Предел прочности стали на изгиб: Предел прочности на изгиб стали

alexxlab | 18.01.1970 | 0 | Разное

Содержание

Предел прочности при растяжении | Мир сварки

Предел прочности при растяжении
Материалσв
кгс/мм2107 Н/м2МПа
 Металлы
Алюминий8-117,8-10,878-108
Алюминий отожженный9,1-10,958,96-10,7589-108
Бериллий1413,8138
Бронза (91 % Cu + 6 % Sn + 3 % Zn)20-3819,6-37,3196-373
Ванадий18-4517,6-44,2176-442
Вольфрам120-140118,0-137,51180-1375
Вольфрам отожженный71,3-82,569,9-80,9699-809
Дюраль40-5039,2-49,1392-491
Железо кованное40-6039,2-58,9392-589
Гафний35-4534,5-44,2345-442
Золото14-1613,8-15,7138-157
Золото отожженное12,612,4124
Инвар7876,5765
Индий5,15,0550,5
Кадмий6,46,363
Кальций6,1660
Кобальт отожженный49,848,9489
Константан (60 % Cu + 40 % Ni)3231,4314
Латунь (66 % Cu + 34 % Zn)10-209,8-19,698-196
Магний18-2517,6-24,5176-245
Магний литой3029,4294
Медь22-2421,6-23,5216-235
Медь деформированная 20,4-25,520-25200-250
Молибден40-7039,3-68,6393-686
Молибден литой31,430,8308
Никель40-5039,3-49,1393-491
Ниобий35-5034,5-49,1345-491
Ниобий отожженный32,8-41,432,2-40,6320-406
Олово1,7-2,51,7-2,517-25
Олово литое1,5-2,51,5-2,415-24
Палладий18-2017,6-19,6176-196
Палладий литой18,618,2182
Платина24-3423,5-34,0235-34
Родий отожженный5655550
Свинец1,1-1,31,1-1,310,8-12,7
Серебро10-159,8-14,798-147
Серебро отожженное13,813,5135
Сталь инструментальная45-6044,1-58,9441-589
Сталь кремнехромомарганцовистая1551521520
Сталь специальная50-16049-157491-1570
Сталь рельсовая70-8068-78687-785
Сталь углеродистая32-8031,4-78,5314-785
Тантал20-4519,6-44,2196-442
Титан25-3524,5-34,5245-345
Титан отожженный3029,6296
Хром30-7029-69294-686
Цинк11-1510,8-14,7108-147
Цирконий25-40
24,5-39,3
245-393
Чугун10-129,8-11,898-118
Чугун ковкий2019,6196
Чугун серый мелкозернистый21-2520,6-24,5206-245
Чугун серый обыкновенный14-1813,7-17,7137-177
 Пластмассы
Аминопласт слоистый87,878
Асботекстолит6,5-11,96,4-11,764-117
Винипласт4-63,9-5,939-59
Гетинакс15-1714,7-16,7147-167
Гранулированный сополимер43,939
Древесно-слоистый пластик ДСП-Б (длинный лист)2221,6216
Древесный коротковолнистый волокнит К-ФВ2532,9429,4
Капрон стеклонаполненный15-1814,7-17,6147-176
Пенопласт плиточный0,060,060,59
Пенопласт ФК-200,170,171,7
Полиакрилат (оргстекло)54,949
Полиамид наполненный П-685-64,9-5,949-59
Полиамид стеклонаполненный СП-687,4-8,57,3-8,373-83
Поливинилхлорид неориентированный3-52,9-4,929-49
Поликапроамид6,0-6,55,9-6,459-64
Поликапроамид стеклонаполненный12,9-15,012,7-14,7127-147
Поликарбонат (дифион)6,0-8,95,9-8,759-87
Поликарбонат стеклонаполненный12,5-15,012,3-14,8123-148
Полипропилен ПП-12,52,525
Полипропилен стеклонаполненный5,65,555
Полистирол стеклонаполненный7,4-10,57,3-10,373-103
Полистирол суспензионный ПС-С4,03,939
Полистирол эмульсионный А3,5-4,03,4-3,934-39
Полиформальдегид стабилизированный6-75,9-6,959-69
Полиэтилен высокого давления кабельный П-2003-51,20-1,391,18-1,3711,8-13,7
Полиэтилен высокого давления П-2006-Т1,391,3713,7
Полиэтилен низкого давления П-4007-Э2,202,1621,6
Полиэтилен среднего давления2,70-3,292,65-3,2326,5-32,3
Стекло органическое ПА, ПБ, ПВ54,949
Стеклотекстолит3029,4294
Текстолит графитированный98,888
Текстолит поделочный ПТК109,898
Фаолит А1,731,717
Фенопласт текстолитовый8-107,8-9,878-98
Фторопласт 33-42,9-3,929-39
Фторопласт 421,9619,6
Целлон43,939
 Дерево
Бамбук2221,6216
Береза76,969
Бук87,878
Дуб87,878
Дуб (при 15 % влажности) вдоль волокон9,59,393
Ель54,949
Железное дерево2221,6216
Сосна54,949
Сосна (при 15 % влажности) вдоль волокон87,878
 Минералы
Графит0,5-1,00,5-0,94,9-9,8
 Различные материалы
Бакелит2-31,96-2,9419,6-29,4
Гранит0,30,292,9
Кетгут4241,2412
Лед (0 °С)0,10,0980,98
Нити кварцевые9088,3883
Нити шелковые2625,5255
Паутина1817,6176
Стекло органическое43,939

Влияние Предел прочности при изгибе

Следует отметить, что влияние кристаллизации под давлением на форму, размеры и характер распределения графита сохраняется и после термической обработки чугуна [88, 90]. Кроме того, термическая обработка чугуна при всех режимах прессования кристаллизующейся отливки способствует повышению механических свойств. Так, применение давления во время кристаллизации увеличивает предел прочности при изгибе серого чугуна в 1,5 раза, стрелу прогиба — в два раза (в литом состоянии) после последующей термической обработки они возрастают в 2 и 7,6 раза соответственно [88].  [c.133]
В [7.13] исследовано влияние атмосферных воздействий (ветра, дождя и др.) на пределы прочности при изгибе композитов. Образцы примерно в течение двух лет находились в природных условиях. Полученные результаты показали, что влияние атмосферы на слоистый материал из полиэфирной смолы, упрочненной стекловолокном, оказывается небольшим. На рис. 7.12 в качестве примера показано изменение предела прочности на изгиб во времени.  
[c.210]

Время пребывания в воде также оказывает влияние на предел прочности при изгибе и удельную ударную вязкость капрона и полиамида П-68 (рис. 24).  [c.59]

Из полученных в работе данных видно (табл. 3.10), что стабилизация изменения предела прочности при изгибе без концентратора наступала после облучения флюенсом Зх X 10 нейтр./см . Наличие концентратора замедляло достижение состояния насыщения. Отношение пределов прочности при изгибе без концентраторов и с ними по мере увеличения флю-енса снижается от 3 (необлученные образцы) до 1,85 после облучения флюенсом 3,7-10 ° нейтр./см . Следовательно, влияние различного рода технологических дефектов, трещин, пор, а также конструктивных концентраторов напряжения и т. д. не усугубляется облучением.  

[c.132]

Влияние температуры пропарки на предел прочности при изгибе образцов армированного портландцементного камня  [c.145]

В габл. 2 приведены данные о влиянии температуры пропарки на предел прочности при изгибе армированного портландцементного камня. Наибольшую прочность после пропарки имеют армированные образцы, твердевшие при 60° С в течение 8 час. С повышением температуры пропарки до 90° С прочность портландцементного камня, армированного стекловолокном без покрытия, заметно снизилась, что вызвано деградацией стекловолокна под действием среды твердеющего портландцемента, а прочность портландцементного камня, армированного стекловолокном с полиорганосилоксановым покрытием, почти не изменилась. Проведенные исследования показывают, что полиорганосилоксановое покрытие достаточно хорошо защищает стекловолокнистую арматуру от разрушения в среде твердеющего портландцементного камня.  [c.145]


Рис. 21. Влияние пористости на предел прочности при изгибе горячепрессованного карбида титана
ТАБЛИЦА 65. ВЛИЯНИЕ ТЕМПЕРАТУРЫ ЗАКАЛКИ И УСЛОВИЙ ОТПУСКА НА ПРЕДЕЛ ТЕКУЧЕСТИ ПРИ СЖАТИИ И ПРЕДЕЛ ПРОЧНОСТИ ПРИ ИЗГИБЕ ЛЕДЕБУРИТНЫХ СТАЛЕЙ, СОДЕРЖАЩИХ 12% Сг И РАЗЛИЧНОЕ КОЛИЧЕСТВО УГЛЕРОДА И ВАНАДИЯ  [c.195]

ТАБЛИЦА 91. ВЛИЯНИЕ ТЕМПЕРАТУРЫ ЗАКАЛКИ И УСЛОВИЙ ОТПУСКА НА ПРЕДЕЛ ТЕКУЧЕСТИ ПРИ СЖАТИИ И ПРЕДЕЛ ПРОЧНОСТИ ПРИ ИЗГИБЕ БЫСТРОРЕЖУЩИХ СТАЛЕЙ МАРОК R6 и R10  [c.224]

Предел прочности при изгибе зависит от термической обработки, состояния поверхности и состава стекла. Царапины на выпуклой стороне образца уменьшают сопротивление изгибу, а на вогнутой стороне — не оказывают влияния.  [c.323]

При ударных нагрузках лучше в 1,5—3 раза сопротивляются ударному изгибу вязкие породы (ясень, дуб), хуже — хрупкие хвойные породы (сосна, ель, пихта). Прочность древесины зависит от скорости нагружения чем медленнее прикладывается нагрузка, тем меньше величина предела прочности. Еще большее влияние на предел прочности оказывает время воздействия нагрузки. На рис. 258 показана зависимость предела прочности при изгибе от длительности нагружения (по Ф. П. Белянкину). Со временем  [c.483]


В работе была поставлена также задача изучить влияние мало разработанного и не получившего какого-либо распространения в отечественной практике процесса высокотемпературной газовой цементации и нитроцементации (газового цианирования) на механические свойства и износостойкость углеродистых сталей обыкновенного качества. При изучении механических свойств было исследовано влияние режима высокотемпературной газовой цементации и нитроцементации одновременно на предел прочности при изгибе, разрыве и кручении, на ударную вязкость, усталостную прочность и износостойкость сталей.  [c.5]

Влияние абсолютных размеров квадратных цементованных образцов на предел прочности при изгибе стали Ст. 5 исследовал Н. П. Щапов [125].  [c.26]

Влияние температуры отпуска на предел прочности при изгибе  [c.69]

Влияние температуры отпуска на предел прочности при изгибе изучалось на таких же образцах, которые подвергались нитроцементации.  [c.139]

Влияние длительности выдержки при нитроцементации на предел прочности при изгибе  [c.139]

По-видимому, имеется связь между температурой термического разрушения и радиационной стойкостью. Возможность свободного вращения и изгиба метильной группы алифатического амина обусловливает получение литых смол с низкой температурой термического разрушения и, наоборот, устойчивость ароматических отвердителей обусловливает получение материалов с высокой температурой термического разрушения и с повышенной радиационной стойкостью [1а]. Увеличение предела прочности при изгибе, наблюдаемое в некоторых системах на начальной стадии облучения, но-видимому, связано с реакцией остаточных этоксильных групп под влиянием излучения.  [c.60]

Румынские ученые изучали влияние присадки 0,85—3,85% V на механические свойства и структуру белого чугуна, содержащего 3,40—3,52% С, 0,68—0,75% Si, 0,60—0,65% Мп и предназначенного для изготовления дробильных шаров и корпусов цементитных мельниц. Чугун, содержащий 3,85% V, в литом состоянии имел более высокое сопротивление истиранию по сравнению с термообработанными чугунами, содержащими хром или никель-Ьхром. Временное сопротивление возросло на 70% и составило 550 МПа, предел прочности при изгибе повысился от 650 до 800 МПа. Твердость чугуна HV 5,32 кН/мм2) практически не меняется в процессе легирования, а микротвердость перлита возрастает вдвое. Увеличение  [c.65]

Известны работы [7.10], в которых изложены результаты исследований изменения прочности слоистого композита из полиэфирной смолы и стеклоткани из ровницы при нахождении этих материалов в пресной и морской воде. Результаты, приведенные на рис. 7.9, показывают, что для рассматриваемого материала предел прочности на изгиб и предел прочности на сжатие уменьшаются [7.10]. Причины этого падения могут быть самыми разнообразными. В частности, в [7.11], а также в [7.10] указано, что на прочность композита существенное влияние может оказывать пропитывание материала водой. Проведение испытаний на усталостный изгиб в воде показало, что вода оказывает значительное влияние на снижение усталостной прочности. На рис. 7.10 в качестве примера приведены некоторые результаты экспериментальных исследований влияния времени пребывания в воде на предел прочности при изгибе. Самжин и Уилльямс [7.12] сопоставили результаты исследования на усталость в воздухе и воде эпоксидной смолы, армированной в одном направлении углеродным волокном. Результаты этого исследования представлены на рис. 7.11. Видно, что в воде усталостная прочность композита оказывается ниже.  [c.209]

Графит — хрупкий материал. По этой причине (а также учитывая его неоднородность) размеры — масштабный фактор — геометрически подобных образцов оказывают влияние на результаты определения прочностных характеристик. В этой связи авторы работы [58, с. 181] рекомендуют оптимальные размеры образцов для различных видов испытаний. Так, предел прочности при сжатии графита с плотностью 1,6 г/см и выше следует определять на образцах диаметром 20 мм и высотой 40 мм. Испытания при растяжении рекомендуют проводить на образцах галтельного типа общей длиной 130 мм и диаметром рабочей части 20 мм (для мелкозернистых материалов диаметр образца 10 мм). Для определения предела прочности при изгибе за стандартные приняты призматические образцы с размерами 20x20x100 мм.  [c.73]

Облученные образцы вместе с необлученными контрольными образцами иепытывали на растяжение на машине МР-0,5 со специальными захватами с тензометрическими датчиками, позволяющими регистрировать усилие и деформацию образцов на двухкоординатном потенциометре типа ПДС. Для исключения влияния неоднородности материала определение предела прочности при изгибе и динамический модуль упругости измеряли на образцах, которые высверливали полой фрезой из половинок галтельного образца, оставшегося после испытания на растяжение. Предварительно была установлена допустимость такого рода испытаний на образцах, изготовленных из ранее разрушенного материала. При этом предел прочности при изгибе измеряли на настольной испытательной машине с максимальным усилием 30 кгс. Усилие прилагалось по центру образца длиной 40 мм и диаметром 6 мм, расстояние между юпорами составляло 30 мм. Динамический модуль упругости измеряли ультразвуковым методом. Из оставшихся после определения предела прочности при изгибе половинок образца нарезали образцы высотой 10 мм, на которых определяли предел прочности при сжатии.  [c.128]


Изучали влияние кремния, вольфрама и ванадия (табл. 21) на прокаливаемость, склонность к перегреву, устойчивость против отпуска, технологичность при ковке и термической обработке и предел прочности при изгибе базовой стали 7бХ. В соответствии с вводимым легирующим элементом исследуемые стали разделены на три группы I — хромокремнистые II —хромовольфрамовые III —хромованадиевые. IV группу составляют стандартные стали 9Х и 9Х2СВФ.  [c.80] Твердость сплавов непрерьтно возрастает с увеличением содержания углерода с 12 до 14,2 %, в то время как предел прочности при изгибе изменяетея в зтом интервале по кривой с максимумом при содерзкании углерода 12,2 %. Нижний предел содержания углерода (11,7 %) обусловлен тем, что при меньшем его количестве образуется хрупкая фаза NijTi и прочность сплава резко снижается. Экстремальный характер зависимости прочности твердых сплавов системы Ti -Ni-Mo от содержания углерода объясняется противоположным влиянием содержания углерода на два фактора, определяющие прочностные свойства сплава.  [c.73]

Ишибаши считает, что введение 8—20 % ниобия не оказьтает влияния на предел прочности при изгибе и твердость сплава, в то время как трещиностойкость по Палмквисту максимальна в сплавах с 14-17 % Nb [115].  [c.78]

Влияние небольших концентраций нитрида титана (0-10 %) на предел прочности при изгибе и твердость сштава Ti – 22,5 Ni — 10 М02С представлено на рис. 48 [118].  [c.87]

Рис. 61. Влияние содержания хрома (в), инкеля (б) н молибдена (в) в сплавах с 40 % Ti – 60 % Fe и углерода (г) в сплавах с 40 и 50 % Ti – сталь Х9 на предел прочности при изгибе, ударную вязкость и твердость
В штамповых сталях Для холодного деформирования температура эксплуатации которых не превышает 350—400 °С содержание кремния может достигать 3 О—5 О % При этом существенно pa tyT твердость и сопротивление малым пластическим деформациям (предел упругости), но снижается предел прочности при изгибе и особенно ударная вязкость На рис 224 показано влияние кремния и кобальта на механические свойства штамповых сталей типа 4Х4В2Ф2М  [c.383]

Все эти факторы повышают также твердость стали, поэтому с хорошим приближением можно считать, что чем больше твердость инструментальной стали, тем выше предел ее текучести. Однако с увеличением твердости плa тичнo tь инструментальных сталей снижается, поэтому при HR >50- 55 речь может идти только о пределе текучести при сжатии. При растягивающей нагрузке такие стали уже при небольшой нагрузке хрупко разрушаются. На рис. 18 представлена деформадионная способность инструментальных сталей с большим пределом текучести при сжатии. На рис. 18 указано влияние предела текз чести при сжатии на изменение предела прочности при изгибе, определение которого считается более целесообразным, чем предела прочности при растяжении.  [c.34]

ТАБЛИЦА 89. ВЛИЯНИЕ УСЛОВИЙ ОТПУСКА , НА ПРЕДЕЛ ПРОЧНОСТИ ПРИ ИЗГИБЕ И ТЕПЛОСТОЙКОСТЬ ( HR 59) БЫСТРОРЕЖУЩИХ СТАЛЕЙ  [c.222]

Изменения предела прочности и предела текучести при изгибе, твердости быстрорежущих сталей марки R6, закаленных с различных температур, в зависимости от температуры отпуска приведены в табл. 90. Температуры нагрева под закалку, обеспечивающие наибольшую твердость и наибольший предел прочности при изгибе, тоже не совпадают, но путем вариаций температур отпуска можно установить оптимальное значение для того и другого. Предел прочности на изгиб и ударная вязкость быстрорежущей стали марки R6, полученной с помощью электрошлакового переплава, при той же твердости существенно выше тех же характеристик стали с более неоднородной структурой. Данные о влиянии трехкратного отпуска по одному часу на предел прочности при изгибе быстрорежущих сталей марок R6 (6—5—2) и R10 (2—8—1) приведены в табл. 91. Предел прочности на изгиб быстрорежущей стали типа 6—5—2, полученной путем электрошлакового переплава, в случае, почти такого же предела текучести при сжатии немного меньше, чем быстрорежущих сталей типа 2—8—1, легированных почти исключительно молибденом, но существенно больше, чем у сталей, содержащих 18 % W (см. табл. 78). Данные о влиянии температуры закалки на предел прочности при изгибе и работу разрушения при изгибе в продольном и поперечном направлениях для сталей марки R6, полученных электрошлаковым переплавом и обычного качест,-ва, приведены в табл. 92. Благоприятное воздействие электрошлакового переплава очевидно как в продольном, так и в поперечном направлениях. Значительно уменьшается анизотропия свойств.  [c.225]

Кроме температуры, большое влияние на твердость, работу разрушения при изгибе образцов, а также пределы прочности и текучести при изгибе быстрорежущей стали марки R6 оказывает продолжительность выдержки при температуре закалки (табл. 93). Для увеличения твердости и предела прочности при изгибе необходимо в определенной степени растворение карбидов. Для повышения твердости нобходимо ввести в раствор больше карбидов (12—14%), чем требуется (9—11%) для достижения наибольшего значения ТАБЛИЦА 92. ВЛИЯНИЕ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА И ТЕМПЕРАТУРЫ ЗАКАЛКИ НА ПРЕДЕЛ ПРОЧНОСТИ И РАБОТУ РАЗРУШЕНИЯ ПРИ ИЗГИБЕ БЫСТРОРЕЖУЩЕЙ СТАЛИ МАРКИ R6  [c.225]

Проведенные в НИИСтройкерамике исследования показали, что в интервале температур 200—800° С предел прочности при изгибе масс постепенно увеличивается, изменяя свои значения примерно с 35 до 70—100 кГ/см , в то время как модуль упругости до 500° С уменьшается с 52—66 до 41—47 тыс. кГ/см , а затем начинает увеличиваться, достигая при 800° С величины 57— 68 тыс. кГ1см . Такое изменение упругих свойств не оказывает существенного влияния на продолжительность обжига в указанном интервале.  [c.136]

В табл. 22 показано влияние высокотемпературных методов ГТ и ДТ на прочность различных твер, 1ых сплавов. Результаты исследований свидетельствуют об отрицательном влиянии на прочность процессов ГТ и ДТ. В частности, для покрытий ГТ (Ti и Ti —Ti N—TiN) снижение предела прочности при изгибе Ои достигает 20—30 %, а для покрытий Ti ДТ даже 35—40 %). Однако несколько стабилизируются показатели прочности, о чем свидетельствует увеличение коэффициента однородности т после нанесения покрытий Ti ГТ, Ti —Ti N ГТ, Ti ДТ- Полученные данные по изменению прочности твердых сплавов при нанесении на них покрытий высокотемпературными методами полностью коррелируют с данными работы [15]. Следует отметить минимальное снижение прочности для твердых сплавов с покрытием Ti — Ti N—TiN, что, несомненно, связано с жесткой регламентацией  [c.87]


Как уже отмечалось, скорость охлаждения втулок после спекания также оказывает большое влияние на свойства готовых изделий. Так, по данным работы [9], втулки имеют следующие свойства при охлаждении в масле предел прочности при изгибе равен 65,2 кГ/млс , твердость по Бринелю 222 кГ1мм , при обдувке воздухом соответственно 50,3 и 72,8 кГ1мм , а при охлаждении в холодильнике 35,4 и 87,3 кГ1мм .  [c.359]

Сравнивая значения предела прочности прп изгибе образцов диаметром 10 и 25 мм, изготовленных из одной и той же стали, подвергавшихся нитроцементации одновременно в печг. и по одному и тому же режиму, можно сделать вывод, что у образцов большего диаметра (25 мм) предел прочности при изгибе меньше, чем у образцов диаметром 10 мм. В этом случае ока зывает свое влияние масштабный фактор. Как известно, с увеличением абсолютных размеров образцов мехаг1ические свойства — предел прочности при изгибе и предел усталости — понижаются.  [c.141]


Сталь предел прочности – Справочник химика 21

    Сталь Предел прочности при сдвиге — 270 160 280 300 285 260 [c.95]

    С понижением температуры для сталей предел прочности, предел текучести и модуль упругости возрастают относительное удлинение и относительное сужение уменьшаются незначительно, а ударная вязкость резко уменьшается. Явлению падения ударной вязкости (хладноломкости) подвержены как углеродистые, так и легированные стали. [c.14]


    Наименование стали Марка стали Предел прочности при растяжении в кг/мм Относительное удлинение в % [c.16]

    Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести). [c.66]

    Марка стали Предел прочности, кГ/мм Относительное удлинение. % [c.69]

    Марка стали Предел прочности при растяжении, кГ/мм Относительное удлинение, % Марка стали Предел Прочности при растяжении. кГ/мм Относительное удлинение, % [c.46]

    Марка стали Предел прочности Ов. МПа Предел усталостной прочности образцов о , МПа  [c.45]

    Марка стали Предел прочности Ста в кГ/мм Предел текучести Ог в кГ/мм Относительное удлинение б в % Твердость НВ [c.14]

    Стали Предел прочности Относительное удлинение а, % Относительное сужение Г, % Склонность к коррозионному растрескиванию [c.107]

    Примечания 1. Приведены свойства горячекатаной стали в продольном направлении. 2. У холоднотянутой стали предел прочности на 25—35% больше, а относительное удлинение — почти в три раза меньше, чем У горячекатаной. [c.19]

    Механическая прочность стали (предел прочности, предел текучести, ударная вязкость) с повышением температуры снижается, как это показано в отношении предела прочности на рис. 1. [c.17]

    Асбест обладает высокой прочностью на растяжение вдоль оси волокнистости и превышает прочность стали. Предел прочности при растяжении нераспущенного асбеста — 300 кг/мм. При распушке вследствие деформации части волокон эта прочность снижается и составляет 60—80 кг/мм.  [c.415]

    Явлению ползучести наиболее подвержены обычные конструкционные углеродистые стали, предел прочности которых при нагревании свыше 573 К (300 °С) резко уменьшается. Легированные и особенно жаропрочные стали при высоких температурах изменяют свои механические свойства незначительно. Однако даже при правильном выборе материала опасность повреждения аппаратов и трубопроводов при действии высокой температуры не устраняется полностью вследствие возможности нарушения температурного режима. [c.43]

    Представление о низкой адгезионной способности политетрафторэтилена справедливо для твердого полимера. Используя давление и температуру, превышающую точку плавления кристаллитов фторопласта-4 (420—430 °С), этот полимер -можно применить в качестве клея для соединения стали. Предел прочности клеевых соединений при сдвиге и равномерном отрыве достигает 130—150 кгс/см , при неравномерном отрыве — 100 кгс см. Соединения нержавеющей стали, оклеенные фторопластом-4, стойки к действию агрессивных химических агентов . [c.207]

    Марки сталей Предел прочности, кгс/мм= Предел текучести, кгс/мм- Относительное удлинение, % Относительное сужение поперечного сечения. % Ударная вязкость, кгс-м/см Число твердости по Бринеллю, НВ [c.125]

    Марка стали Предел прочности, кгс/мм Предел текучести, кгс/мм Предел выносливости при изгибе симметричный цикл), кгс/мм ” Предел выносливости при сдвиге (симметричный цикл), кгс/мм  [c.111]

    Механические свойства незакаленной стали предел прочности 64 кг мм относительное удлинение 17%) твердость по Бринелю 180—217. [c.21]

    Стали Предел прочности при температуре 20 °С Угол изгиба, не менее, при толщине стенки Ударная вязкость (А-С О.Дж/см (кгс- м/см ), не менее, при температуре испытаний  [c.111]

    Нормы механических испытаний сварных соединений трубопроводов из углеродистых сталей предел прочности — не ниже предела прочности основного металла угол загиба не ниже 100° при дуговой сварке и не ниже 70° при газовой сварке ударная вязкость — не ниже 6 кгс м/см . [c.164]

    С увеличением степени обжатия периферии и сердцевины сечения заготовки кованой стали пределы прочности, текучести и пропорциональности независимо от направления волокна не изменяются, и разницы в этих свойствах стали образцов с продольным направлением волокна по сравнению с поперечным практически не существует. Имеет место колебание этих механических свойств в пределах 2—8% при иовышении степени обжатия. [c.50]

    Из таблицы видно, что с увеличением твердости сердцевины образца из хромоникелевой стали максимальное усилие, приводящее к излому, увеличивается. Объясняется это тем, что у стали с менее твердой сердцевиной пластическая деформация при изгибе наступает при меньшей нагрузке, и цементованный слой перегружается скорее. У такой стали предел прочности цементованного слоя будет превзойден раньше, чем у стали с более твердой сердцевиной, в результате этого сталь разрушается при меньшей нагрузке и меньшей стреле прогиба, при условии одинаковой прочности цементованного слоя в обоих случаях. [c.28]

    Механические свойства сталей роторов. С повышением температуры механические свойства, характеризующие прочность сталей, понижаются, а пластические свойства увеличиваются. У конструкционной малолегированной стали предел прочности до температуры 300—350° С практически не меняется, а предел текучести снижается на 15— 20% [50]. [c.133]


    Механические свойства образцов этих сталей (предел прочности при изгибе и растяжении в нормализованном состоянии и после цементации с последующей закалкой и отпуском) приведены выше (см. табл. 3 и 5). [c.33]

    Согласно работе [ arras o,1978], цилиндрическая часть цистерны бьша выполнена из низкоуглеродистой стали, предел прочности при разрыве которой составлял 81,2кг/мм2 ц данным фирмы-изготовителя цистерны, а торцевые части были выполнены из стали другой марки с пределом прочности при разрыве [c.216]

    Аустенитные стали (типа Х18Н9Т) обладают значйтель-ной способностью сопротивляться хрупкому разрушению в местах концентрации напряжений при температуре 1Шдкого водорода. Основными недостатками таких сталей является дефицитность никеля, а также невысокие прочностные свойства сталей (предел прочности равен 0,55 ГПа, предел текучести – 0,2 ГПа). Поэтому проводятся работы по уменьшению содержания никеля за счет увеличения содержания марганца и легирования азотом. [c.123]

    Марка стали Предел прочности при растяжении Ов, кг/.иж Предел текучести От, кг/мм Относи- тельное удлине- ние 651 % Относительное сужение поперечного сечения Р, % Ударная вязкость Число твердости по Бринел-лю Нв [c.135]

    Высокопрочный чугун с шаровидным графитом (ВЧШГ) отличается от серого чугуна с пластинчатой формой графита тем, что обладает высокими прочностными свойствами, близкими к свойствам углеродистой стали (предел прочности при растяжении, предел текучести и относительное удлинение), и повышенной коррозионной стойкостью. Основные требования к трубам, серийно производимым ОАО Липецкий металлургический завод Свободный сокол , к их качеству, механической прочности и т. д. определены техническими условиями ТУ 14-154-23—90, соответствующими требованиям международного стандарта ISO 2531. Напорные трубы отливаются центробежным способом из высокопрочного чугуна с шаровидным графитом и имеют следующий химический состав (табл. 3.1.6.11). [c.867]

    Сталь Предел прочности кПсмг Предел упругости к Г см Относительное удлинение, % Относительное сужение, % Ударная вязкость кГм/смг  [c.18]

    На диаграмме (фиг. 29), построенной нами по данным, приведенным в работе В. Я. Дубового, В. А. Романова [33], показано изменение предела прочности, текучести и пропорциональности сталей марок 1020, ШД-15, 25ХНМА в зависимости от концентрации электролитического водорода С . Как видно из диаграммы, с увеличением концентрации водорода в стали предел прочности снижается, а предел текучести повышается с различной интенсивностью для различных сталей. [c.80]

    Найдено, что отпуск хромированных образцов из сталей ЗОХГСА и 45 при температурах 100—300° С не приводит к улучшению механических свойств сталей (предела прочности при растялотносительного удлинения, работы разрушения). [c.264]

    Сталь Предел прочности, кго/см Предел упр-угостп, кгс/см> Относительное удлинение, % Относительное сужение, % Ударная вязкость, кгс-м/см  [c.20]

    Марка стали Предел прочности при растяжении Оц, кг1мм Предел текучести 0т, кг/мм Относи- тельное удлине- ние б5, % Относи- тельное сужение попереч- ного сечения % Ударная вязкость Яп, кгм1см Число твердости по Бринел-лю Яв [c.135]

    С понижением температуры для сталей предел прочности Оь, предел текучести Оа, модуль упругости Е возрастают относительное удлинение б и относительное сужение тр изменяются незначительно, но сильно падает ударная вязкость а . Явлению падения ударной вязкости (хладнохрупкости) подвержены как углеродистые, так и легированные стали. [c.24]

    Марка стали Предел прочности при растяжении, МПа Относительное удлинение, % Твердость по Бринеллю, МПа Вид термическо” обработки [c.55]

    Марка стали Предел прочности при растяжении, МПа Относитель- ное удлинение, % Твердость по Бршеллю, МПа Вид термической обработки [c.61]

    Прочность и пластичность хромированной стали. Предел прочности стали, определяемый при статическом растяжении, практически не изменяется после хромирования. Основное изменение претерпе- [c.44]

    Марка стали Предел прочности, МПа Среднее число циклов. до разрушения Процент от нехромиро-ваниой стали. % [c.47]

    Марка стали Предел прочности при растяжении = вр- кГ1мм Предел текучести кГ1мм не менее Относительное удлинение, %  [c.308]

    Л айлендер [18] на пластинах из хромованадиевой и хромо ни-кельвольфрамовой сталей, предел прочности которых после термической обработки был равен 135 кГ1мм , установил разницу в значении предела выносливости у образцов с продольным и поперечным расположением волокон в пределах от 19 до 28%. [c.27]

    Марка стали Предел прочности в к[ 1мм Предел текучести в кГ/мм Относительное сужение в % Относительное удлинение 0 в % Уд рная вязкость в кГм/мм  [c.14]

    Марка стали предел прочности при растяжении , в кг. чм Предел текучести “г > кГ1мм Относи- тельное сужение в о 0т1 0си- телыюе удлинение 0 и Г а Ударная вязкость л- кГм см Преде.1 прочности при изгибе п к1 /. .  [c.116]


Прочность (предел прочности) – Свойства материалов

Предел прочности определяют в лабораториях на прессах или разрывных машинах. В таблице приведены значения пределов прочности при сжатии и растяжении для некоторых строительных материалов.

Пределы прочности некоторых материалов при сжатии и растяжении

Материалы Предел прочности в кг/см2
при сжатии при растяжении
Бетон25 — 8003 — 30
Кирпич глиняный обыкновенный75 — 200
Гранит1500 — 250020 — 45
Сталь строительная3800 — 4500Более 4500
Сосна450 — 5001200

Иногда прочность строительных материалов характеризуют маркой. Последняя определяется пределом прочности при сжатии или изгибе, полученном при испытании образцов стандартной формы и размеров.

Для строительных материалов, получаемых с использованием минеральных вяжущих веществ, марку устанавливают в возрасте, предусмотренном ГОСТ.

Установлены следующие марки для каменных материалов: 4, 7, 10, 15, 25, 35, 50, 75, 100, 150, 200, 300, 400, 500, 600, 800 и 1000. Когда говорят марка «150», — это значит, что предел прочности данного материала при сжатии находится в пределах 150 — 199 кг/см2.

Несколько более сложной, чем при сжатии и растяжении, является работа материала при изгибе.

«Материаловедение для штукатуров,
плиточников, мозаичников»,
А.В.Александровский

справочник-сталь тонколистовая,

Краткие сведения

Марка 316 — улучшенная версия 304, с дополнением молибдена и немного более высоким никелевым содержанием. Данная композиция делает 316 значительно повышает коррозионное сопротивление в большинстве агрессивных средах. Молибден делает сталь более защищенной от питтинговой и щелевой коррозии в хлористой среде, морской воде и в парах уксусной кислоты. Более низкий показатель общей коррозии в слегка коррозионных средах дает хорошее коррозионное сопротивление в загрязненной и морской атмосфере.

316-я обладает более высокая прочностью и имеет лучшее сопротивление ползучести в более высоких температурах, чем 304. 316 ТАКЖЕ обладает отличными механическими и коррозионными свойствами в под-нулевых температурах. Когда есть опасность коррозии в околошовных сварных зонах , 316L должно быть использовано низко-углеродная марка — 316L. 316 Ti, стабилизированная титаном версия, используется для сопротивления сенсибилизации в течение продолжительного времени в температурном диапазоне 550oC -800oC.

Область применения

Из-за своего выдающегося сопротивления коррозии и окислению, хороших механических свойств и технологичности, 316 имеет приложения во многих секторах промышленности. Некоторые из них включают:

Баки и судна для хранения коррозионных жидкостей.

Специализированное промышленное оборудование в химическом, продовольственном, бумажно-целюлозном, горнодобывающем, фармацевтическом и нефте-химическом секторах экономики..

Архитектурные приложения в очень коррозионных средах.

Химический Состав (ASTM A240)

 
C
Mn
P
S
Si
Cr
Ni
Mo
Ti
316 
316L 
316Ti
0.08 max 
0.03 max 
0.08 max
2.0 
max
0.045 
max
0.030 
max
1.0 
max
16.0 
to 
18.0
10.0 
to 
14.0
2.00 
to 
3.00
– 
0.5 max 
5X%C

Типичные Свойства в Отожженном Состоянии

Свойства, указанные в этой публикации типичны для производства одного из заводов и не должны быть расценены как гарантируемые минимальные значения для целой спецификации.

1. Механические Свойства при комнатной температуре

 
316
316L
316Ti
 
Типичн
Min
Типичн
Min
Типичн
Min
Rp m
Предел прочности (при растяжении), N/mm2
580
515
570
485
600
515
Rp0,2
Предел Упругости(текучесть), (0.2 %), N/mm2
310
205
300
170
320
205
удлинение (% in L = 5.65 So)
55
40
60
40
50
40
Твердость по Бринеллю – НВ
165
-
165
-
165
-
Органолептическая проба Эриксена, мм
8 – 10
-
10 – 11
-
-
-
Усталостная прочность, N/mm2
260
-
260
-
260
-

2. Свойства при высоких температурах

Все эти значения относятся только к 316 и 316 Ti . 
Для 316L значения не приводятся, потому что её прочность заметно уменьшается выше 425oC.

Предел прочности при повышенных температурах

Температура,oC
600
700
800
900
1000
Rp m
Предел прочности (при растяжении), N/mm2
460
320
190
120
70

Минимальные величины Предела Упругости (Ползучесть) при высокой температуре (деформация в 1 % за 10 000 часов)

Температура, oC
550
600
650
700
800
Rp1,0
1.0% пластичная деформация (текучесть) N/mm2
160
120
90
60
20

Максимум, рекомендованных Температур Обслуживания 
(Условия окисления)

Непрерывное воздействие 925oC 
прерывистые воздействия 870oC

3. Свойства в низких Температурах (316)

Температура
oC
-78
-161
-196
Rp m
Предел прочности (при растяжении), N/mm2
N/mm2
400
460
580
Rp0,2
Предел Упругости, (0.2 %),
(условный предел текучести) N/mm2
N/mm2
820
1150
1300
Ударная вязкость
J
180
165
155

4. Сопротивление Коррозии

4.1 Кислотные среды

примеры приводятся для некоторых кислот и их растворов (наиболее общие значения) 

Температура, oC
20
80
Концентрация, % к массе
10 
20
40 
60 
80 
100
10
20
40
60
80
100
Серная Кислота
0
1
2
2
1
0
2
2
2
2
2
2
Азотная Кислота
0
0
0
0
0
1
0
0
0
0
1
2
Фосфорная Кислота
0
0
0
0
1
2
0
0
1
2
Муравьиная Кислота
0
0
0
1
1
2
0
0
1
1
1
0

Код:
0 = высокая степень защиты    — Скорость коррозии менее чем 100 mm/год 
1 = частичная защита    — Скорость коррозии от 100m до 1000 mm/год 
2 = non resistant    — Скорость коррозии более чем 1000 mm/год 

4.2 Атмосферные воздействия
Сравнение 304-й марки с другими металлами в различных окружающих средах (Скорость коррозии расчитана при 10-летнем подвергании).

Окружающая среда
Скорость коррозии (mm/год)
 
316
Aлюминий -3S
углеродистая сталь
Сельская
0.0025
0.025
5.8
Морская
0.0076
0.432
34.0
Индустриальная Морская
0.0051
0.686
46.2

4.3 Тепловая Обработка

4.3.1 Отжиг.

Высокая температура от 1010oC до 1120 oC и быстрый отпуск (охлаждение) в воздухе или воде. Лучшее сопротивление коррозии получено, когда отжиг при 1070oC, и быстром охлаждении

4.3.2 Отпуск (Снятие напряжения).

Нагрев до 200-400oC с последующим воздушным охлаждением

4.3.3 Горячая обработка (интервал ковки)

Начальная температура: 1150  – 1200oC 
Конечная температура: свыше 900oC
Для нарушения действия, ковка должна быть завершено между: 930 и 980oC

Любая горячая обработка должна сопровождаться отжигом.

Обратите внимание: Время для достижения однородности прогрева дольше для нерж. сталей чем для углеродистых сталей — приблизительно в 12 раз

5. Холодная Обработка

316 / 316L, 304 / 304L являясь чрезвычайно прочной, упругой и пластичной, с легкостью находит множество применений. Типичные действия включают изгиб, формовку растяжением, глубокую и ротационную вытяжку.


Ст3сп сталь: характеристики и расшифовка, применение и свойства стали

Сварка стали Ст3сп

Ст3сп характеризуется уникальной свариваемостью, что обеспечивает большой диапазон технических характеристик, которые можно улучшить при помощи легирующих добавок. Свойства стали дают возможность применять дуговую сварку – автоматическую и ручную, сварку по контактно-точечной и электрошлаковой технологии.

Важно для проведения всех сварочных работ, что сталь данной марки легко сваривается без подготовительных мероприятий – специальной подготовки, и изделия не требуют обработки после сварки. Хотя это касается только сварки изделий с толщиной менее 3,6 см. Стальные изделия с большей толщиной рекомендовано предварительно разогреть (100 °С) и выполнить термообработку после сварки.

Для сварки изделий из Ст3сп целесообразно использовать проволочные электроды (чаше всего, с большим сечением), плавящимися мундштуками.

Форма поставки стали Ст3сп

Поставляется данная сталь в различных формах – поковки и отливки, сортовая сталь – листы, трубы квадратные и круглые, прокат фасонный (двутавры, тавры, швеллеры, уголки), слитки, слябы и блюмы, сутунки, заготовки, метизы, проволока, ленты, штамповки и пр.

Область применения

Изготовление элементов несущих конструкций, сварных и не сварных деталей и изделий, эксплуатируемых при положительных температурных режимах.  А также листовой и фасонный прокат, эксплуатация которого производится при условиях температур -40°С – +425°С, и/или нагрузок с переменными значениями (статических, динамических).

Применение стали Ст3сп с учётом характеристик и свойств

Сталь данного типа является одной из самых востребованных в строительстве и промышленности.

Отсутствие в сплаве кислорода, и однородная структура – это факторы, повышающие стойкость к образованию коррозии в агрессивных средах. Эти качества, а также большая пластичность делают данную сталь незаменимой при производстве конструкций, элементов, к которым предъявляются большие требования по жёсткости.

Это прокат – листовой и фасонный (швеллеры, двутавры и тавры, уголки), заготовки для арматуры, элементы трубопроводов (в частности, квадратные трубы), и пр.

Характеристики стали дают возможность возводить из неё опорные несущие конструкции, каркасы, эксплуатация которых ведётся в сложных условиях.

Из стали Ст3сп изготавливают элементы и детали без термообработки, что даёт возможность сохранить все характеристики сплава – фланцы, тройники, переходы.

Сталь используют также в качестве основного слоя при производстве горячекатаных 2-слойных листов, стойких к коррозии.

Аналоги Ст3сп

Марка ст3сп (аналоги – С255, ВСт3сп5-1 и 18сп, Е 235-C по ISO 630:1995)

Расчет на изгибную прочность

С учётом назначения передачи, характера действующей нагрузки, условий эксплуатации, массы, габаритов и стоимости выбираем материалы для элементов передач. Материалы для колес и шестерен выбирают с учетом назначения передачи, характера действующей нагрузки, условий эксплуатации (окружной скорости, состояния среды), массы, габаритов и стоимости. Для выравнивания срока службы рекомендуется назначать для зубчатых колес разные материалы, причем твердость шестерни необходимо выбирать больше твердости колеса. С учетом этих рекомендаций выбор материала для колес был остановлен на конструкционной стали 45, а для шестерен – сталь 40X. Параметры этих материалов согласно ГОСТ 4543-71 приведены в таблице ниже:

Таблица 14

Шестерня

Колесо

Материал

Сталь 40X

Сталь 45

Твердость HB

455-525

196-263

Твердость HRC

40-50

40-50

α, 1/°C

11,8*10-6

11*10-6

Модуль упругости E, МПа

2,14*105

2,1*105

Плотность ρ, г/см3

7,85

7,85

Предел прочности σв, МПа

880

620

Предел текучести σт, МПа

700

500

Назначаем термообработку для колеса и шестерни: нормализация, закалка, отпуск.

Согласно ГОСТ:

сталь 40X(ГОСТ 4543-71)

сталь 45 (ГОСТ 1050-88)

Допустимые изгибные напряжения:

, тогда примемn=1,5 – коэффициент запаса.

Предел выносливости для углеродистых сталей определяют по формуле: .

Сталь 45.

Предел выносливости для стали 45 и допускаемые изгибные напряжения для колеса :

Предел выносливости для стали 40Х и допускаемые изгибные напряжения для колеса

Сталь 40X:

ψв– коэффициент формы зубчатого венца, для мелкомодульных передач ψв=3…16 (согласно [1]), выбираем ψв=8;

– допускаемое напряжение при расчете зубьев на изгиб [МПа];

Z– число зубьев рассчитываемого колеса.

Для колеса отношение больше, то расчет модуля будем вести по колесу:

m– модуль прямозубых колес;

Km– коэффициент, для прямозубых колёс равный 1,4 [1];

K– коэффициент расчетной нагрузки,K=1.1…1.5 (выбирается согласно [1]), выбираем значениеK=1.3;

M – крутящий момент, действующий на рассчитываемое колесо [Н·мм],

YF– коэффициент формы зуба, выбирается из таблицы [1]

Выберем значение модуля из первого ряда (предпочтительного) m9,10=0,5 мм.

Для колеса отношение больше, то расчет модуля будем вести по колесу:

Выберем значение модуля из первого ряда (предпочтительного) m7,8=0,4 мм.

Так как мы получили модуль меньше 0,4 мм, то дальнейшее определение модуля бессмысленно.

Примем из конструктивных соображений значения модулей:

m9,10 = m56 = m34 = m12 =0,5 мм.

Из конструктивных соображений m78=0,6 мм

    1. Расчёт на контактную прочность

Проведем проверочный расчет зубьев на контактную прочность для последней ступени (т.к. на ней наибольший крутящий момент, что предопределяет успешное выполнение условия для остальных передач) по формуле:

,

Тогда контактное напряжение на ведомом колесе:

Н*мм –суммарный момент на выходном валу,

– коэффициент расчетной нагрузки,

=48,5 МПа для стальных прямозубых цилиндрических колёс,

– передаточное отношение,

– делительное межосевое расстояние.

Проверочный расчёт на контактную прочность показывает, что зубчатые колёса удовлетворяют условиям прочности, т.к. <.

Таким образом, выбранный модуль выбран успешно и из условия изгибной прочности, и из условия контактной прочности.

  1. Геометрический расчет колес и передач

Расчет проведем по формулам:

Делительный диаметр:

Диаметр вершин зубьев:

Диаметр впадин:

Ширина колеса:

ψbm– коэффициент, равный отношению ширины зубчатого венца к модулю.

ψbm=8.

Ширина шестерни:

Делительное межосевое расстояние:

Т.к. колеса прямозубые, то .

Т.к. ,c*=0.35 ,

Т.к. колеса нулевые, то .

Таблица 15

z

21

52

19

53

19

55

19

55

28

81

,мм

10,5

26

9,5

26,5

9,5

27,5

13,3

38,5

14,0

40,5

, мм

11,5

27

10,5

27,5

10,5

28,5

14,3

39,5

15,0

41,5

, мм

9,15

24,65

8,15

25,15

8,15

26,15

11,95

37,15

12,65

39,15

, мм

4,75

4

4,75

4

4,75

4

5,7

4,8

4,75

4

, мм

18,25

18,00

18,50

25,9

27,25

Рис. 3.Параметры зубьев

Рис. 4. Кинематическая схема редуктора в аксонометрии

  1. Расчет валов и опор редуктора

Выберем материал для валов – сталь 40Х с улучшением, МПа,МПа, твердость.

Расчет будем проводить по 6 валу.

    1. Проектный расчет валов

Для расчёта диаметров вала согласно [1] будем использовать следующую формулу:

, где

Мкр– момент, действующий на вал [Н·мм];

[τ]кр– допускаемое напряжение на кручение [МПа].

Так как при проектном расчёте не учитывается изгиб вала, то принимаем пониженное значение допустимого напряжения [τ]кр= 20МПа.

Расчет диаметра всех валов дает:

Таблица 16

вала

Параметр

1 (входной)

2

3

4

5

6 (выходной)

Mкр,Н∙мм

16

38

104

292

820

2300

d, мм

1,59

2,12

2,96

4,18

5,50

6,92

Из технологических соображений назначаем диаметры валов из стандартного ряда по ГОСТ 12081-72:

Таблица 17

№ вала

1-й вал

2-й вал

3-й вал

4-й вал

5-й вал

6-й вал

d, мм

4.0

4.0

4.0

5.0

6.0

7.0

Свойства стального материала – SteelConstruction.info

Свойства конструкционной стали зависят как от ее химического состава, так и от метода производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций. В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов.Спецификация металлоконструкций рассматривается в отдельной статье.

 

Схематическая диаграмма напряжения / деформации для стали

[вверх] Свойства материала, необходимые для проектирования

Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:


Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию.Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию. Прочность зависит от конкретного типа сплава – обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[наверх] Факторы, влияющие на механические свойства

Сталь

приобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали.Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий. Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также вызывают различную реакцию, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется с помощью различных технологических процессов, которые могут использоваться при производстве стали, основными из которых являются:

  • Сталь после проката
  • Сталь нормализованная
  • Сталь нормализованный прокат
  • Сталь термомеханически прокатанная (ТМР)
  • Закаленная и отпущенная (Q&T) сталь.


Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C.Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900 ° C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованная прокатка – это процесс, при котором после завершения прокатки температура превышает 900 ° C. Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала.Нормализованные и нормализованные прокатные стали имеют обозначение “N”.

Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна. Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханическая прокатка в стали использует особый химический состав стали, что позволяет снизить конечную температуру прокатки примерно до 700 ° C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».

Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C. Он быстро охлаждается или «закаливается» для получения стали с высокой прочностью и твердостью, но с низкой вязкостью.Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации. Эффект отпуска заключается в смягчении ранее закаленных структур и их повышении прочности и пластичности.

 

Схематический график температуры / времени процессов прокатки

[наверх] Прочность

[вверх] Предел текучести

Предел текучести – это наиболее распространенное свойство, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 – это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх] Горячекатаный прокат

Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Разработчикам следует учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .

Минимальный предел текучести и прочности на разрыв для обычных марок стали
Марка Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 40 63 3 100
S275 275 265 255 245 410 400
S355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение прочность f u использовать как номинальный (характеристический) предел прочности.

Аналогичные значения приведены для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .

[вверх] Холодногнутые стали

Существует широкий ассортимент марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.

[вверх] Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжение-деформация не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной смещенной постоянной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.

[вверх] Прочность

 

Образец для испытаний на удар с V-образным надрезом

Все материалы имеют недостатки. В стали эти дефекты проявляются в виде очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и при более низких температурах.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом – см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.

В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.

Указанная минимальная энергия удара для углеродистой стали марки
Стандартный Подкладка Ударная вязкость Температура испытания
BS EN 10025-2 [1]
BS EN 10210-1 [3]
JR 27J 20 o С
J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
BS EN 10025-3 [8] N 40J-20 o c
NL 27J-50 о с
BS EN 10025-4 [9] M 40J-20 o c
мл 27J-50 о с
BS EN 10025-5 [10] J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
J4 27J-40 o С
J5 27J-50 o С
BS EN 10025-6 [11] Q 30J-20 o c
QL 30J-40 o c
QL1 30J -60 o c

Для тонкостенных сталей для холодной штамповки не предъявляются требования к энергии удара для материала толщиной менее 6 мм.

Выбор подходящего подкласса, обеспечивающего адекватную ударную вязкость в расчетных ситуациях, приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего подкласса дано в ED007.

 

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет второстепенную роль, является чрезвычайно безопасным.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является предметом рассмотрения при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Слово «уменьшить» используется, поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции – в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается – подход к проектированию заключается в рассмотрении всех нагрузок как статических. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.

Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно прочны и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.

[вверху] Пластичность

Пластичность – это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, изгиба и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряжение – деформация стали

[вверху] Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «углеродный эквивалент» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых конструкционных стальных изделий, и это простая задача для тех, кто контролирует сварку, чтобы гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.

[вверх] Прочие механические свойства стали

Другие важные для проектировщика механические свойства конструкционной стали включают:

  • Модуль упругости, E = 210 000 Н / мм²
  • Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
  • Коэффициент Пуассона, ν = 0.3
  • Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).

[вверху] Прочность

 

Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.

Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальванизация. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[вверх] Погодостойкая сталь

Погодоустойчивая сталь – это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[вверху] Нержавеющая сталь

 

Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии

Нержавеющая сталь – это материал с высокой устойчивостью к коррозии, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.

Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного предела текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.

Механические свойства обычных нержавеющих сталей согласно EN 10088-4 [15]
Описание Марка Минимум 0.Предел текучести 2% (Н / мм 2 ) Предел прочности на разрыв (Н / мм 2 ) Относительное удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1.4301 210 520–720 45
1.4307 200 500–700 45
Молибден-хромникелевые аустенитные стали 1.4401 220 520–670 45
1.4404 220 520–670 45
Дуплексные стали 1,4162 450 650–850 30
1.4462 460 640–840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (Очень низкий) Пустыни и арктические районы (очень низкая влажность) 1.4301 / 1.4307, 1.4162
C2 (Низкий) Засушливые или слабозагрязненные (сельские районы) 1.4301 / 1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401 / 1.4404, 1.4162
(1.4301 / 1.4307)
C4 (высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными солевыми отложениями
Дорожная среда с солями для защиты от обледенения
1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы
C5 (Очень высокий) Сильно загрязненная промышленная среда с высокой влажностью
Морская среда с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустенитные материалы

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть неэффективными с точки зрения затрат. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.

[вверх] Список литературы

  1. 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
  2. ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
  3. 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
  4. ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
  5. ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила – Дополнительные правила для холодногнутых профилей и листов, BSI.
  6. 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханического проката свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Вязкость материала и свойства по толщине, BSI.
  13. ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
  14. ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
  15. 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI

[вверх] Ресурсы

[вверху] См. Также

Свойства стального материала – SteelConstruction.info

Свойства конструкционной стали зависят как от ее химического состава, так и от метода производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций.В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация металлоконструкций рассматривается в отдельной статье.

 

Схематическая диаграмма напряжения / деформации для стали

[вверх] Свойства материала, необходимые для проектирования

Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:


Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию.Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию. Прочность зависит от конкретного типа сплава – обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[наверх] Факторы, влияющие на механические свойства

Сталь

приобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали.Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий. Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также вызывают различную реакцию, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется с помощью различных технологических процессов, которые могут использоваться при производстве стали, основными из которых являются:

  • Сталь после проката
  • Сталь нормализованная
  • Сталь нормализованный прокат
  • Сталь термомеханически прокатанная (ТМР)
  • Закаленная и отпущенная (Q&T) сталь.


Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C.Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900 ° C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованная прокатка – это процесс, при котором после завершения прокатки температура превышает 900 ° C. Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала.Нормализованные и нормализованные прокатные стали имеют обозначение “N”.

Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна. Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханическая прокатка в стали использует особый химический состав стали, что позволяет снизить конечную температуру прокатки примерно до 700 ° C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».

Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C. Он быстро охлаждается или «закаливается» для получения стали с высокой прочностью и твердостью, но с низкой вязкостью.Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации. Эффект отпуска заключается в смягчении ранее закаленных структур и их повышении прочности и пластичности.

 

Схематический график температуры / времени процессов прокатки

[наверх] Прочность

[вверх] Предел текучести

Предел текучести – это наиболее распространенное свойство, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 – это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх] Горячекатаный прокат

Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Разработчикам следует учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .

Минимальный предел текучести и прочности на разрыв для обычных марок стали
Марка Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 40 63 3 100
S275 275 265 255 245 410 400
S355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение прочность f u использовать как номинальный (характеристический) предел прочности.

Аналогичные значения приведены для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .

[вверх] Холодногнутые стали

Существует широкий ассортимент марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.

[вверх] Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжение-деформация не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной смещенной постоянной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.

[вверх] Прочность

 

Образец для испытаний на удар с V-образным надрезом

Все материалы имеют недостатки. В стали эти дефекты проявляются в виде очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и при более низких температурах.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом – см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.

В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.

Указанная минимальная энергия удара для углеродистой стали марки
Стандартный Подкладка Ударная вязкость Температура испытания
BS EN 10025-2 [1]
BS EN 10210-1 [3]
JR 27J 20 o С
J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
BS EN 10025-3 [8] N 40J-20 o c
NL 27J-50 о с
BS EN 10025-4 [9] M 40J-20 o c
мл 27J-50 о с
BS EN 10025-5 [10] J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
J4 27J-40 o С
J5 27J-50 o С
BS EN 10025-6 [11] Q 30J-20 o c
QL 30J-40 o c
QL1 30J -60 o c

Для тонкостенных сталей для холодной штамповки не предъявляются требования к энергии удара для материала толщиной менее 6 мм.

Выбор подходящего подкласса, обеспечивающего адекватную ударную вязкость в расчетных ситуациях, приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего подкласса дано в ED007.

 

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет второстепенную роль, является чрезвычайно безопасным.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является предметом рассмотрения при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Слово «уменьшить» используется, поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции – в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается – подход к проектированию заключается в рассмотрении всех нагрузок как статических. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.

Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно прочны и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.

[вверху] Пластичность

Пластичность – это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, изгиба и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряжение – деформация стали

[вверху] Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «углеродный эквивалент» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых конструкционных стальных изделий, и это простая задача для тех, кто контролирует сварку, чтобы гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.

[вверх] Прочие механические свойства стали

Другие важные для проектировщика механические свойства конструкционной стали включают:

  • Модуль упругости, E = 210 000 Н / мм²
  • Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
  • Коэффициент Пуассона, ν = 0.3
  • Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).

[вверху] Прочность

 

Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.

Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальванизация. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[вверх] Погодостойкая сталь

Погодоустойчивая сталь – это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[вверху] Нержавеющая сталь

 

Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии

Нержавеющая сталь – это материал с высокой устойчивостью к коррозии, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.

Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного предела текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.

Механические свойства обычных нержавеющих сталей согласно EN 10088-4 [15]
Описание Марка Минимум 0.Предел текучести 2% (Н / мм 2 ) Предел прочности на разрыв (Н / мм 2 ) Относительное удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1.4301 210 520–720 45
1.4307 200 500–700 45
Молибден-хромникелевые аустенитные стали 1.4401 220 520–670 45
1.4404 220 520–670 45
Дуплексные стали 1,4162 450 650–850 30
1.4462 460 640–840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (Очень низкий) Пустыни и арктические районы (очень низкая влажность) 1.4301 / 1.4307, 1.4162
C2 (Низкий) Засушливые или слабозагрязненные (сельские районы) 1.4301 / 1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401 / 1.4404, 1.4162
(1.4301 / 1.4307)
C4 (высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными солевыми отложениями
Дорожная среда с солями для защиты от обледенения
1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы
C5 (Очень высокий) Сильно загрязненная промышленная среда с высокой влажностью
Морская среда с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустенитные материалы

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть неэффективными с точки зрения затрат. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.

[вверх] Список литературы

  1. 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
  2. ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
  3. 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
  4. ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
  5. ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила – Дополнительные правила для холодногнутых профилей и листов, BSI.
  6. 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханического проката свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Вязкость материала и свойства по толщине, BSI.
  13. ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
  14. ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
  15. 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI

[вверх] Ресурсы

[вверху] См. Также

Свойства стального материала – SteelConstruction.info

Свойства конструкционной стали зависят как от ее химического состава, так и от метода производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций.В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация металлоконструкций рассматривается в отдельной статье.

 

Схематическая диаграмма напряжения / деформации для стали

[вверх] Свойства материала, необходимые для проектирования

Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:


Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию.Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию. Прочность зависит от конкретного типа сплава – обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[наверх] Факторы, влияющие на механические свойства

Сталь

приобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали.Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий. Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также вызывают различную реакцию, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется с помощью различных технологических процессов, которые могут использоваться при производстве стали, основными из которых являются:

  • Сталь после проката
  • Сталь нормализованная
  • Сталь нормализованный прокат
  • Сталь термомеханически прокатанная (ТМР)
  • Закаленная и отпущенная (Q&T) сталь.


Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C.Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900 ° C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованная прокатка – это процесс, при котором после завершения прокатки температура превышает 900 ° C. Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала.Нормализованные и нормализованные прокатные стали имеют обозначение “N”.

Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна. Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханическая прокатка в стали использует особый химический состав стали, что позволяет снизить конечную температуру прокатки примерно до 700 ° C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».

Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C. Он быстро охлаждается или «закаливается» для получения стали с высокой прочностью и твердостью, но с низкой вязкостью.Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации. Эффект отпуска заключается в смягчении ранее закаленных структур и их повышении прочности и пластичности.

 

Схематический график температуры / времени процессов прокатки

[наверх] Прочность

[вверх] Предел текучести

Предел текучести – это наиболее распространенное свойство, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 – это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх] Горячекатаный прокат

Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Разработчикам следует учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .

Минимальный предел текучести и прочности на разрыв для обычных марок стали
Марка Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 40 63 3 100
S275 275 265 255 245 410 400
S355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение прочность f u использовать как номинальный (характеристический) предел прочности.

Аналогичные значения приведены для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .

[вверх] Холодногнутые стали

Существует широкий ассортимент марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.

[вверх] Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжение-деформация не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной смещенной постоянной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.

[вверх] Прочность

 

Образец для испытаний на удар с V-образным надрезом

Все материалы имеют недостатки. В стали эти дефекты проявляются в виде очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и при более низких температурах.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом – см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.

В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.

Указанная минимальная энергия удара для углеродистой стали марки
Стандартный Подкладка Ударная вязкость Температура испытания
BS EN 10025-2 [1]
BS EN 10210-1 [3]
JR 27J 20 o С
J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
BS EN 10025-3 [8] N 40J-20 o c
NL 27J-50 о с
BS EN 10025-4 [9] M 40J-20 o c
мл 27J-50 о с
BS EN 10025-5 [10] J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
J4 27J-40 o С
J5 27J-50 o С
BS EN 10025-6 [11] Q 30J-20 o c
QL 30J-40 o c
QL1 30J -60 o c

Для тонкостенных сталей для холодной штамповки не предъявляются требования к энергии удара для материала толщиной менее 6 мм.

Выбор подходящего подкласса, обеспечивающего адекватную ударную вязкость в расчетных ситуациях, приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего подкласса дано в ED007.

 

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет второстепенную роль, является чрезвычайно безопасным.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является предметом рассмотрения при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Слово «уменьшить» используется, поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции – в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается – подход к проектированию заключается в рассмотрении всех нагрузок как статических. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.

Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно прочны и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.

[вверху] Пластичность

Пластичность – это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, изгиба и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряжение – деформация стали

[вверху] Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «углеродный эквивалент» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых конструкционных стальных изделий, и это простая задача для тех, кто контролирует сварку, чтобы гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.

[вверх] Прочие механические свойства стали

Другие важные для проектировщика механические свойства конструкционной стали включают:

  • Модуль упругости, E = 210 000 Н / мм²
  • Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
  • Коэффициент Пуассона, ν = 0.3
  • Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).

[вверху] Прочность

 

Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.

Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальванизация. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[вверх] Погодостойкая сталь

Погодоустойчивая сталь – это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[вверху] Нержавеющая сталь

 

Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии

Нержавеющая сталь – это материал с высокой устойчивостью к коррозии, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.

Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного предела текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.

Механические свойства обычных нержавеющих сталей согласно EN 10088-4 [15]
Описание Марка Минимум 0.Предел текучести 2% (Н / мм 2 ) Предел прочности на разрыв (Н / мм 2 ) Относительное удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1.4301 210 520–720 45
1.4307 200 500–700 45
Молибден-хромникелевые аустенитные стали 1.4401 220 520–670 45
1.4404 220 520–670 45
Дуплексные стали 1,4162 450 650–850 30
1.4462 460 640–840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (Очень низкий) Пустыни и арктические районы (очень низкая влажность) 1.4301 / 1.4307, 1.4162
C2 (Низкий) Засушливые или слабозагрязненные (сельские районы) 1.4301 / 1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401 / 1.4404, 1.4162
(1.4301 / 1.4307)
C4 (высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными солевыми отложениями
Дорожная среда с солями для защиты от обледенения
1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы
C5 (Очень высокий) Сильно загрязненная промышленная среда с высокой влажностью
Морская среда с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустенитные материалы

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть неэффективными с точки зрения затрат. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.

[вверх] Список литературы

  1. 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
  2. ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
  3. 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
  4. ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
  5. ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила – Дополнительные правила для холодногнутых профилей и листов, BSI.
  6. 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханического проката свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Вязкость материала и свойства по толщине, BSI.
  13. ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
  14. ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
  15. 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI

[вверх] Ресурсы

[вверху] См. Также

Свойства стального материала – SteelConstruction.info

Свойства конструкционной стали зависят как от ее химического состава, так и от метода производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций.В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация металлоконструкций рассматривается в отдельной статье.

 

Схематическая диаграмма напряжения / деформации для стали

[вверх] Свойства материала, необходимые для проектирования

Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:


Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию.Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию. Прочность зависит от конкретного типа сплава – обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[наверх] Факторы, влияющие на механические свойства

Сталь

приобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали.Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий. Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также вызывают различную реакцию, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется с помощью различных технологических процессов, которые могут использоваться при производстве стали, основными из которых являются:

  • Сталь после проката
  • Сталь нормализованная
  • Сталь нормализованный прокат
  • Сталь термомеханически прокатанная (ТМР)
  • Закаленная и отпущенная (Q&T) сталь.


Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C.Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900 ° C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованная прокатка – это процесс, при котором после завершения прокатки температура превышает 900 ° C. Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала.Нормализованные и нормализованные прокатные стали имеют обозначение “N”.

Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна. Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханическая прокатка в стали использует особый химический состав стали, что позволяет снизить конечную температуру прокатки примерно до 700 ° C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».

Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C. Он быстро охлаждается или «закаливается» для получения стали с высокой прочностью и твердостью, но с низкой вязкостью.Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации. Эффект отпуска заключается в смягчении ранее закаленных структур и их повышении прочности и пластичности.

 

Схематический график температуры / времени процессов прокатки

[наверх] Прочность

[вверх] Предел текучести

Предел текучести – это наиболее распространенное свойство, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 – это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх] Горячекатаный прокат

Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Разработчикам следует учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .

Минимальный предел текучести и прочности на разрыв для обычных марок стали
Марка Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 40 63 3 100
S275 275 265 255 245 410 400
S355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение прочность f u использовать как номинальный (характеристический) предел прочности.

Аналогичные значения приведены для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .

[вверх] Холодногнутые стали

Существует широкий ассортимент марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.

[вверх] Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжение-деформация не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной смещенной постоянной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.

[вверх] Прочность

 

Образец для испытаний на удар с V-образным надрезом

Все материалы имеют недостатки. В стали эти дефекты проявляются в виде очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и при более низких температурах.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом – см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.

В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.

Указанная минимальная энергия удара для углеродистой стали марки
Стандартный Подкладка Ударная вязкость Температура испытания
BS EN 10025-2 [1]
BS EN 10210-1 [3]
JR 27J 20 o С
J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
BS EN 10025-3 [8] N 40J-20 o c
NL 27J-50 о с
BS EN 10025-4 [9] M 40J-20 o c
мл 27J-50 о с
BS EN 10025-5 [10] J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
J4 27J-40 o С
J5 27J-50 o С
BS EN 10025-6 [11] Q 30J-20 o c
QL 30J-40 o c
QL1 30J -60 o c

Для тонкостенных сталей для холодной штамповки не предъявляются требования к энергии удара для материала толщиной менее 6 мм.

Выбор подходящего подкласса, обеспечивающего адекватную ударную вязкость в расчетных ситуациях, приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего подкласса дано в ED007.

 

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет второстепенную роль, является чрезвычайно безопасным.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является предметом рассмотрения при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Слово «уменьшить» используется, поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции – в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается – подход к проектированию заключается в рассмотрении всех нагрузок как статических. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.

Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно прочны и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.

[вверху] Пластичность

Пластичность – это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, изгиба и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряжение – деформация стали

[вверху] Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «углеродный эквивалент» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых конструкционных стальных изделий, и это простая задача для тех, кто контролирует сварку, чтобы гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.

[вверх] Прочие механические свойства стали

Другие важные для проектировщика механические свойства конструкционной стали включают:

  • Модуль упругости, E = 210 000 Н / мм²
  • Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
  • Коэффициент Пуассона, ν = 0.3
  • Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).

[вверху] Прочность

 

Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.

Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальванизация. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[вверх] Погодостойкая сталь

Погодоустойчивая сталь – это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[вверху] Нержавеющая сталь

 

Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии

Нержавеющая сталь – это материал с высокой устойчивостью к коррозии, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.

Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного предела текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.

Механические свойства обычных нержавеющих сталей согласно EN 10088-4 [15]
Описание Марка Минимум 0.Предел текучести 2% (Н / мм 2 ) Предел прочности на разрыв (Н / мм 2 ) Относительное удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1.4301 210 520–720 45
1.4307 200 500–700 45
Молибден-хромникелевые аустенитные стали 1.4401 220 520–670 45
1.4404 220 520–670 45
Дуплексные стали 1,4162 450 650–850 30
1.4462 460 640–840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (Очень низкий) Пустыни и арктические районы (очень низкая влажность) 1.4301 / 1.4307, 1.4162
C2 (Низкий) Засушливые или слабозагрязненные (сельские районы) 1.4301 / 1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401 / 1.4404, 1.4162
(1.4301 / 1.4307)
C4 (высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными солевыми отложениями
Дорожная среда с солями для защиты от обледенения
1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы
C5 (Очень высокий) Сильно загрязненная промышленная среда с высокой влажностью
Морская среда с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустенитные материалы

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть неэффективными с точки зрения затрат. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.

[вверх] Список литературы

  1. 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
  2. ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
  3. 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
  4. ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
  5. ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила – Дополнительные правила для холодногнутых профилей и листов, BSI.
  6. 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханического проката свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Вязкость материала и свойства по толщине, BSI.
  13. ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
  14. ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
  15. 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI

[вверх] Ресурсы

[вверху] См. Также

Свойства стального материала – SteelConstruction.info

Свойства конструкционной стали зависят как от ее химического состава, так и от метода производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций.В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов. Спецификация металлоконструкций рассматривается в отдельной статье.

 

Схематическая диаграмма напряжения / деформации для стали

[вверх] Свойства материала, необходимые для проектирования

Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:


Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию.Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию. Прочность зависит от конкретного типа сплава – обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[наверх] Факторы, влияющие на механические свойства

Сталь

приобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали.Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий. Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также вызывают различную реакцию, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется с помощью различных технологических процессов, которые могут использоваться при производстве стали, основными из которых являются:

  • Сталь после проката
  • Сталь нормализованная
  • Сталь нормализованный прокат
  • Сталь термомеханически прокатанная (ТМР)
  • Закаленная и отпущенная (Q&T) сталь.


Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C.Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900 ° C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, особенно ударную вязкость. Нормализованная прокатка – это процесс, при котором после завершения прокатки температура превышает 900 ° C. Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала.Нормализованные и нормализованные прокатные стали имеют обозначение “N”.

Использование высокопрочной стали может уменьшить объем необходимой стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна. Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханическая прокатка в стали использует особый химический состав стали, что позволяет снизить конечную температуру прокатки примерно до 700 ° C. Для прокатки стали при этих более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».

Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C. Он быстро охлаждается или «закаливается» для получения стали с высокой прочностью и твердостью, но с низкой вязкостью.Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации. Эффект отпуска заключается в смягчении ранее закаленных структур и их повышении прочности и пластичности.

 

Схематический график температуры / времени процессов прокатки

[наверх] Прочность

[вверх] Предел текучести

Предел текучести – это наиболее распространенное свойство, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 – это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх] Горячекатаный прокат

Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Разработчикам следует учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .

Минимальный предел текучести и прочности на разрыв для обычных марок стали
Марка Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 40 63 3 100
S275 275 265 255 245 410 400
S355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение прочность f u использовать как номинальный (характеристический) предел прочности.

Аналогичные значения приведены для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .

[вверх] Холодногнутые стали

Существует широкий ассортимент марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.

[вверх] Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжение-деформация не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной смещенной постоянной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.

[вверх] Прочность

 

Образец для испытаний на удар с V-образным надрезом

Все материалы имеют недостатки. В стали эти дефекты проявляются в виде очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и при более низких температурах.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом – см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.

В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.

Указанная минимальная энергия удара для углеродистой стали марки
Стандартный Подкладка Ударная вязкость Температура испытания
BS EN 10025-2 [1]
BS EN 10210-1 [3]
JR 27J 20 o С
J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
BS EN 10025-3 [8] N 40J-20 o c
NL 27J-50 о с
BS EN 10025-4 [9] M 40J-20 o c
мл 27J-50 о с
BS EN 10025-5 [10] J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
J4 27J-40 o С
J5 27J-50 o С
BS EN 10025-6 [11] Q 30J-20 o c
QL 30J-40 o c
QL1 30J -60 o c

Для тонкостенных сталей для холодной штамповки не предъявляются требования к энергии удара для материала толщиной менее 6 мм.

Выбор подходящего подкласса, обеспечивающего адекватную ударную вязкость в расчетных ситуациях, приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего подкласса дано в ED007.

 

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет второстепенную роль, является чрезвычайно безопасным.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является предметом рассмотрения при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Слово «уменьшить» используется, поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции – в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается – подход к проектированию заключается в рассмотрении всех нагрузок как статических. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.

Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно прочны и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.

[вверху] Пластичность

Пластичность – это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, изгиба и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряжение – деформация стали

[вверху] Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «углеродный эквивалент» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых конструкционных стальных изделий, и это простая задача для тех, кто контролирует сварку, чтобы гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.

[вверх] Прочие механические свойства стали

Другие важные для проектировщика механические свойства конструкционной стали включают:

  • Модуль упругости, E = 210 000 Н / мм²
  • Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
  • Коэффициент Пуассона, ν = 0.3
  • Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).

[вверху] Прочность

 

Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.

Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальванизация. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[вверх] Погодостойкая сталь

Погодоустойчивая сталь – это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[вверху] Нержавеющая сталь

 

Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии

Нержавеющая сталь – это материал с высокой устойчивостью к коррозии, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.

Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного предела текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.

Механические свойства обычных нержавеющих сталей согласно EN 10088-4 [15]
Описание Марка Минимум 0.Предел текучести 2% (Н / мм 2 ) Предел прочности на разрыв (Н / мм 2 ) Относительное удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1.4301 210 520–720 45
1.4307 200 500–700 45
Молибден-хромникелевые аустенитные стали 1.4401 220 520–670 45
1.4404 220 520–670 45
Дуплексные стали 1,4162 450 650–850 30
1.4462 460 640–840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (Очень низкий) Пустыни и арктические районы (очень низкая влажность) 1.4301 / 1.4307, 1.4162
C2 (Низкий) Засушливые или слабозагрязненные (сельские районы) 1.4301 / 1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401 / 1.4404, 1.4162
(1.4301 / 1.4307)
C4 (высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными солевыми отложениями
Дорожная среда с солями для защиты от обледенения
1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы
C5 (Очень высокий) Сильно загрязненная промышленная среда с высокой влажностью
Морская среда с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустенитные материалы

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть неэффективными с точки зрения затрат. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.

[вверх] Список литературы

  1. 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
  2. ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
  3. 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к поставке, BSI.
  4. ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
  5. ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила – Дополнительные правила для холодногнутых профилей и листов, BSI.
  6. 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханического проката свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Вязкость материала и свойства по толщине, BSI.
  13. ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
  14. ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
  15. 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI

[вверх] Ресурсы

[вверху] См. Также

Прочность на изгиб – обзор

7.2.1 Определение макроскопического критерия прочности на изгиб

Макроскопический критерий прочности на изгиб определяется и вычисляется с помощью разрешения специальной задачи расчета вспомогательной текучести , сформулированной на элементарной ячейке A для в котором мы вводим набор SA (M¯¯) полей напряжений σ¯¯, которые являются статически допустимыми с макроскопическим тензором изгибающего момента M¯¯ в следующем смысле 3 :

[7.12] σ¯¯∈SAM¯¯⇔divσ¯¯ = 0∀x¯∈Aaσ¯¯.n¯ = 0 через Γbσ¯¯.n¯antiperiodiconSlatcσ¯¯.e¯3 = 0forx3 = ± h / 2dMij = 1ω∫A −x3σijdAe

где [*] обозначает скачок (*) через любую возможную поверхность разрыва Г. Обратите внимание, что граничные условия соответствуют условиям без тяги на верхней и нижней поверхности пластины, тогда как вектор напряжений σ¯¯.n¯ должен быть антипериодическим только на боковых границах пластины Slat = ∂ωA × −h / 2, + h / 2.

Наконец, G hom определяется как набор всех макроскопических изгибающих моментов, для которых существует такое поле напряжений σ¯¯, удовлетворяющее критерию локальной прочности Gx¯ всюду.То есть:

[7.13] Ghom = M¯¯st∃σ¯¯∈SAM¯¯; σ¯¯x¯∈Gx¯, ∀x¯∈A

. Заметим, что G hom может также могут быть определены с кинематической точки зрения через виртуальные поля скорости, определенные на элементарной ячейке и связанные с макроскопической скоростью виртуальной кривизны, см. [DAL 08].

Вычисление точек в G hom обычно требует численного решения вспомогательных задач расчета урожайности. В конкретном случае однородной среды, усиленной линейными включениями с малой объемной долей и гораздо более высокими прочностными характеристиками, мы можем применить тот же подход, что и раньше, чтобы получить хорошее приближение нижней границы для G hom .

Рассмотрим поэтому случай элементарной ячейки A , состоящей из однородного материала с критерием прочности G и цилиндрического включения радиусом R , расположенного в точке x 3 = X 3 и ориентированы вдоль направления e¯1 (рис. 7.5) одноосной прочности f y . Область, занятая матрицей, обозначается как A c и A i – это область, занятая включением.Для упрощения предположим, что критерий прочности G симметричен относительно начала координат: σ¯¯∈G⇔ − σ¯¯∈G.

Рисунок 7.5. Элементарная ячейка с армированной пластиной

Рассмотрим теперь следующее поле напряжений:

[7.14] {σij (x¯) = | sign (x3) Σijifx¯∈Acsign (x3) Σij + | σfor (i, j) = (1 , 1) 0 в противном случае | ifx ― ∈Aiσij = 0fori ≠ j

, где ± ∑¯¯ – поле кусочно-постоянных напряжений в A c . Сразу видно, что такое поле плоских напряжений автоматически удовлетворяет уравнениям [7.12] для макроскопического тензора изгибающего момента , равного:

[7.15] M¯¯≅h34∑¯¯ − πR2aX3e¯1⊗e¯1

при R≪h. Принимая во внимание, что f y намного больше, чем типичная прочность G , критерий прочности включения может быть аппроксимирован σ≤fy. Следовательно, если ∑¯¯∈G и σ≤fy, то предыдущее поле напряжений удовлетворяет всем условиям, так что M¯¯∈Ghom.

Наконец, мы получаем следующую характеристику критерия макроскопической прочности на изгиб G hom :

[7.16] M¯¯∈Ghom⇔M¯¯ = M¯¯c − X3Nse¯1⊗e¯1withM¯¯c∈GcandNs≤Ny = πR2afy

где:

[7.17] Gc = h34Gps, Gps = σαβe¯ α⊗e¯β∈G; α, β = 1,2

можно интерпретировать как критерий прочности на изгиб, связанный с однородным материалом, удовлетворяющим плоскому напряжению части критерия G и N y представляет собой прочность мембраны эквивалентного слоя армирования.

Как уже было замечено ранее, мы наблюдаем, что критерий макроскопической прочности получается как сумма Минковского критерия прочности неармированного материала и вклада армирования.Распространение такой характеристики на несколько слоев армирования, ориентированных в разных направлениях, происходит немедленно при условии, что взаимодействие между каждым слоем не учитывается. В случае, когда G не является симметричным относительно начала координат, предыдущее определение [7.16] остается в силе с заменой [7.17] на:

[7.18] Gc = h38Gps⊕ − Gps

Допустимое напряжение изгиба – обзор

10.6 Оптимизация проектирования с помощью Excel Solver

Постановка проекта / проблемы Сварные плоские балки используются во многих практических приложениях, таких как мостовые краны, автомобильные и железнодорожные мосты.В качестве примера постановки практической задачи проектирования и процесса оптимизации процесса решения представим конструкцию сварной пластинчатой ​​балки для автомобильного моста с целью минимизации ее стоимости. Аналогичным образом можно сформулировать и решить другие области применения плоских балок. Было определено, что стоимость жизненного цикла балки связана с ее общей массой. Поскольку масса пропорциональна объему материала, цель этого проекта состоит в том, чтобы спроектировать балку минимального объема и в то же время удовлетворить требования спецификаций AASHTO (Американская ассоциация государственных служащих автомобильных дорог и транспорта) (Arora et al., 1997). Собственная нагрузка на балку складывается из веса покрытия и собственного веса балки. Временная нагрузка состоит из эквивалентной равномерной нагрузки и сосредоточенной нагрузки в зависимости от условий загрузки грузовика HS-20 (MS18). Поперечное сечение фермы показано на рис. 10–14.

РИСУНОК 10-14. Поперечное сечение плоской балки.

В этом разделе мы представляем формулировку проблемы с использованием процедуры, описанной в главе 2. Объясняется подготовка рабочего листа Excel для решения проблемы, и проблема решается с помощью Solver.

Сбор данных и информации Данные по материалам, нагрузкам и другие параметры для плоской балки указаны следующим образом:

Пролет: L = 25 м
Модуль упругости: E = 210 ГПа
Предел текучести: σ y = 262 МПа
Допустимое напряжение изгиба: σ a = 0.55σ y = 144,1 МПа
Допустимое напряжение сдвига: τ a = 0,33σ y = 86,46 МПа
t Допустимое усталостное напряжение = 255 МПа
Допустимое отклонение: Da = L800, м
Концентрированная нагрузка для момента: P м = 104 кН
Концентрированная нагрузка сдвига: P s = 155 кН
Ударный коэффициент динамической нагрузки: LLIF = 1 + 50 (L + 125)

Обратите внимание, что коэффициент воздействия временной нагрузки зависит от длины пролета L .Для L = 25 м этот коэффициент рассчитывается как 1,33, и предполагается, что нагрузки P м и P s уже включают этот коэффициент. Зависимые переменные для проблемы, которые можно оценить с помощью размеров поперечного сечения и других данных, определены как:

для нагрузки
Площадь поперечного сечения: A = ( ht w + 2 bt f ), м 2
Момент инерции: I = 112twh4 + 23btf3 + 12btfh (h + 2tf), m4
Равномерная нагрузка w = (19 + 77 A ), кН / м
Изгибающий момент: M = L8 (2Pm + wL), кН − м
Напряжение изгиба: σ = M1000l (0.5h + tf) 2, МПа
Предел напряжения изгиба фланца: σf = 72,845 (tfb) 2, МПа
Предел разрушающего напряжения стенки: σw = 3648276 (twh) 2, МПа
Сила сдвига: S = 0,5 ( P s + wL ), кН
Прогиб: D = L3384 × 106 EI (8Pm + 5w20 900), м 901
Среднее напряжение сдвига: τ = S1000htw, МПа

Идентификация / определение проектных переменных Размеры поперечного сечения плоской фермы рассматриваются как четыре расчетные переменные для задачи:

h = высота стенки, м

b = ширина полки, м

t f = толщина полки, м

t w = толщина стенки, м

Идентификация Подлежит оптимизации 9 3796 Цель состоит в том, чтобы минимизировать объем материала балки:

Определение ограничений Определены следующие ограничения для плоской балки:

(b) Напряжение изгиба: σ≤σa

(c) Изгиб полки: σ ≤σf

(d) повреждение полотна: σ≤σw

(e) Напряжение сдвига: τ≤τa

(g) Усталостное напряжение: σ≤12σt

(h) Ограничения по размеру: 0.30≤h≤2,5, | 0,30≤b≤2,5 0,01≤tf≤0,10,0.01≤tw≤0,10

Обратите внимание, что нижний и верхний пределы проектных переменных были указаны произвольно в данном примере. На практике соответствующие значения для данной проектной задачи должны быть указаны на основе имеющихся размеров пластин. Важно отметить, что ограничения формул. (b) – (g) можно явно записать в терминах проектных переменных h, b, t f и t w , подставив в них выражения для всех зависимых переменных.Однако есть много приложений, в которых невозможно или удобно исключить зависимые переменные, чтобы получить явные выражения для всех функций задачи оптимизации в терминах одних проектных переменных. В таких случаях зависимые переменные должны сохраняться в формулировке задачи и обрабатываться в процессе решения. Кроме того, использование зависимых переменных упрощает чтение и отладку программы, содержащей формулировку проблемы.

Макет электронной таблицы Макет электронной таблицы для решения условий оптимальности KKT, задач линейного программирования и неограниченных задач объяснялся ранее в главах 4, 6 и 8.Как отмечено там, Solver – это «надстройка» к Microsoft Excel; если он не отображается в меню «Инструменты», его можно легко установить. На рис. 10-15 показан макет электронной таблицы, показывающий формулы для задачи проектирования плоской балки в различных ячейках. Таблицу можно организовать любым удобным способом. Основные требования заключаются в том, чтобы четко идентифицировать ячейки, содержащие целевые функции и функции ограничений, а также проектные переменные. Для данной проблемы таблица разделена на пять отдельных блоков.Первый блок содержит информацию о проектных переменных. Определены символы для переменных и их верхний и нижний пределы. Ячейки, содержащие начальные значения переменных, обозначаются как D3 – D6. Это ячейки, которые обновляются в процессе решения. Кроме того, поскольку эти ячейки используются во всех выражениях, им даются настоящие имена, такие как h, b, tf, tw. Это делается с помощью команды «Вставить / Имя». Второй блок определяет различные данные и параметры проблемы.Определяются свойства материала, данные нагрузки и длина пролета. Уравнения для зависимых переменных вводятся в ячейки с C18 по C25 в блоке 3. Хотя нет необходимости включать их (поскольку они могут быть включены явно в формулы ограничений и целевой функции), это может быть очень полезно. Во-первых, они упрощают формулировку выражений ограничений, уменьшая ошибки алгебраических манипуляций. Во-вторых, они обеспечивают проверку этих промежуточных величин для целей отладки и для получения информации.Блок 4 идентифицирует ячейку для целевой функции, ячейку C28. Блок 5 содержит информацию об ограничениях. Ячейки с B31 по B36 содержат левые части, а ячейки с D31 по D36 содержат правые части ограничений. Ограничения реализованы в Excel путем связывания двух ячеек посредством отношения неравенства (≤ или ≥) или равенства (=). Это определяется в диалоговом окне Solver, которое описывается далее. Хотя многие из величин, представленных в разделе ограничений, также присутствуют в других местах электронной таблицы, они являются просто ссылками на другие ячейки в разделе переменных и разделе параметров электронной таблицы (см. Формулы на рис.10-15). Таким образом, единственные ячейки, которые необходимо изменить во время анализа «что, если», – это ячейки в разделе независимых переменных или в разделе параметров. Ограничения автоматически обновляются, чтобы отразить изменения.

РИСУНОК 10-15. Макет таблицы для задачи проектирования плоских балок.

Диалоговое окно Solver После создания электронной таблицы следующим шагом является определение задачи оптимизации для Solver. На рис. 10-16 показан снимок экрана диалогового окна Solver.Ячейка целевой функции вводится как «Целевая ячейка», которая должна быть минимизирована. Далее под заголовком «Изменяя ячейки:» указываются независимые проектные переменные. Здесь был введен диапазон ячеек, но вместо этого можно ввести отдельные ячейки, разделенные запятыми. Наконец, ограничения вводятся под заголовком «Субъект ограничений». Ограничения включают не только те, которые указаны в разделе ограничений электронной таблицы, но также и границы проектных переменных.

РИСУНОК 10-16. Диалоговое окно решателя и электронная таблица для проблемы проектирования плоской балки.

Решение После того, как проблема была определена в диалоговом окне «Решатель», нажатие кнопки «Решить» инициирует процесс оптимизации. Как только Solver нашел решение, ячейки проектных переменных, D3 – D6, ячейки зависимых переменных, C18 – C25, и ячейки функции ограничений, B31 – B36 и D31 – D36, обновляются с использованием оптимальных значений проектных переменных. Solver также создает три отчета на отдельных листах: «Ответ, чувствительность, пределы» (как описано в главе 6).Множители Лагранжа и действия ограничений могут быть восстановлены из этих отчетов. Решение получается следующим образом: h = 2,0753 м, b = 0,3960 м, t f = 0,0156 м, t w = 0,0115 м, Vol = 0, м 3 . Ограничения изгиба фланца, деформации стенки и прогиба активны в оптимальной точке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *