Производство сплавов и металлов: Производство цветных металлов и сплавов

alexxlab | 13.05.2023 | 0 | Разное

Металлургия сплавов черных и цветных металлов

В современном машиностроении, станкостроении и в других отраслях промышленности редко используют чистые металлы. Прежде всего, это обусловлено необходимостью придания металлическому изделию особых свойств, отвечающих технологическим требованиям. Поэтому, по большей части, применяют заготовки, выполненные из сплавов черных и цветных металлов.

Металлургия черных и цветных сплавов

Металл, произведенный путем слияния и затвердевания нескольких расплавленных компонентов, называется сплавом. Его составными частями являются материалы, обладающие индивидуальными химическими и физическими характеристиками, а также их соединения. Получаемые сплавы могут быть однородными (метал с металлом) и неоднородными (метал с неметаллом). Так, соединение железа с углеродом и другими элементами дает чугун.

Металлургия сплавов делится на черную и цветную индустрию. Первая охватывает изготовление сплавов на основе железа, в результате чего получается сталь, чугун и ферросплавы.

Ко второй категории относятся все остальные соединения, не имеющие в составе железа. Наибольшее распространение получили сплавы цветных металлов на основе меди, алюминия, титана, цинка.

Своевременное и качественное производство металлических сплавов невозможно без использования высокотехнологичного оборудования и материалов. На нашем сайте посетитель может найти наиболее передовые системы оснащения литейного производства.

Материалы и оборудование для металлургии сплавов.

В каталоге представлена продукция, как собственного производства, так и наших деловых партнеров из России и зарубежных стран. Раздел металлургии сплавов содержит следующие категории:

– НАУГЛЕРОЖИВАТЕЛЬ. Быстрорастворимые углеродные добавки имеют высокую степень усвояемости углерода. Применяются при производстве серого и высокопрочного чугуна для обеспечения высокого качества материала.

– ФУТЕРОВКА. Огнеупорные материалы для обслуживания различных печей, желобов и другого оборудования литейного производства.

– ФИЛЬТРЫ И ФИЛЬТРАЦИОННЫЕ УСТРОЙСТВА. Оборудование предназначено для улавливания примесей и очистки отлива от посторонних включений.

– СМАЗКА ДЛЯ КРИСТАЛЛИЗАТОРОВ. Используется для защиты поверхности пресс-формы от налипания металла и улучшения съема отлива. Данные технологические смазки отличаются экологической и санитарно-гигиенической безопасностью.

– ПОКРЫТИЕ ДЛЯ ЖЕЛОБОВ. Применяется в качестве технологической защиты металлических тиглей и керамических желобов при производстве алюминиевых сплавов.

Представленная в каталоге продукция сертифицирована и соответствует всем нормам ГОСТ. Узнать более подробно технические характеристики материалов можно, оставив заявку на сайте нашей компании.

Производство цветных металлов | Металлургический портал MetalSpace.ru

Производство цветных металлов

  • Образование и карьера
  • Интерактивный учебник

Online учебник


На основе современных представлений рассмотрены основные металлургические производства

АНАЛИТИКА

Научные статьи и методические материалы о природных и вторичных ресурсах металлов, а также металлургических технологиях

Производство и наука

  • Эколого-экономическая эффективность реновации технических изделий июль 22, 2019
  • Сжиженный природный газ март 19, 2018
  • Ветроэнергетика в России, развитие технологии в ветроэнергетике янв 23, 2018
Методические материалы

  • Модернизация барабанных летучих ножниц – Дипломный проект дек 03, 2020
  • Схема рециклинга автомобильных катализаторов, содержащих металлы платиновой группы авг 15, 2018
  • Историко-реконструкторское движение в России фев 04, 2017
Интерактивный учебник

  • Как правильно согнуть металлический квадрат апр 01, 2020
  • Сталь с полимерным покрытием янв 04, 2019
  • Топливо из ТБО дек 17, 2018

Потенциал Забайкальского .

..

Обработка металлов …

Пластическая деформация …

Металлургические технологии …

Основоположники отечественной …

Основоположники отечественной …

Русская средневековая .

..

Русская средневековая …

ИНТЕРАКТИВ

Интерактивная картина мира металлов на ключевых этапах истории цивилизации

Энциклопедия «Металлургия и время»

  • «Дредноуты» и «крупповские пушки» март 10, 2014
  • Преимущества получения ферромарганца в электропечах март 09, 2014
  • Проблемы производства доменных ферросплавов март 08, 2014
Металлургические объекты

  • Музей истории МИСиС.
    Металлургия – кузница победы апр 20, 2020
  • Доменная печь Лиенсхютте (Lienshytte blast-furnace) авг 28, 2014
  • Железоделательный завод Энгельсберг (Engelsbergs bruk) авг 27, 2014
Обучающие игры

  • Маша и компания – Таланты дек 07, 2014
  • Маша и компания – Игры на природе дек 06, 2014
  • Легенды огня и металла Часть 3. Мушкет июнь 19, 2014

Copyright © 2011 – 2022 MetalSpace

Металлургия | Определение и история

металлургия

Смотреть все СМИ

Ключевые люди:
Михаил Ломоносов Георгиус Агрикола Дэниел Коуэн Джеклинг Сэр Алан Коттрелл Арден Л. Бемент-младший
Похожие темы:
металлоконструкции переработка полезных ископаемых металлография физическая металлургия технологическая металлургия

См. весь связанный контент →

металлургия , искусство и наука по извлечению металлов из руд и модификации металлов для использования. Металлургия обычно относится к коммерческим, а не к лабораторным методам. Это также касается химических, физических и атомных свойств и структуры металлов, а также принципов, по которым металлы объединяются в сплавы.

История металлургии

Современное использование металлов является кульминацией долгого пути развития, растянувшегося примерно на 6500 лет. Принято считать, что первыми известными металлами были золото, серебро и медь, находившиеся в самородном или металлическом состоянии, из которых самыми ранними, по всей вероятности, были самородки золота, найденные в песках и гравии в руслах рек. Такие самородные металлы стали известны и ценились за их декоративную и утилитарную ценность во второй половине каменного века.

Самая ранняя разработка

Золото можно агломерировать в более крупные куски путем холодной ковки, но самородная медь не может, и важным шагом на пути к Веку металлов стало открытие того, что такие металлы, как медь, могут быть преобразованы в формы путем плавления и отливки в формы; среди самых ранних известных изделий этого типа — медные топоры, отлитые на Балканах в 4-м тысячелетии до н. э. Еще одним шагом стало открытие того, что металлы можно извлекать из металлосодержащих минералов. Они были собраны, и их можно было отличить по цвету, текстуре, весу, цвету пламени и запаху при нагревании. Заметно больший выход, полученный при нагревании самородной меди с сопутствующими оксидными минералами, мог привести к процессу плавки, поскольку эти оксиды легко восстанавливаются до металла в слое древесного угля при температурах выше 700 ° C (1300 ° F) в качестве восстановителя. , угарный газ, становится все более стабильным. Чтобы осуществить агломерацию и отделение расплавленной или выплавленной меди от сопутствующих минералов, необходимо было ввести оксид железа в качестве флюса. Этот дальнейший шаг вперед можно объяснить наличием минералов оксида железа госсан в выветрелых верхних зонах месторождений сульфидов меди.

Во многих регионах в последующий период производились медно-мышьяковые сплавы, обладающие превосходными свойствами по сравнению с медью как в литом, так и в деформируемом виде. Сначала это могло быть случайным из-за сходства по цвету и цвету пламени между ярко-зеленым медно-карбонатным минералом малахитом и продуктами выветривания таких медно-мышьяковых сульфидных минералов, как энаргит, а позднее за этим мог последовать целенаправленный отбор соединений мышьяка на основе их чесночного запаха при нагревании.

Содержание мышьяка варьировалось от 1 до 7 процентов, олова до 3 процентов. Практически не содержащие мышьяка медные сплавы с более высоким содержанием олова — другими словами, настоящая бронза — по-видимому, появились между 3000 и 2500 годами до нашей эры, начиная с дельты Тигра и Евфрата. Открытие значения олова могло произойти благодаря использованию станнита, смешанного сульфида меди, железа и олова, хотя этот минерал не так широко доступен, как основной минерал олова, касситерит, который, должно быть, был конечным источником. металла. Касситерит поразительно плотный и встречается в виде гальки в аллювиальных отложениях вместе с арсенопиритом и золотом; это также происходит в определенной степени в госсанах оксида железа, упомянутых выше.

Хотя бронза могла развиваться независимо в разных местах, наиболее вероятно, что бронзовая культура распространилась через торговлю и миграцию народов с Ближнего Востока в Египет, Европу и, возможно, Китай. Во многих цивилизациях производство меди, мышьяковой меди и оловянной бронзы какое-то время продолжалось одновременно. Возможное исчезновение медно-мышьяковых сплавов трудно объяснить. Производство могло быть основано на полезных ископаемых, которые не были широко доступны и стали дефицитными, но относительная нехватка минералов олова не мешала значительной торговле этим металлом на значительных расстояниях. Возможно, оловянные бронзы в конечном итоге стали предпочитаться из-за возможности отравления мышьяком от паров, образующихся при окислении мышьякосодержащих минералов.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.

Подпишитесь сейчас

По мере разработки выветрелых медных руд в определенных местах, более твердые сульфидные руды под ними добывались и плавились. Используемые минералы, такие как халькопирит, сульфид меди и железа, нуждались в окислительном обжиге для удаления серы в виде диоксида серы и получения оксида меди. Это не только требовало больших металлургических навыков, но также окисляло тесно связанное железо, что в сочетании с использованием флюсов из оксида железа и более сильными восстановительными условиями, создаваемыми усовершенствованными плавильными печами, приводило к более высокому содержанию железа в бронзе.

Невозможно провести четкую границу между бронзовым веком и железным веком. Небольшие куски железа должны были производиться в медеплавильных печах, поскольку использовались флюсы оксида железа и железосодержащие сульфидные руды меди. Кроме того, более высокие температуры печи создали бы условия для более сильного восстановления (то есть более высокое содержание монооксида углерода в газах печи). Ранний кусок железа с дороги в провинции Дренте, Нидерланды, был датирован 1350 годом до нашей эры, датой, которую обычно принимают за средний бронзовый век для этой области. С другой стороны, в Анатолии железо использовалось уже в 2000 г. до н. э. Есть также случайные ссылки на железо и в более ранние периоды, но этот материал имел метеоритное происхождение.

Как только была установлена ​​взаимосвязь между новым металлом, найденным в медных плавках, и рудой, добавленной в качестве флюса, естественным образом последовала работа печей для производства только железа. Несомненно, к 1400 г. до н. э. в Анатолии большое значение приобрело железо, а к 1200–1000 гг. до н. э. из него в больших масштабах изготавливали оружие, первоначально лезвия кинжалов. По этой причине 1200 г. до н.э. был принят за начало железного века. Данные раскопок указывают на то, что искусство изготовления железа зародилось в гористой местности к югу от Черного моря, где доминировали хетты. Позже это искусство, по-видимому, распространилось среди филистимлян, поскольку в Гераре были обнаружены грубые печи, датируемые 1200 г. до н. э., вместе с рядом железных предметов.

Плавка оксида железа с древесным углем требовала высокой температуры, и, поскольку температура плавления железа 1540 °C (2800 °F) тогда была недостижима, продукт представлял собой просто губчатую массу пастообразных глобул металла, смешанных с полужидкий шлак. Этот продукт, позже известный как блюм, вряд ли можно было использовать в том виде, в каком он был, но повторный нагрев и горячая ковка устранили большую часть шлака, создав кованое железо, продукт гораздо лучшего качества.

На свойства железа сильно влияет присутствие небольшого количества углерода, при этом значительное увеличение прочности связано с содержанием менее 0,5 процента. При достижимых тогда температурах – около 1200 ° C (2200 ° F) – восстановление древесным углем давало почти чистое железо, которое было мягким и имело ограниченное применение для оружия и инструментов. с изобретением лучших мехов железо поглощало больше углерода. Это привело к цветению и железным изделиям с различным содержанием углерода, что затрудняло определение периода, в течение которого железо могло быть преднамеренно упрочнено путем науглероживания или повторного нагревания металла в контакте с избытком древесного угля.

Углеродосодержащее железо имело еще одно большое преимущество, заключавшееся в том, что, в отличие от бронзы и безуглеродистого железа, его можно было сделать еще более твердым путем закалки, т. е. быстрого охлаждения путем погружения в воду. Нет никаких свидетельств использования этого процесса закалки в раннем железном веке, так что он должен был быть либо неизвестен тогда, либо не считался выгодным, поскольку закалка делает железо очень хрупким и должна сопровождаться отпуском или повторным нагревом при более низкая температура, чтобы восстановить ударную вязкость. То, что, по-видимому, было установлено на раннем этапе, было практикой многократной холодной ковки и отжига при 600–700 ° C (1100–1300 ° F), температура, естественно достигаемая при простом огне. Эта практика распространена в некоторых частях Африки даже сегодня.

К 1000 г. до н. э. железо стало известно в Центральной Европе. Его использование медленно распространялось на запад. Производство железа было широко распространено в Великобритании во время римского вторжения в 55 г. до н. э. В Азии железо также было известно в древности, в Китае около 700 г. до н.э.

Производство металлов | Encyclopedia.

com

Добыча полезных ископаемых

Очистка

Восстановление

Сплавы

Ресурсы

который металл может быть использован для некоторых коммерческих или промышленных целей. В периодической таблице насчитывается около 90 элементов, которые можно описать как металлы. Все они имеют различные общие характеристики, начиная от связывания и заканчивая химической природой. Вообще говоря, металлы — это элементы, которые проводят электричество, податливы и пластичны.

В некоторых случаях производство металла включает относительно небольшое количество этапов, поскольку металл уже встречается в природе в виде элемента. Так обстоит дело с золотом, серебром, платиной и другими так называемыми благородными металлами. Эти металлы обычно встречаются в природе без соединений с другими элементами и поэтому могут быть использованы в коммерческих целях при сравнительно небольшой дополнительной обработке.

Однако в большинстве случаев металлы встречаются в природе в виде соединений, таких как оксид или сульфид, и их необходимо сначала преобразовать в их элементарное состояние. Затем их можно обрабатывать самыми разными способами, чтобы сделать их пригодными для конкретных практических применений.

Первым этапом в производстве металла всегда является добыча полезных ископаемых. Добыча полезных ископаемых относится к процессу удаления металла в свободном или связанном состоянии с поверхности Земли. Двумя наиболее распространенными формами добычи полезных ископаемых являются поверхностная и подземная добыча. В первом случае металл или его руда могут быть удалены с верхних нескольких метров земной поверхности. Большая часть меди в мире, например, добывается из огромных открытых рудников, глубина которых может достигать почти 0,6 мили (1 км), а ширина – более 2,25 мили (3,5 км). Подземная добыча используется для сбора металлических руд, которые находятся на больших глубинах под поверхностью Земли.

Некоторые металлы можно получить из морской воды, а не из земной коры или в дополнение к этому. Магний является одним из примеров. Каждая кубическая миля морской воды содержит около шести миллионов тонн магния, главным образом в форме хлорида магния. Магний сначала осаждают из морской воды в виде гидроксида магния с использованием извести (гидроксид кальция). Затем гидроксид магния снова превращается в хлорид магния, который теперь представляет собой чистое соединение, а не сложную смесь, поступающую из моря. Наконец, металлический магний получают из хлорида магния пропусканием электрического тока через водный раствор соединения.

В большинстве случаев металлы и их руды залегают в недрах в составе сложных смесей, содержащих также горные породы, песок, глину, ил и другие примеси. Таким образом, первым шагом в производстве металла для коммерческого использования является отделение руды от отходов, с которыми она встречается. Термин руда используется для описания соединения металла, которое содержит достаточное количество этого металла, чтобы сделать извлечение металла из соединения экономически целесообразным.

Одним из примеров очистки руды является метод пенной флотации, используемый для руд меди, цинка и некоторых других металлов. В этом методе неочищенная руда, взятая из-под земли, сначала измельчается в порошок, а затем смешивается с водой и пенообразователем, таким как сосновое масло. Затем смесь продувают потоком воздуха, заставляя ее пузыриться и пениться. В процессе вспенивания примеси, такие как песок и камень, смачиваются водой и оседают на дно контейнера. Металлическая руда не поглощает воду, но поглощает сосновое масло. Покрытая нефтью руда всплывает наверх смеси, откуда ее можно снять.

Металлы всегда встречаются в рудах в окисленном состоянии, часто в виде оксида или сульфида металла. Следовательно, чтобы преобразовать руду в ее элементарное состояние, ее необходимо восстановить. Восстановление – это химическая реакция, противоположная окислению. Металлы можно восстанавливать разными способами.

Например, восстановление железных руд может быть осуществлено путем взаимодействия оксидов железа с углеродом и монооксидом углерода. Одним из распространенных устройств, используемых для этой цели, является доменная печь. Доменная печь представляет собой высокий цилиндрический сосуд, в который подают железную руду (состоящую из оксидов железа), кокс (почти чистый углерод) и известняк. Затем температура в доменной печи повышается до более чем 1832 °F (1000 °С). При этой температуре углерод реагирует с кислородом с образованием монооксида углерода, который, в свою очередь, реагирует с оксидами железа с образованием чистого металлического железа. Известняк в исходной смеси, добавленной в доменную печь, вступает в реакцию с диоксидом кремния (песком), примесью, обычно встречающейся в железной руде, и удаляет ее.

Некоторые оксиды металлов не поддаются химическим реакциям восстановления, подобным реакциям в описанном выше доменном процессе. Примером может служить восстановление оксида алюминия до металлического алюминия. До 1886 г. не было обнаружено экономически удовлетворительного способа осуществления этого процесса. Затем, будучи молодым студентом-химиком в колледже, американский изобретатель и инженер Чарльз Мартин Холл (1863–1819 гг. 14) изобрел простой и недорогой электрический метод восстановления оксида алюминия. Благодаря изобретению Холла алюминий получил широкое распространение во всем мире.

На первом этапе этого процесса оксид алюминия отделяют от других оксидов (таких как оксиды железа), с которыми он также происходит, с помощью процесса Байера. В процессе Байера смесь природных оксидов добавляется к гидроксиду натрия, который растворяет оксид алюминия, оставляя другие оксиды позади. Затем оксид алюминия растворяют в минерале, известном как криолит (фторид натрия-алюминия), и помещают в электролитическую ячейку. Когда электрический ток проходит через элемент, образуется расплавленный металлический алюминий, который опускается на дно элемента и может быть отведен из элемента.

В некоторых случаях перед восстановлением руда обрабатывается для изменения ее химического состояния. Наиболее распространенными рудами цинка, например, являются сульфиды. Эти соединения сначала обжигают в избытке воздуха, превращая сульфид цинка в оксид цинка. Затем оксид цинка восстанавливают либо путем взаимодействия с коксом (как в случае с железом), либо путем его электролиза (как в случае с алюминием).

Чистые металлы сами по себе часто не подходят для многих практических применений. Например, чистое золото слишком мягкое для большинства применений и в сочетании с другими металлами образует более твердые и стойкие смеси. Смеси, содержащие два или более металлов, называются сплавами. Возможно, самым известным и наиболее широко используемым из всех сплавов является сталь.

Термин «сталь» относится к ряду различных веществ, которые содержат железо в качестве основного компонента наряду с одним или несколькими другими элементами. Нержавеющая сталь,

КЛЮЧЕВЫЕ ТЕРМИНЫ

Сплав — Смесь двух или более металлов со свойствами, отличными от свойств металлов, из которых она изготовлена.

Процесс Байера — Процесс, в котором гидроксид натрия добавляется к смеси природных оксидов, так что оксид алюминия растворяется из смеси.

Процесс Холла — Процесс производства металлического алюминия путем пропускания электрического тока через смесь оксида алюминия, растворенного в криолите (алюмофторид натрия).

Благородный металл — Металл, который с трудом реагирует с другими элементами и поэтому обычно встречается в природе в свободном или несвязанном состоянии.

Руда — Соединение металла, из которого металл может быть извлечен по экономически целесообразной цене.

Восстановление — Процесс, при котором степень окисления атома уменьшается в результате приобретения им одного или нескольких электронов. Например,

содержит около 18% хрома, 10% никеля и небольшое количество марганца, углерода, фосфора, серы и кремния, а также железа. Когда ниобий добавляется в стальной сплав, конечный продукт имеет необычайно большую прочность. Добавление кобальта дает форму стали, которая выдерживает высокие температуры реактивных двигателей и газовых турбин, а кремнистые стали используются в производстве электрооборудования.

На заключительных стадиях производства металла готовому изделию придается некоторая форма, которую можно использовать в других отраслях промышленности для изготовления конечной продукции. Так, сталь можно приобрести в виде плоских листов, колец, канатов и нитей, плит, цилиндров и других форм.

См. также Металлургия.

КНИГИ

Браунгарт, Майкл и Уильям Макдоно. От колыбели до колыбели: переосмысление того, как мы делаем вещи. Нью-Йорк: North Point Press, 2002.

Джонсон, Дэвид. Металлы и химические изменения. Кембридж, Великобритания: Королевское химическое общество, 2002.

Кляйн, К. Руководство по минераловедению. 22-е изд. Нью-Йорк: John Wiley & Sons, Inc., 2002.

Мониз, Б. Дж. Металлургия. Хоумвуд, Иллинойс: American Technical Publishers, 2003.

Нили, Джон Э. и Томас Дж. Бертоне. Практическая металлургия и материалы промышленности. Река Аппер-Сэдл, Нью-Джерси: Prentice Hall, 2003.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *