Полимеры из чего делают – Из чего делают пластмассы. Полимерное сырье.

alexxlab | 28.10.2019 | 0 | Разное

Из чего делают пластмассы. Полимерное сырье.

Слово полимер широко вошло в обиход, однако, не все точно знают, что оно означает. Каждого из нас окружают предметы, сделанные из полимеров. Что это такое и чем они полезны для человека?

Сложная химия полимеров доступными словами.

 

Высокомолекулярные соединения, состоящие из повторяющихся мономерных звеньев, которые соединяются химическими связями или слабыми межмолекулярными силами и характеризующиеся определенным набором свойств, называют полимерами. Они бывают разного происхождения:

  • Органические;
  • Неорганические;
  • Элементоорганические.

Основные свойства полимеров – эластичность и почти полное отсутствие хрупкости их кристаллических соединений нашли широкое применение в производстве пластиковых изделий. Под влиянием направленных механических воздействий молекулы полимеров имеют способность к ориентированию.

Разделяют полимеры и по реакции на температурные режимы – одни из них могут плавиться в процессе нагрева и возвращаться в исходное состояние при охлаждении. Эти полимеры получили название термопластичных, а ряд полимеров, которые при нагреве разрушаются, минуя стадию плавления, относят к

термореактивным.

По происхождению различают полимеры природные и синтетические.

В промышленности полимерное сырье используется практически во всех областях. За счет способности некоторых полимеров после переработки принимать свои исходные свойства, существуют производства, выпускающие вторичное полимерное сырье. Используется вторичное полимерное сырье на те же цели, что и первичное, однако его применение имеет ряд ограничений для использования в пищевой и медицинской промышленности.

Первичное полимерное сырье

 

Рассмотрим основные характеристики некоторых видов первичного полимерного сырья.

Полипропилен – синтетический. Вещество белого цвета, выпускается в виде твердых гранул. Имеет много модификаций, среди которых гомополимер, вспенивающийся полипропилен, каучуковый и металлоценовый полипропилен. Ссылка на каталог: Полипропилен

Полистирол – термопластический синтетический полимер. Твердый, стеклообразный. Хороший диэлектрик, отличается устойчивостью к радиоактивным воздействиям, инертен к кислотам и щелочным растворам (за исключением ледяной уксусной и азотной кислоты). Гранулы полистирола прозрачны и имеют цилиндрическую форму. Используются для производства различной продукции методом экструзионного выдавливания. Ссылка на каталог: Полистирол

Полиэтилен низкого давления – кристаллические малопрозрачные гранулы высокой плотности. Всем известны «шумные» пакеты из ПНД, способные выдержать высокие нагрузки. Путем экструзии из него выдувают очень тонкие пленки. Ссылка на каталог: ПНД

Полиэтилен высокого давления – гранулы белого цвета с красивой гладкой глянцевой поверхностью. Имеет второе название – полиэтилен низкой плотности. Рекомендован для использования в пищевой промышленности и для изготовления изделий медицинского назначения. Ссылка на каталог: ПВД

Поливинилхлорид (ПВХ) – сыпучий порошок с размером частиц до 200 мкм. Легко перерабатывается в твердые и мягкие пластики. Используется для производства труб, пленок, линолеума и других изделий технического назначения. Ссылка на каталог: ПВХ ( Поливинилхлорид )

Линейный полиэтилен высокого давления – используют для выпуска тонких эластичных упаковочных пленок и пленок для ламинирования. По свойствам занимает среднее положение между полиэтиленом низкой и полиэтиленом высокой плотности. Работы по усовершенствованию его свойств не прекращаются. Ссылка на каталог: Линейный полиэтилен низкой плотности ЛПЭНП (LLDPE)

Вторичное полимерное сырье

 

На многих предприятиях с целью экономии бракованная продукция из полимерных пластиков поступает на вторичную переработку, обеспечивая безотходное производство. Наряду с этим существует целое направление бизнеса по переработке отходов во вторичные гранулы полимера для продажи. Процесс многоступенчатый, весь цикл от сбора и закупки бытовых пластиковых отходов, сортировке, промывке, дробления и переработки в гранулы довольно трудоемкий. Однако готовая продукция по своим свойствам практически не отличается от первичного сырья и успешно используется во многих производствах. Выпуск вторичного полимерного сырья – важная и нужная отрасль народного хозяйства, позволяющая сэкономить огромные средства на отсутствии необходимости утилизации отработанных пластиков.

Что выбрать?

Вопрос какое сырье выбрать стоит перед каждым производителем. И если у вторичного сырья есть очевидный плюс – низкая цена. То не менее очевидны и его минусы:

  • Нестабильность свойств
  • Наличие посторонних примесей
  • Нет уверенности в марке полимера

Автоматически вытекают плюсы первичного полимерного сырья:

  • Стабильные свойства
  • Точно известна марка
  • Абсолютная чистота
  • Стабильные поставки

rosspolimer.ru

Из чего делают полиэтилен? Производство полиэтилена

История знает множество случаев, когда востребованные в той или иной отрасли материалы были получены в качестве побочного продукта при проведении научных опытов.

Ярким тому примером могут послужить анилиновые красители, которые совершили настоящий переворот  в легкой промышленности. Аналогичная история случилась и с полиэтиленом.

История открытия

Впервые материал был случайно получен в 1899 году химиком Гансом фон Пехманном вследствие разогрева диамезотана. Химик обратил внимание на плотный и напоминающий воск материал, осевший на дно пробирки, однако эта случайность оказалось позабытой, и лишь через три десятилетия побочный продукт был вновь получен М. Перрином и Дж. Паттоном. В 1936 году был получен патент на низкоплотный полиэтилен, а уже через пару лет стартовало массовое производство. 

Особенности

Полученный материал представляет собой белоцветный и твердый полимер, относящийся к органическим соединениям. Ключевым сырьем для получения полиэтилена служит этилен, от которого и пошло название. Данный газ полимеризуется при низком и высоком давлении, в результате чего получаются сырьевые гранулы для дальнейшей эксплуатации. В некоторых случаях материал производится в порошковом виде.

Существует множество разновидностей данного материала, каждая из которых обладает своими особенностями и сферой применения. Полиэтилен может отличаться по степени давления в процессе производства, плотности и многим другим аспектам. В гранулированные вариации в процессе производства могут добавляться разнообразные красители, позволяющие получить тот или иной цвет.

Свойства

Материал устойчив к влаге, к множеству растворителей, органическим и неорганическим кислотам, а также не реагирует на соль. В процессе горения выделяется парафиновый запах, присутствует голубоватое свечение и слабый огонь. Материал разлагается при контакте с азотной кислотой, фтором и хлором. В процессе старения полиэтилена происходит образование поперечных связей между молекулярными цепями, из-за чего он становится хрупким.

Производство линейного полиэтилена

Метод производства варьируется в зависимости от типа материала. В случае линейной вариации полиэтилена температура нагрева должна достигать отметки  120 °С, давление в пределах 4 Мпа, а катализатором выступает смесь металлоорганического соединения с хлоридом титана. Процесс производства включает в себя выпадение материала в виде хлопьев, которые затем отделяют от раствора с дальнейшим процессом грануляции.

Производство полиэтилена низкого давления

ПНП может производиться тремя способа. В основном применяется суспензионная полимеризация, требующая постоянного перемешивания сырья и катализатора для запуска процесса. Второй способ - это полимеризация в растворе с определенной температурой и катализатором, которому свойственно вступать в реакцию, а потому метод не слишком эффективен. Последний из способов представляет собой газофазную полимеризацию, которая представляет собой процесс смешивания сырьевых газовых фаз под воздействием диффузии.

Производство полиэтилена высокого давления

Такая разновидность может быть получена при температурном режиме в диапазоне  от 200 до 250°С. В качестве катализатора может применяться органический пероксид. Давление должно быть в диапазоне 150-300 МПа. В первой фазе масса находится в жидком состоянии, после чего отправляется к сепаратору, а затем к гранулятору.

www.simplexnn.ru

Полимеры Википедия

Полиме́ры (от греч. πολύ «много» + μέρος «часть») — вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимерами могут быть неорганические и органические, аморфные и кристаллические вещества. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются

[1]. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов[2].

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (−CH2−CHCl−)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических преобразований. Названия полимеров образуются из названия мономера с приставкой

поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

ru-wiki.ru

Как производят полимеры? | Как это сделано

Для многих воронежцев не секрет, что одно из старейших предприятий города ОАО «Воронежсинтезкаучук» (ВСК) ныне является дочерним предприятием СИБУРа (крупнейший нефтехимический холдинг России). ВСК, в свою очередь, является одним из крупнейших производителей высококачественных каучуков, латексов и термоэластопластов в России. Продукция завода реализуется как на внутреннем рынке, так и за рубежом. Экспортные поставки занимают около 50% объема производимой продукции и осуществляются в Испанию, Италию, Германию, Австрию, Финляндию, Китай, Тайвань, Индонезию, США и другие страны.

В середине августа этого года на территории завода было введено в эксплуатацию новое производство современных полимерных материалов — бутадиен-стирольных термоэластопластов (ТЭПов). Это полимеры, которые используется в дорожном строительстве (добавляются в битум и способствуют увеличению срока службы дорожного полотна), при изготовлении мягких кровельных материалов, при изготовление клеев, различных пластмасс, а так же в обувной промышленности. По некоторым данным, если на вас сейчас обувь российского производства, то, скорее всего, её подошва сделана из термоэластопласта, произведенного на ВСК. Дело в том, что завод занимается производством ТЭПов с начала 90-х. Более того, ВСК является единственным производителем этой продукции в странах СНГ. До недавних пор годовой объем выпуска составлял 35 тысяч тонн в год, которых катастрофически не хватало для использования одновременно нужд РФ, стран СНГ и экспорта. После запуска нового производства общая мощность предприятия по выпуску термоэластопластов составит уже 85 тысяч тонн.

В начале сентября мне довелось погулять по новому технологическому объекту и немного пофотографировать.
Буду откровенен — химия мне в школе давалась с трудом. Хорошо помню только h3O, h3SO4 и как на практике высыпал в карман рубашки какой-то кристаллический порошок (крупинки напоминали драгоценные камни), после чего в моей рубашке «прогорела» дырка. Посему данный репортаж может содержать некоторые неточности, но желающие, надеюсь, всё же поймут основной принцип работы участка ТЭП-50. За непонятными словами типа «полимер», «катализатор», «ингибитор» и т.д., пожалуйста, обращаемся к википедии или учебнику химии.

Итак, основным исходным сырьем для производства термоэластопласта являются стирол и бутадиен. Поскольку это мономеры, чтобы получить полимер, надо химически связать между собой определенное количество мономеров. Причем не только связать, а связать в определенном количестве, соотношении и правильной пространственной ориентации. Итак, вкратце: необходимое количество мономера (стирола) помещается в специальный реактор и с помощью катализатора процесса (бутила лития) производим «сшивку» стирола.

02. На фото узел приема и приготовления катализатора – бутила лития:

Получили активный полимер стирола. В этот активный или, как говорят, «живой» полистирол добавляют необходимое количество бутадиена. Проводится вторая реакция полимеризации и образуется новый активный полимер, состоящий уже из полимерных цепей стирола и присоединенного к ним бутадиена. Это полупродукт, из которого можно будет получить термоэластопласт с нужными потребительскими свойствами. Надо только эти полимерные цепочки правильно между собой «связать». Если по длине, то получится ТЭП с линейной структурой (этот продукт необходим для улучшения качества дорог), а если их «связать» крестом, то получим ТЭП с уже разветвленной структурой. Этот продукт нужен для улучшения мастик и битумов в кровельных материалах.

03. На фото реакторы и все необходимое для процесса полимеризации оборудование:

Химический процесс полимеризации проходит с выделением большого количество тепла, а готовый продукт ТЭП физически представляет из себя твердое вещество. Одним словом, просто так синтез не проведешь. Выход из этой ситуации – провести процесс в жидкости, которая растворяет ТЭП и не мешает процессу полимеризации. Также в жидкой фазе легко отвести избыточное тепло процесса синтеза. В качестве растворителя используется смесь циклогексана и гексана.

04. Благодаря этим насосам, растворитель постоянно участвует в процессе, поступая на полимеризацию и возвращаясь обратно после водной отпарки.

05. Мой сопровождающий Роман на пути к участку подготовки мономеров и растворителей.

06. Безопасность — главное. На всякий пожарный случай по всему оборудованию установлены пожарные гидранты.

07. Заглянем на минутку в ЦПУ (Центральный пульт управления). На больших экранах выводится изображение с видеокамер, установленных, в том числе, и внутри технологических резервуаров, а сотрудницы внимательно следят за мониторами. Это распределенная система управления (РСУ). Предназначена для автоматизации контроля и управления технологическими процессами и позволяет удаленно в режиме реального времени получать информацию о технологических процессах на участках и в лабораториях производства. Непосредственно на рабочем месте оператор может визуально отслеживать изменение большинства технологических параметров, получать данные анализов, контролировать подачу требуемых компонентов для постановки синтезов, расход на колонны сушки растворителя, подачу на дегазацию и, наконец, выработку, то есть количество готовой продукции.

Но продолжаем разговор о технологическом процессе. После проведения всех стадий полимеризации получаем раствор ТЭП в растворителе. Он представляет из себя хорошо сваренный кисель: чем холоднее, тем гуще. «Кисель» собирают в больших емкостях для определения качественных показателей ТЭП.

08. В этих емкостях (4 штуки вместимостью 340 м3 каждая) после проведения полимеризации в реакторах собирается раствор ТЭП. Далее он будет проанализирован по качественным показателям и отправлен на водную отгонку растворителей из раствора.

09. Для того, что бы извлечь ТЭП в чистом виде на первом этапе применяют метод водной отгонки растворителя из раствора. На фото узел водной отгонки растворителей из раствора ТЭП.

10. Далее в аппарат с горячей водой и при активном перемешивании подают пар и раствор полимера. Растворитель испаряется и выводится из аппарата и потом повторно используется в процессе, а твердый ТЭП в виде мелких пористых хлопьев вместе с водой отправляется на установку сушки. Сначала эти хлопья задерживают на сетке как на дуршлаке. На фото как раз эта наклонная сетка типа «дуршлака»:

11. Затем мокрые хлопья отправляют в отжимные машины. Вот они на фото:

12. В них основная часть воды отжимается, а ТЭП в твердом виде и с малым содержанием воды досушивается в сушилках за счет обдува горячим воздухом. Вот так выглядят эти сушилки. Совершеннейший стимпанк, не так ли?

13. Всё. Готовый продукт получен.

14. Осталось его упаковать. Для этого применяются разные упаковочные машины – от полиэтиленовых мешков весом 15кг до больших «биг-бегов» весом в 800 кг. На фото упаковка в маленькие мешки по15 кг:

15. А это упаковка в большие биг-беги:

16. Как и любой товар, до продажи готовый ТЭП нужно где-то хранить.

17. Перемещаемся на склад. Сюда же с помощью погрузчиков перемещают и готовую продукцию.

18. Которая, кстати, уже находит своего потребителя. Первым стала компания «ТехноНИКОЛЬ». Это крупнейший производитель и поставщик кровельных, гидроизоляционных и теплоизоляционных материалов. При этом ВСК рассчитывает и на интерес к продукции со стороны дорожников. Термоэластопласты давно применяются во всем мире при производстве полимерно-битумных вяжущих (ПБВ) — одного из элементов верхнего слоя дорожного покрытия. Применение ПБВ обеспечивает увеличение межремонтных сроков службы покрытия дорог с 3–4 лет до 7–10 лет. Доля полимерно-битумных вяжущих в общем объеме потребления дорожных битумов в нашей стране за последние три года выросла с 1% до 3%, при этом она до сих пор существенно ниже, чем в других странах. Для сравнения, в Германии этот показатель превышает 30%.

19. Отгрузка потребителю.

Вот такой, вкратце, технологический процесс. Бонусом еще несколько видов производства.

20. Колонны очистки бутадиена и осушки растворителей.
Они же на титульном фото.

21. Цех выделения продукта.

22. Многие километры труб…

23. Панорама производства.

24. Вот, в целом, и всё, что касается производства ТЭП-50. Но до кучи покажу, что еще попало в поле зрения моей камеры. Административно – бытовое здание с лабораторией.

25. Наверное, самый неизвестный памятник в Воронеже — товарищу Кирову у первой проходной ВСК.

26. Сотрудница. Заметил, что на ВСК очень молодой коллектив. Особенно относительно «классических» заводов.

27. Хотя, как я уже писал выше, ВСК — одно из старейших предприятий города (основан в 1932 году под вывеской СК-2) и имеет богатейшую историю. Впрочем, об этом сегодня я писать, пожалуй, не буду. Может, в следующий раз. Тем более, что в пресс-службе мне подарили раритетную книгу о истории завода буквально с момента строительства, когда левый берег Воронежа еще представлял собой практически степь. Персональное спасибо за книгу и экскурсию руководителю отдела корпоративных коммуникаций Ксении Барыниной и инженеру-технологу производства ТЭП-50 Роману Малинову.

Источник: блог Андрея Кирнова

kak-eto-sdelano.ru

Что такое пластик и из чего его делают?

Нашу цивилизацию можно назвать цивилизацией пластика: разнообразные виды пластмасс и полимерных материалов можно встретить буквально повсюду.


Однако обычный человек вряд ли хорошо представляет себе, что такое пластик и из чего его делают.

Что такое пластик?

В настоящее время пластиками, или пластмассами, называют целую группу материалов искусственного (синтетического) происхождения. Их производят путём цепочки химических реакций из органического сырья, преимущественно из природного газа и тяжёлых фракций нефти. Пластики представляют собой органические вещества с длинными полимерными молекулами, которые состоят из соединённых между собой молекул более простых веществ.

Изменяя условия полимеризации, химики получают пластики с нужными свойствами: мягкие или твёрдые, прозрачные или непрозрачные и т.д. Пластики сегодня используются буквально во всех сферах жизни, от производства компьютерной техники до ухода за маленькими детьми.

Как были изобретены пластмассы?

Первый в мире пластик был изготовлен в английском городе Бирмингем специалистом-металлургом А. Парксом. Это случилось в 1855 году: изучая свойства целлюлозы, изобретатель обработал её азотной кислотой, благодаря чему запустил процесс полимеризации, получив нитроцеллюлозу. Созданное им вещество изобретатель назвал собственным именем – паркезин. Паркс открыл собственную компанию по производству паркезина, который вскоре стали называть искусственной слоновой костью. Однако качество пластика было низким, и компания вскоре разорилась.

В дальнейшем технология была усовершенствована, и выпуск пластика продолжил Дж.У. Хайт, который назвал свой материал целлулоидом. Из него изготавливались самые разные товары, от воротничков, которые не нуждались в стирке, до бильярдных шаров.

В 1899 году был изобретён полиэтилен, и интерес к возможностям органической химии многократно вырос. Но до середины ХХ века пластики занимали довольно узкую нишу рынка, и только создание технологии производства ПВХ позволило изготавливать из них широчайший спектр бытовых и промышленных изделий.

Разновидности пластиков

В настоящее время промышленностью выпускается и используется множество разновидностей пластиков.

По своему составу пластмассы подразделяются на:

— листовые термопластические массы – оргстекло, винилпласты, состоящие из смол, пластификатора и стабилизатора;

— слоистые пластики, армированные одним или несколькими слоями бумаги, стеклоткани и т.д.;

— волокниты – пластики, армированные стекловолокном, асбестовым волокном, хлопчатобумажным и т.д.;

— литьевые массы – пластики, не имеющие в составе других компонентов, кроме полимерных соединений;

— пресс-порошки – пластики с порошкообразными добавками.

По типу полимерного связующего пластики подразделяются на:

— фенопласты, которые изготавливаются из фенолформальдегидных смол;

— аминопласты, изготавливаемые из меламинформальдегидных и мочевиноформальдегидных смол;

— эпоксипласты, использующие в качестве связующего эпоксидные смолы.

По внутренней структуре и свойствам пластики делятся на две большие группы:

— термопласты, которые при нагреве плавятся, но после охлаждения сохраняют свою первоначальную структуру;

— реактопласты, с исходной структурой линейного типа, при отверждении приобретающие сетчатую структуру, но при повторном нагреве полностью теряющие свои свойства.

Термопласты могут использоваться неоднократно, для этого их достаточно измельчить и расплавить. Реактопласты по рабочим качествам, как правило, несколько лучше термопластов, но при сильном нагреве их молекулярная структура разрушается и в дальнейшем не восстанавливается.

Из чего делают пластики?

Исходным сырьём для подавляющего большинства видов пластиков служат уголь, природный газ и нефть. Из них путём химических реакций выделяют простые (низкомолекулярные) газообразные вещества – этилен, бензол, фенол, ацетилен и др., которые затем в ходе реакций полимеризации, поликонденсации и полиприсоединения превращаются в синтетические полимеры. Превосходные свойства полимеров объясняются наличием высокомолекулярных связей с большим числом исходных (первичных) молекул.

Некоторые этапы производства полимеров представляют собой сложные и чрезвычайно опасные для окружающей среды процессы, поэтому производство пластиков становится доступным лишь на высоком технологическом уровне. При этом конечные продукты, т.е. пластмассы, как правило, абсолютно нейтральны и не оказывают никакого негативного воздействия на здоровье людей.

www.vseznaika.org

Пластиковая история: от расцвета до заката: Полимеры

На смену самому распространенному материалу — пластику — приходит биопластик. Несмотря на схожесть названия и свойств общего между ними довольно мало

Слово «полимер» — греческого происхождения. Буквально, полимер — это молекула, состоящая из многих («поли») частей («мерос»), каждая из которых представляет собой мономерную, то есть состоящую из одной («монос») части, молекулу. Проще говоря, полимеры — это разветвленные цепочки из обычных молекул, мономеров.

Так выглядит процесс выработки пластика сегодня

Это не фрукт, а гранула крахмала (увеличение 1500 раз), которая накапливает влагу и расширяется, разрушая материал

На наших глазах вилка исчезает

Как растят суперпластик Ученые создали генетически модифицированное растение, в семенах которого содержится органический полимер PHBV. Из него делают саморазрушающийся термопластик. Некоторые виды бактерий вырабатывают полимеры вроде PHBV, используя их как хранилище энергии, как крахмал у растений или гликоген у животных

В XX веке человечество пережило синтетическую революцию. Ее главным завоеванием можно смело назвать изобретение пластика. Сейчас даже трудно представить себе, что еще в начале прошлого века его просто не существовало и все вокруг делалось из модных нынче натуральных материалов.

Игра в мяч

Человечество, можно сказать, доигралось до изобретения пластика. В истории этого материала прослеживается мистическая связь с любовью людей к игре с мячом. Во II веке до нашей эры греки играли в мяч из желчного пузыря свиньи, наполненного воздухом. Этот спортивный снаряд по форме напоминал яйцо или, если угодно, мяч для регби. Уже тогда наши предки искали способ исправить форму мяча и сделать его абсолютно круглым. Древние греки без конца пробовали различные растительные добавки, чтобы придать стенкам свиного пузыря эластичность.

Индейцы майя делали мяч из кожуры плодов, обернутой в натуральный каучук, который они добывали из фикусов. Похожую технологию использовали жители островов Океании и Юго-восточной Азии. До ума, впрочем, ее довели только европейцы. В XIX веке из Малайзии в Европу было привезено гуттаперчевое дерево, из млечного сока которого стали добывать гуттаперчу. Первым изделием из нового материала стали шары для гольфа (а вовсе не цирковые мальчики). Сегодня этот материал используют для изоляции подводных и подземных кабелей и производства клеев.

От мяча эстафетная палочка перешла к бильярду. В 1862 году британский химик Александр Паркес решил придумать дешевый заменитель дорогостоящей слоновой кости, из которой делались бильярдные шары. Результатом стало открытие первого пластификатора.

Сперва Паркес изобрел нитроцеллюлозу. Однако ее свойства не подходили для игральных шаров, так как материал оказался легкобьющимся. Нужна была добавка, которая смягчила бы его, не уменьшив главное полезное свойство — упругость. Паркес решил добавить камфору. Смесь нитроцеллюлозы, камфоры и спирта подогревалась до текучего состояния, далее заливалась в форму и застывала при нормальном атмосферном давлении. Так на свет появился паркезин — первый полусинтетический пластик. Увы, как это часто бывает, его первооткрыватель не добился коммерческого успеха.

Зато последователь Паркеса, американец Джон Хайт, заработал на первом пластике целое состояние. Он основал компанию и стал производить расчески, игрушки и массу других изделий из целлулоида. К сожалению, материал оказался высоковоспламеняемым, поэтому сейчас из него делают лишь шарики для настольного тенниса да школьные линейки.

В 1897 году немецкие химики открыли казеин — протеин, образующийся при сворачивании молока под действием протеолитических ферментов (тех самых веществ, с помощью которых мы перевариваем пищу). Ученые обнаружили, что казеин придает материалам эластичные свойства, а при остывании — твердость и прочность. Из казеина наладили выпуск пуговиц и вязальных спиц.

Первый полностью синтетический пластик был разработан Лео Беикеландом в США в 1907 году. Беикеланд искал синтетический заменитель для шеллака — воскообразного вещества, выделяемого тропическими насекомыми. Его в огромных количествах потребляла граммофонная и электротехническая промышленность: из шеллака делали пластинки и изоляторы. Ученый изобрел жидкое вещество, напоминающее смолу, которое после застывания превращалось в материал с удивительными свойствами. Изделия из него были прочными и не растворялись даже в кислоте. Первые телефонные аппараты были сделаны именно из находки Беикеланда. Пластик мгновенно (менее чем за год) распространился по всему миру.

Начало биоэры

Однако пластик, кроме всех своих замечательных свойств, имеет два важных недостатка. Во‑первых, он производится из невосстанавливаемых природных ресурсов — нефти, угля и газа. Во‑вторых, его главное достоинство — долговечность, — за которым так гнались изобретатели пластика в начале прошлого столетия, сегодня обернулось недостатком. Чем больше пластмассы мы используем, тем быстрее растут горы отходов, которые не разлагаются в среде ни при каких условиях. Миллионы тонн пластика скапливаются в природе, загрязняя окружающую среду.

Поэтому ближе к концу прошлого столетия ученые задумались о том, чтобы создать материал, схожий по свойствам с пластиком. При этом требовалось, чтобы заменитель пластика можно было делать из возобновляемых компонентов (например, растений) и чтоб он был по зубам бактериям, то есть мог разлагаться в природных условиях. В середине 1990-х, как грибы после дождя, стали появляться сенсационные сообщения об изобретении биопластика — пластика из натурального крахмала, разлагающегося под воздействием различных микроорганизмов. Но тогда о крупномасштабном внедрении новшества в нашу повседневную жизнь не могло быть и речи: производство биопластика оказалось слишком дорогим удовольствием.

С наступлением нового века ситуация изменилась кардинальным образом. Ученые нашли способ снизить себестоимость изготовления биопластика и утверждают, что в скором времени она приблизится к стоимости изготовления обычной пластмассы. Более того, некоторые эксперты считают, что цена на разлагаемую пластмассу искусственно завышается коммерческими производителями и нефтяными компаниями (нефтяники не жалуют биопластик потому, что его массовое производство может привести к падению цен на нефть). А ведь, если посчитать затраты на переработку пластмассовых отходов и внести эту цифру в стоимость обычного пластика, еще неизвестно, какой из них будет дороже.

Пластиковые плантации

Обычный пластик не поддается разложению в среде из-за того, что он состоит из слишком длинных полимеров, которые тесно связаны друг с другом. Совсем по‑иному ведет себя пластик, содержащий более короткие натуральные полимеры растений.

Биопластик можно делать из крахмала, который является природным полимером и производится растениями в процессе фотосинтеза. В большом количестве крахмал содержится в злаковых, картофеле и других неприхотливых растениях. Урожай крахмала с кукурузы доходит до 80% от всей собранной зеленой массы. Поэтому производство пластика нового поколения должно стать достаточно рентабельным. Биопластик ломается и крошится при любой температуре, в которой активны микроорганизмы. Остаточными продуктами этого процесса являются двуокись углерода и вода.

Из-за того что крахмал хорошо растворяется в воде, изделия из него легко деформируются при малейшем контакте с влагой. Для того чтобы придать крахмалу большую прочность, его обрабатывают специфическими бактериями, разлагающими полимеры крахмала в мономеры молочной кислоты. Затем химическим способом мономеры заставляют соединиться в цепочки полимеров. Эти полимеры гораздо прочнее, но при этом не так длинны, как полимеры пластмассы, и могут разлагаться микроорганизмами. Полученный материал назвали полилактидом (PLA). В прошлом году в штате Небраска открылся первый в мире завод по изготовлению PLA.

Другой способ получения биопластика заключается в использовании бактерий Alcaligenes eutrophus. В процессе своей жизнедеятельности они производят гранулы органического пластика, получившего название «полигидроксиалканонат» (PHA). Уже были проделаны успешные эксперименты по внедрению генов этих бактерий в хромосомы растений, чтобы те смогли в дальнейшем производить пластик внутри своих собственных клеток. Это означает, что пластик можно буквально выращивать. Правда, такой способ пока остается дорогостоящим. К тому же, так как процесс включает в себя вмешательство на генетическом уровне, он имеет и своих противников.

Кукурузные вилки

Биопластики уже сегодня находят широкое практическое применение во многих странах. Полилактид можно использовать для производства одноразовых подгузников и посуды. Он не вреден для человеческого организма, поэтому не так давно его начали применять в медицине в качестве основы для временных имплантатов и хирургических ниток. «Кукурузные» изделия могут быть сделаны с расчетом на срок самораспада, который требует специфика его употребления. Некоторые виды биопластика растворяются очень быстро, другие могут служить месяцы, а то и годы.

Итальянская компания Novamont уже давно приступила к выпуску биопластика под названием MaterBi. В Австрии и Швеции McDonald’s предлагает в своих ресторанах «кукурузные» вилки и ножи, компания Goodyear выпустила первые биошины Biotred GT3, а магазины Carrefour во Франции, Esselunga в Италии и CoOp в Норвегии продают свои товары в биопластиковых пакетах из того же MaterBi.

Австралийские ученые из Исследовательского международного центра продовольственной и упаковочной индустрии тоже рекламируют свою продукцию из кукурузного крахмала. Среди новшеств — горшки для рассады, которые саморазлагаются в почве под воздействием влаги, и черная пленка, замечательные свойства которой порадуют любого огородника.

Уже появились идеи производства не просто одноразовых биоупаковок, а пищевых упаковок, которые содержали бы в себе специфичные бактерии, убивающие патогены — возбудителей различных болезней. Одним из самых опасных патогенов является бактерия под названием «листерия». Она развивается в пищевых продуктах даже при низких температурах и может стать причиной смертельной болезни, сопровождающейся высокой температурой и тошнотой. Ученые из Университета Клемсон изобрели биопластик, который содержит бактерии низина, не позволяющие листерии размножаться. Низин представляет собой антибиотик, который вырабатывается молочнокислыми бактериями Streptococcus lactis. Он безвреден для живого организма и быстро разрушается ферментами человеческого кишечника.

Есть и другие не менее интересные проекты. Фантазии исследователям не занимать. Так что вполне может статься, скоро горы мусора из долговечного пластика уйдут в прошлое, а на их месте будут построены заводы по выпуску «кукурузных» пластмассовых изделий.

Статья опубликована в журнале «Популярная механика» (№11, Ноябрь 2003).

www.popmech.ru

Полимеры

Пластмассовые изделия, сфера применения

Пластмассовые изделия (полимеры) характеризуются обширной сферой применения. Их используют в автомобилестроении для производства грузовиков, автобусов, мотоциклов и запчастей для них, а также автомобильных двигателей и систем зажигания. Полимеры незаменимы в кораблестроении, в строительстве авиатехники, оборудования для железных дорог, а также военного и космического оборудования.

Из полимеров изготавливают различного вида упаковки: бутылки, контейнеры, мешки, кульки, пакеты, а также чашки и тарелки. Из этих материалов делают бечевки, ленты, посуду одноразового использования.

Производители полимерных изделий изготавливают трубы, акведуки, дренажные и ирригационные и водопроводные системы, софиты, вывески. Они служат для изоляции и в качестве напольных покрытий, панелей и крыш, окон и дверей, их применяют в качестве материалов для отделки стен. Полимеры используют для изготовления сантехники, лестниц, решеток и оград. Разного рода электронику и электротехнику выпускают с применением пластмассовых изделий: телевизоры, холодильники, стиральные машины и кондиционеры, офисную технику, а также осветительные приборы, телефонные аппараты и компоненты электротехники, такие, как полупроводники, резисторы, батареи, провода, кабели. Изделия из пластмассы применяют в производстве радиоприемников, измерительного оборудования. Производство переносных ламп и торшеров, жалюзей и тентов не обходится без полимеров.

Жесткая мебель широкого применения, включая сидения для стадионов и публичных зданий, декоративная мебель с имитацией дерева, подушки, занавески, ставни и навесы – все это производится с участием полимеров.

Широкий спектр применения полимерных материалов известен и в потребительской сфере. Они входят в состав клеев, уплотняющих материалов, рисовальных и печатных красок, эмали, лаков, используются для мелования бумаги. Даже в изготовлении одежды, ручных сумок, багажа, кнопок, украшений, садового и медицинского оборудования, игрушек, спортивных товаров и кредитных карточек нашли применение пластмассовые изделия.

 
Методы переработки полимеров

Самыми популярными методами переработки полимеров являются каландрование и отливка, прямое прессование полимеров и литье под давлением, а также экструзия, холодное, термо- и пневмоформование, формование из расплава, сухое и мокрое формование, вспенивание, армирование.

Формование из расплава, сухое и мокрое формование используются для изготовления волокон, а остальные служат для переработки материалов с пластическими и эластомерными характеристиками в промышленные.

Полимеры задействованы практически во всех сферах деятельности человека, как в промышленности, так и в сельском хозяйстве, а также в медицине, культуре и быту. Они удовлетворяют всем потребностям промышленности.

Появление новых технологий повлияло на функции полимерных материалов в разных отраслях и на способы их получения. Теперь на них возлагаются более ответственные функции. Из этих материалов стали изготавливать более мелкие, но сложные по своей конструкции детали машин и механизмов. Полимеры, или изделия из пластмассы, стали применять в изготовлении крупногабаритных корпусных деталей машин и механизмов, рассчитанных на существенные нагрузки.

 
Способы получения полимеров

Способы получения полимеров разнообразны. Биополимеры являются продуктом жизнедеятельности животных и растений. Из древесины путем экстракции фракционного осаждения или другими методами кожи и шерсти животных получают протеин, целлюлозу, крахмалы, шеллак, лигнин и латекс. Как правило, процессы очистки, модификации биополимеров не влияют на структуру их основных цепей. В результате процесса переработки биополимеров получают искусственные полимеры. К ним относятся латекс, который получают из природного каучука, также целлулоид, получаемый из нитроцеллюлозы, пластифицированный камфарой с целью повышения эластичных свойств.

Особую роль в росте производства и потребления органических материалов сыграли синтетические полимеры. Как природные, так и искусственные полимеры незаменимы в области получения изделия из пластмассы, современной техники и целлюлозно-бумажной индустрии. Синтетические полимеры получают из низкомолекулярных веществ путем синтеза. Они не имеют аналогов в природе. Благодаря синтетическим полимерам произошел резкий толчок в росте производства и использования материалов органического происхождения.

 
Свойства полимеров

Широким применением полимеры обязаны своим свойствам, важнейшими из них являются способность к образованию анизотропных высокоориентированных волокон и пленок, отличающихся высокой прочностью. Для линейных полимеров характерен ряд специфических комплексных физико-химических и механических свойств. За счет своей высокой молекулярной массы линейные полимеры склонны к большим, имеющим длительное развитие, обратимым деформациям. Эти полимеры, находясь в высокоэластичном состоянии, способны набухать, прежде, чем раствориться. Линейные полимеры характеризуются высокой вязкостью растворов. Эти свойства выражены в значительной мере меньше у полимеров с разветвлениями, трехмерными сетками и густыми сетчатыми структурами. Полимеры, сильно сшитые, не обладают растворимостью, не плавятся и не склонны к высокоэластичным деформациям.

Полимерам свойственны, как аморфные, так и кристаллические состояния. Для кристалличесих полимеров необходимо наличие в их структуре регулярных, достаточно длинных участков макромолекул. Кристаллические полимеры часто являются местом зарождения разнообразных надмолекулярных структур, к примеру, фибрилл, сферолитов, монокристаллов и т.д. Типы этих структур в значительной мере влияют на свойства полимерного материала. Незакристаллизированные полимеры реже образуют надмолекулярные структуры и могут находиться в трех физических состояниях: стеклообразном, вязкотекучем и высокоэластическом. Эластомеры, полимеры, способны переходить из стеклообразного в высокоэластическое состояние при низкой температуре. Пластики, наоборот, для этого требуют высокой температуры.

 
Что такое полимеры?

Полимерами являются химические соединения, характеризующиеся высокой молекулярной массой, которая колеблется от нескольких тысяч до нескольких миллионов. Молекулы полимеров называются макромолекулами. Макромолекулы состоят из огромного числа мономерных звеньев, повторяющихся группировок. Атомы в составе макромолекул соединяются между собой посредством главных и (или), так называемых, координационных валентностей. В зависимости от происхождения полимеров различают природные полимеры и синтетические.

Расположение атомов или атомных групп в макромолекулах может быть разнообразным. Они могут быть вытянуты в линию последовательности циклов или быть в виде открытой цепи. Такие полимеры называют линейными, примером может послужить натуральный каучук. Полимеры могут представлять из себя цепи с разветвлениями (к разветвленным полимерам относится аминопектин), а также полимеры трехмерной сетки (сшитые полимеры), к примеру, отвердевшие эпоксидные смолы. Одинаковыми мономерными звеньями характеризуются молекулы гомополимеров.

Полимерам свойственны высокая механическая прочность, эластичность, электроизоляционные свойства и множество других ценных характеристик, что делает их незаменимыми как в быту, так и в разных отраслях промышленного производства. Наиболее широко применяются такие типы полимерных материалов, как пластмасса, резина, волокна, лаки и краски, клеи, а также ионообменные смолы.

 
Виды полимеров

Биополимеры лежат в основе живых организмов и задействованы почти во всех процессах жизнедеятельности.

Широко распространено 12 марок полимеров.

Наиболее активно используется полиэтилен. Он относится к синтетическим термопластичным неполярным полимерам класса полиолефинов. Его получают полимеризацией этилена.


Еще один термопластичный неполярный, получивший обширное применение полимер – полипропилен. Это синтетическое вещество класса полиолефинов, получаемое в результате полимеризации пропилена. Как и полиэтилен, полипропилен – белое твердое вещество.

 

ctekltd.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о