Расчет арматуры на ленточный фундамент: Расчет арматуры для ленточного фундамента частного дома

alexxlab | 23.05.2019 | 0 | Разное

Содержание

Как самостоятельно провести расчет арматуры для фундамента

Для восприятия деформационных нагрузок и формирования единой конструкции монолитный фундамент армируется. Если бетон прекрасно воспринимает сжимающие нагрузки, то арматура, как часто говорят, работает на растяжение. При условии, что вы решили своими руками возводить основание для дома, вам придется потрудиться над расчетами не только бетонной смеси, но и арматуры для фундамента. О том, как подсчитать необходимый метраж этого материала, а также рассчитать требуемое сечение арматуры, мы постараемся подробно расписать в этой статье.

Сколько должно быть арматуры в фундаменте

Чтобы процесс расчета был максимально понятным, в качестве примера мы рассмотрим ленточное основание высотой 600 мм с шириной ленты 400 мм для фундамента, схема которого изображена на рисунке ниже.

Минимально допустимое содержание армирующих элементов в ленточном основании определяется по СНиП 52-01-2003 «Бетонные и железобетонные конструкции». В пункте 7.3.5 сказано, что относительное содержание продольной арматуры не должно быть меньше 0,1% от площади сечения железобетонного элемента. Для ленточного фундамента учитывается отношение суммарного сечения арматуры и ленты.

В нашем случае имеем: площадь сечения ленты – 600×400=240 000 мм2. С учетом полученных данных определяем количество стержней, необходимое для продольного армирования ленты. Для этого воспользуемся частью таблицы из прил. 1 к пособию по проектированию «Армирование элементов монолитных железобетонных зданий», представленной на рисунке ниже. Предварительно переведем мм2 в см2 и умножим полученное значение на 0,001 (именно такую часть должна занимать суммарная площадь поперечного сечения продольной арматуры). Получаем: 240000 мм2 = 2400 см2, 2400 см2×0,001=2,4 см2.

Изучая данные таблицы 1, сложно понять, арматуру какого диаметра, и в каком количестве нужно использовать.

Ведь при требуемой площади сечения в 2,4 см2, судя по таблице, можно использовать 2 стержня 14 мм арматуры, 3 стержня 12 мм, 4 стержня 10 мм и т.д. От чего отталкиваться при расчетах? В разделе 1 приложения 1 к пособию по проектированию «Армирование элементов монолитных железобетонных зданий» сказано, что при длине стороны более 3 м (как в нашем случае), минимальный диаметр арматуры составляет 12 мм. Для равномерного восприятия нагрузок потребуется два пояса армирования, содержащих по два прутка арматуры диаметром 12 мм.

Диаметр поперечной арматуры выбираем минимально допустимый для каркаса, высотой менее 800 мм (у нас ввиду высоты фундамента и требуемого отступа от наружного слоя бетона в 50 мм – 500 мм=600-2×50) – 6 мм. Он должен быть не меньше четверти диаметра продольных прутков: 12/4=3<6 условие соблюдается. Если бы каркас был высотой от 800 мм и выше,  то минимальный диаметр арматуры составлял бы 8 мм.

Выбор и расчет арматуры для плитного фундамента осуществляют таким же образом. Только данные таблицы 1 нужно будет умножить в зависимости от количества продольных прутков арматуры. А как быть, если необходимо провести арматурный расчет столбчатого фундамента? В этом случае достаточно использовать арматуру диаметром 10 мм: для свай, которые в диаметре меньше 200 мм, достаточно трех прутков, для остальных случаев их количество возрастает по мере увеличения диаметра сваи. Для соединения вертикальных прутков достаточно использовать гладкую арматуру диаметром 6 мм.

Если вы решили армировать основание дома своими руками, то перед покупкой строительных материалов очень важно провести как можно более точные расчеты требуемого количества. В нашем случае мы будем рассматривать расчет количества арматуры под дом 10×6, для которого возводится ленточный, плитный или столбчатый фундамент.

Количество арматуры для ленточного фундамента

Общая длина ленты составит: 10000×2+(6000-2×400)×3=35600 мм или 35,6 м. С учетом общего количества запусков суммарной длиной 40×250=10000 мм или 10 м и использования четырех продольных прутков арматуры суммарный метраж продольных армирующих элементов составит: 35,6×4+10=152,4 м.

Это, что касается арматуры периодического профиля, но есть еще гладкая арматура.

При условии отступа от поверхности бетонного основания в 50 мм длина поперечной арматуры (горизонтальной и вертикальной на одно соединение) составит: 300×2+500×2=1600 мм или 1,6 м. Таких соединений при общей длине ленты в 35,6 м и шаге между поперечными прутками в 300 мм будет: 35,6/0,3=119. Итого общая длина поперечной гладкой арматуры составит: 119×1,6=190,4 м.

Количество арматуры для плитного фундамента

Для нашего дома 10×6 толщину плиты принимаем 300 мм (предварительно проводим расчет нагрузки на фундамент). Арматурный каркас будет состоять из двух поясов с шагом сетки 200 мм. Для одного пояса потребуется 10000/200=50 прутков поперек (шестиметровых) и 6000/200=30 прутков вдоль (десятиметровых). Итого на два пояса потребуется арматуры периодического профиля: (50×6+30×10)×2=1200 м

Если соединять пояса арматурными прутками, то общее количество соединений составит: 50×30=1500 шт. Длина каждого прутка с учетом отступа от края фундамента в 50 мм составит 200 мм. Итого гладкой арматуры потребуется: 1500×200=300000 мм или 300 м.

Количество арматуры для буронабивного свайного основания

В качестве примера приведем основание под тот же дом, только будем использовать буронабивные сваи (расстояние между опорами принимаем 2000 мм) и железобетонную обвязку высотой 400 мм. Нам потребуется 16 свай диаметром 200 мм и высотой 2000 мм. Сколько нужно арматуры для такого фундамента?

На сваи будем использовать 4 прутка длиной 2250 мм: 2000 мм на собственно сваю и 350 мм на запуск для связки с арматурным каркасом ростверка. Итого на одну буронабивную сваю потребуется 4×2350=9400 мм или 9,4 м арматуры периодического профиля. На 16 свай потребуется 150,4 м. Для формирования каркаса сваи будем использовать гладкую арматуру, которой соединим 4 вертикальных прутка в трех местах. Длина одного соединения составит примерно 3,14×200=628 мм, длина трех – 1884 мм или 1,9 м.

Общий метраж гладкой арматуры, необходимый для формирования каркаса столбов составит: 1,9×16=30,4 м.

Расчет арматуры для ростверка проводится так же, как и в случае расчета ленточного фундамента. Прутков периодического профиля потребуется столько же, сколько и в вышеописанном случае (по ленточному основанию), т.е. 152,4 м. А вот на формирование каркаса с учетом высоты ленты нужно будет меньше гладкой арматуры: 119 (количество соединений) ×1,2 (сумма длин поперечной арматуры на одно соединение)= 142,8 м

Надеемся, что приведенная информация поможет вам понять процесс расчета и самостоятельно рассчитать необходимое количество арматуры и диаметр прутков применительно к фундаменту вашего дома.

Загрузка…

Как рассчитать количество арматуры для заливки фундамента?

Казалось бы, всем понятно, что прочность и долговечность фундамента – это основа будущего дома. Ошибки, допущенные на этапе проектирования, армирования и заливки фундамента, в дальнейшем исправить практически невозможно. Поэтому во избежание трещин в фундаменте под действием нагрузок и движения грунта необходимо правильно рассчитать количество бетона, который будет работать на сжатие, а также количество и диаметр арматуры, которая будет работать на растяжение. В комплексе правильный расчет арматуры и четкое выполнение работ согласно проекту обеспечит вашему дому надежный фундамент на долгие годы.

Фундаменты бывают разные, и расчет арматуры для каждого из них проводится по отдельной схеме:

  1. Ленточный фундамент – наиболее популярный вид фундамента для частных домов.
  2. Свайный буронабивной – используется на слабом грунте при глубине промерзания до 1,5 метров.
  3. Свайно-ростверковый – это сочетание свай и железобетонной ленты, которое обходится дешевле ленточного фундамента, но при этом отлично себя показывает на склонах и при подвижной почве.
  4. Столбчатый фундамент – применим для легких домов и построек.
  5. Плитный фундамент – самый прожорливый в плане использования бетона и арматуры фундамент, который очень дорого обходится в частном домостроении.

Чтобы материал был более полезен для тех, кто пытается произвести расчет количества и диаметра арматуры самостоятельно, мы проведем расчет на примере ленточного фундамента под дачный дом 6 на 8 метров, а потом сравним расход арматуры на этот же проект с плитным и столбчатым фундаментом..

Схемы армирования ленточного фундамента

Для расчета количества и диаметра арматуры в первую очередь нужно определиться со схемой армирования фундамента. В зависимости от нагрузки на фундамент и пучинистости грунта для строительства частных домов чаще всего применяют армирование:

  1. Четырьмя стержнями арматуры;
  2. Шестью стержнями арматуры;
  3. Восемью стержнями арматуры.

Как же определиться со схемой армирования, чтобы она была достаточно надежной, но в то же время не излишне затратной?

Согласно правилам по проектированию и строительству (СП 52-101-2003), максимальное расстояние между продольными стержнями арматуры должно быть не более 40 см. А также арматурные стержни должны отстоять от края опалубки, верха и низа мелкозаглубленного ленточного фундамента на 5-7 см. 

Исходя из этих данных, если проектом предусмотрен ленточный фундамент шириной 50 см, то лучше всего подойдет армирование в четыре стержня:

5+40+5=50 см.

При более широком фундаменте будет целесообразно использовать схему армирования 6-8 стержнями.

Расчет диаметра продольной арматуры

От диаметра арматуры зависит прочность всей конструкции: чем толще арматура, тем прочнее. При выборе ее толщины стоит ориентироваться на вес дома и тип грунта. Если грунт плотный, то под нагрузкой от дома он будет меньше деформироваться, а значит, от плиты требуется меньшая устойчивость.

Второй фактор – это вес здания. Если вы собираетесь построить легкий деревянный дом или гараж, то устойчивость такому дому может обеспечить и арматура диаметром 10 мм. Но если это капитальное строение в несколько этажей, то может потребоваться арматура 14-16 мм. Это все учитывается на этапе разработки проекта и отражается на глубине и ширине фундамента. Далее стоит полагаться на строительные нормы, которые зависят от ширины и высоты фундамента.

Согласно правилам по проектированию и строительству (СНиП 52-01-2003),

минимальная площадь сечения продольной арматуры в ленточном фундаменте должна составлять 0,1% от общего поперечного сечения железобетонной ленты.

Для того, чтобы посчитать площадь поперечного сечения фундамента, нужно его ширину умножить на высоту. Допустим, высота нашего фундамента 80 см. Тогда при ширине 50 см поперечное сечение даст:

80*50=4000 см2

Тогда суммарная площадь поперечного сечения арматуры получится:

4000*0,1%=4 см2

При схеме армирования в 4 стержня и известной площади суммарного поперечного сечения арматуры в ленточном фундаменте мы можем определить диаметр продольной арматуры по таблице:

Казалось бы, при площади поперечного сечения арматуры в 4 см2 и 4 стержнях можно сделать вывод, что вам хватит и десятки. Но в таблице видно, что 4 стержня диаметром 10 мм имеют площадь поперечного сечения 3,14 см2. Не попадитесь на эту удочку и не допустите глупых математических ошибок при расчете фундамента вашего дома.

Выбрав столбец с 4 стержнями арматуры, нам нужно найти значение, наиболее приближенное к 4 см2, но не менее того. Поэтому нам подойдет значение 4,52 см2 и, соответственно, арматура 12 мм в диаметре.

Согласно таблице, при 4 стержнях площадь их поперечного сечения будет 4,52 см2 при диаметре арматуры 12 мм. Это наиболее ходовой тип арматуры, применяемый для армирования ленточных фундаментов малоэтажных строений.

Рассчитать диаметр арматуры при схеме армирования шестью или восемью стержнями можно аналогичным образом, найдя необходимой значение в соответствующей колонке.

Также правилами регламентируется минимальный диаметр арматуры в зависимости от ее длины: При длине фундамента до 3 м этот минимум составляет 10 мм, а при длине от 3 м – 12 мм.

Также отметим, что продольная арматура железобетонной ленты должна быть одинакового диаметра. Если же вы строите сарай или баню из остатков арматуры, то стержни большего диаметра должны оказаться в нижней части армокаркаса.

Расчет диаметра поперечной и вертикальной арматуры

Продольная арматура для ленточного фундамента должна быть рифленой, тогда как поперечная и вертикальная арматура может быть гладкой.

Рассчитать диаметр поперечной и вертикальной арматуры можно без сложных вычислений. Стоит ориентироваться на данные таблицы:

В нашем случае при высоте фундамента 80 см для поперечной и вертикальной арматуры можно брать гладкие стержни 6 мм в диаметре. Если же вы строите, скажем, двухэтажный коттедж, то для поперечной и вертикальной арматуры будет достаточно прутьев диаметром 8 мм.

Расчет количества продольной арматуры

Очень часто при возведении фундамента в разгар стройки становится понятно, что арматуры не хватает. Или же наоборот: после приемки работ оказывается, что несколько десятков погонных метров арматуры осталось, а ведь она не копейки стоит. А потом еще придется думать, куда ее пристроить. Поэтому так важно на этапе проектирования и планирования точно рассчитать количество необходимой арматуры для заливки фундамента.

К примеру, наш дачный дом имеет вот такую схему фундамента:

При фундаменте 6*8 нам потребуется посчитать периметр основания и добавить к нему длину несущих стен, под которыми также будет возводится фундамент. В нашем случае периметр равен:

 6+8+6+8=28 м

К периметру прибавим еще длину несущей стены:

28+6=34 м

Полученную цифру нам необходимо умножить на количество стержней в схеме армирования, в нашем случае на 4:

34*4=136 м

При расчете арматуры необходимо помнить, что обычно она поставляется в стержнях длиной 3-6 метров. Далеко не каждый поставщик металлопроката имеет возможность поставлять арматуру длиной 0,5 до 11,7 метров. Чаще всего на месте арматуру приходится резать в размер и стыковать внахлест, как показано на схеме.

При стыковке арматуры нужно помнить, что соседние прутья должны соединяться не строго друг над другом. Расстояние между соседними соединениями стержней арматуры должно составлять 1,5 длины нахлеста, но не менее 61 см.

Нахлест рассчитывается исходя из диаметра арматуры, умноженного на 30. В нашем случае это:

12*30=360 мм (36 см)

Чтобы добавить припуски с учетом нахлеста, можно:

  1. Посчитать количество стыков;
  2. Прибавить 10-15% к общей сумме длины арматуры.

Мы воспользуемся вторым способом и прибавим к нашей цифре 10%:

136+136*0,1=149,6 м

Учитываем то, что в угловой части фундамента арматуру придется изгибать  с загибом длиной 0,5 м. Итого на каждый угол придется 4 м таких выпусков или 20 м всего на весь фундамент. Прибавляем это количество к метражу ребристой арматуры:

149,6+20=169,6 м

Итого, для ленточного фундамента дачного дома 6*8 нам потребуется около 170 метров рифленой арматуры диаметром 12 мм.

Расчет количества вертикальной и поперечной арматуры

После того, как мы определились, сколько нам нужно купить рифленой арматуры 12 мм, нам нужно рассчитать, сколько потребуется гладкой арматуры диаметром 6 мм.

Взглянем на схему поперечного сечения фундамента:

Периметр каждого прямоугольника, который опоясывает продольную арматуру, в нашем случае составит:

40+70+40+70=220 см (2,2 метра)

Если взглянуть на припуски в местах соединения и учесть, что некоторые строители вертикальную арматуру вбивают в землю для устойчивости армокаркаса, то к этой сумме смело можно прибавлять сантиметров 20.

220+20=240 см (2,4 м)

Теперь нам нужно подсчитать, сколько таких прямоугольников разместится в нашем фундаменте. Это можно сделать двумя способами:

  1. Просто поделив длину нашего периметра и несущих оснований на расстояние между перемычками;
  2. Начертив схему фундамента и подсчитав места связок на чертеже.

Мы попробуем подсчитать количество связывающих колец на плане фундамента. Связки продольной арматуры вертикальными и поперечными прутьями необходимо производить каждые полметра (допустимо расстояние 0,3-0,8 метра). К тому же, на углах у нас разместится по две таких связки.

Сперва посчитаем, сколько таких опоясывающих прямоугольников поместится на стене 8 метров. Как видно из схемы, на восьмиметровой стене уже есть 6 угловых элементов. А если принять во внимание, что такие перемычки необходимо делать через каждые полметра, то на ней необходимо будет разместить еще 12 таких соединений. То же самое на второй восьмиметровой стене.

(6+12)*2=36 штук

Оставшиеся три стены по 5 метров предполагают еще по 9 перемычек:

9*3+36=63 перемычки

Получается, нам нужно длину гладкой арматуры, необходимой для фиксации в неподвижном состоянии продольной арматуры, умножить на количество таких соединений:

2,4*63=151,2 м

Получается, что для фундамента нашего дачного домика нам потребуется примерно 170 метров рифленой арматуры диаметром 12 мм и 150 гладкой арматуры диаметром 6 мм.

Учитывайте также, что в процессе работы часто остается много коротких стержней, непригодных для дальнейшего использования, поэтому к полученной цифре лучше прибавить еще процентов 10.

170+170*0,1=187 метров диаметром 12 мм

151,2+151,2*0,1=166,22 метров диаметром 6 мм

Зачастую поставщики считают количество арматуры не метрами погонными, а тоннами, поэтому на заключительном этапе подсчета вам может потребоваться перевести эти данные из расчета, что вес 1 мп рифленой арматуры 12 мм в диаметре равен 0,89 кг, а гладкой арматуры 6 мм в диаметре – 0,222 кг.

Итого:

187*0,89=166,43 кг

166,22*0,222=39,9 кг

Расчет количества вязальной проволоки

В места пересечения продольных, поперечных и вертикальных прутьев стыки связываются проволокой. Сварка при армировании фундамента крайне нежелательна, так как ухудшает свойства металла в местах соединения и может вызвать трещины при вибрации.

Рассчитать количество вязальной проволоки можно, зная количество стыков и длину проволоки, которая потребуется на каждый стык. Как правило, на каждый стык необходимо 15 см проволоки, сложенной вдвое, итого 30 см (0,3 м).

Ранее мы подсчитали, что в нашем фундаменте будет 63 перемычки, в каждой из которых 4 соединения для связки проволокой.

63*4=252 соединения

Далее нам необходимо количество соединений умножить на длину проволоки, необходимой для  каждого соединения:

252*0,3=75,6 метров

Если вы не имеете навыков вязки арматуры, то лучше вязальной проволоки взять с запасом, так как в неумелых руках даже обожженная проволока часто ломается.

Таким образом, для ленточного фундамента 6*8 с несущей стеной нам потребуется 166,43 кг рифленой арматуры диаметром 6 мм и 40 кг гладкой арматуры, а также 75,6 метров вязальной проволоки.

Расход арматуры в сравнении с плитным и столбчатым фундаментом

А теперь попробуем подсчитать, сколько бы нам понадобилось арматуры, если бы мы выбрали плитный или столбчатый фундамент.

Примерный расчет арматуры для плитного фундамента

Плитный фундамент состоит из двух арматурных сеток, связанных между собой. Для него, как правило, используется рифленая арматура диаметром 12 мм.

Ячейка между продольными и поперечными стержнями арматуры в сетке представляет собой квадрат 20*20 см. При фундаменте 6*8 нам потребуется узнать, сколько прутьев арматуры ляжет вдоль каждой стены с шагом в 20 см.

6/0,2=30 штук по 8 метров

8/0,2=40 штук по 6 метров

Если мы суммируем полученные цифры, мы получим количество прутков на одну сетку.

30*2+40*2=140 штук

В нашем варианте идеально было бы заказать 80 прутков длиной 6 метров и 60 прутков длиной 8 метров. Но чаще всего арматура продается длиной 3-6 метров, поэтому ее придется стыковать внахлест. Допустим, если заказать всю арматуру длиной 6 метров, то к 140 нужно будет прибавить еще 30 на наращивание по длинной стороне, которые потом разрежутся на трехметровые стержни с запасом на связку внахлест.

140+30=170 штук

170*6=1020 м рифленой арматуры

После этого необходимо соединить верхнюю и нижнюю сетку вертикальными стержнями, которых будет ровно столько, сколько пересечений продольной и поперечной арматуры.

30*40=1200 соединений

Допустим, высота плитного фундамента 20 см, то, соблюдая отступ от верха и низа бетонной плиты по 5 см, мы получим расстояние между верхней и нижней сеткой арматуры в 10 см.

1200*0,1=120 метров вертикальной арматуры

Общее количество арматуры для плитного фундамента составит:

1020+120=1122 метра погонных,
что в 6 раз больше, чем для ленточного фундамента.

Вязальной проволоки также нужно в несколько раз больше, так как в каждом месте, где пересекаются два горизонтальных и один вертикальный стержень, получится по два узла проволоки. Таких пересечений у нас 1200 в верхней сетке и столько же в нижней. На каждый узел необходимо в среднем 30 см вязальной обожженной проволоки.

1200*2*0,3=720 метров вязальной проволоки,
что в 10 раз больше, чем для ленточного фундамента на тот же дачный дом.

Примерный расчет арматуры для столбчатого фундамента

В принципе, для легкого дачного дома подойдет и столбчатый фундамент.

Для армирования свай достаточно арматуры диаметром 10 мм. Для вертикальных прутков используется ребристая арматура, горизонтальные прутки применяются только для того, чтобы связать их в единый каркас. Обычно арматурный каркас для столбика состоит из 2-4 прутков, длина которых равна высоте столба. Если диаметр столба превышает 20 см, то надо использовать больше стержней, равномерно распределяя их внутри столба. Для армирования 2-метрового столба диаметром 20 см можно ограничиться четырьмя прутками из арматуры диаметра 10 мм, которые расположены на расстоянии 10 см друг от друга и перевязаны в четырех местах гладкой арматурой диаметром 6 мм.

Предположим, что сваи для фундамента нашего дачного дома будут диаметром 200 мм с интервалом в 1,5 метра.

Делим периметр основания на шаг между сваями и получаем их количество:

34/1,5=22,6

Округляем до 23 столбов.

Свая будет армироваться тремя прутами рифленой арматуры и четырьмя хомутами – из гладкой. Посчитаем, сколько нужно рифленой арматуры на один столбик высотой 1,5 метра с выпуском под ростверк 0,3 м:

(1,5+0,3)*3=5,4 м

На все сваи уйдет:

5,4*23=124,2м рифленой арматуры

Для армокаркаса будет использоваться гладкая арматура, согнутая в окружность. Длина этой окружности с запасом составит:

3,14*0,2=0,628 м

Таких хомутов на одну сваю потребуется, как минимум, 4:

0,628*4=2,512 м

На все 23 столба гладкой арматуры потребуется:

2,512*23=57,776 м ≈58 м

Для расчета вязальной проволоки нам нужно посчитать количество соединений в наших столбах. Три прутка рифленой арматуры соединяются с четырьмя опоясывающими кольцами гладкой арматуры в шести местах:

3*4*0,3=3,6 метра проволоки на каждый столб

3,6*23=82,8 метра проволоки

Итого на свайный фундамент нашего дачного домика 6*8 потребуется около 125 метров погонных рифленой арматуры и 58 м гладкой арматуры, а также 83 м вязальной проволоки, что, конечно, получится экономичнее, чем ленточный фундамент и вполне подойдет для каркасного дачного дома.

Выводы:

В общем, совсем не сложно самостоятельно рассчитать количество и диаметр арматуры, необходимой для заливки фундамента. Особенно, при наличии проектно-сметной документации. Используя данный материал, вы без проблем сможете довольно точно рассчитать количество арматуры для заказа, чтобы потом не переплачивать за повторную доставку или излишний металлопрокат, оставшийся после стройки.

Сравнение расчетов количества арматуры для разных видов фундамента показало, что для дачного дома лучше всего подходят столбчатый и ленточный фундамент. А уж какой из них выбрать, будет зависеть от материала стен, кровли, перекрытий и количества этажей дома, пучинистости грунта и личных предпочтений.

 

Металлобаза «Аксвил» предлагает купить рифленую арматуру А3 и гладкую арматуру А1, вязальную проволоку, по безналичному и наличному расчету, оптом и в розницу с доставкой по Беларуси.

Расчет арматуры для фундамента – рекомендации от ТК Газметаллпроект

Любой жилой дом, производственное, офисное или складское помещение монтируются на заранее подготовленный фундамент. Конструкция основания может отличаться в зависимости особенностей почвы, климатических характеристик региона, массы и размеров здания. При этом армирование фундамента является обязательным условием длительной эксплуатации объекта, без повреждений и деформаций конструкции.

Назначение арматурного каркаса в фундаменте здания

Существует несколько типов оснований, выполняемых из бетонного раствора. Наиболее востребованными считаются плитные и ленточные фундаменты, мелко- и глубокозаглубленные. Также применяются основания на сваях, глубина заложения которых зависит от параметров грунта и уровня промерзания почвы.

Для армирования фундамента применяются металлические прутья с рифленой или гладкой поверхностью, которые соединяются в жесткий и прочный каркас. Армирование выполняется в следующих целях:

  • стальная основа принимает нагрузки на растяжение и изгиб, равномерно распределяет их по всей конструкции основания;
  • каркас исключает деформации бетона, позволяет избежать или минимизирует образование трещин и других дефектов фундамента;
  • за счет арматурного каркаса удается снизить объем используемого для заливки основания бетонного раствора, уменьшить и снизить стоимость конструкции;
  • армирование делает возможным строительство дома или производственного здания на слабых грунтах, в том числе сыпучих, болотистых, в регионах с экстремально низкими зимними температурами;
  • возрастает несущая способность основания, арматура делает фундамент более приспособленным к высоким нагрузкам по массе, усилиям на растяжение и деформацию.

После заливки фундамента бетонный раствор постепенно набирает прочность. При этом монолит приобретает высокую прочность к сжатию, но не отличается хорошими показателями на растяжение. Арматурный каркас позволяет поднять данные параметры на должный уровень.

Как правильно рассчитать арматуру для фундамента

Для монтажа прочного и долговечного фундаментного основания необходимо выполнить расчет арматуры и каркаса. Такой подход обеспечивает соответствие требованиям нормативных документов. Для правильного расчета необходимо учитывать следующие моменты:

  • в качестве конструктивных элементов лучше всего закладывать металлические прутья с рифленой поверхностью, толщина которых начинается от 12 мм – посмотреть каталог арматуры для фундамента;
  • оптимальным является использование проката марки А400, А500 и А240;
  • все расчеты выполняются в соответствии с требованиями СНиП 52-01-2003 и 2. 02.01-83;
  • при проектировании учитываются характеристики грунта, для каменистой, болотистой, сыпучей почвы арматурный каркас будет отличаться;
  • обязательно учитывается при расчетах суммарная нагрузка на конструкцию, которая складывается из собственного веса фундамента, массы стен, перекрытий, перегородок, установленного в здании оборудования и предметов повседневного использования, среднегодового количества осадков;
  • обязательно учитывается запас прочности, каркас должен быть прочнее расчетных показателей на 5-10%;
  • несмотря на большое количество доступных онлайн-калькуляторов, расчет арматуры с их использованием получится приблизительным, желательно воспользоваться услугами специалиста в данной отрасли.

Выполняя указанные правила расчета арматурного каркаса можно быть уверенным в прочности и долговечности бетонного основания. При движении грунта, больших климатических и механических нагрузках, фундамент не получит повреждений. Соответственно стенам здания не угрожают деформации, появление трещин и щелей.

Конструктивное исполнение каркаса

В зависимости от типа и сложности фундамента, арматурный каркас может быть выполнен несколькими способами. Соответственно расчеты также отличаются для конструкций плитного, ленточного, свайного и других типов. После выбора подходящей схемы каркаса выполняется подбор необходимых комплектующих. Рассчитывается количество и длина прутьев, объем армирующей сетки. Необходимо определиться со способом соединения стержней между собой, направленностью конструкций, сечением металла и другими характеристиками.

Стандартный каркас собирается из прутков, расположенных в продольном и поперечном направлениях. Шаг ячеи определяется нагрузкой на основание, а для соединения используется технология сварки, вязальная проволока, специальные муфты.

Для ленточных фундаментов каркас представляет собой набор продольных прутков, соединенных между собой поперечными элементами. Такие сетки располагаются в несколько рядов. Для плитной конструкции подойдет плоский каркас из арматуры. Для свайного фундамента металлические прутки монтируются вертикально.

Расчет арматуры для фундамента плитного типа

Использование фундамента плитного типа актуально при возведении жилых домов и коттеджей, в которых не планируется выделение подвального помещения. Визуально основание выполнено в форме монолитной плиты, толщина которой может превышать 0,2 метра. При этом армирующая сетка укладывается в 1, 2 или более рядов, в зависимости от массы здания и типа грунта.

При выборе арматуры в первую очередь оценивается категория грунта. Для непучинистой почвы подойдут ребристые прутки толщиной от 10 мм. Если планируется строительство на слабой почве или участке с наклоном. Минимальный диаметр стержней должен быть 14 мм и более. Связи между сетками выполняются из арматуры на 6 мм. Стандартный шаг сетки составляет 0,2 метра, но данный показатель может меняться в большую или меньшую сторону. Связки продольных и поперечных стержней выполняются проволокой или сваркой.

Технология расчета арматуры предполагает выполнение следующих этапов:

  • при толщине фундамента до 0,2 метра желательно использовать 2 плоских каркаса с вертикальной связкой, если основание более габаритное, число сеток увеличивается;
  • для расчета количества продольных прутьев длина большей стороны делится на шаг 0,2 метра, что позволяет получить общую длину стержней;
  • аналогичным образом рассчитывается общая длина поперечных звеньев каркаса;
  • так как диаметр прутка принимается одинаковым, можно быстро вычислить необходимое количество стержней и рассчитать объем приобретаемой арматуры;
  • для расчета вертикальных прутков подсчитывает количество точек соединения одной и сеток, размер связей равняется высоте фундаментной подушки, далее нетрудно подсчитать общую протяженность стальных стержней;
  • если фиксация прутков выполняется на вязальную проволоку, вычисляется число соединений арматуры, средний расход составляет 0,4 метра на одну точку.

После выбора конструкции фундаментного основания и необходимой толщины арматуры, рассчитать объем приобретаемой продукции можно самостоятельно. Для этого достаточно знать площадь фундамента и его высоту, количество арматурных сеток, шаг ячеи. Все расчеты можно выполнить с помощью обычного калькулятора.

Расчет арматуры для фундамента ленточного типа

Для большинства зданий и сооружений выбор ленточного фундамента является оптимальным вариантом. Такая конструкция качественно выполняет свои функции, а затраты на монтаж существенно ниже, чем расходы на заливку монолитного основания. В состав каркаса входят продольные, поперечные и вертикальные металлические стержни.

Для продольной арматуры стандартным диаметром является 12-16 мм, поперечные и вертикальные связи могут быть меньшей толщины. Шаг ячеи принимается равным 0,2 метра, но может быть изменен в зависимости от конструкции и нагрузки на основание. Технология расчета арматурного каркаса ленточного фундамента будет следующей:

  • в конструкцию обязательно закладывается 2 сетки, верхняя связывает основание при просадках грунта, нижняя исключает деформации при вспучивании почвы;
  • для обустройства каркаса потребуется 4 продольных прутка, протяженность каждого из которых равняется периметру ленточного фундамента;
  • количество поперечных прутков рассчитывается, исходя из принятого шага ячейки, длина стержней равна толщине бетонного основания;
  • вертикальная арматура рассчитывается, исходя из количества соединение продольных и поперечных стержней, высота прутков определяется аналогичными показателями фундамента;
  • для соединения прутков используется вязальная проволока, длина которой определяется из расчета 0,4 метра на 1 узел.

Путем достаточно простых вычислений удается подсчитать общую длину продольных, поперечных и вертикальных стержней, а также вязальной проволоки. В зависимости от длины имеющейся в продаже арматуры вычисляется число отдельных элементов. При этом учитывается некоторый запас, наличие которого необходимо в непредвиденных случаях.

Арматурные каркасы для фундаментов другого типа рассчитываются аналогичным образом. Для этого необходимо знать размеры каждого блока, определиться с конструкцией, толщиной используемых прутков. С помощью несложных математических расчетов определяется общая длина стержней, расходы на их приобретение.

Монтаж фундамента любого типа будет некачественным, если в основу не заложить металлический каркас. Стальные прутья, сваренные или связанные между собой, защищают фундамент от деформации, выкрашивание, излома и растяжения. Количество и стоимость необходимого материала можно рассчитать самостоятельно. При отсутствии опыта желательно обратиться к профессионалам, предлагающим свои услуги в данной сфере.


Расчет материалов на ленточный фундамент

Представленная ниже программа способна рассчитывать необходимое количество арматуры и бетона на монолитный железобетонный ленточный фундамент. Кроме того, этот калькулятор может произвести расчет затрат на приобретение перечисленных материалов в случае указания в исходных данных цены за единицу товара. Также он может определить нагрузку на основание от собственного веса фундамента.

Содержание:

1. Калькулятор

2. Инструкция к калькулятору

Для тех же, кому нужен чертеж фундамента, например, для самостоятельного ее возведения или проверки подрядчиков, эта программа его предоставляет. Так, здесь можно получить план ленты и ее 3D фрагмент (это образец того, как расположены те или иные позиции, и в нем никак не отражена схема армирования), узел армирования в углу ленты и ее разрезы с размерами, отметками, шагом арматуры и другими данными для следующих планов:

  • Тип 1 – незамкнутая лента. Указав это тип, можно рассчитать как участок фундаментной ленты под жилой дом, так и весь фундамент целиком например, под забор, баню или коттедж в случае указания в исходных данных общей длины (А).
  • Тип 3 – прямоугольный ленточный фундамент под внешние несущие стены с участком под одну внутреннюю несущую стену.
  • Тип 4 – то же самое, что и предыдущий, только количество участков под внутренние стены уже два.
  • Тип 5 – железобетонная фундаментная лента прямоугольной формы с двумя разнонаправ- ленными участками внутри нее.
  • Тип 6 – то же самое, что и предыдущий, только участков уже три.
  • Тип 7 – прямоугольник с одним участком под внутреннюю несущую стену и двумя участками, расположенными с одной стороны от нее (например, под лестницу).
  • Тип 8 – лента прямоугольной формы с тремя участками под внутренние стены.
  • Тип 9 – прямоугольник, разделенный участком под внутреннюю стену, к которой приставлена П-образная лента (например, под тамбур).
  • Тип 10 – то же самое, что и предыдущий, только здесь еще добавилась одна лента под внутреннюю несущую стену.
  • Тип 11 – то же самое, что и предыдущий, только участков под внутренние стены уже три.
  • Тип 12 – то же самое, что и тип 4, только здесь добавились два участка под внутренние стены (например, в месте, где будет установлена лестница).

Калькулятор

Инструкция к калькулятору

Порядок действий

Выбор типа расчета –> заполнение исходных данных –> нажатие на кнопку “Рассчитать” –> выбор схемы армирования в соответствии с исходными данными –> нажатие на кнопку “Печать”, если необходимо распечатать результаты расчета или сохранить их в формате PDF.

Исходные данные

Размеры фундамента:

Здесь указываются размеры фундаментной ленты в плане, ее высота (Н) и толщина (С, С1, С2, С3), а также верхняя отметка (О2).

Продольная арматура (поз.1):

Продольная арматура – это металлические пруты, которые закладываются вдоль ленты.

Схема армирования – существует 9 схем армирования (см. рисунок). Здесь выбирается та схема, которая нужна для расчета.

Диаметр арматуры – обычно в ленточном фундаменте минимальный диаметр продольной арматуры для сварных каркасов равен 10 мм, а для вязаных – 12 мм. Обусловлено это в первую очередь устойчивостью каркасов.

Длина стержня – здесь указывается длина металлических прутов при покупке.

Нахлест стержней – в этой графе задается величина наложения арматуры, когда для перекрытия всей длины фундаментной ленты длины покупного стержня не хватает. Зависит данная величина от марки бетона и диаметра металлических прутов. Но чаще всего для частного строительства данная величина равна 40 диаметрам арматуры в случае вязки этих элементов между собой и 8d – в случае их сварки.

Защитный слой (S1) – расстояние от внешнего края бетона до торца продольной арматуры. Конструктивно оно берется от 10 до 20 мм.

Защитный слой (S2) – расстояние от нижней грани ленты до центра нижней продольной арматуры. Чаще всего данная величина равна 50 мм в случае устройства бетонной подготовки и 70 мм – в случае ее отсутствия.

Защитный слой (S3) – расстояние от верхней грани бетона до центра верхних стержней. Обычно оно равно 35-50 мм.

Защитный слой (S4) – расстояние от крайней грани подземного сооружения до центра стержня. Чаще всего такая величина берется от 35 до 50 мм.

Цена за 1 т – стоимость 1 тонны этого металлопроката.

Вертикальные стержни (поз.2):

Диаметр арматуры – обычно для коттеджей не выше 3-х этажей он равен 8-10 мм.

Защитный слой (S5) – расстояние от нижней и верхней граней бетона до торца металлических элементов. Конструктивно берется в пределах от 10 до 15 мм.

Шаг (Х1) – шаг, с которым расставляются вертикальные стержни. Обычно для двухэтажных домов он равен 200 мм.

Цена за 1 т – стоимость 1 тонны металлопроката, используемый для вертикальных стержней.

Горизонтальные стержни (поз.3):

Диаметр арматуры – чаще всего он равен 6-10 мм.

Защитный слой (S6) – расстояние от крайних граней фундаментной монолитной ленты до торцов горизонтальной арматуры. Берется, как для защитного слоя (S5), т.е. от 10 до 15 мм.

Шаг (Х2) – шаг, с которым укладываются горизонтальные металлические пруты. В данном фундаменте эти стержни служат скрепляющим элементом вертикальных каркасов. Поэтому их шаг может как совпадать с шагом вертикальных стержней (Х1=Х2), так и превосходить его вдвое.

Цена за 1 т – стоимость 1 тонны металлопроката, предназначенный для изготовления горизонтальных металлических прутов.

Бетон:

Класс бетона – здесь можно выбрать класс бетона (марка бетона стоит в скобках), который будет использоваться в устройстве фундамента.  Обычно для подземных сооружений под небольшие постройки (например, жилые дома до 3-х этажей или заборы) берется бетон класса B15 или В20. Создана данная графа с целью сравнить затраты на приобретение того или иного класса бетона.

Цена за 1 м3 – стоимость куба приобретаемой бетонной смеси.

Запас арматуры – обычно проектировщики ставят 5%.

Примечание: другие исходные данные, обозначенные на рисунке, считаются автоматически.

Результат

Фундамент:

Площадь горизонтальной поверхности – площадь одной грани (нижней или верхней) фундаментной ленты. По данной графе можно, например, определить расход горизонтальной гидроизоляции.

Площадь вертикальной поверхности – суммарная площадь всех боковых граней подземного сооружения. По значению в данной графе можно, например, определить расход вертикальной гидроизоляции.

Нагрузка 1 – нагрузка на основание от собственного веса подземного сооружения, выраженная в кг/м.

Нагрузка 2 – то же самое, что и нагрузка 1, только выраженная в кг/м2.

Бетон:

Объем – расход бетона на фундамент указанных размеров.

Стоимость – сумма, которая необходима для покупки бетонной смеси.

Арматура:

Количество стержней – требуемое количество металлических элементов, указанных или рассчитанных размеров.

Длина стержня – размер, полученный для вертикальных и горизонтальных металлических прутов путем вычета из толщины и высоты ленты величин защитного слоя.

Масса стержня – масса одного элемента, рассчитанной длины.

Общая длина – общая длина в отдельности для продольной, вертикальной и горизонтальной арматуры.

Общая масса – то же самое, что и предыдущее, но только для массы.

Стоимость – затраты на покупку металлопроката для продольных, вертикальных и горизонтальных стержней в отдельности.

Общая стоимость – сумма затрат на покупку бетона и металлопроката.

Схема армирования и расчет арматуры для ленточного фундамента

Как известно, любое строительство начинается с расчета и закладки фундамента. От того, насколько точно будет произведен этот расчет, напрямую зависит долговечность и прочность постройки. Являясь основой здания, фундамент принимает на себя нагрузку и перераспределяет ее на грунт. Верхняя плоскость конструкции, представляющая собой основу для внешних и внутренних стен, называется обрезом, а нижняя, выполняющая функцию распределения нагрузки – подошвой.

 

Содержание:

  1. Характеристики ленточного фундамента
  2. Выбор диаметра прута
  3. Схема армирования фундамента
  4. Расчет арматуры для фундамента
  5. Самостоятельная заливка перекрытия

 

Характеристики ленточного фундамента

Наиболее распространенными в частном строительстве являются железобетонные ленточные фундаменты.

Это обусловлено относительной простотой закладки – при его устройстве можно обойтись без применения грузоподъемной и специальной строительной техники. Важно правильно произвести не только расчет сечения и заглубления, но и расчет арматуры для ленточного фундамента.

Особенной популярностью этот тип фундамента пользуется благодаря тому, что подходит  практически для любых грунтов и отличается самым большим сроком службы – до 150 лет.

Такую долговечность обеспечивают не только физические характеристики бетона, но и выбор правильной схемы армирования. Несмотря на видимую прочность, бетон является достаточно хрупким материалом и даже при незначительных сдвигах грунта может лопнуть. Для придания ему некоторой пластичности и применяется армирование. Производится оно при помощи металлического прута. Причем большая его часть должна иметь ребристую поверхность. Это необходимо для улучшения сцепления с бетоном.

Выбор диаметра прута

Расчет нагрузки на фундамент жилого дома, а, следовательно, и выбор диаметра арматуры  производится специалистами при разработке проекта. Чаще всего используется арматура диаметром 10 или 12 мм, значительно реже 14мм. И только для небольших легких построек на непучинистых грунтах допустимо использование прута диаметром 8 мм.

Схема армирования фундамента

Для обеспечения прочности фундамента необходимо укрепить как нижнюю его часть, так и верхнюю. Для этого используется два горизонтальных ряда стальных прутьев, соединенных между собой вертикальными перемычками.

Основную нагрузку в зонах растяжения фундамента принимают на себя продольные горизонтальные пруты, тогда как вертикальные и поперечные горизонтальные используются в основном в качестве каркаса, а так же для придания фундаменту прочности на срез. Как правило, достаточной считается закладка четырех горизонтальных продольных стальных ребристых прутьев – двух по верху и двух по низу.

Вертикальные перемычки могут располагаться на расстоянии от 30 до 80 см одна от другой и зачастую изготавливаются из гладкого прута меньшего диаметра, что вполне допустимо.

Следует помнить, что расстояние между продольными прутьями армирования не должно превышать 0,3 м, а для защиты стали от коррозии прут должен быть заглублен в бетон минимум на 5 см.

Расчет арматуры для фундамента

Когда решение о схеме армирования фундамента принято, важно правильно рассчитать необходимое количество материала, чтобы дважды не платить за доставку, если обнаружиться, что его не хватает. Да и тратиться на излишки вряд ли кому-то захочется.

Для начала необходимо посчитать, сколько ребристой арматуры вам понадобится. Для этого нужно вычислить периметр вашего дома, прибавить к этому числу длину внутренних стен, под которыми будет проложен фундамент, и умножить все это на количество прутьев в схеме.

В качестве примера рассчитаем количество арматуры необходимое для закладки фундамента размером 5/6 м с одной внутренней стеной длиной 5м. Допустим, что схема армирования предусматривает 4 продольных прута диаметром 12мм. Итак:

 (5+6)*2=22 – периметр здания

22+5=27 – общая длина фундамента

27*4= 108 – общая длина арматуры

Если вам не удалось приобрести прут необходимой длины, и вы планируете соединять отрезки, делать это необходимо с большим нахлестом – не менее 1 метра.  Учитывайте это в расчетах. Мы допустим, что каждый продольный прут нашего каркаса будет иметь одно соединение.

4(количество прутьев в схеме)*5 (количество стен) = 20

Итого, получаем 20 соединений, а значит, дополнительно потребуется 20 метров арматуры. Прибавляем к предыдущему значению и получаем:

108+20=128м

Теперь рассчитаем необходимое количество гладкого прута, диаметром 8мм для вертикальных стоек и горизонтальных поперечных перемычек.

Примем расстояние между перемычками равным 0,5 м. Тогда, разделив общую длину фундамента на это значение, мы получим количество армировочных «колец».

27/0,5 = 54 – общее количество армировочных колец

Если высота армировочной решетки 0,5м, а расстояние между прутьями 0,25м, то расчет арматуры будет выглядеть так:

(0,5+0,25)*2 = 1,5 – периметр одного «кольца»;

54*1,5 = 81м – общая длина прута.

В расчетах так же необходимо учитывать возможные обрезки и нахлесты. Рассчитать их точное количество не удастся, так что специалисты советуют прибавлять примерно 10% к получившейся длине.

81+10%=89,1

Округляем в большую сторону и получаем 90м.

Достаточно редко прут или арматура продается на метраж. Значительно чаще, а точнее почти всегда, мы платим не за длину, а за вес изделия.  Для того чтобы определиться с точным количеством необходима таблица расчета арматуры. Большинство крупных предприятий по выпуску металлопроката обязаны соблюдать требования ГОСТ 5781-82, где и указана масса одно метра того или иного вида изделий. Существует так же ГОСТ 2590-88, регламентирующий вес стального круга. Необходимо заметить, что цифры в обоих документах совпадают, а разница заключается лишь в том, что шаг диаметров круга значительно меньше, чем шаг диаметров стержневой арматуры. Для стержневой арматуры эти значения таковы:

Диаметр прута                                        Вес в кг/м

            8                                                         0,222

           10                                                        0,395

           12                                                        0,888

           14                                                        1,210

Исходя из этой таблицы,  можно произвести  расчет массы арматуры необходимой для заливки нашего фундамента:

128*0,888=113,664кг – необходимое количество ребристой арматуры диаметром 12мм

90*0,395=35,55кг – необходимое количество гладкого прута диаметром 10мм

Огромное значение имеет так же способ соединения деталей конструкции. Многие ошибочно считают, что чем крепче соединить прутья между собой, тем долговечнее будет фундамент и выбирают для монтажа каркаса сварку. Однако в процессе сваривания нарушается структура металла, что ведет к его преждевременному разрушению. Специалисты советуют соединять арматуру вязальной проволокой. Проще всего делать это крючком, вот так:

Самостоятельная заливка перекрытия

К сожалению, стоимость готовых железобетонных конструкций достаточно высока. Поэтому достаточно часто стараясь сэкономить, их изготавливают самостоятельно. Перекрытия, как и любые другие ЖБК, требуют армирования. Как правило, для этого используют решетку с ячейкой 15/15см. При толщине перекрытия до 15см достаточно одной арматурной сетки. С увеличением толщины плиты, количество решеток увеличивается.

Правильно произвести  расчет арматуры перекрытия достаточно просто. В качестве примера рассчитаем перекрытие размером 5/6м. Следует учитывать, что арматура не должна доходить кромки плиты на 10 см. Тогда ширина укрепленного участка составит 4,8м. Рассчитаем необходимое количество материала.  

480/15=32 – количество прутьев для армирования плиты в длину. К этому значению необходимо прибавить еще один отрезок – кромочный. В итоге получаем 33 прута длиной 5,8м каждый. Итого: 33*5,8=191,4м.

Точно так же рассчитываем количество материала для укладки в ширину:

580/15=39(округлили) – количество прутьев;

39*4,8=187,2м – длина арматуры, необходимой для укладки в ширину.

Складываем оба полученных значения:

191,4+187,2=378,6м – общая длина необходимого материала.

Теперь остается только вычислить массу такого количества арматуры, используя таблицу. Как правило, для этих целей применяется прут диаметром 10мм.

Как видите, расчет количества арматуры достаточно прост. Но все же не стоит пренебрегать помощью специалистов, особенно в той части, которая касается сбора нагрузок на фундамент и определения типа грунта. Все остальное вы в состоянии с успехом проделать самостоятельно.

 

Расчет арматуры для фундамента: сколько нужно

Расчет арматуры для фундамента позволяет рационально использовать материал и создать качественную и долговечную конструкцию. Объясняется это следующим: избыток металла в каркасе основания строения станет последствием того, что стоимость конструкции может существенно вырасти.

Противоположная ситуация, когда количество арматуры на 1 м3 бетона меньше нужного, сделает фундамент дома слабым и не способным вынести нагрузки, связанные с давлением строения и грунта. Это может привести к серьёзным последствиям.

Методы армирования

Прежде всего необходимо разобраться с вопросом, каким образом будет выполняться армирование конструкции. На сегодняшний момент используется 2 схемы, различающихся между собой количеством металлических стержней:

  • 4 горизонтальных рядов.
  • 6 горизонтальных рядов.

Выбор одной из схем определяется в СНиП 52-101-2003, в котором говорится следующее: «Интервал между прутками арматуры в ленточном фундаменте, расположенными параллельно не должен превышать величину 400 мм.

Расстояние между каждымм прутком и краем бетонного каркаса основания устанавливается 60 – 70 мм».

Согаласно приведённому выше документу, рассчитать количество арматуры для строения достаточно просто. Например, для оснований ширина которых превышает 0,5 м целесообразно использовать металлизированный каркас, состоящий из 6 продольных рядов.

Таким образом, нужно учитывать, расчет арматуры для ленточного фундамента определяется только согласно регламентированной схеме.

Вычисление диаметра

Толщина металлического прута должна составлять не менее 0,1 % от сечения фундамента

Если с количеством всё ясно, возникает следующий вопрос: какой диаметр арматуры необходимо использовать для создания качественного и надежного основания дома? Для этого существует требование СНиП 52-101-2003, в котором раскрываются требования к данной ситуации. Согласно документу, диаметр арматуры для фундамента берётся из 2 коэффициентов: минимальное сечение (толщина) продольных прутьев ленточной конструкции должно равняться 0,1% от всего сечения железобетона. Такого требования придерживаются когда высчитывают диаметр прутьев.

Диаметр арматуры для ленточного фундамента подбирается исходя из того, куда именно она будет установлена. В зависимости от места её предназначения могут измениться и требования к её сечению. Более точная информация приведена в следующей таблице.

Условия использованияСечение, мм
1Вертикальная с высотой продольного сечения ленты менее 0,8м6
2Вертикальная с высотой ленты более 0,8 м8
3Поперечная6

Выполняя расчет количества арматуры для фундамента одно-или двухэтажного дома, преимущественно берутся прутки толщиной 8 мм. Аналогичная ситуация для гаражей, бань и других малоэтажных построек.

Продольная арматура

Для вычисления площади сечения фундаментной ленты понадобится умножить его ширину на высоту. К примеру, если ширина 450 мм, а высота 1000 мм, искомая величина составит 45000 мм2. Согласно вышеупомянутому СНиП, коэффициент берётся равный 0,1 %, потому полученная ранее цифра умножается на это соотношение. Получается 45000 мм2 * 0.1 = 45 мм. Таким образом диаметр продольной арматуры на ленточный фундамент указанного размера должен быть не менее 4,5 см.

Преимущественно все фундаменты имеют стандартные размеры, потому со временем была разработана таблица, позволяющая определить сечение арматурного прутка для любых размеров оснований. В ней указано соотношение диаметра с площадью поперечного сечения стержня, в зависимости от количества прутьев.

Величины приведены в средних коэффициентах, поскольку полученные результаты были округлены в большую сторону. Измерения приведены в сантиметрах.

Получив расчетную площадь поперечного сечения арматурного ряда, равным 4,5 см при ширине основания в 45 см, допускается использование метода армирования 4 прутьями. В таблице находится графа, в которой приведена величина значения для данного случая. Она составляет 4,52 см2.

Для вычисления того, какая арматура нужна для ленточного фундамента, усиленного 6 стержнями, понадобится произвести аналогичные действия. Разница заключается лишь в том, что величина берётся из столбца с цифрой 6. Более сложные конструкции определяются аналогично.

Диаметр арматуры для плитного фундамента, как и для ленточного, берётся единый. Если имеются стержни меньшего сечения, они закладываются в нижний ряд.

Общее количество стержней

Количество металлических стержней зависит от периметра фундамента

Перед началом строительства возникает вопрос, сколько нужно арматуры на весь объём фундамента?

Тема достаточно актуальна, так как при возникновении ситуации, когда металл закончился, а работа не выполнена, возникнет простой, а за доставку дополнительной недостающей партии придётся заплатить отдельно.

Определяется это число таким образом:

  1. Находится длина периметра основания при площади строения 10 * 10 (10*4 = 40), величина составит 40 м.
  2. Так как требуется выполнить расчет для 4-стержневой конструкции, полученное ранее число умножается на 4 (40 * 4 = 160), итого 160 м.
Прутья арматуры соединяются внахлест

Для возведения фундамента дома размером 10 * 10 м требуется 160 м арматурного стержня. Однако эта величина без учёта стыковки прутьев, потому и случаются такие ситуации, когда все действия по определению количества были выполнены верно, а рассчитанного металла не хватило.

Вопрос того, как соединять прутья металла в каркасе фундамента, является одним из важных. Осуществляется это внахлёст с напуском друг на друга. При сечении, равном 10 мм, длина соединения делается такой: 10 мм * 30 = 300 мм. Последующий расчет количества арматуры выполняется исходя из числа соединительных швов. Подробнее о расчетах смотрите в этом видео:

Сделать это можно двумя способами. Первый подразумевает грамотно составленную схему, в которой указывается расположение прутков и количество соединений. Второй метод несколько проще: если арматура уже рассчитана ранее описанными способами, к полученному числу добавляется 10 – 15%.

Поперечная и вертикальная

Как рассчитать арматуру для ленточного фундамента, расположенную поперечно или вертикально? Для этого используется уже проверенная схема. Из неё можно определить, что для заполнения одного прямоугольника потребуется 2,5 м (0.35 * 2 + 0.90 * 2 = 2,5). Нужно учитывать, что величина 0,3 и 0,85 берутся с запасом. Это нужно для того, чтобы концы стержней немного выходили за основной периметр границ.

В случае плиточного фундамента все несколько проще, арматура вяжется сеткой

Среди частых ошибок малоопытных людей, занимающихся вязкой армированного каркаса для ленточного фундамента, происходит установка арматуры на дно траншеи. Некоторые для устойчивости конструкции вбивают её в грунт. В этих случаях расход арматуры на куб бетона увеличится, потому при средней величине вертикальных прутьев 0,9 м нужен небольшой запас, равный 10% от общей длины.

Чтобы облегчить себе задачу в большом количестве цифр, можно просто начертить схему основания, отметить на ней места расположения прямоугольников, а потом просто подсчитать их количество. Таким образом, определяется величина поперечных и вертикальных стоек для бетонного фундамента ленточного типа.

После того как все нюансы разобраны, рассчитать арматуру в фундаменте можно за несколько минут.

При этом нужно учитывать, чем больше площадь будущего строения, тем большее количество металла понадобится для армирования каждого кубического метра.

Только после этого можно отправляться в магазин и заказывать армированные стержни. Это позволит снизить вероятность ошибок, указанных в начале статьи, и даст гарантию того, что через несколько лет не придётся делать капитальный или частичный ремонт фундамента.

какой нужен для одноэтажного дома?

Когда планируется строительство дома очень важно выбрать правильный тип фундамента. Желательно для выбора фундамента обращаться к профессионалам, которые рассмотрят все факторы, и предложат наиболее экономичный вариант.

Технология устройства ленточного фундамента

Есть много различных типов фундаментов. Существуют различные факторы, которые влияют на выбор фундамента: условия грунта, близость деревьев, земля, типы почв, близость стоков, скорость ветра.

Ленточный фундамент наиболее распространённый и широко используемый. Как правило, ленточный фундамент используется на незаболоченных участках. Ленточные фундаменты бывают двух видов (монолитные и сборные).

Монолитные фундаменты ленточные

Производство и установка монолитных полос фундамента достаточно трудоемкий и сложный процесс. Хотя не секрет, что правильно установленный ленточный фундамент, является безопасным и устойчивым к воздействию факторов внешней среды. Кроме этого, обеспечивается прочная основа.

Бетонная масса для ленточного фундамента должна быть гладкой. Фундамент должен быть установлен профессионально.

Тем не менее, данная технология пользуется большой популярностью в мире, потому что фундамент обладает высокой устойчивостью к большим нагрузкам.

Используя этот тип фундамента, стены можно построить из бетона, бетонных блоков и кирпича. Ленточный фундамент можно построить только в прочной почве.

Как и все виды фундаментов, он имеет недостатки. Для изготовления фундамента требуется много строительных материалов, времени и рабочих. Процесс восстановления ошибок трудоёмкий и дорогой.

Сборные фундаменты ленточные

Сборные фундаменты — это полосы, которые состоят из прямоугольных или трапециевидных блоков. 

Перед строительством просеивают песок, толщиной слоя 10 см, на который кладутся бетонные блоки.

При строительстве рядов, блоки принимают нагрузку здания, которая распространяется на все блоки.

Ленточные фундаменты состоят из непрерывной полосы, изготовленной, как правило, из бетона.

Данная полоса расположена по центру несущих стен. Это непрерывная полоса служит основанием, на котором построена стена.  Ширина полосы определяется таким образом, чтобы равномерно распределить нагрузку на фундамент.

Бетон является материалом, который часто используется для изготовления фундамента. Потому что он легко может быть помещён и распределён в фундаментных траншеях.

Ширина полос ленточного фундамента, зависит от несущей способности и нагрузки на фундамент. Чем больше несущая способность, тем меньше ширина фундамента, необходимого для той же нагрузки.

Инструменты и материалы

Бетон

Бетон является одним из самых надёжных и доступных строительных материалов. Бетон может быть использован практически для каждого строительного проекта. Бетон подходит для всех видов фундаментов. Кроме того, бетон, используется для подземных стен, которые составляют главную часть подвала. Бетонные фундаментные стены легко строятся и ремонтируются.

При работе с бетоном в первую очередь необходимо построить деревянный каркас. Бетон наливается в него и остаётся, пока не затвердеет. Как только бетон затвердеет, каркас может быть удалён.

Металлическая арматура

При работе с бетоном, обычно используют металлическую арматуру. Металлическую арматуру сцепляют с бетоном. После застывания обеспечивается дополнительная прочность и жёсткость. Металлическая арматура является важным компонентом любого фундамента.

Бетонный блок

Бетонные блоки изготавливаются из бетона. Они крупнее, чем обычный кирпич. Поэтому класть их гораздо проще и быстрее. Бетонные блоки также называют шлакоблоками, так как они намного легче, чем вы можете себе представить. Вы должны выбрать сверхмощные бетонные блоки при строительстве ленточного фундамента.

Бетонные блоки являются морозостойкими. Это значит, что они не будут уничтожены, если вода попадёт внутрь. Бетонные блоки используются так же, как кирпичи, только укладываются они гораздо быстрее.

Кирпичи или камни

Некоторые старые дома имеют фундамент из кирпича или камня. Эти материалы обладают такими же характеристиками, как бетон, но более восприимчивы к попаданию воды из-за зазоров между камней.

Дерево

Большинство людей думают, что фундамент изготавливают только из бетона. Однако дерево является отличным материалом для изготовления фундамента дома. Как правило, древесину обрабатывают большим количеством химических веществ. Это позволяет предотвратить гниение и защищает от вредителей.

Герметичные материалы

Почти все подвалы могут пострадать от проникновения воды, потому что они построены под землёй. Поэтому необходимо использовать гидроизоляционные материалы. Есть много различных типов гидроизоляции для фундаментных стен.

Для строительства ленточного фундамента используют различные инструменты:

  • Лопаты; 
  • Линейные и водяные уровни;
  • Электрические лобзики, бензопилы и ножовки;
  • Болгарка и ножовка по металлу;
  • Кувалды;
  • Молотки;
  • Дрель и шуруповёрты;
  • Гвоздодёры;
  • Рулетки не менее 30 метров;
  • Строительные степлеры.

Расчёт арматуры для ленточного фундамента частного дома

Перед строительством ленточного фундамента для дома необходимо рассчитать нагрузку на конструкции и подобрать необходимый диаметр арматуры.

Выбор диаметра металлической арматуры должен осуществляться при разработке плана:

  • Как правило, применяют металлическую арматуру 10–12 миллиметров.
  • В редких случаях используют арматуру 14 миллиметров.
  • Для зданий небольшого размера применяют металлическую арматуру диаметром 8 миллиметров.

Расчёт диаметра арматуры для фундамента

На сегодняшний день большинство людей не знают, как определять необходимое количество и диаметр металлической арматуры, а также как экономично применять данные строительные конструкции.

При строительстве ленточного фундамента многие люди используют неправильное количество арматуры. Кроме этого, часто для изготовления ленточного фундамента используют различные металлические прутья, которые не предназначены для этого. В таком случае фундамент будет недолговечным и хрупким.

Срок служба здания напрямую зависит от фундамента. Поэтому нужно строить качественный и прочный фундамент из специальной металлической арматуры. На самом деле рассчитать количество и диаметр металлических прутьев очень легко.

Расчёт диаметра поперечной и вертикальной арматуры

Самостоятельно подобрать необходимый диаметр арматуры достаточно сложно.

Рассчитать вертикальную и поперечную арматуру вы можете с помощью данной таблицы:

Условия использования арматурыМинимальный диаметр арматуры мм.
Вертикальная арматура при высоте поперечного сечения ленты менее 80 сантиметров8 миллиметров
Вертикальная арматура при высоте ленты более 80 сантиметров8 миллиметров
Поперечная арматура6 миллиметров

Сегодня, как правило, возводят одноэтажные и двухэтажные дома и коттеджи. В таком случае применяют специальные металлические стержни (поперечная и вертикальная арматура) диаметром 8 миллиметров.

Фундамент, изготовленный из данных стержней, будет надёжным и прочным. Поэтому данную арматуру часто используют для строительства ленточного фундамента.

Расчёт диаметра продольной арматуры

Как определить площадь сечения продольной металлической арматуры?

Для этого нужно ширину ленточного фундамента дома умножить на высоту.

Например, ширина металлической арматуры составляет 80 сантиметров, а высота 200 сантиметров. В таком случае площадь сечения составит 8000 см 2.

Кроме этого, необходимо чтобы площадь сечения металлической ленты была 0,1 процента от площади сечения ленточного фундамента. Следовательно, 8000 см2 / 1000 = 8м2.

Конечно, определять площадь сечения всей металлической арматуры долго. Поэтому вы можете использовать специальную таблицу, которая поможет быстро рассчитать правильный диаметр металлических лент для ленточного фундамента.

Для изготовления ленточного фундамента необходимо использовать металлическую арматуру диаметром от 12 миллиметров.

Расчёт количества арматуры для фундамента

Каждый человек мечтает о большом доме. 

Перед строительством дома возводят фундамент. Рассчитывать количество металлической арматуры необходимо заранее.

Потому что для строительства качественного и надёжного ленточного фундамента необходимо определённое количество металлической арматуры.

Часто на строительный участок привозят недостаточное количество прутьев.

Об этом обычно вспоминают, когда строители начинают вязать каркас. В таком случае приходиться повторно заказывать доставку арматуры. Поэтому перед строительными работами обязательно необходимо провести расчёт металлических прутьев для изготовления ленточного фундамента.

Расчёт количества продольной арматуры

Сегодня существует много способов для расчёта количества металлических прутьев. Но мы будем использовать самый распространённый способ. Это можно назвать грубым подсчётом.

Прежде всего, нужно определить длину стен ленточного фундамента:

12*3+24*2=84 метра

В нашем случае используется схема армирования четырёх стержневая.

Поэтому 84 необходимо умножить на 4:

84*4=336 метров

Теперь нам стала известна длина стержней металлических прутьев.

Однако необходимо учитывать что:

  • При осуществлении расчёта металлических прутьев нужно принимать во внимание запуск металлической арматуры во время стыковки. Так как нередко на строительный участок привозят металлическую арматуру (5–6 метра). Если для строительства необходима арматура с длиной стержня 12 метров, то необходимо стыковать стержни.
  • Как правильно стыковать стержни металлических прутьев? Как правило, стержни стыкуют внахлёст. Запуск металлических прутьев, как правило, составляет 30 диаметров. То есть если вы применяете для строительства ленточного фундамента металлическую арматуру диаметром 12 миллиметров, то запуск должен составлять 360 миллиметров (36 сантиметров).

Как правильно учесть запуск?

Рассмотрим два различных способа:

  1. Сформировать специальную схему, на которой показано расположение металлической арматуры и определить количество стыков.
  2. К полученному результату прибавить 10–15 процентов.

Для расчёта будем использовать второй вариант. Следовательно, чтобы определить количество металлических прутьев нужно к 336 метрам прибавить 10 процентов:

336+336*0,1= 369,6 метра

Теперь мы знаем необходимое количество продольных металлических прутьев диаметром 112 миллиметров. Мы провели расчёт поперечно арматуры, поэтому теперь необходимо определить количество вертикальных и поперечных металлических прутьев.

Для того чтобы определить правильное количество вертикальных и поперечных прутьев также нужно использовать специальную схему.

Согласно схеме для одного прямоугольника необходимо:

0,7*2+1,8*2=5 метра

Металлическая арматура была взята с определённым запасом. Поэтому металлические прутья будут выходить за сформированный прямоугольник.

Также необходимо определить количество сформированных прямоугольников. Причём в местах стыковки бетонных стен и на углах фундамента расположено два прямоугольника. Прежде всего, необходимо определить количество вертикальных и поперечных металлических прутьев на самой длинной стороне фундамента (24 метра).

На самой длинной данной стороне расположено 12 прямоугольников. Кроме этого, есть две части бетонной стены длина, которой составляет 10,8 метра. На этих частях находится двадцать перемычек.

12+20+20=52 штуки.

Итоги

Нами был проведён расчёт металлической арматуры. Для ленточного фундамента необходимы металлические прутья диаметром 12 миллиметров, а также поперечные и вертикальные диаметром 8 миллиметров. Кроме этого, для ленточного фундамента нужно 369,6 метра продольной металлической арматуры.

Ленточный фундамент – Designing Buildings Wiki

Фундаменты служат опорой для конструкций, передавая их нагрузку на слои почвы или породы, которые обладают достаточной несущей способностью и подходящими характеристиками осадки.

В широком смысле фундаменты можно разделить на мелкие и глубокие. Фундаменты мелкого заложения обычно используются там, где нагрузки, создаваемые конструкцией, невелики по сравнению с несущей способностью поверхностных грунтов. Глубокие фундаменты необходимы там, где несущая способность поверхностных грунтов недостаточна для выдерживания нагрузок, создаваемых конструкцией, и поэтому их необходимо переносить на более глубокие слои с более высокой несущей способностью.

Ленточный фундамент (или ленточный фундамент) – это тип неглубокого фундамента, который используется для обеспечения непрерывной, ровной (или иногда ступенчатой) полосы поддержки линейной конструкции, такой как стена или близко расположенные ряды колонн. в центре над ними.

Ленточный фундамент можно использовать для большинства грунтов, но он больше всего подходит для грунта с относительно хорошей несущей способностью. Они особенно подходят для легких структурных нагрузок, таких как многие малоэтажные или средние жилые дома, где можно использовать ленточный фундамент из массивного бетона .В других ситуациях может потребоваться железобетон.

Старые здания могут иметь ленточный фундамент из кирпича.

В широком смысле размер и положение ленточных фундаментов обычно связаны с общей шириной стены. Глубина традиционного ленточного фундамента обычно равна или больше общей ширины стены, а ширина фундамента обычно в три раза превышает ширину поддерживаемой стены. Это приводит к тому, что нагрузка передается под углом 45º от основания стены к грунту.

Утвержденный документ A Строительных норм определяет минимальную ширину ленточных фундаментов в зависимости от типа грунта и несущей стены, хотя обычно рекомендуется проконсультироваться с инженером-строителем при проектировании фундаментов.

Нижняя сторона ленточного фундамента должна быть достаточно глубокой, чтобы избежать воздействия мороза; например, не менее 450 мм, если они не опираются на скалу, и не менее 1 м на глинах с высокой усадкой.

Глубокие ленточные фундаменты могут потребоваться, если грунт с подходящей несущей способностью более глубокий.

Широкий ленточный фундамент может потребоваться, если грунт мягкий или имеет низкую несущую способность, чтобы распределить нагрузку на большую площадь. Широкий ленточный фундамент обычно требует армирования.

Там, где есть более высокие локальные нагрузки, например, колонны, можно использовать опорные основания. Для получения дополнительной информации см. Основания колодок.

Там, где грунтовые условия плохие, вероятна оседание, или там, где может быть нецелесообразно создавать отдельные ленточные или подушечные фундаменты для большого количества отдельных нагрузок, можно использовать плотные фундаменты.См. Фундаменты на плотах для получения дополнительной информации.

Если несущая способность грунтов на поверхности недостаточна для выдерживания нагрузок, создаваемых конструкцией, могут использоваться глубокие фундаменты, такие как свайные фундаменты. См. Свайные фундаменты для получения дополнительной информации.

В больших или более сложных зданиях может использоваться несколько различных типов фундаментов.

Дополнительное руководство доступно в BRE’s Простые основы для малоэтажного жилья: «практическое правило» дизайна.

Анализ

и проектирование опор железобетонной стены на основе ACI 318-19

318M-19: Требования Строительных норм к бетону и комментарии Конструкция фундамента стен, также называемого ленточным фундаментом, основана на принципах действия балок с небольшими изменениями.

Стеновые опоры должны быть спроектированы таким образом, чтобы обеспечивать надежную опору структурных или неструктурных стен, а также передавать и распределять нагрузки на грунт таким образом, чтобы не превышалась несущая способность грунта. Помимо предотвращения чрезмерной осадки и вращения, а также обеспечения достаточной защиты от скольжения и опрокидывания.

Стеновой фундамент проходит по направлению стены. Размер фундамента и толщина фундаментной стены указываются в зависимости от типа грунта на площадке и условий нагрузки.Площадь и распределение армирования выполняется в соответствии с требованиями ACI 319-19 (Строительные нормы и правила для конструкционного бетона.

Анализ фундамента в стене

Простые принципы действия балок применимы к настенным фундаментам с небольшими изменениями. На рис. 1 показано настенное основание с действующими на него силами. Если бы изгибающие моменты были рассчитаны на основе этих сил, максимальный момент оказался бы в середине ширины.

На самом деле, очень большая жесткость стены изменяет эту ситуацию, достаточно вычислить момент на поверхности участка 1-1 стены.Трещины от растяжения образовывались под лицевой стороной стены, а не посередине.

Рисунок 1:. Критические секции для момента и поперечной силы в стене Footing

Для опор, поддерживающих каменные стены, максимальный момент вычисляется на полпути между серединой и лицевой стороной стены, поскольку каменная кладка менее жесткая, чем бетон. Максимальный изгибающий момент (Mu) в опорах под бетонными стенами рассчитывается по уравнению 1.

Где:

qu: предельная несущая способность грунта под фундаментом стены, равная предельной распределенной нагрузке, деленной на требуемую площадь основания.

b: ширина подошвы стены.

a: ширина стены, поддерживаемой опорой стены.

Вертикальную поперечную силу (Vu) можно рассчитать на участке 2-2, расположенном на расстоянии d от поверхности стены. Уравнение 2 можно использовать для вычисления поперечной силы. Расчет длины развертки основан на участке максимального момента (раздел 1-1).

Где:

d: расстояние между поверхностью стены и местом приложения вертикальной поперечной силы, равное эффективной глубине секции основания стены.

Размер опоры

размеры подбетонка определяются для unfactored нагрузок и эффективного давления грунта (QE), которая вычисляется исходя из допустимого давления подшипника (Qa). Причина использования нефакторных нагрузок заключается в том, что при проектировании фундаментов безопасность обеспечивается общими факторами безопасности.

Допустимое давление в опоре устанавливается на основе принципа механики грунта, на основании испытаний под нагрузкой и других экспериментальных определений. Допустимое давление в подшипнике при эксплуатационных нагрузках рассчитывается с коэффициентом запаса прочности 2.5–3. Этот запас прочности предотвратит превышение несущей способности грунта и удержит его осадку в допустимых пределах.

Площадь опоры (Areq) определяется как сумма рабочих нагрузок, деленная на допустимое давление в подшипнике с использованием уравнения 3.

Где

D: статическая нагрузка на опору.

л: живая нагрузка на опору.

QE: эффективное опорное давление, которое равно допустимый подшипник (наращивания веса засыпки + вес бетона)

Если присутствуют другие нагрузки, такие как ветровые и сейсмические нагрузки, тогда также следует использовать уравнение 4 для вычисления площади опоры.Большее значение этих двух уравнений считается площадью опоры.

Где:

w: равно 1,3, если ветровая нагрузка рассчитывается на основе ASCE, в противном случае она была бы равна 1.

Вт: ветровая нагрузка

E: сейсмические силы

Ширина фундамента стены рассчитывается исходя из требуемой площади. Длина основания принимается равной 1м.

Глубина опоры

Согласно ACI 318-19 раздел 13.3.1.2, общая глубина фундамента должна выбираться так, чтобы эффективная глубина усиления дна была не менее 150 мм.

В наклонных, ступенчатых или конических фундаментах глубина и расположение ступенек или угол наклона должны быть такими, чтобы проектные требования выполнялись на каждом участке.

Расчет площадей армирования

Основная арматура

Площадь основного армирования вычисляется с использованием следующего выражения.

Где:

As: зона основного армирования

Mu: предельный момент взят из уравнения 1.

Phi: коэффициент уменьшения прочности, равный 0.9.

фу: предел текучести стали.

d: эффективная глубина, взять бетонное покрытие 75 мм.

a: глубина прямоугольного напряженного блока.

Глубина прямоугольного блока напряжений принимается в уравнении 5. Затем методом проб и ошибок вычисляется площадь стали. Рекомендуется три испытания, и рекомендуется использовать (глубина стопы 0,2x) в качестве первого испытания для a.

Минимальное армирование

Минимальное армирование рассчитывается с использованием следующих выражений:

Для стали менее 420:

Для стали 420:

Где:

b: ширина опоры

h: глубина опоры

Распределенная область армирования равна значению уравнения 7.Таким образом, это значение равно распределенной арматуре для фундамента стены.

Расстояние между стержнями / размещение

Площадь армирования, вычисленная по уравнению 5, делится на площадь одного стержня (Ab), чтобы оценить количество стержней (n). Затем количество стержней, использованных для вычисления расстояния для основной арматуры, с использованием следующего выражения

Расстояние между основной балкой:
Распределенное расстояние между стержнями:

Количество распределенных стержней равно площади стали из уравнения 7, деленной на площадь одного стержня, используемого для распределенной арматуры.Затем расстояние вычисляется путем деления ширины фундамента на количество распределенных стержней.

Максимальный интервал:

Максимальный интервал – наименьший из 3h или 450 мм. Таким образом, расстояние между стальными стержнями не должно быть больше этого значения.

Прочность бетона на сдвиг

Расчетная прочность бетона на сдвиг должна быть равна или больше предельной силы сдвига, рассчитанной по уравнению 2, в противном случае следует увеличить глубину основания. Прочность бетона на сдвиг рассчитывается следующим образом:

Где:

Vc: прочность бетона на сдвиг

Phi: коэффициент уменьшения прочности, равный 0.75.

Ламда: равно 1 для бетона нормальной прочности.

fc ’: прочность бетона на сжатие, которая должна быть не менее 17 МПа.

b: ширина подошвы.

d: эффективная глубина опоры.

Рис. 2: Деталь подкрепления

Краткое изложение процедуры проектирования

  1. Оцените толщину опоры (h), которая должна соответствовать требованиям к сдвигу и обеспечивать минимальную эффективную глубину 150 мм.
  2. Рассчитайте вес насыпи и вес основания.
  3. Рассчитайте эффективную несущую способность, qe.
  4. Оценить требуемую площадь, Areq
  5. Рассчитать расчетное давление (qu) на основании (Areq) из-за факторизованных нагрузок.
  6. Вычислите силу сдвига и расчетную прочность бетона на сдвиг, чтобы проверить требования к сдвигу.
  7. Рассчитайте максимальный момент, а затем площадь армирования.
  8. Рассчитайте минимальное армирование и максимальное расстояние.
  9. Оцените расстояние между основными и распределенными стержнями.
  10. Нарисовать эскизный проект.

Подробнее:

Каковы требования к толщине ленточного фундамента?

Технологическая схема армирования и расчет армирования ленточных фундаментов

Технологическая схема армирования и расчет армирования

Армирование фундамента – это процесс, необходимый для усиления конструкции и увеличения срока службы здания. Другими словами, это сборка «каркаса», который играет роль защитного компонента, сдерживающего давление грунта на стенки основания.Но чтобы эта функция была реализована в максимальной степени, необходимо не только правильно рассчитать арматуру для ленточного фундамента, но и уметь организовать ход строительных работ.

Содержание

  • Как армировать ленточный фундамент
  • Схема конструкции армирования
  • Расчет расхода материала

Как армировать ленточный фундамент

Фундамент ленточного фундамента представляет собой бетонный раствор состоящий из цемента, песка и воды.К сожалению, физические характеристики строительного материала не гарантируют отсутствие деформации основания здания. Для повышения способности выдерживать сдвиги фундамента, перепады температур и другие негативные факторы необходимо наличие металла в конструкции.
Материал пластиковый, но обеспечивает надежную фиксацию; Поэтому армирование – важный этап в комплексе работ.

Армирование ленточного фундамента – стальной стержень с ребрами жесткости

Армирование фундамента требуется в местах, где могут возникнуть зоны растяжения.Отмечено, что наибольшее натяжение возникает на поверхности основания, что создает предпосылки для армирования вблизи верхнего уровня. С другой стороны, во избежание коррозии каркаса его необходимо защитить от внешних воздействий бетонным слоем.

Важно! Оптимальное расстояние армирования для фундамента – 5 см от поверхности.

Так как развитие деформации невозможно предсказать, зоны растяжения могут возникать как в нижней части (при изгибе середины), так и в верхней (при изгибе рамы вверх).Исходя из этого арматура должна проходить снизу и сверху арматурой диаметром 10-12 мм, причем эта арматура для ленточного фундамента должна иметь ребристую поверхность.

Обеспечивает идеальный контакт с бетоном.

Ленточные опорные зоны

Остальные части каркаса (горизонтальные и вертикальные поперечные стержни) могут иметь гладкую поверхность и меньший диаметр.
При армировании монолитного ленточного фундамента, ширина которого обычно не превышает 40 см, допускается использование 4 стержней арматуры (10-16 м), соединенных с каркасом диаметром 8 мм.

Важно! Расстояние между горизонтальными стержнями (шириной 40 см) – 30 см.

Ленточный фундамент имеет при большой длине небольшую ширину, поэтому в нем будут возникать продольные напряжения, а поперечных вообще не будет. Из этого следует, что поперечные вертикальные и горизонтальные стержни, которые будут гладкими и тонкими, нужны только для создания каркаса, а не для восприятия нагрузок.

Усиление углов требует особого внимания

Особое внимание следует уделить армированию углов: бывают случаи, когда деформация происходит не в середине, а в угловых частях.Углы следует укрепить так, чтобы один конец гнутой арматуры входил в одну стену, а другой – в другую.
Специалисты советуют шатуны с использованием проволоки. Ведь не всякая арматура изготавливается из стали, которая поддается сварке. Но даже если сварка допустима, часто возникают проблемы, которых можно избежать с помощью проволоки, например, перегрев стали, приводящий к изменению свойств, утонение стержня в месте сварки, недостаточная прочность сварного шва и т. Д.

Схема арматурной конструкции

Армирование начинается с установки опалубки, внутренняя поверхность которой выложена пергаментом, что позволяет упростить демонтаж конструкции в будущем.Создание каркаса производится по схеме:
1. В грунт траншеи вбиваются арматурные стержни длиной, равной глубине основания. Сохраняйте расстояние от опалубки 50 мм и шаг 400-600 мм.
2. На нижнюю установите опоры (80-100 мм), на которые нужно уложить 2-3 нитки нижнего ряда арматуры. Кирпичи, установленные на краю, вполне подходят в качестве опор. №
3. Верхний и нижний ряд фитингов крепятся поперечными перемычками к вертикальным шпилькам.
4. На перекрестке скрепить проволокой или сваркой.

Важно! Следует строго соблюдать расстояние до внешних поверхностей будущего фундамента. Лучше с кирпичами. Это одно из важнейших условий, так как металлические конструкции не должны опираться непосредственно на днище. Они должны быть подняты над землей не менее чем на 8 см.

Армирование ленточного фундамента

После установки арматуры остается проделать вентиляционные отверстия и залить бетонным раствором.

Вам нужно знать!
Вентиляционные отверстия не только способствуют износу фундамента, но и предотвращают возникновение гнилостных процессов.

Расчет материалоемкости

Для расчета ленточного фундамента нужно заранее знать некоторые параметры. Рассмотрим пример. Предположим, что наш фундамент имеет прямоугольную форму и следующие размеры: ширина – 3,5 метра, длина – 10 метров, высота отливки – 0,2 метра, ширина ленты – 0.18.
Прежде всего, нужно рассчитать общий объем отливки, для чего нужно узнать размеры основания, как если бы оно имело форму параллелепипеда. Для этого произведем несколько простых манипуляций: узнаем периметр основания, а затем умножим периметр на ширину и высоту отливки.
P = AB + BC + CD + AD = 3,5 + 10 = 3,5 + 10 = 27
V = 27 x 0,2 x 0,18 = 0,972

Но на этом расчет монолитного фундамента не заканчивается.Мы узнали, что само основание, а точнее отливка, занимает округленный объем, равный 0,97 м3. Теперь нужно узнать объем внутренней части фундамента, то есть того, что находится внутри нашей ленты.

Получаем объем «начинки»: умножаем ширину и длину основания на высоту отливки и находим общий объем:
10 х 3,5 х 0,2 = 7 (кубометров)
Отнимаем объем отливки:
7 – 0,97 = 6,03 м3

Результат: объем отливки равен 0.97 м3, внутренний объем наполнителя 6,03 м3.

Теперь нужно рассчитать количество арматуры. Допустим, диаметр будет 12 мм, в отливке – 2 горизонтальные резьбы, т.е. 2 стержня, а по вертикали, например, стержни будут располагаться через каждые полметра. Периметр известен – 27 метров. Итак, мы умножаем 27 на 2 (горизонтальные полосы) и получаем 54 метра.

Вертикальные стержни: 54/2 + 2 = 110 стержней (108 интервалов 0,5 м и два по краям). Добавляем в угол еще один стержень и получаем 114 стержней.
Допустим, высота стержня 70 см. Получается: 114 х 0,7 = 79,8 метра.

Последний штрих – опалубка. Допустим, мы построим его из досок толщиной 2,5 см, длиной 6 метров и шириной 20 см.
Рассчитайте площадь боковых поверхностей: периметр умножьте на высоту отливки, а затем на 2 (с запасом, не учитывая уменьшение внутреннего периметра по отношению к внешнему): (27 x 0,2) x 2 = 10,8 м2
Площадь доски: 6 x 0,2 = 1,2 м2; 10,8 / 1,2 = 9
Нам понадобится 9 досок длиной 6 метров.Не забудьте добавить платы для подключения (на ваше усмотрение).

Результат: требуется 1 м3 бетона; Заполнитель 6,5 м3; 134 метра фурнитуры и 27 погонных метров досок (шириной 20 см), шурупов и брусков. Указанные значения округлены.

Результаты кропотливых расчетных работ

Теперь вы знаете не только, как правильно армировать ленточный фундамент, но и как рассчитать необходимые составляющие. А это значит, что построенный вами фундамент будет надежным и прочным, что позволит возводить монолитные конструкции любой конфигурации.

Чертежи руководящих принципов строительства. Раздел B: Бетонные конструкции

Чертежи строительных норм. Раздел B: Бетонная конструкция

Карибское бедствие Проект смягчения последствий
Осуществляется Организацией американских государств
Отдел устойчивого развития и окружающей среды
для Управления USAID по оказанию помощи в случае стихийных бедствий и Карибской региональной программы

Раздел B: Бетонная конструкция

Введение | Раздел А | Раздел B | Раздел C | Раздел D | Раздел E | Раздел F | Раздел G
Загрузите файлы AutoCAD DWG (zip-архив): Раздел A | Раздел B | Раздел C | Разделы D-G

Рисунок B-1 : Допустимое расположение ленточных опор

Все наружные стены и внутренние несущие стены должны опираться на усиленные бетонные ленточные фундаменты.Внутренние стены могут поддерживаться за счет утолщения плиты под стены и соответствующим образом укрепить ее. Фундаменты обычно должны располагаться на слое. грунта или камня с хорошими несущими характеристиками. Такие почвы будут включать плотные пески, мергель, другие сыпучие материалы и жесткие глины.

Фундамент должен быть отлит не менее чем от 1 ’6 дюймов до 2’ 0 дюймов. под землей, его толщина не менее 9 дюймов и ширина не менее 24 дюймов, или как минимум в три раза больше ширины стены, непосредственно поддерживаемой им.Где в качестве несущего материала фундамента необходимо использовать глины, ширина подошвы должна быть увеличен до минимум 2 футов 6 дюймов.

Рисунок B-2 : Типичная деталь раздвижной опоры

Когда отдельные железобетонные колонны или колонны из бетонных блоков при использовании они должны поддерживаться квадратными опорами размером не менее 2–0 дюймов и 12 дюймов толщиной.Для опор колонн минимальное армирование должно быть ” стержни диаметром 6 дюймов по центрам в обоих направлениях, образующие ячейку 6 дюймов.

Рисунок B-3 : Армирование ленточных опор

Усиление фундамента необходимо для обеспечения непрерывности структура. Это особенно важно в случае плохого заземления или когда здание может быть подвержено землетрясениям.Предполагается, что армирование деформированные прутки из высокопрочной стали, которые обычно поставляются в OECS. Для полосы опор, минимальная арматура должна состоять из 2 стержней № 4 (“), размещенных продольно и поперечно расположенные стержни диаметром 12 дюймов.

Рисунок B-4 : Бетонный пол в деревянных конструкциях

Рисунок B-5 : Фундамент из бетонной ленты и бетонное основание с Деревянное Строительство

Приемлемое устройство фундамента небольшого деревянного дома с бетонным или деревянным полом.Эта конструкция подходит для достаточно жесткие почвы или мергель. Там, где здание будет на скале, толщина опора может быть уменьшена, но деревянные постройки очень легкие и их легко сдуть. их основы. Поэтому здание должно быть надежно прикреплено болтами к бетонному основанию, и опоры должны быть достаточно тяжелыми, чтобы предотвратить подъем.

Рисунок B-6 : Типичные детали каменной кладки

Бетонные блоки, используемые в стенах, должны быть прочными, без трещин и их края должны быть прямыми и правильными.Номинальная ширина блоков для наружных стен и несущие внутренние стены должны быть не менее 6 дюймов, а торцевая оболочка должна быть минимальная толщина 1 дюйм. Наружные стены лучше построить толщиной 8 дюймов. бетонный блок. Ненесущие перегородки могут быть построены из блоков с номинальная толщина 4 дюйма или 6 дюймов. Стены из блоков должны быть усилены как вертикально и горизонтально; это должно выдерживать ураганы и землетрясения. это Обычная практика в большинстве OECS – использовать бетонные колонны на всех углах и перекрестки.Дверные и оконные косяки необходимо укрепить.

Рекомендуемая минимальная арматура для строительства бетонных блоков выглядит следующим образом:

    1. Прутки диаметром 4 дюйма по углам по вертикали.
    2. стержней диаметром 2 дюйма на стыках по вертикали.
    3. Прутки диаметром 2 дюйма на косяках дверей и окон
    4. для армирования горизонтальных стен используйте стержни Dur-o-waL (или аналогичные) или стержни. каждый второй курс следующим образом:
    5. блоки 4 дюйма 1 стержень
      Блоки 6 дюймов 2 стержня
      Блоки 8 дюймов 2 стержня

    6. Для вертикального армирования стен используйте стержни, расположенные следующим образом:
    7. 4-дюймовые блоки 32
      Блоки 6 дюймов 24
      Блоки 8 дюймов 16

Рисунок B-7 : Деталь бетонной колонны

Колонны должны иметь минимальные размеры 8 x 8 дюймов и могут быть образуется опалубкой с четырех сторон или опалубкой с двух сторон с блокировкой с двух других.Минимальная арматура колонны должна составлять стержни диаметром 4 с хомутом на Центры 6 дюймов. Колонна с заполненным сердечником или бетонная колонна должна быть высота до пояса (кольцевой балки) у каждого дверного косяка.

Рисунок B-8 : Альтернативные конструкции опор для блочной кладки

Эта железобетонная опора монолитно построена с плита перекрытия.Состоит из серии плитных утолщений под стены с минимум 12 дюймов глубиной вниз по периметру. Основание полностью размещено на колодце. уплотненный гранулированный материал.

Рис. B-9: Деталь перекрытия

Железобетонная плита перекрытия не выходит за пределы периметра. стены. Арматурная сетка в плите размещается сверху с 1-дюймовыми крышками.Плита сооружается на хорошо утрамбованном зернистом заполнителе, щебне или мергеле.

Рисунок B-10 : Альтернативная деталь перекрытия пола

Подвесная железобетонная плита привязана к внешней перекрывающая балка на уровне пола. Важна верхняя (стальная) арматура. Главный арматура должна быть порядка “диаметра в 9” центрах, а распределительная сталь диаметром 3/8 дюйма с центрами 12 дюймов.

Рисунок B-11 : Деталь крепления направляющей Vernadah к колонне

Важно, чтобы поручни были надежно закреплены в боковой части. столбец. Как минимум, болты должны быть оцинкованы для предотвращения коррозии. Для крепления балясин к бетону рекомендуется использовать эпоксидный раствор или химические анкеры. столбец.

Рисунок B-12 : Устройство армирования для подвесных перекрытий

Арматура должна быть согнута и закреплена опытными мастерами.Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.

Рисунок B-13 : Устройство усиления для Подвесные балки

Арматура должна быть согнута и закреплена опытными мастерами. Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.

Рисунок B-14 : Устройство усиления для Подвесные консольные балки

Арматура должна быть согнута и закреплена опытными мастерами.Необходимо следить за тем, чтобы верхняя стальная часть находилась в верхней части с соответствующим покрытием.

Рисунок B-15 : Устройство усиления для Подвесная лестница

Введение | Раздел А | Раздел B | Раздел C | Раздел D | Раздел E | Раздел F | Раздел G

Проектирование ленточных фундаментов – Руководство по конструкции

Подушечки, комбинированные, ленточные, перевернутые Т-образные фундаменты, ленточные фундаменты и т. Д.чаще используются в качестве фундаментов мелкого заложения. В зависимости от состояния грунта для возведения конструкций используются разные типы фундаментов мелкого заложения.

Ленточные опоры используются при плохих грунтовых условиях в соответствии с рекомендациями инженеров-геологов.

При установке ленточного фундамента значительно увеличивается несущая поверхность фундамента.

Следовательно, на грунтах с низкой несущей способностью можно использовать эти типы фундаментов.

Есть два метода, которые можно использовать для анализа ленточных фундаментов.

  1. Жесткий метод анализа
  2. Гибкий метод анализа

Жесткий анализ

Предполагается, что давление опоры под основанием является постоянным по всей длине и по всей длине основания.

Площадь опоры = (Общая нагрузка на колонну) / (Допустимое давление на опору)

Приведенное выше уравнение чаще используется для определения площади опоры.

Поскольку нам известны нагрузки на колонну и давление на опору, изгибающие и поперечные силы могут быть найдены с помощью простого анализа.Это можно сделать с помощью программного обеспечения, такого как SAP2000, SAFF, ETAB, или ручных расчетов.

Гибкий анализ

Считается, что давление почвы под основанием изменяется по длине основания.

В реальных условиях давление меняется вдоль основания, создавая более высокое давление грунта под колоннами. Использование такого программного обеспечения, как SAP2000, SAFF, ETAB, – самый простой способ выполнить этот тип анализа, поскольку ручные вычисления более точны.

Однако площадь основания рассчитывается по приведенному выше уравнению, которое используется в жестком анализе для поддержания давления грунта под основанием в допустимых пределах.

Основными элементами этого анализа являются колонны, фундамент и грунт.

Нагрузка на колонну может быть добавлена ​​как точечная нагрузка на фундамент, а фундамент можно смоделировать с помощью элементов оболочки, в то время как грунт моделируется с помощью пружинящих элементов. В вышеупомянутом программном обеспечении, определяя реакцию грунтового основания, мы можем моделировать почву как пружинные элементы.

Согласно книге Боуэла по основам, в большинстве случаев мы можем определить реакцию нижнего уровня по следующему уравнению.

Реакция земляного полотна = (SF) x 40 x (Допустимая несущая способность)

Здесь «SF» обозначает коэффициент безопасности, который учитывается при определении допустимой несущей способности.Обычно, когда значение этого коэффициента недоступно, предполагается значение в диапазоне 2–3.

Зная нагрузки на колонну, предполагаемую толщину основания и реакцию земляного полотна, можно найти изгибающие моменты и поперечные силы, необходимые для проектирования основания.

(PDF) Методика расчета ленточного фундамента на упругом грунтовом основании типа Винклера

4 Характеристики модели основания Винклера

Моделирование – современный метод исследования поведения проектируемого объекта исследования

по некоторым ключевым особенностям.Для практического применения метода предусмотрено формирование такого объекта исследования

– модели, которая полностью или с достаточной степенью допущений

соответствует характеристикам реального объекта.

Характеристика показателей напряженно-деформированного состояния грунтового основания – сложная задача,

, поэтому для упрощения ее решения (для практической деятельности) было разработано несколько математических моделей

[2,3,17].

Одной из простейших моделей поведения грунтового основания, предназначенной для решения широкого круга задач

, считается однопостоянная модель локальных упругих деформаций грунтового основания

(модель Винклера) [5 , 6].

В рассматриваемой математической модели предполагается, что осадок определенной точки

грунтового основания пропорционален давлению в этой точке:

) () (xWKpxp

. (1)

где: Kp – коэффициент пропорциональности (постоянный коэффициент, характеризующий жесткость основания

), который называется коэффициентом прочности грунтового основания (кПа / м).

Под характеристики р (х) в расчетной зависимости (1), обобщенной стоимости

Нагрузка (концентрированная сила, изгибающий момент распределяется вдоль линии давления) является

предполагается, и при характеристике W (х) , подразумевается обобщенная величина деформации (линейное перемещение

, вращение).

Коэффициент жесткости упругого основания (в расчетной зависимости (1))

характеризует жесткость «пружины», находящейся в каждой точке ленточного основания.

Деформации «пружин» (расположенных равномерно по длине ленточного фундамента)

происходят независимо друг от друга, поэтому модель не учитывает

распределительную способность грунта, в том числе и за его пределами. площадь контакта фундамента

с грунтовым основанием.

Определение расчетных значений производится с помощью лабораторных исследований (с последующей корректировкой

с использованием установленных коэффициентов корреляции) или полевых испытаний базовых грунтов

на сжимаемость.

Экспериментальные (лабораторные и полевые) исследования показывают, что наилучшим образом модель Винклера

отображает напряженно-деформированное состояние грунтового основания. Основание составляют слабые (илистые, торфяные) типы

почв и мелкозернистые водонасыщенные пески. При наличии грунтового основания, представленного

связанных грунтов, модель Винклера существенно искажает реальные показатели состояния и

эксплуатации конструкции фундамента на грунтовом основании [3,5,18].

Основным недостатком модели Винклера (с единым коэффициентом жесткости упругого основания

) является объективная неадекватность отображения реального состояния, с которым взаимодействуют конструкции

ленточного фундамента и нижележащего грунтового основания.

Для исправления недостатков модели был разработан ряд ее модификаций

– с двумя или тремя коэффициентами жесткости упругой основы.В отечественной практике

наиболее распространена модель Пастернака

с двумя коэффициентами жесткости упругой основы. Модель

основания Винклера с дополнительными (более одного) коэффициентами жесткости упругого основания

позволяет учесть действие как нормальных, так и касательных напряжений

, действующих на подошву фундамента [7].

Рассматриваемые модели грунтового основания (с одним, двумя и тремя коэффициентами жесткости

упругого основания) характеризуют деформированное состояние за счет линейных деформаций

(перемещений) исключительно в местах приложения нагрузки и не имеют предоставить информацию

о распределении напряжений и деформаций в грунтовом массиве основания.Данное обстоятельство означает отсутствие возможности корректного учета структуры (расслоение грунтов с

различными физико-механическими характеристиками) и неравномерное сопротивление грунтового основания

по всей площади контакта с пластиной (подошвой) основа.

4

E3S Web of Conferences 135, 01048 (2019)

ITESE-2019

https://doi.org/10.1051/e3sconf/2011048

FOUNDATION

Выбор типа фундамента

Выбор подходящего тип фундамента определяется некоторыми важными факторами, такими как

  1. Характер конструкции
  2. Нагрузки от структура
  3. Характеристики недр
  4. Выделенная стоимость фундамент

Поэтому решить о тип фундамента, необходимо проведение геологоразведочных работ.Тогда почва характеристики в зоне поражения под зданием должны быть тщательно оценен. Допустимая несущая способность пораженного грунта затем следует оценить слои.

После этого исследования можно было затем решите, следует ли использовать фундамент неглубокий или глубокий.

Фундаменты мелкого заложения, такие как опоры и плоты дешевле и проще в исполнении. Их можно было бы использовать, если бы выполняются следующие два условия;

  1. Наложенное напряжение (Dp) вызванная зданием, находится в пределах допустимой несущей способности различных слоев почвы, как показано на рис.1.

Это условие выполнено когда на рисунке 1 меньше и меньше, чем меньше и меньше, и так далее.

  1. Здание выдержало ожидаемая осадка по данному типу фундамента

Если один или оба из этих двух условия не могут быть выполнены использование глубоких фундаментов должно быть считается.

Глубокие фундаменты используются, когда верхние слои почвы мягкие и имеется хороший несущий слой на разумная глубина.Толщина грунта, лежащего под несущим слоем, должна быть достаточная прочность, чтобы противостоять наложенным напряжениям (Dp) из-за нагрузок, передаваемых на опорный слой, как показано на рисунке 2.

Глубокие фундаменты обычно сваи или опоры, которые передают нагрузку здания на хорошую опору страта. Обычно они стоят дороже и требуют хорошо обученных инженеров для выполнять.

Если исследуемые слои почвы мягкий на значительной глубине, и при разумных пределах не обнаруживается несущего пласта. глубины, можно использовать плавучие фундаменты.

построить плавающий фундамент, масса грунта, примерно равная весу Предлагаемое здание будет демонтировано и заменено зданием. В в этом случае несущее напряжение под зданием будет равно весу удаленной земли (γD) что меньше

(q a = γD + 2C)

а также Дп будет равно нулю.Это означает, что несущая способность под здания меньше, чем (q a ), и ожидаемое поселение теоретически равно нуль.

Наконец, инженер должен подготовить смету стоимости наиболее перспективного типа фундамента что представляет собой наиболее приемлемый компромисс между производительностью и Стоимость.

Фундаменты мелкого заложения

Неглубокие фундаменты – это те выполняется у поверхности земли или на небольшой глубине.Как упоминалось ранее в предыдущей главе фундаменты мелкого заложения использовались при грунтовых разведка доказывает, что все слои почвы, затронутые зданием, могут противостоять наложенным напряжениям (Dp) не вызывая чрезмерных заселений.

Фундаменты мелкого заложения либо опоры или плоты.

Опоры

Фундамент является одним из старейший и самый популярный вид фундаментов мелкого заложения.Опора – это увеличение основания колонны или стены с целью разводки нагрузка на поддерживающий грунт при давлении, соответствующем его свойствам.

Типы опор

Есть разные виды опоры, соответствующие характеру конструкции. Подножки можно классифицировать на три основных класса

Настенный или ленточный фундамент

Он проходит под стеной мимо его полная длина, как показано на рис.3. обычно используется в несущей стене типовые конструкции.

Изолированный фундамент колонны

Он действует как основание для колонны. Обычно применяется для железобетонных зданий типа Скелтон. Может принимать любую форму, например квадратную, прямоугольную или круглую, как показано на рисунке 4.

Инжир.4 Типовые раздвижные опоры

Комбинированная опора колонны

Это комбинированное основание для внешней и внутренней колонн здания, рис.5. Он также используется когда две соседние колонны здания расположены близко друг к другу другой, их опоры перекрывают

Распределение напряжений под опорами

Распределение напряжений под опорами считается линейным, хотя на самом деле это не так. Ошибка участие в этом предположении невелико, и на него можно не обращать внимания.

Загрузить сборники

Нагрузки, влияющие на обычные типы строений:

  1. Постоянная нагрузка (D.L)
  2. Живая нагрузка (L.L)
  3. Ветровая нагрузка (W.L)
  4. Землетрясение (E.L)

Статическая нагрузка

Полная статическая нагрузка, действующая на элементы конструкции следует учитывать при проектировании.

Живая нагрузка

Маловероятно, что полная интенсивность динамической нагрузки будет действовать одновременно на всех этажах многоэтажный дом.Следовательно, кодексы практики позволяют снижение интенсивности динамической нагрузки. Согласно египетскому кодексу На практике допускается следующее снижение временной нагрузки:

или . перекрытий Снижение временной нагрузки%

Земля нулевой этаж%

1 ул нулевой этаж%

2 nd этаж 10.0%

3 рд этаж 20,0%

4 чт этаж 30,0%

5 -й этаж и более 40,0%

Временная нагрузка не должна снижаться в течение склады и общественные здания, такие как школы, кинотеатры и больницы.

Ветровые и землетрясения нагрузки

Когда здания высокие и узкие, Необходимо учитывать ветровое давление и землетрясение.

Допущение, использованное при проектировании спреда Опоры

Теория анализа эластичности указывает на что распределение напряжений под симметрично нагруженными фундаментами не является униформа. Фактическое распределение напряжений зависит от типа материала. под опорой и жесткостью опоры. Для опор на рыхлых не связный материал, зерна почвы имеют тенденцию смещаться вбок на края из-под груза, тогда как в центре почва относительно ограничен.Это приводит к диаграмме давления, примерно такой, как показано на рисунке 6. Для общего случая жестких опор на связных и несвязных материалов, Рис.6 показывает вероятное теоретическое распределение давления. Высокое краевое давление можно объяснить тем, что краевой сдвиг должен иметь место до урегулирования.

Потому что давление интенсивность под опорой зависит от жесткости опоры, тип почвы и состояние почвы, проблема в основном неопределенный.Обычно используется линейное распределение давления. под фундаментом, и в этом тексте будет следовать этой процедуре. В в любом случае небольшая разница в результатах проектирования при использовании линейного давления распределение

Допустимые опорные напряжения под опорами

Коэффициент запаса прочности при расчете допустимая несущая способность под фундаментом должна быть не менее 3 если учитываемые при расчете нагрузки равны статической нагрузке + пониженная живая нагрузка.Коэффициент запаса прочности не должен быть меньше 2, когда рассматривается наиболее тяжелое состояние нагрузки, а именно: статическая нагрузка + полный рабочий ток. нагрузка + ветровая нагрузка или землетрясения.

Нагрузки на надстройку обычно рассчитывается на уровне земли. Если указано допустимое допустимое давление на опору, оно должно быть уменьшено на объем бетона. под землей на единицу площади основания, умноженную на разница между удельным весом бетона и грунта.Если принять равной среднюю плотность грунта и бетона рис.7, тогда следует уменьшить на

Конструктивное исполнение раздвижных опор

Для опоры на ноги следующие позиции следует рассматривать как

1 ножницы

Напряжения сдвига съедали обычно контролировать глубину расставленных опор.Критическое сечение для широкой балки сдвиг показан на рис.8-а. Находится на расстоянии d от колонны или стены. лицо. Значения касательных напряжений приведены в таблице 1. разрез для продавливания сдвига (двусторонний диагональный сдвиг) показан на рис. 8-б. Он находится на расстоянии d / 2 от лицевой стороны колонны. Это предположение в соответствии с Кодексом Американского института бетона (A.CI).

Таблица 1): допустимые напряжения в бетоне и арматуре: –

Виды напряжений

условное обозначение

Допустимые напряжения в кг / см 2

Прочность куба

ж у.е.

180

200

250

300

Осевой комп.

f co

45

50

60

70

Простые изгибающие и эксцентрические усилия с большим эксцентриситетом

ж в

70

80

95

105

Напряжения сдвига

Плиты и опоры без армирования.

Другие участники

Элементы с армированием

q 1

q 1

в 2

7

5

15

8

6

17

9

7

19

9

7

21

Пробивные ножницы

q cp

7

8

9

10

Армирование

Низкоуглеродистая сталь 240/350

Сталь 280/450

Сталь 360/520

Сталь 400/600

f s

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

Пробивные ножницы обычно контролировать глубину разложенных опор.Из принципов статики Рис. 8-б , сила на критическом участке сдвига равна силе на опора за пределами секции сдвига, вызванная чистым давлением грунта f n .

где q p = допустимое напряжение сдвига при штамповке

= 8 кг / см 2 (для куба сила = 160)

f n = чистое давление на грунт

b = Сторона колонны

d = глубина продавливания

Можно предположить, что критический участок для продавливания сдвига находится на торце колонны, и в этом случае допустимое напряжение сдвига при штамповке можно принять равным 10.0 кг / см 2 (для прочности куба = 160).

Фундамент обычно проектируется чтобы гарантировать, что глубина будет достаточно большой, чтобы противостоять сдвигу бетона без армирования полотном ..

2- Облигация

Напряжение связи рассчитывается как

.

где поперечная сила Q равна взятые в том же критическом сечении для изгибающего момента или при изменении бетонное сечение или стальная арматура.Для опор постоянное сечение, сечение для склеивания находится на лицевой стороне колонны или стены. В арматурный стержень должен иметь достаточную длину д г , Рис.9, чтобы избежать выдергивания (разрыва соединения) или раскалывание бетона. Значение d d вычисляется следующим образом:

Для первого расчета возьмем f s равно допустимой рабочей стресс.Если рассчитанный d d есть больше имеющегося d d затем пересчитайте d d взяв f с равно действительному напряжению стали.

Допустимая стоимость облигации напряжение q b следующие

3- Изгибающий момент

Критические разделы для изгибающий момент определяется по рис.10 следующим образом:

Для бетонной стены и колонны, это сечение берется на лицевой стороне стены или колонны рис.10-а.

Для кладки стены этот участок берется посередине между серединой и краем стены Рис.10-б.

Для стальной колонны этот раздел находится на полпути между краем опорной плиты и перед лицом столбец Рис.(10-с).

Глубина, необходимая для сопротивления изгибающий момент

4- Опора на опору

Когда железобетон колонна передает свою нагрузку на опору, сталь колонны, которая несущий часть груза, не может быть остановлен на опоре, так как это может привести к чрезмерной нагрузке на бетон в зоне контакта колонны.Поэтому это необходимо передать часть нагрузки, которую несет стальная колонна, на напряжение сцепления с основанием за счет удлинения стальной колонны или дюбеля. С Рис.11:

где f s – фактическое напряжение стали

5- Обычная бетонная опора под R.C. Опора

Распространенной практикой является размещение простой бетонный слой под железобетонным основанием. Этот слой около 20 см. до 40 см. Проекция C плоского бетонного слоя зависит от ее толщины t. Ссылаясь на Рис.12, максимальный изгибающий момент на единицу длины в сечении a-a равно

Где f n = чистое давление почвы.

Максимальное растягивающее напряжение внизу раздела а-а это:

ДИЗАЙН R.C. СТЕНА:

Основание стены представляет собой полоску железобетон шире стены. На Рис.13 показаны различные типы стеновые опоры. Тип, показанный на рис. 13-а, используется для опор, несущих легкие. нагрузки и размещены на однородном грунте с хорошей несущей способностью.Тип, показанный в Рис. 13-б используется, когда грунт под фундаментом неоднородный и разная несущая способность. Используется тип, показанный на рисунках 13-c и 13-d. для тяжелых нагрузок.

Процедура проектирования:

Рассмотрим 1.0 метров в длину стена.

1. Найдите P на уровне земли.

2. Найти, если дано, то оно сокращается или вычисляется P T .

3. Вычислить площадь опоры

Если напряжение связи небезопасно, либо увеличиваем за счет использования стальных прутков меньшего диаметра, либо увеличивать ∑ О глубина d.Сгибая вверх стальная арматура по краям фундамента помогает противостоять сцеплению стрессы. Диаметр основной стальной арматуры не должен быть меньше более 12 мм. Чтобы предотвратить растрескивание из-за неравномерного оседания под стеной Само по себе дополнительное армирование используется, как показано на рис. 13-c и d. это принимается как 1,0% от поперечного сечения бетона под стеной и распределяется одинаково сверху и снизу.

19.Проверить анкерный залог

Конструкция одностоечной опоры

одноколонный фундамент обычно квадратный в плане, прямоугольный фундамент – используется, если есть ограничение в одном направлении или если поддерживаемые столбцы слишком удлиненный.прямоугольное сечение. В простейшем виде они состоят из единой плиты ФИг.15-а. На рис. 15-б изображена колонна на пьедестале. опора, пьедестал обеспечивает глубину для более благоприятной передачи нагрузки и во многих случаях

требуется чтобы обеспечить необходимую длину для дюбелей. Наклонные опоры, такие как те, что на Рис. 15-c

Методика расчета опор квадратной колонны

Американец Кодексы практики равно момент около критического сечения y-y чистого напряжения, действующего на вылупился.area abcd Рис. 16-a. Согласно континентальным кодексам практики M max . равно любому; момент действия чистых напряжений на заштрихованной области abgh, показанной на рис. 16-b, около критического сечения y-y или 0,85 момент результирующих напряжений, действующих на площадь abcd на рис. 16-а. о г-у.

8.Определите необходимую глубину сопротивления пробивке d p .

9. Рассчитайте d м , глубину сопротивления

b = B, сторона опоры в соответствии с Американскими нормами практики

.

b = (b c + 20) см где b c – сторона колонны по континентальному Кодексы практики.

Следует отметить, что d м вычисленное континентальным методом, больше, чем вычисленное американским кодом. Большая глубина уменьшит количество стальной арматуры и обычно соответствует глубине, необходимой для штамповки. Американский код дает меньший d м с более высоким значением стальной арматуры, но с использованием высокопрочной стали, площадь стальной арматуры может быть уменьшена. В этом тексте изгибающий момент рассчитывается в соответствии с Американскими нормами, а b равно принимается либо равным b c + 20, когда используется обычная сталь, либо равно B при использовании стали с высоким пределом прочности.

Глубина основания d может быть принимает любое значение между двумя значениями, вычисленными двумя вышеуказанными методами. Это Следует отметить, что при одном и том же изгибающем моменте большая глубина будет требуется меньшая площадь арматурной стали, которая может не удовлетворять требованиям минимальный процент стали. Также небольшая глубина потребует большой площади стали. особенно при использовании обычной низкоуглеродистой стали.

10. Выберите большее из d m или d p

11.Проверить d d , глубину установки дюбеля колонны.

Методика расчета прямоугольной опоры

Процедура такая же, как и квадратный фундамент. Глубина обычно контролируется пробивными ножницами, кроме случаев, когда отношение длины к ширине велико, сдвиг широкой балки может контролировать глубина. Критические сечения сдвига находятся на расстоянии d по обе стороны от столбец Рис.17-а. Изгибающий момент рассчитывается для обоих направлений, вокруг оси 1-1 и вокруг оси b-b, как показано на рис. 17.b и c.

Армирование в длинном направление (сторона L) рассчитывается по изгибающему моменту и равномерно распределяется по ширине B. армирование в коротком направлении (сторона B) рассчитывается по изгибу момент М 11 .При размещении стержней в коротком направлении один необходимо учитывать, что опора, обеспечиваемая опорой колонны, является сосредоточены около середины, следовательно, зона опоры, прилегающая к колонна более эффективна в сопротивлении изгибу. По этой причине произведена регулировка стали в коротком направлении. Эта регулировка помещает процент стали в зоне с центром в колонне шириной, равной к длине короткого направления опоры.Остальная часть Арматура должна быть равномерно распределена в двух концевых зонах, рис.18. По данным Американского института бетона, процент стали в центральная зона выдается по:

, где S = отношение длинной стороны к короткой сторона, L / B.

SEMELLES

Одиночные опоры должны быть связаны вместе пучками, известными как семеллы, как показано на рис.19.a. Их функция нести стены первого этажа и переносить их нагрузки на опоры. Семелла могут предотвратить относительное оседание, если они имеют очень жесткое сечение. и сильно усиленный.

Семелле спроектирован как неразрезная железобетонная прямоугольная балка. несущий вес стены. Ширина семели равна ширина стены плюс 5 см и не должна быть меньше 25 см. Должно сопротивляться усилиям сдвига и изгибающим моментам, которым он подвергается, semelles должен

быть усиленным сверху и снизу для противодействия дифференциальным расчетам.равным усилением A s .

Верх уровень семеллы должен быть на 20 см ниже уровня платформы. окружающие здание. Если уровень первого этажа выше, чем уровень платформы, уровень внутренней полумельки можно принять 20 см. ниже уровня цокольного этажа

Опоры, подверженные воздействию момента

Введение

Многие основы сопротивляются в дополнение к концентрической вертикальной нагрузке, момент вокруг одной или обеих осей основания.Момент может возникнуть из-за нагрузки, приложенной не к центру основание. Примеры основ, которые должны противостоять моменту, – это основания для подпорные стены, опоры, опоры мостов и колонны фундаменты высотных зданий, где давление ветра вызывает заметный прогиб моменты у основания колонн.

Результирующее давление на почву под внецентренно нагруженным основанием считается совпадающим с осевым нагрузка P, но не с центром тяжести фундамента, что приводит к линейному неравномерное распределение давления.Максимальное давление не должно превышать максимально допустимое давление на почву. Наклон опоры из-за возможна более высокая интенсивность давления почвы на пятку. Это может быть уменьшенным за счет использования большого запаса прочности при расчете допустимого грунта давление. Глава 1, Раздел «Опоры с эксцентрическими или наклонными нагрузками» обеспечивают снижение допустимого давления на грунт для внецентренно нагруженных опоры.

Опоры с моментами или эксцентриситетом относительно Одна ось

где P = вертикальная нагрузка или равнодействующая сила

е = Эксцентриситет вертикальной нагрузки или равнодействующей силы

q = интенсивность давления грунта (+ = сжатие)

и не должно быть больше допустимого

давление почвы q a

c-Нагрузка P за пределами середины

Когда нагрузка P находится за пределами средней трети, то есть е > L / 6, Уравнение7 указывает на то, что под опорой возникнет напряжение. Однако нет между почвой и основанием может возникнуть напряжение, поэтому напряжение напряжения не принимаются во внимание, а площадь основания, которая находится в натяжение не считается эффективным при несении нагрузки. Следовательно диаграмма давления на почву должна всегда находиться в сжатом состоянии, как показано на Рис.21-.c. Для то эксцентриситет е > L / 6 с участием относительно только одной оси, можно управлять уравнениями для максимальной почвы давление q 1 , найдя диаграмму давления сжатия, результирующая должна быть одинаковой и на одной линии действия нагрузки P.Этот диаграмма примет форму треугольника со стороной = q 1 и основанием =

Опоры с моментами или эксцентриситетом относительно обе оси

Для опор с моментами или эксцентриситет относительно обеих осей Рис. 22, давление может быть вычислено с помощью следующее уравнение

a- Нейтральная ось за пределами базы:

Если нейтральная ось находится снаружи основание, то все давление q находится в сжатом состоянии, и уравнение (9) имеет вид действительный.Расположение максимального и минимального давления на почву может быть определяется быстро, наблюдая направления моментов. Максимум давление q 1 находится в точке (1)

Рис.22-а и минимальный давление q 2 находится в точке (3). Давление q 1 и q 2 определяются из уравнения (9).

б- Нейтральная ось режет основание

Если нейтральная ось режет основание, то некоторый участок основания подвергается растяжению Рис.22. Как почва вряд ли захватит опору, чтобы удерживать ее на месте, поэтому диаграмму, показанную на рис. 22-б, и уравнение (9) использовать нельзя. Расчет Максимальное давление на почву должно зависеть от площади, фактически находящейся на сжатии. Диаграмма сжатия должна быть найдена таким образом, чтобы ее результирующая должны быть равны и на одной линии действия силы P. Простейший способ получить эту диаграмму – методом проб и ошибок следующим образом:

1- Находить давление почвы во всех углах, применяя уравнение.(9).

2- Определите положение нейтральной оси N-A (линия нулевого давления). Это не прямая линия, но предполагается, что это так. Поэтому необходимо найти только две точки, по одной на каждой соседней стороне. основания.

3- Выбрать другой нейтральная ось (N’-A ‘) параллельна (N-A), но несколько ближе к месту результирующей нагрузки P, действующей на опору.

4- Вычислить момент инерции сжатой области по отношению к N’-A ‘. В Самая простая процедура – нарисовать опору в масштабе и разделить площадь на прямоугольники и треугольники

4.4 КОНСТРУКЦИЯ ПРЕДНАЗНАЧЕННЫХ ФУНТОВ К МОМЕНТУ

Основная проблема в конструкция эксцентрично нагруженных опор – это определение распределение давления под опорами. Как только они будут определены, процедура проектирования будет аналогична концентрически нагруженным опорам, выбраны критические сечения и произведены расчеты напряжений из-за момент и сдвиг сделаны.

Где изгибающие моменты на колонне поступают с любого направления, например от ветровые нагрузки, квадратный фундамент; предпочтительнее, если не хватает места диктуют выбор прямоугольной опоры. Если изгибающие моменты действуют всегда в том же направлении, что и в колоннах, поддерживающих жесткие каркасные конструкции, опору можно удлинить в направлении эксцентриситета

Размеры фундамента B и L пропорциональны таким образом, чтобы максимальное давление на носке не превышает допустимого давления почвы.

Если колонна несет постоянный изгибающий момент, например, кронштейн, несущий длительной нагрузке, может оказаться преимуществом смещение колонны от центра на опоры так, чтобы эксцентриситет результирующей нагрузки был равен нулю. В этом случае распределение давления на основание будет равномерным. Долго носок опоры должен быть спроектирован как консоль вокруг сечение лицевой стороны колонны, Расчет глубины сопротивления пробивные ножницы и ножницы для широкой балки такие же, как при опоре фундаментов концентрические нагрузки

Поскольку изгибающий момент на основание колонны, вероятно, будет большим для этого типа фундамента, арматура колонны должна быть правильно привязана к фундаменту., Детали армирования для этого типа фундаментов показаны на Рис.24.

Для квадратного фундамента это как правило, удобнее всего поддерживать одинаковый диаметр стержня и расстояние между ними в обоих направления во избежание путаницы при креплении стали.

Комбинированные опоры

Введение

В предыдущем разделе были представлены элементы оформления разворота и стены. опоры.В этом разделе рассматриваются некоторые из наиболее сложных проблемы с мелким фундаментом. Среди них есть опоры, поддерживающие более один столбец в ряд (комбинированные опоры), который может быть прямоугольным или трапециевидной формы, или две накладки, соединенные балкой, как ремешок опора. Эксцентрично нагруженные опоры и опоры несимметричной формы тоже будет рассмотрено.

Прямоугольные комбинированные опоры

Когда линии собственности, расположение оборудования, расстояние между колоннами или другие соображения ограничить расстояние от фундамента в местах расположения колонн, возможное решение: использование фундамента прямоугольной формы.Этот тип фундамента может поддерживать два столбца, как показано на рисунках 25 и 26, или более двух столбцов с только небольшое изменение процедуры расчета. Эти опоры обычно проектируется, предполагая линейное распределение напряжения на дне основания, и если равнодействующая давления почвы совпадает с равнодействующая нагрузок (и центр тяжести опоры), грунт предполагается, что давление равномерно распределено, линейное давление Распределение подразумевает твердую опору на однородной почве.Настоящий опора, как правило, не жесткая, и давление под ней неравномерно, но Было обнаружено, что решения, использующие эту концепцию, являются адекватными. Этот Концепция также приводит к довольно консервативному дизайну.

Конструкция жесткой прямоугольной опоры заключается в определении расположение центра тяжести (cg) нагрузок на колонну и использование длины и такие размеры ширины, чтобы центр тяжести основания и центр силы тяжести колонны нагрузки совпадают.С размерами фундамента установили, ножницы

можно подготовить диаграмму моментов, выбрать глубину сдвига (опять же является обычным, чтобы сделать глубину достаточной для сдвига без использования сдвига армирование, чтобы косвенно удовлетворить требованиям жесткости), и армирование сталь, выбранная для требований к гибке. Критические секции на сдвиг, оба диагональное натяжение и широкая балка должны приниматься, как указано в предыдущем раздел.Максимальные положительные и отрицательные моменты используются при проектировании армирующей стали, и в результате получится сталь как в нижней, так и в верхней части луч.

В коротком направлении очевидно, что вся длина не будет эффективен в сопротивлении изгибу. Эта зона, ближайшая к колонне, будет наиболее эффективен для изгиба, и рекомендуется использовать этот подход. Это в основном то, что Кодекс ACI определяет в Ст.15.4.4 для прямоугольного опоры

Если принять, что зона, включающая столбцы, является наиболее эффективная, какой должна быть ширина этой зоны? Конечно, это должно быть что-то больше ширины столбца. Наверное, не должно быть больше ширина столбца плюс d до 1,5d, в зависимости от расположения столбца на основе аналитическая работа автора, отсутствие руководства по Кодексу и признание того, что дополнительная сталь «укрепит» зону и увеличит моменты в этой зоне и уменьшить момент выхода из зоны.Эффективная ширина при использовании этого метода проиллюстрирован на рис.27. Для оставшейся части фундамента в коротком направлении Кодекс ACI Должно использоваться требование для минимального процентного содержания стали (ст. 10.5 или 7.13).

При выборе размеров для комбинированного фундамента размер длины равен несколько критично, если желательно иметь диаграммы сдвига и момента математически близко как проверка ошибок.Это означает, что если длина не равна точно вычисленное значение из местоположения cg столбцов, Эксцентриситет будет внесен в основание, что приведет к нелинейному диаграмма давления грунта. Однако фактическая длина в заводском состоянии должна быть округляется до практической длины, скажем, с точностью до 0,25 или 0,5 фута (от 7,5 до 15 см).

Нагрузки на колонну могут быть приняты как сосредоточенные нагрузки для расчета сдвига и диаграммы моментов.Для расчета значений сдвига и момента на краю (торце) столбца следует использовать. Результирующая ошибка при использовании этого подхода: незначительно Рис. (28)

Если основание нагружено более чем двумя колоннами, проблема все еще сохраняется. статически детерминированный; реакции (нагрузки на колонку) известны также как распределенная нагрузка, то есть давление грунта.

Методика расчета прямоугольной комбинированной опоры: –

Ссылаясь на рис.29, этапы проектирования можно резюмировать следующим образом:

1- Найдите направление применения результирующего R. Это исправление L / 2, поскольку y равно известные и ограниченные. Следует указать, что если длина L не равна точно рассчитанное значение, эксцентриситет будет введен в опоры, в результате чего получается нелинейная диаграмма давления грунта.Фактический как построенный длину, однако, следует округлить до практической длины, например, до ближайшие 5 см или 10 см.

максимальный + ve момент в точке K, где сила сдвига = ноль

6- Определите глубину сдвига. Принято делать глубину адекватной на сдвиг без использования сдвига армирование. Критическое сечение сдвига находится на расстоянии d от грани. столбца, имеющего максимум сдвиг, рис.30

7-Определить глубина продавливания сдвига для обеих колонн. По данным ACI, критическое сечение это на d / 2 от грани колонны. Рис.30.

9-д выбран наибольший из

т = д + 5-8 см.

11- Проверьте напряжения сцепления и длину анкеровки d.

12- Короткое направление:

Нагрузки на колонны распределяются поперечно поперечными балками (скрытыми), одна под каждым столбцом.Длина балок равна ширине балки. опоры B. Эффективную ширину поперечной балки можно принять как минимум из следующих:

а- Ширина колонны a + 2 d или ширина колонны a + d + проекция фундамента за столбцом y, рис.31.

б- Ширина подошвы

Следует отметить, что код ACI считает, что эффективная ширина поперечная балка равна ширине колонны a + d или ширине колонны a + d / 2 + y. Поперечный изгибающий момент M T1 в колонне (1) равен

Поперечная арматура должна быть распределена по полезной ширине. поперечной балки.Для остальной части фундамента минимум следует использовать процентную сталь. Напряжения связи и длина анкеровки d d , следует проверить.

Стойка комбинированная трапециевидная: –

Комбинированная трапециевидная опора для двух колонн, используемая, когда колонна несет самая большая нагрузка находится рядом с линией собственности, где проекция ограничена или когда есть ограничение на общую длину опоры.Ссылаясь на Рис.32 ,

Положение результирующей нагрузки на столбцы R определяет положение центриод трапеции. Длина L определяется, а площадь A равна вычислено из:

Процедура проектирования такая же, как и для прямоугольного комбинированного фундамента, за исключением того, что диаграмма сдвига будет кривой второй степени, а изгибающий момент – кривая третьей степени.

Конструкция ременных или консольных опор

Можно использовать ленточную опору. где расстояние между колоннами настолько велико, что комбинированная или трапециевидная опора становится довольно узкой, что приводит к высоким изгибающим моментам, или где, как в предыдущем разделе.

Ремешок основание состоит из двух опор колонн, соединенных элементом, называемым ремень, балка или консоль, передающая момент извне опора.На рис.33 показано ленточное основание. Поскольку ремешок предназначен для

момент, либо это должно быть образуются вне контакта с почвой или почву следует разрыхлить на на несколько дюймов ниже ремешка, чтобы ремешок не оказывал давления на грунт действуя по нему. Для простоты разбора, если ремешок есть. не очень долго, весом ремешка можно пренебречь.

При проектировании ленточной опоры сначала необходимо выровнять опоры.Это делается при условии, что равномерное давление грунта под основаниями; то есть 1 и 2 (Рис.33) действуют в центре тяжести опор.

Ремешок должен быть массивным член, чтобы это решение было действительным. Развитие уравнения 1 предполагает жесткую вращение тела; таким образом, если ремень не может передать эксцентрик момент из столбца 1 без вращения, решение не действует.Избежать рекомендуется вращение внешней опоры.

I планка / I опора > 2

Желательно пропорции обе опоры так, чтобы B и q были как можно более равны для управления дифференциальные расчеты.

Методика расчета опор ремня

реакция под интерьер опора будет уменьшена на такое же значение, как показано на Рис.33

1- Дизайн начинается с пробной стоимости

евро.

6- Убедитесь, что центр тяжести площадей двух опор совпадают с равнодействующей нагрузок на колонну.

7- Рассчитайте моменты и сдвиг в различных частях ремня. опора.

8- Дизайн ремешка

Ремешок представляет собой однопролетная балка, нагруженная вверх нагрузками, передаваемыми ей двумя опор и поддерживаются нисходящими реакциями по центральным линиям двух столбцы.Таким образом, нагрузка вверх по длине L равна R 1 / L. т / м ‘. Местоположение максимального момента получается приравниванием сдвига сила до нуля. Момент уменьшается к внутренней колонне и равен нулю. по центральной линии этого столбца. Следовательно, половина армирования ремня составляет прекращено там, где больше нет необходимости, а вторая половина продолжается до внутренняя колонна. Проверьте напряжения сдвига и используйте хомуты и изогнутые стержни, если нужно.

9- Конструкция наружной опоры

Внешняя опора действует точно так же, как настенный фундамент длиной, равной L. Хотя колонна расположен на краю, балансирующее действие ремня таково, что передать реакцию R 1 равномерно по длине L 1 Это приводит к желаемому равномерному давлению почвы. Дизайн выполнен точно так же, как для настенного фундамента.

10- Дизайн межкомнатной опоры

Внутренняя опора может быть спроектирован как простой одноколонный фундамент. Основное отличие состоит в том, что Пробивные ножницы следует проверять по периметру fghj, рис.33.

ФУНДАМЕНТЫ

Введение

Фундамент плота непрерывные опоры, которые покрывают всю площадь под конструкцией и поддерживает все стены и колонны.Термин мат также используется для обозначения фундамента. этого типа. Обычно используется на грунтах с низкой несущей способностью и там, где площадь, покрытая расстеленными опорами, составляет более половины площади, покрытой структура. Плотный фундамент применяется также там, где в грунтовой массе содержится сжимаемые линзы или почва достаточно неустойчива, так что дифференциал урегулирование будет трудно контролировать. Плот имеет тенденцию переходить через мост неустойчивые отложения и уменьшает дифференциальную осадку.

Несущая способность плотов по песку

Биологическая способность основания на песке увеличивается по мере увеличения ширины. Благодаря большой ширине плота по сравнению с шириной обычной опоры, допустимая вместимость под плотом будет намного больше, чем под опорой.

Было замечено на практике что при допустимой несущей способности под плотом, равной удвоенной допустимая несущая способность определяется для обычной опоры.отдых на том же песке даст разумная и приемлемая сумма урегулирования.

Если уровень грунтовых вод находится на глубина равна или больше B, ширина плота, допустимая Несущая способность, определенная для сухих условий, не должна уменьшаться. Если есть вероятность, что уровень грунтовых вод поднимается, пока не затопит площадка, допустимая несущая способность следует уменьшить на 50%.Если уровень грунтовых вод находится на промежуточной глубине между B и основанием плот, следует сделать соответствующее уменьшение от нуля до 50%.

Несущая способность плотов по глине.

В глинах несущая способность не зависит от ширины фундамента. вместимость под плотом будет такая же, как и под обычным основанием.

Если предполагаемый дифференциал осадка под плотом более чем терпима или если вес здание, разделенное на его площадь, дает несущее напряжение больше, чем допустимая несущая способность, плавающий или частично плавающий фундамент должен быть на рассмотрении.

Выполнить плавающий фундамент, земляные работы должны проводиться до глубины D, на которой вес выкопанного Грунт равен весу конструкции, рисунок 2.В этом случае избыточное наложенное напряжение Δp на уровне фундамента равна нулю и, следовательно, здание не пострадает.

Если полный вес building = Q

и вес удаленной почвы = Ш с

и превышение нагрузки при уровень фундамента = Q e

\ Q e = QW s

В случае плавающего фундамента ;

Q = W s и, следовательно, Q e = Ноль

В случае частично плавающего фундамент, Q e имеет определенный значение, которое при делении на площадь основания дает допустимый подшипник емкость почвы;

Проектирование плотных фундаментов;

Плоты могут быть жесткими. конструкции (так называемый традиционный анализ), при которых давление грунта действует против плиты плота предполагается равномерно распределенным и равным общий вес постройки, деленный на площадь плота.Это правильно, если столбцы загружены более или менее одинаково и на равном расстоянии друг от друга, но на практике выполнить это требование сложно, поэтому допускается что нагрузки на колонны и расстояния должны изменяться в пределах 20%. Однако если нисходящие нагрузки на одних участках намного больше, чем на других, это желательно разделить плот на разные части и оформить каждую зону на соответствующее среднее давление. Непрерывность плиты между такими области обычно предоставляются, хотя для областей с большими различиями в давления рекомендуется строить вертикальный строительный шов через плита и надстройка, чтобы учесть дифференциальную осадку.

В гибком плотном фундаменте дизайн не может быть основан только на требованиях к прочности, но это необходимо подвергнуться из-за прогнозируемого заселения. Толщина и количество армирования плота следует подбирать таким образом, чтобы предотвратить развитие трещин в плите. Поскольку дифференциальный расчет не учтено в конструктивном дизайне, принято усиливать плот с вдвое большей теоретической арматурой.Количество сталь можно принять как 1% площади поперечного сечения, разделенной сверху и Нижний. Толщина плиты не должна превышать 0,01 от радиус кривизны. Толщина может быть увеличена возле колонн до , чтобы предотвратить разрушение при сдвиге.

Есть два типа плотных фундаментов:

1- Плоская плита перекрытия, которая представляет собой перевернутую плоскую плиту Рис.34-а. Если толщина плиты недостаточна, чтобы противостоять продавливанию под колонны, пьедесталы могут использоваться над плитой Рис. 34-.b или, ниже плиты, с помощью утолщение плоской плиты под колоннами, как показано на Рис. 34-c.

2- Плита и балка на плоту, есть. перевернутый R.C. пол, состоит из плит и балок, идущих вдоль колонны, рядами в обоих направлениях, Рис.34-d, он также называется ребристым матом. Если желателен сплошной пол в цоколь, ребра (балки) могут быть размещены под плитой, рис.34-е.

Конструкция плота плоской перекрытия

Плот, г. равномерной толщины, делится на полосы колонн и средние полосы как показано на рис. 35-а. Ширина полосы столбцов равна b + 2d, где b = сторона колонки. Глубину плота d можно принять примерно равной 1/10 свободный промежуток между столбцами.Также ширину полосы столбца можно принять равно 3 б.

Планки колонн выполнены в виде неразрезные балки, нагруженные треугольными нагрузками, как показано на рис. 35-b. Сеть интенсивность равномерного восходящего давления f n под любой площадью, для Например, площадь DEFG можно принять равной одной четвертой общей нагрузки. на столбцах D, E, F и G, разделенных на площадь DEFG.

Суммарные нагрузки, действующие на планка колонны BDEQ, рис.35-a приняты в виде треугольных диаграмм нагружения, показанных на рис. 35-б. Общая нагрузка на деталь DE, P DE , принимается равной чистое давление, действующее на площадь DHEJ.

Конструкция жесткого плота (традиционный метод)

Размер плота устанавливается равнодействующая всех нагрузок и определяется давление грунта. вычисляется в различных местах под основанием по формуле.

Плот подразделяется на ряд непрерывных полос (балок) с центром в рядах колонн, как показано на Рис.37.

Диаграммы сдвига и момента могут быть установлены с использованием либо комбинированного анализа фундамента, либо балочного момента коэффициент Коэффициенты момента балки. Коэффициент момента балки PI 2 /10 для длинных направлений и Для коротких направлений может быть принят PI 2 /8.Отрицательный и положительные моменты будем считать равными. Глубина выбирается, чтобы удовлетворить требования к сдвигу без использования хомутов и растягивающей арматуры выбрано. Глубина обычно будет постоянной, но требования к стали могут варьироваться от полосы к полосе. Аналогично анализируется и перпендикулярное направление.

Конструкция плиты перекрытия и фермы (ребристый мат)

Если столбец загружается и интервалы равны или изменяются в пределах 20%, чистое восходящее давление f n действие против плота предполагается равномерным и равным Q / A.

где

Q = вес здания при на уровне земли, и

A = площадь плота (по за пределами внешних колонн).

Если это давление больше чем чистое допустимое давление на грунт, площадь плота должна быть увеличен до площади, достаточно большой, чтобы снизить равномерное давление на сетку допустимое значение. Этого можно добиться, выполнив выступ плиты за пределы внешняя грань внешних колонн.

Ссылаясь на Рис. 38, различные элементы плота могут иметь следующую конструкцию:

Конструкция плиты:

1-Расчет поперечных балок B 1 и B 2

Равномерно распределенная нагрузка / м ‘ на

Пусть R 1 и R 2 быть центральной реакцией лучей B 1 и B 2 на центральная балка дальнего света B и 3 соответственно.Концевые балки B 1 несет только часть нагрузки, которую несет балка B 2 и, следовательно, центральная реакция R 1 принята равной

KR 2 где K – коэффициент, основанный на сравнительной области, то

Также предполагается, что сумма центральных реакций от поперечных балок B 1 и B 2 равно суммарным нагрузкам от центральных колонн, таким образом,

2R 1 + 8R 2 = 2-пол. 1 + 2-пол. 2 (2)

Решение уравнений.(1) и (2), R 1 и R 2 может быть определен.

Изгибающий момент и сдвиг силовые диаграммы можно нарисовать, как показано на рис.39. Реакции R 1 и R 2 можно определить, приравняв сумму вертикальных сил до нуля. Центральное сечение балок при положительном изгибающем моменте может быть выполнен в виде Т-образной балки, так как плита находится на стороне сжатия. Разделы балки под центральной балкой B 3 должны быть прямоугольными. раздел.

2- Конструкция центральной главной балки B 3

Нагрузка, усилие сдвига, диаграммы и диаграммы изгибающего момента показаны на рис. 40-а. Раздел может быть выполнен в виде Т-образной балки.

3- Конструкция центральной главной балки B 4

Нагрузка, усилие сдвига, диаграммы изгибающих моментов представлены на рис.40-б Разрез может быть спроектирован как тавровая балка

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *