Подсоединение конденсатора к электродвигателю: Как подключить конденсатор к электродвигателю | Полезные статьи

alexxlab | 22.02.2023 | 0 | Разное

Содержание

Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

 

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

 

 

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С – емкость конденсатора, мкФ,   Рном – номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Cобщ = C1 + C1 + … + Сn

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис.  2).

 

Рис. 2.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

 

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью – через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис.  3.

 

Рис. 3.   Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
п

 

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец – С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей – СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

 

Рис. 4.   Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки

 


  • Комментарии

Social Comments

Асинхронный двигатель с пусковым конденсатором

1. Применение асинхронных двигателей в стиральных машинах

Асинхронные двигатели нашли широкое применение как в промышленности,так и в быту. В целом следует отметить два самых распространённых вида асинхронных двигателей – это конденсаторные (иногда их называют двухфазные) и трёхфазные.
Конденсаторные двигатели, которые мы будем рассматривать, часто применялись в стиральных машинах 80х-90х гг. выпуска. В таких машинках количество оборотов барабана при отжиме достигало всего лишь лишь 400-600 оборотов в минуту, реже 800 или 1000, где уже применялась электронная схема управления. В 2000-x годах, было выпущено крайне мало стиральных машин с такими двигателями. С развитием электронных технологий, конденсаторные асинхронные двигатели канули в прошлое, поскольку на смену им пришли более компактные и динамичные универсальные коллекторные двигатели, а также трёхфазные двигатели с частотным регулированием скорости. Для осуществления привода барабана стиральных машин, производителям пришлось по ряду причин отказаться от применения конденсаторных асинхронных двигателей. Но это не означает, что асинхронные двигатели и вовсе исключили из конструкции стиральных машин. Например в стиральных машинах с функцией сушки горячим воздухом,простейшие односкоростные конденсаторные двигатели применяются до сих пор в качестве приводов вентиляторов, которые обдувают ТЭН сушки, прогоняя горячий воздух в бак стиральной машины.

2. Устройство асинхронного двигателя


1. Крышки двигателя
2. Подшипники
3. Ротор
4. Статор
5. Крыльчатка охлаждения

Рис.2 Устройство асинхронного двигателя

Асинхронный двигатель имеет в своём составе две основные детали: статор и
ротор
, разделённые воздушным зазором.
Статор (от латинского-стою) – неподвижная часть двигателя, взаимодействующая с подвижной частью-ротором.
Активными частями статора являются обмотки и магнитопровод (сердечник). Обмотка статора в общем случае представляет собой многофазную обмотку, проводники которой равномерно уложены по окружности в пазы сердечника. Асинхронные двигатели для стиральных машин имеют две скорости вращения. В режиме стирки частота вращения на роторе двигателя составляет около 300 об/мин, а в режиме отжима (центрифугирования) 2800 об/мин. Поэтому, такие двигатели называют двухскоростные и для каждого режима работы применяется своя обмотка. Статор в рассматриваемом двигателе является электромагнитом, который создаёт магнитное поле.
Ротор – подвижная часть двигателя
(Рис.3)
В асинхронных двигателях это короткозамкнутая обмотка, которую часто называют “беличьей клеткой” из-за схожести конструкции. Алюминиевые или медные стержни статора замкнуты накоротко с торцов кольцами и как правило заливаются сплавом алюминия.Сердечник (вал ротора) имеет зубчатую структуру, который жестко скреплён с “беличьей клеткой”.
Вал ротора вращается на двух подшипниках, опорами которого являются крышки двигателя. Для лучшего охлаждения обмоток статора, на роторе устанавливаются крыльчатки с лопастями.

1. Сердечник из штампованных листов стали или залитый сплавом алюминия
2. Стальной вал с зубцами
3. Короткозамкнутая обмотка в виде “беличьей клетки”


Рис.3 Устройство ротора асинхронного двигателя

3. Принцип работы конденсаторного асинхронного двигателя

Для привода барабана в стиральных машинах всегда применялись двухскоростные конденсаторные асинхронные двигатели.


Конденсаторный двигатель — разновидность асинхронного двигателя, в обмотки которого включен конденсатор для создания сдвига фазы тока. Подключается в однофазную сеть посредством специальных схем. Работоспособная схема подключения такого двигателя содержит конденсатор (пусковой конденсатор), от чего и произошло название.
Давайте рассмотрим простейшую схему подключения конденсаторного двигателя на примере Рис.4


Одна из обмоток (её чаще называют рабочей) подключают напрямую к сети, а пусковую обмотку последовательно через конденсатор. Рабочая и пусковая обмотки геометрически сдвинуты друг относительно друга на определённый угол. Для работы асинхронных двигателей важно, чтобы частота вращения ротора не была равна частоте вращения магнитного поля, создаваемое током обмотки статора
. Отсюда и название – асинхронный двигатель. Но однофазная обмотка на статоре не способна создавать вращающее круговое магнитное поле. Поэтому, для соблюдения условий работы асинхронного двигателя, необходимо, что бы и токи были сдвинуты по фазе. Конденсатор в цепи пусковой обмотки создаёт сдвиг фаз токов на электрический угол “фи”=90°. Магнитное поле статора воздействует на обмотку ротора и по закону электромагнитной индукции наводит в них ЭДС. В обмотке ротора под действием наводимой ЭДС возникает собственное магнитное поле и ток, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая складываясь по окружности, создает вращающий электромагнитный момент, заставляющий ротор вращаться. Относительная разность скоростей вращения ротора и магнитного потока, создаваемого обмотками статора называется
скольжение асинхронного двигателя.

А – рабочая обмотка
В – пусковая обмотка
С – пусковой конденсатор

Простая схема подключения асинхронного двигателя через конденсатор
Рис. 4

А теперь представьте, если бы в пусковой обмотке не было конденсатора. Тогда магнитное поле создаваемое статором, создавало бы такое же магнитное поле в роторе. При такой схеме подключения, двигатель можно представить лишь в качестве трансформатора и совпадающие по фазе токи не смогли бы создать вращающее круговое магнитное поле, а пусковой момент был бы настолько мал, что ротор оставался бы почти неподвижным.

4. Неисправности и диагностика. Пуск асинхронного двигателя стиральной машины

Характерный признак неисправности при работе конденсаторных асинхронных двигателей проявляется как правило в ослаблении вращающего момента, вследствие чего ротор двигателя, особенно под нагрузкой, не в силах совершить полный оборот.Из-за этого в стиральной машине, барабан с бельём совершает неполные покачивающие движения напоминающие колебание маятника. В подобных двигателях стиральных машин можно выделить несколько причин такой неисправности.
Самая распространённая причина – это потеря ёмкости пускового конденсатора, из-за чего сдвиг фаз токов пусковой и рабочей обмотки становится незначительным и не создаётся мощного вращающего момента ротора двигателя. Хотя при этом в режиме холостого хода (без нагрузки) двигатель может запускаться нормально. Подобная проблема не относится непосредственно к неисправности самого двигателя. В этом случае требуется только замена пускового конденсатора.
Другая причина – это межвитковое замыкание одной из обмоток двигателя. Причём поведение в работе двигателя иногда схоже с потерей ёмкости пускового конденсатора, но сопровождается сильным нагревом статорной обмотки, завышенным потребляемым током, иногда появляется запах гари и характерный гудящий звук. Иногда, при межвитковом замыкании в цепи обмоток режима отжима, обмотки режима стирки могут быть абсолютно исправны и работать нормально, и наоборот. В этом случае двигатель подлежит замене. Если нет возможности его заменить, то можно обратиться на предприятие где профессионально занимаются ремонтом электродвигателей.
Иногда при неисправности в двигателе одна или несколько обмоток могут быть в полном обрыве.
В остальных случаях проблем работы двигателей, можно выделить неисправности связанные с коммутирующими устройствами и модулями управления, но это мы не будем рассматривать в данном материале.

Для того, чтобы отличить неисправность непосредственно двигателя от неисправности коммутирующих его устройств, необходимо произвести измерения электрического сопротивления обмоток, в частности электрического пробоя обмоток на корпус статора, подключить двигатель напрямую измерив потребляемый рабочий ток. Данные о потребляемом токе указаны на шильдике двигателя, а электрические сопротивления и схема соединения обмоток указываются в сервисной инструкции для мастеров.
Ниже, на Рис.5 и Рис.6 приведена схема проверки двухскоростного асинхронного электродвигателя стиральной машины. Мы взяли самую сложную встречающуюся схему колодки двигателя с применением тахогенератора и термозащиты. Тахогенератор (Т)

и термозащита (ТН) при проверке двигателя напрямую не подключаются к схеме. Для того,чтобы измерить ток в обмотках амперметр (A) подключается последовательно в разрыв цепи, но можно использовать и токовые клещи. Завышенный рабочий ток может свидетельствовать о межвитковом замыкании обмоток статора. Пусковой конденсатор (С), может быть общим для пусковых обмоток отжима и стирки. Но иногда используются и схемы с двумя пусковыми конденсаторами. Изменение направления вращения двигателя для режима стирки происходит путём изменения подключения полюсов обмоток. В режиме отжима двигатель вращается всегда в одну сторону.

Рис.5 Схема подключения для
проверки обмотки отжима

Рис.6 Схема подключения для
проверки обмотки стирки


5. Режимы работы и коммутация обмоток асинхронного двигателя в стиральных машинах

Как мы и говорили, в стиральных машинах всегда применяются две скорости вращения двигателя. В режиме стирки, двигатель вращается медленно, а в режиме отжима (центрифугирования) с большой скоростью. Коммутация обмоток асинхронного двигателя в стиральных машинах традиционно осуществляется при помощи электромеханического командного аппарата. В режиме стирки, двигатель вращается через определённую паузу с поочерёдным изменение направлением вращения. Это делается для того, что бы белье в барабане не перекручивалось. В режиме отжима двигатель вращается в постоянном направлении.
Как видно на представленных ниже фрагментах схемы ,контакты командоаппарата имеют несколько положений. Вывод двигателя номер 5 является общим для обеих обмоток и включается напрямую с общей шиной питания, а другие выводы двигателя запитаны через соответствующие контакты командоаппарата, тем самым создавая электрическую цепь. В этой схеме применяется один пусковой конденсатор, но в некоторых бывает и два конденсатора. Иногда, коммутация обмоток и управление двигателем (например в стиральных машинах Ardo TL80) осуществляется посредством электронного модуля с расположенными на нём симистором управления двигателем и контрольной цепью тахогенератора.

  • Двигатель не вращается

  • Режим отжима (центрифугирования)
  • Двигатель вращается по направлению часовой стрелки
  • Двигатель вращается против направления часовой стрелки

6. Преимущества и недостатки однофазных асинхронных двигателей

К преимуществам можно отнести: простоту конструкции, относительно высокий ресурс двигателя, низкий уровень шума по сравнению с коллекторными двигателями (речь о которых идёт в другой главе), практически не требует профилактического обслуживания, максимум требуется смазывание, либо замена подшипников.
К недостаткам можно отнести: большие габариты и массу двигателя, большой пусковой ток, применение нескольких обмоток для каждого режима работы двигателя, низкий КПД (коэффициент полезного действия), при неизменном габарите невозможно увеличить мощность двигателя, этим и объясняется его применение в стиральных машинах с низким числом оборотов барабана при отжиме, плохая управляемость электронными схемами.

7. Частые вопросы

  • Для чего нужен конденсатор в цепи пусковой обмотки электродвигателя?

Конденсатор в асинхронных двигателях используется для сдвига фаз токов пусковой и рабочей обмотки, в результате чего возникает вращающееся магнитное поле. Сдвиг фаз обязательное условие для работы конденсаторных асинхронных однофазных двигателей.

  • Какая ёмкость пускового конденсатора применяется для пуска асинхронных двигателей стиральных машин?

Для каждого типа двигателей индивидуально подбирается значение ёмкости конденсатора. Самые распространённые номиналы ёмкостей (ёмкость конденсатора измеряется в микрофарадах): 8,5 мкф, 11,5 мкф, 12,5 мкф, 14 мкф,16 мкф, 18 мкф, 20 мкф, 22 мкф и 25 мкф. Но самые распространённые 14 мкф и 16 мкф.

  • Почему рабочее напряжение пускового (фазосдвигающего) конденсатора должно быть не менее 400 вольт?

Фазосдвигающий конденсатор устанавливается в цепи обмоток статора, которые обладают большой индуктивностью. При работе электродвигателя, особенно при его пуске и остановке, на обмотках высвобождается большая электродвижущая сила самоиндукции (ЭДС самоиндукции), в виде всплесков повышенного напряжения 300-600 вольт, приложенная именно к конденсатору. Если установить конденсатор с меньшим допустимым рабочим напряжением, то он выйдет из строя.

  • Что произойдёт, если вместо конденсатора номинальной ёмкости предназначенного для оптимальной работы двигателя установить конденсатор большей или меньшей ёмкости?

Если величина ёмкости фазосдвигающего конденсатора выбрана больше, чем требуется при данных конкретных условиях работы электродвигателя, то двигатель будет быстро перегреваться. Если величина ёмкости выбрана меньше требуемой, то вращающий пусковой момент ослабнет, что может вызвать затруднённое вращение барабана с бельём в стиральной машине.

В электрической цепи с ёмкостным сопротивлением (конденсатором) ток опережает напряжение на угол “фи”=90°. Ток опережающий напряжение по фазе на 90°, называется реактивным или безваттным током, так как он не вызывает в цепи потребления мощности.
С включением последовательно пусковой обмотки и конденсатора, нарушается чисто ёмкостный (реактивный) характер цепи, в результате чего уменьшается угол сдвига фаз. Поэтому для каждого асинхронного однофазного двигателя ёмкость конденсатора пусковой обмотки подбирается таким образом,чтобы угол сдвига фаз тока относительно рабочей был близок к 90°.

моторный конденсатор FAQ

Моторный конденсатор FAQ
Обзор

Напряжение
емкость
Частота (Гц)
Стиль клеммы подключения
СПАСИТЕЛЬСКИЕ ПЕРЕДЕЛИ

. СПАСИТЕЛЬСКИЕ СПАСИТЕТЫ
99999999999999999999999. СПАСИТЕЛЬСКИ Как узнать, неисправен ли мой пусковой конденсатор?
Мой двигатель медленно запускается. Мой пусковой конденсатор неисправен?
На моем пусковом конденсаторе есть резистор. Нужна ли замена конденсатора на один?
Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

Рабочие конденсаторы

Как заменить рабочую крышку в моем кондиционере?
Применение
Технические характеристики
Когда заменять
Почему мой рабочий конденсатор вышел из строя?
Как долго должен работать мой рабочий конденсатор?
Dual Run Capacitors
Если я не могу найти замену своему двойному конденсатору, могу ли я использовать два отдельных рабочих конденсатора?

Обзор

Напряжение

Конденсатор будет иметь маркировку напряжения, указывающую его допустимое пиковое напряжение, а не его рабочее напряжение. Следовательно, вы можете выбрать конденсатор с номинальным напряжением, равным или превышающим исходный конденсатор. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт, хотя на самом деле конденсатор на 440 вольт прослужит дольше. Однако вы не можете заменить 440-вольтовый конденсатор на 370-вольтовый без значительного сокращения срока его службы.

Емкость

Выберите конденсатор со значением емкости (указанным в МФД, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от первоначального значения, так как оно определяет рабочие характеристики двигателя.

Частота (Гц)

Выберите конденсатор с номиналом в Гц исходного. Почти все конденсаторы имеют маркировку 50/60.

Тип соединительной клеммы

Почти для каждого конденсатора используется вставной разъем ¼ дюйма. При замене конденсатора вам необходимо знать, сколько клемм на клеммную колодку необходимо для вашего двигателя. Большинство пусковых конденсаторов имеют две клеммы. на контакт, и большинство рабочих конденсаторов будет иметь 3 или 4 клеммы на контакт.Убедитесь, что замещающий конденсатор имеет по крайней мере такое же количество соединительных клемм на контакт, как и исходный конденсатор двигателя.

Форма корпуса (круглая или овальная)

Почти все пусковые конденсаторы имеют круглый корпус. Круглые корпуса на сегодняшний день являются наиболее распространенными, но многие двигатели по-прежнему используют овальные конструкции. С точки зрения электрики разницы нет. Если место в монтажной коробке не ограничено, стиль корпуса не имеет значения.

Размер корпуса

Как и форма корпуса, общий размер не имеет значения с точки зрения электроники. Выберите конденсатор, который поместится в отведенном месте.

Пусковые и рабочие конденсаторы

Пусковые конденсаторы имеют большое значение емкости, необходимое для запуска двигателя в течение очень короткого периода времени (обычно несколько секунд). Они работают только в повторно-кратковременном режиме и могут катастрофически выйти из строя, если будут находиться под напряжением слишком долго. Рабочие конденсаторы используются для непрерывного управления напряжением и током в обмотках двигателя и, следовательно, работают в непрерывном режиме. Как правило, они имеют гораздо более низкое значение емкости.

В нестандартных обстоятельствах рабочий конденсатор можно использовать в качестве пускового конденсатора, но доступные значения намного ниже значений, обычно доступных для специальных пусковых конденсаторов. Номинальные значения емкости и напряжения должны соответствовать исходным характеристикам пускового конденсатора. Пусковой конденсатор никогда нельзя использовать в качестве рабочего конденсатора, потому что он не может непрерывно выдерживать ток.

Посмотрите наше видеоруководство ниже, чтобы узнать больше о различиях между пусковыми и рабочими конденсаторами.


Пусковые конденсаторы

Применение

Пусковые конденсаторы используются для кратковременного сдвига фаз пусковых обмоток однофазных электродвигателей для увеличения крутящего момента. Они обладают очень большими значениями емкости для своего размера и номинального напряжения. В результате они предназначены только для прерывистой работы. По этой причине пусковые конденсаторы выходят из строя после слишком долгого нахождения под напряжением из-за неисправной пусковой цепи двигателя.


Технические характеристики

Большинство пусковых конденсаторов рассчитаны на 50–1200 мкФ и 110/125, 165, 220/250 или 330 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Корпуса обычно круглые и отлиты из черных фенольных или бакелитовых материалов. Заделки обычно представляют собой нажимные клеммы на ¼ дюйма с двумя клеммами на соединительную клемму.


Как узнать, неисправен ли мой пусковой конденсатор?

Большинство отказов пускового конденсатора относятся к одному из двух типов. Пусковая цепь электродвигателя включена слишком долго для повторно-кратковременного режима работы пускового колпачка. Верх пускового колпачка буквально сорвало, а внутренности были частично или полностью выброшены. Точно так же пусковой колпачок может просто показывать лопнувший блистер для сброса давления . В любом случае легко сказать, что стартовая крышка нуждается в замене.


Мой двигатель медленно запускается. Мой пусковой конденсатор неисправен?

Возможно, ваш пусковой конденсатор потерял номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя. Вы захотите измерить емкость вашего пускового конденсатора, чтобы узнать.


На моем пусковом конденсаторе есть резистор. Нужна ли замена конденсатора на один?

Большинство сменных пусковых колпачков не имеют резистора. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаиваются, либо обжимаются на клеммах. Резистор предназначен для сброса остаточного напряжения в конденсаторе после его отключения от цепи после пуска двигателя. Не все пусковые конденсаторы будут использовать один, так как есть другие способы добиться этого. Важная часть заключается в том, что если у вашего исходного конденсатора был один, вам нужно будет заменить его на новый конденсатор.


Могу ли я использовать конденсатор с более высоким номинальным напряжением, чем оригинальный?

Да. Щелкните здесь для более подробной информации.


Рабочие конденсаторы

Применение

Рабочие конденсаторы используются для непрерывной регулировки тока или фазового сдвига в обмотках двигателя с целью оптимизации крутящего момента и КПД двигателя. Они предназначены для непрерывной работы и, как следствие, имеют гораздо более низкую интенсивность отказов, чем пусковые конденсаторы. Они обычно используются в блоках HVAC.


Технические характеристики

Большинство рабочих конденсаторов рассчитаны на 2,5–100 мкФ (микрофарад) при номинальном напряжении 370 или 440 В переменного тока. Обычно они рассчитаны на 50/60 Гц. Конструкция корпуса круглая или овальная, чаще всего с использованием стального или алюминиевого корпуса и крышки. Выводы обычно представляют собой нажимные клеммы на ¼ дюйма с 2–4 клеммами на соединительный штырь.


Когда заменять

Как правило, рабочий конденсатор намного дольше пускового конденсатора того же двигателя. Рабочая крышка также выйдет из строя. или носить не так, как стартовый колпачок, что немного усложняет поиск и устранение неисправностей.0015

Когда рабочий конденсатор начинает работать за пределами допустимого диапазона, чаще всего на это указывает падение номинального значения емкости (снижение значения микрофарад). Для большинства стандартных двигателей рабочий конденсатор будет иметь указанный «допуск», описывающий, насколько близко к номинальному значению емкости может быть фактическое значение. Обычно это +/- 5-10%. Для большинства двигателей, пока фактическое значение находится в пределах 10% от номинального значения, вы в хорошей форме. Если он выходит за пределы этого диапазона, вам необходимо заменить его.

В некоторых случаях из-за дефекта конструкции конденсатора или из-за проблем с двигателем, не связанных с конденсатором, рабочий конденсатор вздувается из-за внутреннего давления. Для большинства современных конструкций рабочих конденсаторов это размыкает цепь, отсоединяя внутреннюю спиральную мембрану в качестве защитной меры, предотвращающей раскрытие конденсатора.

 

Если выпирает, пора заменить. Если вы не измеряете непрерывность на клеммах, также пришло время заменить.


Почему мой рабочий конденсатор вышел из строя?

Ниже приведены некоторые распространенные причины выхода из строя рабочих конденсаторов, но в зависимости от того, насколько близок рабочий конденсатор к расчетному сроку службы, может быть сложно точно определить причину по одному фактору.

Время – Все конденсаторы имеют расчетный срок службы. Несколько факторов можно поменять местами или объединить, чтобы увеличить или уменьшить срок службы рабочего конденсатора, но как только расчетный срок службы превышен, внутренние компоненты могут начать более быстро разрушаться и снижаться производительность. Проще говоря, неудача может быть связана с тем, что он «просто устарел».

Нагрев — Превышение расчетного предела рабочей температуры может сильно повлиять на ожидаемый срок службы рабочего конденсатора. Как правило, двигатели, которые эксплуатируются в жарких условиях или с недостаточной вентиляцией, имеют значительно меньший срок службы своих конденсаторов. То же самое может быть вызвано излучаемым теплом от обычно горячего двигателя, что вызывает перегрев конденсатора. В общем, если вы можете охлаждать рабочий конденсатор, он прослужит намного дольше.

Ток – Когда двигатель перегружен или имеет неисправность в обмотках, это вызывает рост тока, что может привести к перегрузке конденсаторов. Этот сценарий встречается реже, так как обычно сопровождается частичным или полным отказом двигателя.

Напряжение – Напряжение может иметь экспоненциальный эффект сокращения расчетного срока службы конденсатора. Рабочий конденсатор будет иметь маркированное номинальное напряжение, которое не должно превышаться. Например, конденсатор рассчитан на 440 вольт. При 450 вольт срок службы может сократиться на 20%. При 460 вольт срок службы может сократиться на 50%. При напряжении 470 вольт срок службы сокращается на 75%. То же самое можно применить и в обратном порядке, чтобы увеличить расчетный срок службы, используя конденсатор с номинальным напряжением, значительно превышающим необходимое, хотя эффект будет менее драматичным.


Как долго должен работать мой рабочий конденсатор?

Срок службы рабочего конденсатора хорошего качества (который не входит в комплект поставки вашего двигателя) составляет от 30 000 до 60 000 часов работы. Установленные на заводе рабочие конденсаторы иногда имеют гораздо меньший расчетный срок службы. В высококонкурентных отраслях, где каждая деталь может существенно повлиять на стоимость, или где предполагаемое использование двигателя, вероятно, будет прерывистым и нечастым, может быть выбран рабочий конденсатор более низкого класса с расчетным сроком службы всего 1000 часов. Кроме того, все факторы из раздела выше («Почему мой рабочий конденсатор вышел из строя?») могут значительно изменить разумный ожидаемый срок службы рабочего конденсатора.


Двойные рабочие конденсаторы

Двойные рабочие конденсаторы представляют собой два рабочих конденсатора в одном корпусе. У них нет ничего другого, что делало бы их электрически особенными. Как правило, они имеют соединения, отмеченные буквой «C» для «общего», «H» или «Herm» для «герметичного компрессора» и «F» для «вентилятора». Они также будут иметь два разных номинала конденсаторов для двух разных частей. Вы можете увидеть 40/5 MFD, что означает, что одна сторона составляет 40 микрофарад (измерение емкости), а другая сторона — 5 микрофарад. Меньшее значение всегда будет подключено к вентилятору. Соединение большего диаметра всегда будет подключено к компрессору.


Если я не могу найти замену своему двойному рабочему конденсатору, могу ли я использовать два отдельных рабочих конденсатора?

Единственным преимуществом двухконтурного конденсатора является то, что он поставляется в небольшом корпусе всего с 3 разъемами. Другого отличия нет. Если места для монтажа достаточно, использование двух отдельных рабочих конденсаторов вместо исходного двойного рабочего конденсатора является приемлемой практикой.

Принадлежности для конденсаторов двигателей — Grainger Industrial Supply

Принадлежности для конденсаторов двигателей

29 изделия

Аксессуары для конденсаторов двигателей — это дополнительные детали, которые помогают при установке и обслуживании конденсаторов двигателей. Они включают монтажное оборудование, защиту разъемов, резисторы и перемычки.

  • Моторный конденсатор монтажных ремней

  • Защитники разъема моторного конденсатора

  • Моторные конденсаторные скопления

  • .0015

  • Motor Capacitor Jumper Wires

Motor Capacitor Mounting Straps

Loading. ..

Защита разъема конденсатора двигателя

Loading…

Motor Capacitor Mounting Brackets

Идет загрузка. ..

Заглушки конденсаторов двигателя

Loading…

Motor Start Capacitor Resistors

Loading.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *