолжить работу. Пусковой провод соответствует среднему контакту, остальные распределяются произвольно. На этом этапе используйте кнопку, в которой также есть 3 контакта. Крайние выходные кабели остаются для подключения силового кабеля, рабочий – для среднего контакта.
Как подключить электродвигатель с 2-мя фазами. Вариант с конденсаторным типом двигателя.
Для данного типа систем характерно, что без конденсаторов двигатель шумит, но не запускается (если использовать метод подключения пускового электродвигателя). Есть три варианта работы с конденсаторами, которые представлены ниже.
• На пусковой конденсатор – специализированный вариант для устройств тяжелого пуска.
• На рабочий конденсатор – способ для достижения максимальной результативности с использованием конденсаторов.
• На два конденсатора – самый «популярный» способ. Вспомогательная обмотка идет к конденсатору, всего 2 подключенных обмотки.
Начните работу с соединения контактов «треугольником» или «звездой». Ориентируйтесь на схему запуска с конденсаторами даже в том случае, если ваш электродвигатель с 2-мя фазами работает через одну фазу.
Как подключить трехфазный электродвигатель через однофазную сеть
Не забывайте, что подключая трехфазный двигатель к однофазной сети потеря в мощности составит порядка 30%.
Прибор с 3-мя фазами можно подключить и через одну фазу, и через конденсатор. Последовательность действий при подключении такого прибора включает более простые элементы, которые уже были описаны в случае 1-фазного, 2-фазного двигателя. Система подключается по схемам «звезда», «треугольник»; используется пусковое реле.
Как проверить электродвигатель на работоспособность
Для пользователя существует несколько вариантов, как проверить двигатель на работоспособность.
• Анализ внешнего состояния прибора. Перегрев системы связывают с потемнением краски на двигателе в средней части.
• Сверьтесь с заявленными производителем характеристиками, указанными на маркировке прибора. Не ожидайте, что двигатель выдаст большие мощности и RPM (число оборотов), чем это написано на маркировке.
• Измерьте показания с помощью мультиметра.
• Устройте прибору аппаратную диагностику.
Проверка мощности электродвигателя.
Электродвигатель сталкивается с большой нагрузкой в ходе работы отдельной или комплексной системы. Опытный пользователь знает, что любое, даже самая надежное устройство со временем дает сбой. Поэтому важно снимать показания электрической машины до нескольких раз после установки, как мощность электродвигателя, так и другие значения.
• Мощность можно определить по счетчику.
• Параметр мощности считается исходя из таблиц (понадобятся данные, например, диаметр D вала, S см/м до оси, длина мотора).
• Данные о габаритах двигателя также служат вспомогательным материалом для вычисления мощности двигателя.
• Непосредственно мощность определяют исходя из значений скорости вращения вала. Частоту умножают на k 6.28, силу и радиус системы (узнается с помощью штангенциркуля).
Электродвигатель 220В характеристики
Тип | Электродвигатели однофазные АИРЕ 220В – электрические параметры | Масса, кг | ||||||||
Р, кВт | U, B | КПД, % | cos | Мп/Мн | Мmax/Mн | Iп/In | С, мкф | Uнc, B | ||
3000 об/мин | ||||||||||
АИРЕ56А2 | 0,12 | 220 | 62 | 0,92 | 0,4 | 1.![]() | 3,2 | 6,3 | 450 | 3,7 |
АИРЕ56В2 | 0,18 | 220 | 65 | 0,95 | 0,4 | 1,7 | 2,8 | 8,0 | 450 | 4,0 |
АИРЕ56С2 | 0,25 | 220 | 63 | 0,92 | 0,4 | 1,7 | 3,5 | 12,5 | 450 | 4,3 |
АИРЕ63В2 | 0,37 | 220 | 66 | 0,92 | 0,4 | 1,7 | 4,0 | 20,0 | 450 | 6,3 |
АИРЕ71А2 | 0,55 | 220 | 67 | 0,92 | 0,4 | 1,7 | 4,3 | 16,0 | 250 | 8,9 |
АИРЕ71В2 | 0,75 | 220 | 67 | 0,92 | 0,4 | 1,7 | 4,0 | 20,0 | 450 | 9,6 |
АИРЕ71С2 | 1,10 | 220 | 68 | 0,95 | 0,4 | 1,7 | 4,0 | 30,0 | 450 | 10,5 |
АИРЕ80В2 | 1,50 | 220 | 69 | 0,95 | 0,4 | 1,7 | 4,5 | 35,0 | 450 | 15,1 |
АИРЕ80С2 | 2,20 | 220 | 73 | 0,95 | 0,3 | 1,7 | 4,5 | 60,0 | 450 | 15,9 |
1500 об/мин | ||||||||||
АИРЕ56А4 | 0,12 | 220 | 50 | 0,88 | 0,4 | 1,7 | 2,0 | 8,0 | 450 | 3,8 |
АИРЕ56В4 | 0,18 | 220 | 55 | 0,90 | 0,4 | 1,7 | 2,2 | 10,0 | 450 | 4,4 |
АИРЕ63В4 | 0,25 | 220 | 60 | 0,80 | 0,4 | 1,7 | 2,6 | 10,0 | 450 | 6,2 |
АИРЕ71А4 | 0,37 | 220 | 64 | 0,90 | 0,4 | 1,7 | 3,0 | 14,0 | 450 | 8,3 |
АИРЕ71В4 | 0,55 | 220 | 64 | 0,92 | 0,4 | 1,7 | 3,5 | 16,0 | 450 | 9,6 |
АИРЕ71С4 | 0,75 | 220 | 66 | 0,92 | 0,4 | 1,7 | 3,5 | 25,0 | 450 | 10,3 |
АИРЕ80В4 | 1,10 | 220 | 71 | 0,95 | 0,32 | 1,7 | 4,0 | 30,0 | 450 | 14,1 |
АИРЕ80С4 | 1,50 | 220 | 72 | 0,95 | 0,32 | 1,7 | 4,5 | 45,0 | 450 | 15,1 |
AИPE100S4 | 2,20 | 220 | 75 | 0,95 | 0,4 | 1,9 | 3,2 | 60,0 | 450 | 24,4 |
Тип двигателя | Электродвигатели однофазные АИСЕ 220В – электрические параметры | Масса, кг | |||||||
Р, кВт | Номинальная частота вращения, об/мин | КПД, % | cos φ | Мп/Мн | Мmax/Mн | Iн, А | Конденсатор, мкФ/В | ||
АИСЕ56А2 | 0,09 | 2740 | 54 | 0,91 | 0,69 | 1,8 | 0,80 | 4/450 | 2,8 |
АИСЕ56В2 | 0,12 | 2760 | 60 | 0,93 | 0,69 | 1,8 | 0,90 | 6/450 | 3,05 |
АИСЕ56С2 | 0,18 | 2760 | 60 | 0,93 | 0,69 | 1,8 | 1,40 | 8/450 | 3,5 |
АИСЕ63А2 | 0,18 | 2760 | 62 | 0,93 | 0,55 | 1,8 | 1,40 | 8/450 | 4,1 |
АИСЕ63В2 | 0,25 | 2780 | 66 | 0,93 | 0,55 | 1,8 | 1,70 | 10/450 | 4,5 |
АИСЕ63С2 | 0,37 | 2780 | 67 | 0,93 | 0,45 | 1,65 | 2,50 | 12/450 | 5,25 |
АИСЕ71А2 | 0,37 | 2780 | 67 | 0,93 | 0,50 | 1,65 | 2,60 | 12/450 | 5,6 |
АИСЕ71В2 | 0,55 | 2790 | 73 | 0,95 | 0,50 | 1,8 | 3,50 | 16/450 | 6,95 |
АИСЕ71С2 | 0,75 | 2810 | 74 | 0,97 | 0,48 | 1,8 | 4,50 | 25/450 | 8,15 |
АИСЕ80А2 | 0,75 | 2810 | 74 | 0,98 | 0,40 | 1,8 | 4,40 | 25/450 | 8,5 |
АИСЕ80В2 | 1,1 | 2810 | 75 | 0,98 | 0,40 | 1,8 | 6,30 | 35/450 | 11,0 |
АИСЕ80С2 | 1,5 | 2810 | 77 | 0,98 | 0,33 | 1,8 | 8,50 | 40/450 | 12,75 |
АИСЕ90S2 | 1,5 | 2820 | 77 | 0,98 | 0,33 | 1,72 | 8,40 | 45/450 | 13,7 |
АИСЕ90L2 | 2,2 | 2850 | 78 | 0,98 | 0,29 | 1,8 | 12,10 | 60/450 | 16,7 |
АИСЕ100L2 | 3,0 | 2860 | 79 | 0,99 | 0,28 | 1,8 | 16,50 | 80/450 | 23,1 |
АИСЕ56А4 | 0,06 | 1370 | 48 | 0,92 | 0,73 | 1,75 | 0,60 | 4/450 | 3,3 |
АИСЕ56В4 | 0,09 | 1370 | 50 | 0,92 | 0,60 | 1,75 | 0,80 | 6/450 | 3,6 |
АИСЕ63А4 | 0,12 | 1370 | 52 | 0,92 | 0,60 | 1,75 | 1,30 | 8/450 | 4,45 |
АИСЕ63В4 | 0,18 | 1370 | 54 | 0,94 | 0,60 | 1,6 | 1,50 | 12/450 | 5,05 |
АИСЕ63С4 | 0,25 | 1370 | 58 | 0,95 | 0,60 | 1,6 | 2,00 | 14/450 | 5,4 |
АИСЕ71А4 | 0,25 | 1390 | 61 | 0,96 | 0,50 | 1,6 | 1,80 | 14/450 | 5,8 |
АИСЕ71В4 | 0,37 | 1390 | 62 | 0,96 | 0,50 | 1,6 | 2,70 | 16/450 | 6,9 |
АИСЕ71С4 | 0,55 | 1390 | 64 | 0,97 | 0,48 | 1,7 | 3,70 | 20/450 | 8,25 |
АИСЕ80А4 | 0,55 | 1410 | 64 | 0,98 | 0,37 | 1,8 | 3,50 | 25/450 | 9,55 |
АИСЕ80В4 | 0,75 | 1410 | 68 | 0,98 | 0,37 | 1,65 | 4,70 | 30/450 | 10,45 |
АИСЕ90S4 | 1,1 | 1410 | 71 | 0,98 | 0,35 | 1,75 | 6,30 | 40/450 | 13,1 |
АИСЕ90L4 | 1,5 | 1420 | 73 | 0,96 | 0,33 | 1,8 | 8,50 | 45/450 | 16,45 |
АИСЕ100LА4 | 2,2 | 1440 | 77 | 0,96 | 0,32 | 1,8 | 12,90 | 80/450 | 22,8 |
АИСЕ100LB4 | 3,0 | 1440 | 78 | 0,99 | 0,30 | 1,7 | 16,20 | 100/450 | 29,2 |
АИСЕ63А6 | 0,09 | 900 | 46 | 0,97 | 0,45 | 1,5 | 0,92 | 8/450 | 4,2 |
АИСЕ63В6 | 0,12 | 900 | 46 | 0,98 | 0,45 | 1,5 | 1,16 | 10/450 | 5,6 |
АИСЕ71А6 | 0,18 | 920 | 57 | 0,92 | 0,45 | 1,5 | 1,49 | 16/450 | 6,3 |
АИСЕ71В6 | 0,25 | 920 | 59 | 0,92 | 0,45 | 1,5 | 2,00 | 20/450 | 7,6 |
АИСЕ80А6 | 0,37 | 920 | 63 | 0,92 | 0,35 | 1,6 | 2,78 | 20/450 | 9 |
АИСЕ80В6 | 0,55 | 920 | 66 | 0,93 | 0,35 | 1,6 | 3,90 | 25/450 | 11,6 |
АИСЕ90S6 | 0,75 | 920 | 68 | 0,95 | 0,35 | 1,6 | 5,05 | 35/450 | 13,5 |
АИСЕ90L6 | 1,1 | 920 | 69 | 0,95 | 0,35 | 1,6 | 7,30 | 50/450 | 16,2 |
Схемы электродвигателей
Уважаемый господин электрик: Где я могу найти схемы однофазных электродвигателей?
Ответ: Я собрал группу схем однофазных внутренних электродвигателей и клеммных соединений ниже. Внизу этого поста также есть видео о шунтирующих двигателях постоянного тока.
ПРИМЕЧАНИЕ. Некоторые приведенные ниже текстовые ссылки ведут на соответствующие продукты на Amazon и Ebay. Как партнер Amazon я зарабатываю на соответствующих покупках.
TERMINAL CONNECTIONS FOR CAPACITOR START SINGLE PHASE MOTORSMotor Rotation – Dual Voltage, Main Winding Only
VOLTAGE | ROTATION | L1 | L2 | JOIN |
---|---|---|---|---|
Высокий | Против часовой стрелки | 1 | 4, 5 | 2 и 3 и 8 |
Высокий | CW | 1 | 4, 8 | 2, 3 и 5 |
Низкий | Против часовой стрелки | 1, 3, 8 | 2, 4, 5 | – |
Низкий | CW | 1, 3, 5 | 2, 4, 8 | – |
Вращение двигателя – двойное напряжение, основная и вспомогательная обмотки
НАПРЯЖЕНИЕ | ВРАЩЕНИЕ | 9 00030 9 00030L2 | СОЕДИНЕНИЕ | |
---|---|---|---|---|
Высокий | Против часовой стрелки | 1, 8 | 4, 5 | 2 и 3, 6 и 7 |
Высокий | CW | 1, 5 | 4, 8 | 2 и 3, 6 и 7 |
Низкий | Против часовой стрелки | 1, 3, 6, 8 | 2, 4, 5, 7 | – |
Низкий | CW | 1, 3, 5, 7 | 2, 4, 6, 8 | – |
Соединения выключателя вспомогательной обмотки должны быть выполнены таким образом, чтобы обе вспомогательные обмотки обесточивались при размыкании выключателя.
Схемы внутренних соединений электродвигателей малой и малой мощности
Асинхронный с расщепленной фазой
Конденсатор с расщепленной фазой с постоянным подключением
Конденсатор с расщепленной фазой
185 Другой запуск конденсатора с расщепленной фазой
Работа конденсатора с расщепленной фазой, индукция (реверсивный)
Пуск реактора
Конденсатор с расщепленной фазой, одинарная емкость (типа двойного напряжения)
Отталкивание
Отталкивание, запуск индукции (реверсивный)
Экранированный полюс
Каркасный тип Экранированный полюс
Универсальный
5 СХЕМА ОДНОФАЗНОГО ДВИГАТЕЛЯ С РАСПРЕДЕЛЕННОЙ ФАЗОЙ ИНДУКЦИИ
Асинхронный электродвигатель с расщепленной фазой. Асинхронный электродвигатель с расщепленной фазой оснащен короткозамкнутым ротором для работы на постоянной скорости и имеет пусковую обмотку высокого сопротивления, которая физически смещена в статоре от основной обмотки.
Последовательно с пусковой обмоткой находится центробежный пусковой выключатель, который размыкает пусковую цепь, когда двигатель достигает примерно 75–80 % синхронной скорости. Функция пускового выключателя заключается в предотвращении чрезмерного потребления тока двигателем, а также в защите пусковой обмотки от перегрева. Двигатель можно запустить в любом направлении, поменяв местами основную или вспомогательную (пусковую) обмотку.
Эти двигатели подходят для масляных горелок, воздуходувок, хозяйственных машин, полировальных машин, шлифовальные машины и т. д.
ДВИГАТЕЛЬ КОНДЕНСАТОРА С РАЗДЕЛЕННОЙ ФАЗОЙ
Электродвигатель с постоянно подключенным конденсатором с разделенной фазой. Электродвигатель с расщепленной фазой и постоянно подключенным конденсатором также имеет короткозамкнутый ротор с основной и пусковой обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой. Двигатели этого типа запускаются и работают с фиксированным значением емкости последовательно с пусковой обмоткой.
Двигатель получает свой пусковой момент от вращающегося магнитного поля, создаваемого двумя физически смещенными обмотками статора. Основная обмотка подключается непосредственно через линию, а вспомогательная или пусковая обмотка подключается к линии через конденсатор , дающий электрический сдвиг фаз.
Этот двигатель подходит для приводов с прямым подключением, требующих низкого пускового момента, таких как вентиляторы, воздуходувки, некоторые насосы и т. д.0004
Двухфазный конденсаторный пусковой электродвигатель.Электродвигатель с пусковым конденсатором с расщепленной фазой можно определить как разновидность двигателя с расщепленной фазой, в котором конденсатор соединен последовательно с вспомогательной обмоткой. Вспомогательная цепь размыкается центробежным выключателем, когда скорость двигателя достигает 70–80 % от синхронной скорости.
Также известен как асинхронный двигатель с пусковым конденсатором. Ротор представляет собой беличью клетку. Основная обмотка подключается непосредственно к линии, а вспомогательная или пусковая обмотка подключается через конденсатор, который может быть включен в цепь через трансформатор с соответствующей конструкцией обмоток и конденсаторов таких номиналов, что две обмотки будут составлять приблизительно 90 градусов друг от друга.
Двигатели этого типа подходят для систем кондиционирования воздуха и охлаждения, вентиляторов с ременным приводом и т. д. . Электродвигатель с расщепленной фазой конденсатора рабочего типа имеет рабочий конденсатор, постоянно включенный последовательно с вспомогательной обмоткой. Пусковой конденсатор подключен параллельно рабочему конденсатору только во время пускового периода. Двигатель запускается при замкнутом центробежном выключателе.
НАЖМИТЕ ЗДЕСЬ, чтобы узнать об электродвигателях и аксессуарах на Amazon
После того, как двигатель достигнет 70–80 процентов синхронной скорости, пусковой переключатель размыкается и отключает пусковой конденсатор. Рабочий конденсатор обычно представляет собой масляный конденсатор с бумажным промежутком, обычно рассчитанный на 330 вольт переменного тока для непрерывной работы. Они могут составлять от 3 до 16 микрофарад.
Пусковой конденсатор обычно электролитического типа и может иметь номинал от 80 до 300 мкФ для двигателей 110 В, 60 Гц.
Эти двигатели подходят для устройств, требующих высокого пускового момента, таких как компрессоры, нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. д.
ДРУГОЙ ДВИГАТЕЛЬ С РАСПРЕДЕЛЕННЫМИ ФАЗАМИ, РАБОТАЮЩИМИ НА КОНДЕНСАТОРАХ
Другой Электродвигатель, работающий на конденсаторах с расщепленными фазами. Другой электродвигатель с расщепленной фазой, работающий на конденсаторе Тип использует блок конденсаторного трансформатора и относится к типу с короткозамкнутым ротором с расщепленной фазой, при этом основная и вспомогательная обмотки физически смещены в статоре. Он использует однополюсный двухпозиционный переключатель для подачи высокого напряжения на конденсатор во время запуска.
После того, как двигатель разогнался до скорости 70–80 процентов от синхронной, срабатывает безобрывной переключатель, который изменяет отводы напряжения на трансформаторе. Напряжение, подаваемое на конденсатор с помощью трансформатора, во время пуска может изменяться от 600 до 800 вольт. Для непрерывной работы предусмотрено около 350 вольт.
Подходит для приложений с высоким пусковым моментом, таких как компрессоры , загруженные конвейеры, поршневые насосы, холодильные компрессоры и т. д.
РЕВЕРСИВНЫЙ ДВИГАТЕЛЬ С РАСПРЕДЕЛЕННЫМИ ФАЗАМИ КОНДЕНСАТОРОВ
Асинхронный электродвигатель с РАСПРЕДЕЛЕННЫМИ ФАЗАМИ (реверсивный). A Асинхронный электродвигатель с двухфазным конденсатором (реверсивный). Когда переключатель реверса находится в положении «В», вспомогательная обмотка становится основной обмоткой, а основная обмотка становится вспомогательной. В положении «А» обмотки работают, как показано на схеме.
В двигателях с расщепленной фазой замена обмотки заставляет двигатель работать в обратном направлении. Обе обмотки должны быть идентичными по размеру провода и количеству витков.
Используйте это, если вам нужен реверсивный двигатель конденсаторного типа с высоким крутящим моментом.
ЗАПУСК РЕАКТОРА ДВУХФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ
Запуск реактора Асинхронный электродвигатель с разделенной фазой.Асинхронный электродвигатель с расщепленной фазой для запуска реактора. Этот двигатель оснащен вспомогательной обмоткой, смещенной в магнитном положении от основной обмотки и соединенной параллельно с ней. Реактор снижает пусковой ток и увеличивает отставание по току в основной обмотке.
Примерно при 75% синхронной скорости пусковой выключатель срабатывает для шунтирования реактора, отключая вспомогательную обмотку от цепи.
Это двигатель с постоянной скоростью вращения, который лучше всего подходит для легких машин, таких как вентиляторы, небольшие воздуходувки, промышленные машины, шлифовальные машины и т. д. Тип двойного напряжения).
Однофазный конденсаторный электродвигатель с расщепленной фазой (двойного типа). Этот двигатель имеет две одинаковые основные обмотки, расположенные либо для последовательного, либо для параллельного соединения. При параллельном соединении основных обмоток линейное напряжение обычно составляет 240 В. При последовательном соединении основных обмоток используется напряжение 120 вольт.
Вспомогательная пусковая обмотка смещена в пространстве от основной обмотки на 90 градусов. Он также имеет центробежный переключатель и пусковой конденсатор. Этот тип расположения обмотки дает вдвое меньший пусковой момент при 120 вольтах, чем при подключении 240 вольт.
ЭЛЕКТРОДВИГАТЕЛЬ ОТТЯЖЕНИЯ
Электродвигатель отталкивания. Отталкивающий электродвигатель по определению представляет собой однофазный двигатель, обмотка статора которого подключена к источнику питания, а обмотка ротора соединена с коллектором. Щетки и коллекторы короткозамкнуты и расположены так, что магнитная ось обмотки ротора наклонена к магнитной оси обмотки статора.
Имеет переменную скоростную характеристику, высокий пусковой момент и умеренный пусковой ток. Из-за низкого коэффициента мощности, за исключением высоких скоростей, его можно преобразовать в двигатель с компенсацией отталкивания, в котором другой набор щеток расположен посередине между короткозамкнутым набором, и этот дополнительный набор соединен последовательно с обмоткой статора.
Реверсивный асинхронный двигатель с отталкивающим пуском
Асинхронный электродвигатель с отталкивающим пуском (реверсивный). Асинхронный электродвигатель с отталкивающим пуском (реверсивный) Асинхронный двигатель с отталкивающим пуском представляет собой однофазный двигатель с той же обмоткой, что и у отталкивающего двигателя, но при заданной скорости обмотка ротора замыкается накоротко или иным образом соединяется, чтобы получить эквивалент короткозамкнутая обмотка.
Этот двигатель запускается как двигатель отталкивания, но работает как асинхронный двигатель с постоянной скоростью. Он имеет однофазную распределенную обмотку возбуждения со смещенной осью щеток относительно оси обмотки возбуждения. Якорь имеет изолированную обмотку. Ток, индуцированный в якоре, передается щетками и коллектором, что приводит к высокому пусковому моменту.
При достижении скорости, близкой к синхронной, коммутатор замыкается накоротко, так что якорь по своим функциям подобен якорю с короткозамкнутым ротором. На схеме изображен реверсивный тип, в котором две обмотки статора смещены, как показано. Реверсирование двигателя осуществляется путем замены соединений обмотки возбуждения.
ДВИГАТЕЛЬ С ЭКРАНИРОВАННЫМИ ПОЛЮСАМИ
Электродвигатель с экранированными полюсами. Электродвигатель с экранированными полюсами представляет собой однофазный асинхронный двигатель, снабженный вспомогательной короткозамкнутой обмоткой или обмоткой, смещенной в магнитном положении относительно основной обмотки. Существует множество различных методов строительства, но основной принцип один и тот же.
Экранирующая катушка состоит из медных звеньев с низким сопротивлением, встроенных в одну сторону каждого полюса статора и используемых для обеспечения необходимого пускового момента. Когда ток в основных катушках увеличивается, в экранирующих катушках индуцируется ток, противодействующий магнитному полю, которое создается в части полюсных наконечников, которые они окружают.
Когда ток основной катушки уменьшается, ток в экранирующей катушке также уменьшается до тех пор, пока полюсные наконечники не будут намагничены равномерно. Поскольку ток основной катушки и магнитный поток полюсных наконечников продолжают уменьшаться, ток в экранирующих катушках меняется на противоположный и имеет тенденцию поддерживать поток в части полюсных наконечников.
Когда ток основной катушки падает до нуля, ток все еще течет в экранирующих катушках, создавая магнитный эффект, который заставляет катушки создавать вращающееся магнитное поле, которое запускает двигатель.
Используется там, где требуется небольшая мощность, например, в часах, инструментах, фенах , небольших вентиляторах и т. д. . Электродвигатель каркасного типа с экранированными полюсами предназначен для приложений, где требования к мощности очень малы. Цепь возбуждения с ее обмоткой построена вокруг обычного ротора с короткозамкнутым ротором и состоит из штамповок, которые уложены поочередно, образуя соединения внахлест таким же образом, как собираются сердечники небольших трансформаторов.
Двигатели, подобные этому, будут работать только от переменного тока, они просты по конструкции, дешевы, чрезвычайно прочны и надежны. Однако их основными ограничениями являются низкий КПД и низкий пусковой и рабочий крутящий момент.
Двигатель с экранированными полюсами не является реверсивным, если с каждой стороны полюса не установлены экранирующие катушки и не предусмотрены средства для размыкания одной и закрытия другой катушки. Присущее двигателю с расщепленными полюсами высокое скольжение позволяет легко получить изменение скорости при нагрузке вентилятора, например, за счет снижения напряжения.
НАЖМИТЕ ЗДЕСЬ для ручных пускателей двигателей на Ebay
A Универсальный электродвигатель предназначен для работы как на переменном, так и на постоянном токе (AC/DC). Это серийный двигатель. Он снабжен обмоткой возбуждения на статоре, последовательно соединенной с коммутирующей обмоткой на роторе. Обычно производятся в дробных размерах лошадиных сил.
Скорость вращения при полной нагрузке обычно составляет от 5000 до 10 000 об/мин, а скорость без нагрузки — от 12 000 до 18 000 об/мин. Типичные области применения — портативные инструменты, офисная техника, электроочистители, кухонная техника, швейные машины и т. д.
Скорость универсальных двигателей можно отрегулировать, подключив сопротивление соответствующего значения последовательно с двигателем. Это делает его подходящим для таких приложений, как швейные машины, которые работают в диапазоне скоростей. Универсальные двигатели могут быть как с компенсацией, так и без компенсации, причем последний тип используется только для более высоких скоростей и более низких номиналов.
Реверсирование этого двигателя осуществляется путем перестановки проводов щеткодержателя с отключением якоря от нейтрали. В трехпроводном универсальном двигателе реверсивного типа с раздельной последовательностью одна катушка статора используется для получения одного направления, а другая катушка статора – для получения другого направления, при этом только одна катушка статора находится в цепи одновременно. Соединения якоря должны быть в нейтральном положении, чтобы обеспечить удовлетворительную работу в обоих направлениях вращения.
РАЗМЕР РАМЫНиже приведена таблица размеров корпуса двигателя, которую я нашел в старой книге.
Таблица размеров электродвигателяЯ нашел эту информацию о монтажных размерах двигателя в той же книге. Таблица монтажных размеров электродвигателя
NEMA C и J-Face. НЕКОТОРАЯ ИНФОРМАЦИЯ О ДВИГАТЕЛЕ ПОСТОЯННОГО ТОКА Схема электрических соединений двигателя постоянного тока youtube.com/embed/81_rnC3Y6oY” frameborder=”0″ allowfullscreen=”allowfullscreen”>Исчерпывающая информация по эксплуатации, ремонту и истории 9Электродвигатели 0003 можно найти на этом отраслевом веб-сайте, пост . Когда вы доберетесь туда, нажмите «Статьи» или прокрутите вниз, чтобы получить интересную информацию об электродвигателях. Имеется также глоссарий терминологии по электродвигателям.
Мои ссылки на схемы подключения вентиляторов для ванных комнат, потолочных вентиляторов, коммутируемых розеток, 2-х, 3-х и 4-х позиционных выключателей и телефонов можно посмотреть здесь .
Посетите мое дерево ссылок для получения дополнительной бесплатной информации об электротехнике и ссылок на электрические материалы и товары.
Пусковые конденсаторы двигателя – Grainger Industrial Supply
134 изделия
Пусковые конденсаторы двигателя временно накапливают электрический заряд для обеспечения дополнительного крутящего момента (где крутящий момент является мерой силы вращения или крутящего момента) во время запуска двигателя. Они выходят из цепи, когда двигатель достигает своей рабочей скорости, в отличие от рабочих конденсаторов, которые помогают поддерживать рабочие характеристики двигателя. Конденсаторы двигателя в первую очередь отличаются своей емкостью, которая измеряется в микрофарадах (мкФ или мкФ). При замене пускового конденсатора важно, чтобы номинал, напряжение и размеры в микрофарадах соответствовали оригинальному конденсатору. Пусковые конденсаторы работают с конструкциями двигателей, обозначенными как конденсаторный пуск или конденсаторный пуск/работа, и они обычно используются с двигателями, питающими вентиляторы, воздуходувки и насосы.
Пусковые конденсаторы двигателя временно накапливают электрический заряд для обеспечения дополнительного крутящего момента (где крутящий момент является мерой силы вращения или крутящего момента) во время запуска двигателя. Они выходят из цепи, когда двигатель достигает своей рабочей скорости, в отличие от рабочих конденсаторов, которые помогают поддерживать рабочие характеристики двигателя. Конденсаторы двигателя в первую очередь отличаются своей емкостью, которая измеряется в микрофарадах (мкФ или мкФ). При замене пускового конденсатора важно, чтобы номинал, напряжение и размеры в микрофарадах соответствовали оригинальному конденсатору. Пусковые конденсаторы работают с конструкциями двигателей, обозначенными как конденсаторный пуск или конденсаторный пуск/работа, и они обычно используются с двигателями, питающими вентиляторы, воздуходувки и насосы.
Моторные конденсаторы
Моторные конденсаторы с резисторами
Универсальный моторный старт. custom
Загрузка… 8… Загрузка…0043Загрузка. ..
Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … . Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … . … Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … 22 . Загрузка … Загрузка … Загрузка … Загрузка .. .
Загрузка … 9043. .. Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … . … Загрузка … Загрузка … Загрузка … Загрузка … Нагрузка … 9002 9002. Загрузка… Loading… Loading… Loading… Loading… Loading… Loading… 165V AC
Loading. ..
Loading… Loading… Loading… Loading… Loading… Loading… Loading… Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … 22943994999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999. .220–250 В перем. тока
Loading. ..
Loading… Loading… Загрузка … Загрузка … Загрузка … Нагрузка … Нагрузка … 2 949449449449449449449449449449 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2.0043 Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … . Загрузка … Загрузка … Загрузка … Загрузка . ..
Загрузка … . … Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … 22 . Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … 9043. .. 330V AC
Loading. ..
Loading… Loading … Загрузка … Загрузка … Загрузка … Загрузка … Загрузка … 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 9002 2 0443 Загрузка …Загрузка … Загрузка … Загрузка … Загрузка … . … Загрузка … Загрузка … Загрузка … Загрузка … Нагрузка … 9002 9002. Загрузка. ..
Loading… 165V AC
Loading… Loading… 220–250 В перем. тока
Loading… Loading. ..
Loading… Loading… 330V AC
9222222222 2.0043Загрузка … Загрузка … Загрузка … Загрузка … Загрузка …
Примечание. Информация о наличии товара предоставляется в режиме реального времени и постоянно корректируется. Товар будет зарезервирован для вас при оформлении заказа.Идет загрузка. ..
Как подобрать конденсаторы для подключения однофазного и трехфазного электродвигателя к сети 220 В
Часто бывает, особенно в быту, что асинхронный электродвигатель необходимо подключить к стандартной однофазной сети переменного тока с рабочее напряжение 220 вольт. И двигатель трехфазный! Эта задача типична, когда нам нужно установить наждак или сверлильный станок, например, в гараже.
Чтобы все правильно устроить, используют так называемые пусковые и рабочие (фазосдвигающие) конденсаторы. Вообще конденсаторы бывают разных типов, разной емкости, и прежде чем приступить к построению схемы, необходимо выбрать конденсаторы соответствующего типа, номинального напряжения и правильно рассчитать их требуемую емкость.
Всем известно, что электрический конденсатор представляет собой две проводящие пластины, разделенные диэлектриком, и служит для накопления, временного хранения и передачи электрического заряда, то есть электрической энергии.
Конденсаторы бывают двух типов: полярные и неполярные. Неполярные можно использовать в цепях переменного тока, полярные – нет. Если полярный конденсатор включить в цепь переменного тока, то очень скоро произойдет короткое замыкание в диэлектрическом слое, и конденсатор выйдет из строя. Неполярные одинаково эффективно реагируют на напряжение любой полярности, подаваемое на его обкладки, а также на переменное напряжение.
Итак, выбирая рабочий конденсатор для трехфазного двигателя, необходимо учитывать несколько основных параметров рабочей цепи переменного тока. Приведенная ниже формула для расчета емкости рабочего конденсатора в микрофарадах, при частоте тока в сети 50 Гц, выглядит так:
Здесь в зависимости от схемы соединения обмоток статора двигателя («звезда» или «треугольник»), коэффициент в начале формулы примет значение 4800 для «треугольника» или 2800 для «звезды». I — номинальное значение эффективного тока статора подключенного двигателя.
Номинальный ток I указан на заводской табличке (информационной табличке) на корпусе двигателя или, если табличка затерта, измеряется токоизмерительными клещами в одной из фаз при нормальном трехфазном питании двигателя.
U – действующее (действующее значение) переменное напряжение сети, к которой будет подключен двигатель с конденсатором, например 220 вольт.
Существует и более простой подход к выбору емкости рабочего конденсатора – на каждые 100 Вт мощности двигателя при соединении звездой берется 7 мкФ емкости конденсатора. Если соединение треугольником, то емкость на 100 Вт будет 12 мкФ.
При выборе емкости конденсатора очень важно не превышать расчетную, иначе ток через обмотку статора превысит номинал, двигатель перегреется и вообще может быстро сгореть.
При пуске двигателя под нагрузкой, а это часто бывает, так как наждачный круг или буровой инструмент имеют значительную массу, пусковой ток должен быть больше номинального тока.
Для этого параллельно рабочему подключается дополнительный пусковой конденсатор на время пуска. Этот конденсатор нужен только на несколько секунд, пока двигатель не наберет номинальные обороты. После этого пусковой конденсатор отключается и в цепи остается только рабочий фазосдвигающий конденсатор.
Емкость пускового конденсатора выбирают в 2,5-3 раза больше емкости рабочего конденсатора. Причем номинальное напряжение этого конденсатора должно быть по возможности не менее чем в 1,5 раза больше сетевого напряжения питания. Иногда для получения требуемой пусковой емкости и запаса по напряжению применяют даже последовательно включенные конденсаторы.
Если двигатель не трехфазный, а однофазный, то он может иметь пусковую обмотку, служащую для создания крутящего момента в секундах пуска. Также должен быть фазосдвигающий конденсатор. А вот однофазные двигатели могут работать в различных режимах.
Если пусковой конденсатор и пусковая обмотка питаются только при пуске, то на 1 киловатт мощности двигателя берите 70 мкФ. Если рабочий конденсатор вместе с дополнительной обмоткой все время питать, то брать около 30 мкФ на киловатт.
Если пусковой конденсатор подключен в момент пуска, а рабочий конденсатор продолжает подключаться в процессе работы оборудования, то, как правило, значение суммарной емкости пускового и рабочего конденсаторов выбирают из соотношения 1 мкФ на 100 Вт мощности.