Расчет конденсатора для электродвигателя: Расчёт ёмкости конденсатора для трехфазного асинхронного двигателя в однофазной сети | Калькуляторы

alexxlab | 19.05.1989 | 0 | Разное

Содержание

Калькулятор расчета емкости рабочего и пускового конденсаторов

Свободные электрические колебания в параллельном контуре.

Основные свойства индуктивности:

– Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
– Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке,
что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t1,
которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t

1 = .
По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL.
Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС,
которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора
индукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1,
он перезарядит конденсатор от нуля до максимального отрицательного значения (-U).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре.

Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление.
Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.

В течении заключительного этапа колебания (t4),
накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U
(в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников,
фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t1 + t2 + t3 + t4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура,
на которой реактивное сопротивление индуктивности

XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).

Расчёт частоты резонанса

LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Электроемкость. Конденсаторы. Энергия конденсатора. Соединение конденсаторов

Электрическая
ёмкость —
характеристика проводника, мера его
способности накапливать электрический
заряд.

В теории электрических цепей ёмкостью
называют взаимную ёмкость между двумя
проводниками; параметр ёмкостного
элемента электрической схемы,
представленного в виде двухполюсника.

Такая ёмкость определяется как отношение
величины электрического заряда к разности
потенциалов между
этими проводниками.

В системе СИ ёмкость
измеряется в фарадах.
В системе СГС в сантиметрах.

  • Для одиночного
    проводника ёмкость равна отношению
    заряда проводника к его потенциалу в
    предположении, что все другие
    проводники бесконечно удалены
    и что потенциал бесконечно удалённой
    точки принят равным нулю. В математической
    форме данное определение имеет вид
  • где  — заряд,  —
    потенциал проводника.
  • Ёмкость определяется
    геометрическими размерами и формой
    проводника и электрическими свойствами
    окружающей среды (еёдиэлектрической
    проницаемостью)
    и не зависит от материала проводника.
    К примеру, ёмкость проводящего шара
    радиуса R равна
    (в системе СИ):

Понятие ёмкости
также относится к системе проводников,
в частности, к системе двух проводников,
разделённых диэлектриком —конденсатору.
В этом случае взаимная
ёмкость этих
проводников (обкладок конденсатора)
будет равна отношению заряда, накопленного
конденсатором, к разности потенциалов
между обкладками. Для плоского конденсатора
ёмкость равна:

где S —
площадь одной обкладки (подразумевается,
что они равны), d —
расстояние между обкладками, ε — относительная
диэлектрическая проницаемость среды
между обкладками, ε0 =
8.854·10−12 Ф/м
— электрическая
постоянная.

Конденса́тор (от лат. condensare —
«уплотнять», «сгущать») — двухполюсник с
определённым значением ёмкости и
малой омической проводимостью;
устройство для накопления заряда и
энергии электрического поля.

Конденсатор
является пассивным электронным
компонентом.

Виды конденсаторов:
1.
по виду диэлектрика: воздушные, слюдяные,
керамические, электролитические
2. по
форме обкладок: плоские, сферические.
3.
по величине емкости: постоянные,
переменные (подстроечные).

Электроемкость
плоского конденсатора

Включение
конденсаторов в электрическую цепь

параллельное

последовательное

  1. ЭНЕРГИЯ ЗАРЯЖЕННОГО
    КОНДЕНСАТОРА
  2. Конденсатор — это
    система заряженных тел и обладает
    энергией.
    Энергия любого конденсатора:
  3. где
    С — емкость конденсатора
    q — заряд
    конденсатора
    U — напряжение на обкладках
    конденсатора
    Энергия конденсатора
    равна работе, которую совершит
    электрическое поле при сближении пластин
    конденсатора вплотную,
    или равна
    работе по разделению положительных и
    отрицательных зарядов , необходимой
    при зарядке конденсатора.
  4. ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО
    ПОЛЯ КОНДЕНСАТОРА

13.

Подбор конденсатора для электродвигателя

Для питания двигателя на 380 В от однофазной сети 220 В к нему потребуется подобрать рабочий конденсатор. Если мощность двигателя превышает примерно 1,5 кВт, то потребуется пусковая ёмкость.

Важно! Такие схемы скорее пригодны для включения моторов с низкой механической нагрузкой на валу (например, вентиляторов). Для более серьёзных агрегатов лучше использовать полноценную трёхфазную сеть. Сам по себе подбор рабочего конденсатора весьма сложен

Упрощённо мощно считать, что его ёмкость Cр должна составлять 70 uF на каждый 1 кВт двигателя. Т.е., если мощность двигателя составляет 400 Вт, то потребуется конденсатор на 28 uF

Сам по себе подбор рабочего конденсатора весьма сложен. Упрощённо мощно считать, что его ёмкость Cр должна составлять 70 uF на каждый 1 кВт двигателя. Т.е., если мощность двигателя составляет 400 Вт, то потребуется конденсатор на 28 uF.

Ёмкость для запуска мотора Cп должна быть примерно в 2,75 больше, чем рабочая. При этом по достижении двигателем холостого хода пусковой конденсатор должен обязательно исключаться из цепи контактами В2.

Работа двигателя от 220 В

Практика показывает, что вычислять ёмкости – не такое сложное дело. Эти знания требуются людям, чья профессия так или иначе связана с электричеством, особенно электронщикам. Поэтому специалистам нужно твёрдо знать, как и какой конденсатор подбирается для конкретных целей.

В чем сложность выбора такого конденсатора?

В принципе большего отличия нет, но различные конденсаторы для асинхронных электродвигателей потребует другого расчета допустимого напряжения. Потребуется около 100 ватт для каждого мкФ емкости устройства. И они отличаются доступными режимами работы электродвигателей:

  • Используется пусковой конденсатор и слой дополнительной обмотки (только для процесса пуска) тогда расчет емкости конденсатора – 70 мкФ для 1 кВт от мощности электродвигателя;
  • Используется рабочий вариант конденсатора с емкостью в 25 – 35 мкФ на основе дополнительной обмотки с постоянным подключением в процессе всей длительности работы устройства;
  • Применяется рабочий вариант конденсатора на основе параллельного подключения пусковой версии.

Но в любом случае необходимо отслеживать уровень разогревания элементов двигателя в процессе его эксплуатации. Если замечено перегревание тогда необходимо принять меры.

В случае с рабочим вариантом конденсатора рекомендуем уменьшить его емкость. Рекомендуем использовать конденсаторы, работающие на основе мощности в 450 или больше В, поскольку они считаются оптимальным вариантом.

  • Ротор электродвигателя — особенности конструкции и принцип работы устройства. Инструкция по ремонту и восстановлению
  • Подключение электродвигателя — основные схемы, способы и особенности подсоединения различных моделей (инструкция + фото)

  • Однофазный электродвигатель: основные виды, принцип работы и инструкция по подключению и настройке. Обзор лучших производителей!

Чтобы избежать неприятных моментов до подключения к электродвигателю рекомендуем убедится в работоспособности конденсатора с помощью мультиметра. В процессе создания необходимой связки с электродвигателем пользователь, может, создать полностью работоспособную схему.

Почти всегда выводы обмоток и конденсаторов находятся в клеммной части корпуса электродвигателя. За счет этого можно создать фактически любую модернизацию.

Так, чем отличается однофазный асинхронный вариант электродвигателя? Разберемся в этом подробно:

  • Его часто применяют для бытовых приборов;
  • Для его запуска используется дополнительная обмотка и потребуется элемент для сдвигания фазы – конденсатор;
  • Подключается на основе множества схем с помощью конденсатора;
  • Для улучшения пускового момента применяется пусковая версия конденсатора, а рабочие характеристики увеличиваются с помощью рабочего варианта конденсатора.

Теперь вы получили необходимую информацию и знаете, как подключить конденсатор к асинхронному двигателю чтобы обеспечить максимальную эффективность. А также у вас появились знания о конденсаторах и способах их применения.

  • Перемотка электродвигателей: пошаговая инструкция по ремонту и восстановлению обмотки двигателя своими руками (инструкция с фото и видео)

  • Схема электродвигателя — способы подключения и запуска двигателя. Обзор типовых конфигураций и принципа работы

  • Электродвигатель своими руками: инструкция по сборке самодельного механизма. Возможные модификации и простейшие модели

Калькулятор расчета емкости рабочего и пускового конденсаторов

При подключении асинхронного электродвигателя в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз на обмотках статора, чтобы сделать имитацию вращающегося магнитного поля (ВМП), которое заставляет вращаться вал ротора двигателя при подключению его в «родные» трехфазные сети переменного тока. Известная многим, кто знаком с электротехникой, способность конденсатора давать электрическому току «фору» на π/2=90° по сравнению с напряжением, оказывает хорошую услугу, так как это создает необходимый момент, заставляющий вращаться ротор в уже «не родных» сетях.

Лучшая бытовая химия на сайте https://himcentre.ru/

Но конденсатор для этих целей необходимо подбирать, причем нужно делать с высокой точностью. Именно поэтому читателям нашего портала предоставляется в абсолютное безвозмездное пользование калькулятор расчета емкости рабочего и пускового конденсатора. После калькулятора будут даны необходимые разъяснения по всем его пунктам.

Калькулятор расчета емкости рабочего и пускового конденсаторов

Для расчета использовались следующие зависимости:

Полученные из калькулятора данные можно использовать для подбора конденсаторов, но именно таких номиналов, как будет рассчитано, их вряд ли можно будет найти. Только в редких исключениях могут быть совпадения. Правила подбора такие:

  • Если есть «точное попадание» в номинал емкости, который существует у нужной серии конденсаторов, то можно выбирать именно такой.
  • Если нет «попадания», то выбирают емкость, стоящую ниже по ряду номиналов. Выше не рекомендуется, особенно для рабочих конденсаторов, так как это может привести к ненужному возрастанию рабочих токов и перегреву обмоток, которое может привести к межвитковому замыканию.
  • По напряжению конденсаторы выбираются номиналом не менее, чем в 1,5 раза больше, чем напряжение в сети, так как в момент пуска напряжение на выводах конденсаторов всегда повышенное. Для однофазного напряжения в 220 В рабочее напряжение конденсатора должно быть не менее 360 В, но опытные электрики всегда советуют использовать 400 или 450 В, так как запас, как известно, «карман не тянет».

Приведем таблицу с номиналами конденсаторов рабочих и пусковых. В качестве примера приведены конденсаторы серий CBB60 и CBB65. Это полипропиленовые пленочные конденсаторы, которые наиболее часто применяют в схемах подключения асинхронных двигателей. Серия CBB65 отличается от CBB60, тем, что они помещены в металлический корпус.

В качестве пусковых применяют электролитические неполярные конденсаторы CD60. Их не рекомендуются применять в качестве рабочих так как продолжительное время их работы делает их жизнь менее продолжительной.. В принципе, для пуска подходят и CBB60, и CBB65, но они имеют при равных емкостях более объемные габариты, чем CD60. В таблице приведем примеры только тех конденсаторов, которые рекомендованы к использованию в схемах подключения электродвигателей.

Для того, чтобы «набрать» нужную емкость, можно использовать два и более конденсатора, но при разном соединении результирующая емкость будет отличаться. При параллельном соединении она будет складываться, а при последовательном — емкость будет меньше любого из конденсаторов. Тем не менее такое соединение иногда используют для того, чтобы, соединив два конденсатора на меньшее рабочее напряжение, получить конденсатор, у которого рабочее напряжение будет суммой двух соединяемых. Например, соединив два конденсатора на 150 мкф и 250 В последовательно, получим результирующую емкость 75 мкф и рабочее напряжение 500 В.

Для того чтобы рассчитать емкость двух последовательно соединенных конденсаторов, читателям предоставляется простой калькулятор, где надо просто выбрать два конденсатора из ряда существующих номиналов.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсаторов

Обычно эту операцию доверяют только электрикам, имеющим практический опыт. Однако, подключить двигатель можно и самому. Это доказывает статья нашего портала: «Как подключить трехфазный двигатель в сеть 220 В».

Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель)

Однофазный асинхронный двигатель

Обмотка статора однофазного асинхронного двигателя занимает приблизительно 2/3 окружности, именно по этой причине его мощность на 1/3 меньше мощности трехфазного двигателя таких же габаритов.

Ток, протекая по обмотке статора, создает пульсирующее магнитное поле, которое можно представить как два поля, вращающиеся в разных направлениях. Поле, которое вращается в направлении ротора называется прямым полем, а второе – обратным. Они воздействуют на ротор и создают соответствующие моменты (Мпр и Мобр).

По причине разных направлений вращения эти электрические машины не могут самостоятельно совершить пуск, так как при неподвижном роторе, то есть при S=1, пусковой момент, он же Мрез, равен нолю (смотри Рисунок 1). Однако, если придать движение ротору, то прямой и обратный моменты не будут равны и двигатель продолжит вращение в том же направлении (ток, протекающий по обмотке ротора будет оказывать размагничивающее действие и при этом будет ослабляться обратное поле).

Рисунок 1 – Зависимость механических характеристик от прямого и обратного вращающих полей

Пуск двигателя с помощью пусковых устройств

Для того чтоб запустить однофазный асинхронный двигатель применяют устройства для пуска двигателя:

– Конденсатор – C;

– Резистор – R.

Пуск трехфазных асинхронных двигателей осуществляется более простым способом из-за уже имеющегося в сети сдвига фаз на 120 электрических градусов

Для получения пускового момента используют пусковую обмотку статора, которая по отношению к рабочей обмотке сдвинута на 90 электрических градусов. Применяют фазосдвигающие элементы, которые подключают к пусковой обмотке. Эта обмотка работает, обычно, около 3 первых секунд, после чего принудительно отключается вручную или с помощью автоматов. По этой причине ее изготовляют из провода меньшего сечения и с меньшим количеством витков по сравнению с рабочей обмоткой.

Пуск при помощи резистора производится при малых необходимых пусковых моментах, то есть если нагрузка на валу незначительна. Рисунок 2 иллюстрирует применение пускового а) конденсатора и б) резистора; где Р – рабочая обмотка, П – пусковая обмотка.

Рисунок 2 – Схема подключения однофазного асинхронного двигателя

Двухфазные асинхронные двигатели

Наличие конденсатора значительно улучшает характеристики двигателя, по этой причине используются двухфазные асинхронные двигатели. В них две обмотки являются рабочими, в одну из них вводится конденсатор для смещения угла между фазами на 90 градусов и создания кругового магнитного поля. Такие двигатели называют конденсаторными.

Расчет емкости конденсатора для двигателя:

Емкость такого конденсатора определяется по формуле:

,

где – ток, протекающий в обмотке статора,

sinφ1 – сдвиг фаз между напряжение и током без конденсатора,

f– частота питающей сети,

U – напряжение сети,

n – коэффициент трансформации.

,

Где и kоб1,kоб2 – обмоточные коэффициенты,

W1, W2, – количество витков обмоток статора и ротора.

Напряжение на зажимах конденсатора выше чем напряжение сети и определяется следующей формулой:

Для повышения пусковых характеристик Существуют двигатели в одну обмотку которых ставятся два конденсатора, один из которых пусковой, второй – рабочий. Пусковой конденсатор обычно имеет емкость в разы большую чем рабочий. При этом пусковой отключается при достижении 70-80% номинальной скорости электрической машины.

Рисунок 3 – Пример подключения пары конденсаторов (конденсаторный двигатель)

Преимущества и недостатки конденсаторных двигателей

Недостатки по сравнению с трехфазным двигателем:

– Меньшая мощность;

– Увеличенное скольжение при номинальном режиме;

– Скорость вращения вала при холостом ходу ниже;

– Пониженная кратность пускового момента;

– Повышенная кратность пускового тока.

Преимущества:

– Имеют высокую эксплуатационную надежность;

– Не требуют трехфазного источника тока.

Недостаточно прав для комментирования

Расчёт необходимой ёмкости

Выбирая конденсатор, необходимо предупредить ситуацию, при которой фазный ток превысит своё номинальное значение. Поэтому к подсчётам необходимо подойти очень тщательно — неправильные результаты могут привести не только к поломке конденсатора, но и перегоранию обмоток двигателя. На практике для пуска моторов небольшой мощности пользуются упрощённым подбором исходя из соображений, что для каждых 100 Вт мощности двигателя необходимо 7 мкФ ёмкости при соединении в треугольник. При подключении обмотки в звезду это значение уменьшается вдвое. Если в однофазную сеть присоединяют мотор на три фазы с мощностью 1 квт, то необходим конденсатор зарядом 70—72 мкФ при соединении обмоток треугольником, и 36 мкФ в случае подключения звездой.

Расчёт необходимого значения ёмкости для работы производится по формулам.

При схеме соединения звездой:

Ср=2800 I / U

Если обмотки образуют треугольник:

Ср=4800 I / U

I — номинальный ток двигателя. Если по каким-либо причинам его значение неизвестно, для расчёта необходимо воспользоваться формулой:

I = P / (3 U).

При этом U = 220 В при соединении звездой, U = 380в — треугольником.

Р — мощность, измеряемая в ваттах.

При пуске двигателя со значительной нагрузкой на валу параллельно с рабочей ёмкостью необходимо включить пусковую.

Её значение рассчитывают по формуле:

Сп=(2,5÷3,0) Ср

Пусковая ёмкость должна превышать значение рабочей в 2,5 — 3 раза.

Очень важен правильный выбор значения напряжения для конденсатора. Этот параметр, так же как и ёмкость, влияет на цену и габариты прибора. Если напряжение сети больше номинального значения конденсатора, пусковое приспособление выйдет из строя. Но и использовать оборудование с завышенным напряжением также не стоит. Ведь это приведёт к неэффективному увеличению габаритов конденсаторной батареи. Оптимальным является значение напряжения конденсатора в 1,15 раз превышающее значение напряжения сети: Uk =1,15 U с.

Очень часто при включении мотора с тремя обмотками в однофазную сеть используются конденсаторы типа КГБ-МН или БГТ (термостойкие). Они выполнены из бумаги. Металлический корпус полностью герметичен. Имеет прямоугольный вид. Необходимо учитывать, что допустимые значения напряжения и ёмкости, обозначенные на приборе, указаны для постоянного тока. Поэтому при работе на переменном токе необходимо уменьшать показатели напряжения конденсатора в 2 раза.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Для чего используются конденсаторы?

Электростанции

Почти все электронные устройства имеют блок питания, который преобразует переменный ток, присутствующий в доме, в постоянный ток. Конденсаторы играют важную роль в преобразовании переменного тока в постоянный, устраняя электрические помехи. В источниках энергии используются электролитические конденсаторы различных размеров – от нескольких миллиметров до нескольких дюймов (или сантиметров).

Звуковые покрытия

Конденсаторы имеют множество применений в аудио оборудовании. Они блокируют постоянный ток на входе вс усилитель, предотвращая внезапные звуки или шумы, которые могут повредить колонки и наушники. Данные детали, используемые в аудиофильтрах, позволяют контролировать басы.

Компьютеры

Цифровые схемы в компьютерах передают электронные импульсы на высоких скоростях. Эти потоки в сети могут создавать помехи сигналам от соседней цепи, поэтому разработчики высокотехнологичного оборудования применяют конденсаторы для минимизации помех.


Высокотехнологичный конденсатор

Конденсатор

Конденсатор – электронный компонент, предназначенный для накопления электрического заряда. Способность конденсатора накапливать электрический заряд зависит от его главной характеристики – емкости. Емкость конденсатора (С) определяется как соотношение количества электрического заряда (Q) к напряжению (U).

Емкость конденсатора измеряется в фарадах (F) – единицах, названых в честь британского ученого физика Майкла Фарадея. Емкость в один фарад (1F) равняется количеству заряда в один кулон (1C), создающему напряжение на конденсаторе в один вольт (1V). Вспомним, что один кулон (1С) равняется величине заряда, прошедшего через проводник за одну секунду (1sec) при силе тока в один ампер (1A).

Однако кулон, это очень большое количество заряда относительно того, сколько способно хранить большинство конденсаторов. По этой причине, для измерения емкости обычно используют микрофарады (µF или uF), нанофарады (nF) и пикофарады (pF).

1nF = 0.000000001 = 10-9 F

1pF = 0.000000000001 = 10-12 F

Плоский конденсатор

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок), электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).

Заряд конденсатора. Ток

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Расчет емкости конденсатора для трехфазного двигателя

Многие любители и профессионалы применяют в работе электрооборудование различного предназначения. И во многих случаях электрооборудование приводится в движение трехфазными двигателями. Но трехфазная сеть зачастую недоступна в гаражных боксах и индивидуальных домовладениях. И тогда на помощь приходят схемы подключения трехфазного двигателя в однофазную сеть.

Для чего нужен конденсатор

Наиболее распространены и применяются в станках трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором. Их подключение к однофазной сети мы и будем рассматривать. При включении двигателя в трехфазную сеть по трем обмоткам, в разный момент времени протекает переменный ток. Этот ток создает вращающееся магнитное поле, которое начинает вращать ротор двигателя.

При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Выход из этой ситуации был найден. Самым простым и действенным способом оказалось параллельное подключение конденсатора к одной из обмоток двигателя. Конденсатор, импульсно получая и отдавая энергию создает смещение фазы, в обмотках двигателя получается вращающееся магнитное поле и он работает. Емкость постоянно находится под напряжением и называется рабочим конденсатором.

ВАЖНО! Правильно рассчитать и подобрать емкость рабочего конденсатора и его тип.



Подключение трехфазного двигателя к однофазной сети по схеме звезды

Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…

Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.

Схема подключения звезды показана на картинке.

Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.

Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.

Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.

При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.

Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.

Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.

Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.

Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.

Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.

Как правильно подобрать конденсаторы

Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:

  • звездой – 2800;
  • треугольником — 4800.

Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.

Мощность электродвигателя, кВт0,40,60,81,11,52,2
Ёмкость конденсатора C2 в номинальном режиме, мкФ406080100150230
Ёмкость конденсатора C2 в недогруженном режиме, мкФ25406080130200
Ёмкость пускового конденсатора C1 в номинальном режиме, мкФ80120160200250300
Ёмкость конденсатора C1 в недогруженном режиме, мкФ2035456080100

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Полезное: Подрозетники: выбор и установка короба для розетки в стене

Как подключить с реверсом

Обеспечить вращение ротора в обратную сторону не представляет затруднения. В схему подключения двигателя необходимо добавить двухпозиционный переключатель. Средний контакт переключателя подсоединяется к одному из контактов конденсаторов, а крайние к выводам двигателя.

ВНИМАНИЕ! Сначала необходимо переключателем выбрать направление вращения, и только потом запустить двигатель. При работающем электродвигателе переключателем направления вращения пользоваться нельзя.

Рассмотренные варианты подключения промышленных двигателей в бытовую сеть не представляют большой сложности при их реализации. Важно только внимательно отнестись к некоторым нюансам и оборудование, хоть и с небольшой потерей мощности, прослужит долго и принесет пользу.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.

Подключение двигателя 380 на 220

380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.

Возникает вопрос о том, где взять недостающие фазы. Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.

То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.

В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты

  1. Три клеммы ОДНОГО ряда соединены между собой — звезда.
  2. МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.

Реверс

Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.

Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.

А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.

Формула расчета емкости конденсатора для трехфазного двигателя

Расчет емкости фазосдвигающего конденсатора

для трехфазного асинхронного двигателя в бытовой однофазной сети

Рабочий и пусковой конденсаторы включаются в цепь параллельно, во время пуска работают одновременно, затем пусковой отключают. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора (в 2-3 раза выше емкости рабочего).

Двигатель, имеющий маркировку 220/380 и Δ/Y включается в однофазную сеть 220В по схеме треугольник, по схеме звезда в сети 220В такой двигатель будет терять в мощности троекратно и сильно греться.

При соединении конденсаторов параллельно их емкость суммируется. При соединении конденсаторов последовательно, рабочее напряжение в цепи будет равняться сумме напряжений всех конденсаторов, а емкость вычисляется по формуле: 1/C = 1/C1 + 1/C2 + . + 1/Cn. Рабочее напряжение в цепи конденсаторов должно быть минимум в полтора раза выше напряжения сети (то есть не менее 330В в сети 220В). Таким образом, два конденсатора на 200 мкф с рабочим напряжением 200В дадут при последовательном соединении емкость 100 мкф и допустимое рабочее напряжение 400В. При параллельном соединении емкость будет 400 мкф и рабочее напряжение 200В (самое низкое значение допустимого напряжения из всего набора конденсаторов в цепи). Необходимые конденсаторы представлены в сетевых магазинах в разделе пусковых конденсаторов (не ищите по старинке бумажные — их практически перестали выпускать).

Видеопримеры работы двигателя 2.2 кВт и 1.1 кВт с одной и той же нагрузкой и правильно подобранными рабочими и пусковыми конденсаторами, разница в скорости пуска 3 и 20 секунд. И сборка на 3.3 кВт весело крутится (пильный диск 350 мм в диаметре).

Схема включения в однофазную сеть трёхфазного асинхронного двигателя с обмотками статора, соединёнными по схеме «звезда» (а) или «треугольник» (б): B1 — Переключатель направления вращения (реверс), В2 — Выключатель пусковой ёмкости; Ср — рабочий конденсатор; Cп — пусковой конденсатор; АД — асинхронный электродвигатель.

На схеме представлено последовательное (сверху) и параллельное (снизу) соединение кон­ден­саторов.

На рисунке представлена схема соединения обмоток двигателя «Звезда».

На рисунке представлена схема соединения обмоток двигателя «Треугольник».

Источник: cielab.xyz

Сайт для электриков

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

    Подобные расчеты

Источник: electrichelp.ru

Расчет емкости конденсатора для трехфазного двигателя

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Источник: evmaster.net

Подбор конденсатора для трехфазного двигателя

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Теперь выполним подключение, внимательно разобравшись с проводами

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Источник: domelectrik.ru

Онлайн расчет емкости конденсатора для электродвигателя

Здесь вы можете рассчитать необходимую емкость конденсатора для подключения трехфазного электродвигателя в однофазную сеть.

Расчет конденсатора для электродвигателя необходимо производить только по току, т.к. данный способ является наиболее точным и исключает возможность неправильного выбора емкости конденсатора, а так же сводит к минимуму потери мощности трехфазного электродвигателя при подключении его в однофазную сеть.

Номинальный ток электродвигателя берется из паспортных данных, а при их отсутствии его можно определить расчетным путем.

Как подключить трехфазный электродвигатель в однофазную сеть через конденсатор смотрите здесь.

Инструкция по использованию калькулятора:

Для расчета конденсаторной емкости для двигателя с помощью данного калькулятора Вам необходимо выполнить всего 3 простых действия:

  1. Выбор схемы соединения обмоток. Обычно для подключения электродвигателя 380В на 220В должна применяться схема соединения обмоток «треугольник». Посмотреть это можно в паспортных данных электродвигателя на прикрепленном к нему шильдике.

Ниже представлен пример паспортных данных электродвигателя:

В вышеприведенных паспортных данных можно увидеть следующую запись:

«Δ/ Y 220/380 V 2,8/1,8 А» — это значит, что при схеме соединения «треугольник» Δ — электродвигатель подключается на напряжение 220 Вольт и потребляет из сети 2,8 Ампера, а при схеме соединения «звезда» Y- подключается на напряжение 380 Вольт и потребляет из сети 1,8 Ампера.

Подробнее про схемы соединения обмоток трехфазных электродвигателей вы можете прочитать в здесь.

2. Указываем номинальный ток в Амперах величину которого так же берем из паспортных данных электродвигателя в зависимости от способа соединения его обмоток. Например, в соответствии с приведенным примером для треугольника необходимо было бы вписывать 2.8, а для звезды — 1.8.

3. Выбираем напряжение на которое будет подключен электродвигатель, 220 Вольт — для треугольника или 380 Вольт — для звезды согласно приведенному примеру.

На этом всё. Нажимаем кнопку «Рассчитать» и получаем готовый ответ

Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник: elektroshkola.ru

Онлайн расчет конденсатора для двигателя

Адрес: Нижний Новгород, Ленинский район, ул. Ростовская д. В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Подбор рабочего конденсатора к трехфазному электродвигателю.

Расчет емкости конденсатора


КЭАЗ представляет датчики температуры OptiSensor для систем отопления, вентиляции и кондиционирования. Чтобы подключить асинхронный электродвигатель трехфазного типа к однофазной сети на напряжение В, необходимо создать условия для сдвига фаз на обмотках статора двигателя.

Сдвиг фаз сформирует имитацию кругового вращающегося магнитного поля, заставляющего вращаться вал ротора двигателя. При подключении двигателя к сети используют два подключенных параллельно конденсатора – пусковой и рабочий.

Данный калькулятор позволяет рассчитать ёмкость этих конденсаторов, ёмкость пускового конденсатора берется из расчёта 2,5 емкости рабочего конденсатора. Для получения необходимых значений ёмкости, заполните поля формы ниже. Тип соединения обмоток двигателя, мощность двигателя, КПД и коэффициент мощности обозначены на шильдике электродвигателя.

Способ соединения обмоток зависит от напряжения сети, к которой выполняется подключение: В – “треугольник”, когда концы обмоток соединены между собой, к их началам подводится питающее напряжение; В – “звезда”, при котором концы одной обмотки соединены с началом другой. Мнение экспертов. Регистрация Войти. Компания Elec. Калькулятор расчёта ёмкости конденсатора для трехфазного асинхронного двигателя в бытовой однофазной сети Чтобы подключить асинхронный электродвигатель трехфазного типа к однофазной сети на напряжение В, необходимо создать условия для сдвига фаз на обмотках статора двигателя.

Треугольник Звезда. Напряжение бытовой сети, В. Мощность двигателя, Вт. Емкость рабочего конденсатора, мкФ:. Емкость пускового конденсатора, мкФ:.


Конденсатор для электродвигателя: советы по подбору и правила подключения пускового конденсатора

На нашем сайте вы можете произвести расчет емкости конденсатора онлайн для трехфазного двигателя. Если асинхронный электродвигатель трехфазного типа, оснащенный конденсатором, функционирует в обычном режиме, то происходит изменение емкости конденсатора в меньшую сторону и изменение частоты вращения вала в большую сторону. В то время, когда электродвигатели асинхронного типа начинают свою работу, необходимо наличие повышенной емкости. Это актуально при В. Представленная у нас система позволяет осуществить вычисление емкостей пускового и рабочего конденсаторов. Чтобы онлайн расчет емкости конденсатор двигателя был максимально точным, требуется указать данные с шильдика оборудования.

Имеется однофазный асинхронный двигатель сведенья о нем Подбор Рабочего Конденсатора Онлайн расчет на all-audio.pro

Расчёт ёмкости конденсаторов для трёхфазных электродвигателей

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения например, трехфазный двигатель к однофазной сети? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию сверлильному или наждачному станку и пр. В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать. Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача — снимать поляризацию, то есть заряд близкорасположенных проводников. Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров. Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб. Еще один вариант расчета — принять во внимание значение мощности двигателя.

Калькулятор расчета емкости рабочего и пускового конденсатора

Конденсатор — электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной как вариант — подстроечные. По виду рабочего напряжения: полярные — для работы при определенной полярности подключения, неполярные — могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется.

Рабочий и пусковой конденсаторы включаются в цепь параллельно, во время пуска работают одновременно, затем пусковой отключают.

Подбор конденсаторов для электродвигателя и их подключение

Диаметр плавкой вставки предохранителя выбирают в зависимости от тока плавления. За ток плавления обычно принимают значение тока в два раза превышающий номинальный ток. И согласно нему выбираем диаметр проволоки. При подключении, светодиод должен иметь токоограничительный резистор, величину которого можно легко рассчитать по правилу Ома, зная напряжение питания, прямое напряжение и ток светодиода. Номинальный ток электродвигателя, А.

Расчет конденсатора для трехфазного двигателя в однофазной сети

Отправим материал вам на e-mail. Подключение конденсатора к электродвигателю. Подбирать конденсатор следует очень внимательно, поэтому специально для читателей нашего онлайн-журнала был разработан удобный калькулятор с необходимыми пояснениями. Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:. Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей.

Калькулятор расчета емкости рабочего и пускового конденсатора онлайн с учетом схемы соединения обмоток и мощности двигателя, полезные.

Please turn JavaScript on and reload the page.

Калькулятор расчета рабочего и пускового конденсаторов. Но конденсатор для этих целей необходимо подбирать, причем нужно делать с высокой точностью. Именно поэтому читателям нашего портала предоставляется в абсолютное безвозмездное пользование калькулятор расчета емкости рабочего и пускового конденсатора.

Расчет емкости конденсатора

Если иметь такие данные как мощность двигателя и КПД , можно вычислить емкость 2-ух параллельно соединенных конденсаторов. После внесения данных, произведутся подсчеты и калькулятор покажет емкость пускового Cп и емкость рабочего Ср конденсатора. Когда происходит уменьшение общей емкости во время окончания разгона двигателя , осуществляется 2-ух ступенчатое управление. В этом случае применяется следующая формула для расчета рабочей емкости:. В случае, когда такой возможности нет, водятся приблизительные параметры.

Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает.

Хорошо, если можно подключить двигатель к необходимому типу напряжения. А, если такой возможности нет? Это становится головной болью, поскольку не все знают, как использовать трехфазную версию двигателя на основе однофазных сетей. Такая проблема появляется в различных случаях, может быть, необходимо использовать двигатель для наждачного или сверлильного станка — помогут конденсаторы. Но они бывают множества видов, и не каждый сможет в них разобраться. Чтобы вы получили представление об их функциональности далее разберемся, как выбрать конденсатор для электродвигателя.

Здесь вы можете рассчитать необходимую емкость конденсатора для подключения трехфазного электродвигателя в однофазную сеть. Как подключить трехфазный электродвигатель в однофазную сеть через конденсатор смотрите здесь. Указываем номинальный ток в Амперах величину которого так же берем из паспортных данных электродвигателя в зависимости от способа соединения его обмоток. Например, в соответствии с приведенным примером для треугольника необходимо было бы вписывать 2.


Расчет конденсатора фазового сдвига – www.itieffe.com

Cспиртовой конденсатор фазового сдвига

Cспиртовой конденсатор фазового сдвига

Работа трехфазного асинхронного двигателя происходит из-за подачи питания на трехфазный ток, которые не совпадают по фазе между ними на 120 °.

Возможно питание одного и того же двигателя однофазным током nи случаи, в которых требуемая мощность не составляет 100% (и то же самое не превышает определенные мощности) через конденсатор фазового сдвига

Эффективность не будет высокой, поскольку полученный фазовый сдвиг не является оптимальным.

Однако он может применяться для различных целей: электронасосы, центробежные и винтовые вентиляторы, дрели и для всех тех машин с ограниченной мощностью и не требующих высоких пусковых токов.

В большинстве случаев используется соединение треугольником, подходящее для трехфазного двигателя 220–380 В, питаемого от однофазного 220 В.

На следующем рисунке показаны соединения для трехфазных асинхронных двигателей с однофазным питанием со звездой и треугольником, а также с вращением по и против часовой стрелки.

треугольник Стелла

Конденсатор производит фазовый сдвиг, необходимый для создания вращающегося магнитного поля внутри двигателя.

Величина фазового сдвига является результатом задействованной емкости и тока, по этой причине фазовый сдвиг никогда не может быть оптимальным, он меняется в зависимости от нагрузки и всегда будет компромиссом.

Двигатель с таким питанием никогда не сможет обеспечить номинальную мощность, при рассчитанном здесь значении мощность снижается до 60-70% и является компромиссом для работы с ограниченными и средними нагрузками.

Самый высокий пусковой момент для однофазного двигателя достигается, когда задержка, которую мы получаем с нашим конденсатором, составляет 90 °.

В случаях, когда нагрузка всегда высока, можно увеличить мощность для получения большей мощности, но будьте осторожны, в этом случае он не должен работать без нагрузки или с низкими нагрузками, вы рискуете сжечь двигатель.

Неверно думать, что с большим конденсатором он получает больше мощности, даже сбой может возникнуть у пользователя.

Наибольшее ухудшение этого типа соединения происходит в фазе пуска, доступный крутящий момент составляет 30-40% от крутящего момента, достигаемого при обычном питании двигателя.

Предупреждения

Помните, что в этом конкретном приложении конденсатор подвержен сильным токам и неоднократным изменениям полярности, если он не подходит для выполняемой работы, он может взорваться.

Используйте только неполяризованные конденсаторы с максимальным рабочим напряжением на 15-20% выше напряжения питания двигателя и рассчитанные на переменный ток.

Другие бесплатные программы, предлагаемые itieffe ▼

Расчет конденсаторы рабочие для электродвигателей

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

    Подобные расчеты

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Теперь выполним подключение, внимательно разобравшись с проводами

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Расчет конденсатора для однофазного двигателя калькулятор

Время чтения: 2 минуты Нет времени?

Отправим материал вам на e-mail

Когда асинхронный двигатель подключается в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз в обмотках статора, имитирующий вращающееся магнитное поле. Это и приводит к вращению вала ротора электродвигателя, как в «родных» трехфазных сетях переменного тока. Для достижения этой цели в «не родных сетях» и служит конденсатор.

Подключение конденсатора к электродвигателю

Подбирать конденсатор следует очень внимательно, поэтому специально для читателей нашего онлайн-журнала был разработан удобный калькулятор с необходимыми пояснениями.

Калькулятор расчета емкости рабочего и пускового конденсатора

Пояснения к расчету

Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:

Схема подключения рабочего и пускового конденсатора при разных способах подключения обмоток Расчетные зависимости
Ср = 2800*I/U;
I = P/(√3*U*η*cosϕ)

Ср – емкость рабочего конденсатора

Ср = 4800*I/U;
I = P/(√3*U*η*cosϕ)

Ср – емкость рабочего конденсатора

Сп = 2,5*Ср, где Сп – емкость пускового конденсатора при любом способе подключения Расшифровка обозначений:

Ср – емкость рабочего конденсатора, мкФ
Сп – емкость пускового конденсатора, мкФ
I – ток, А
U – напряжение в сети, В
η – КПД двигателя в %, деленных на 100
cosϕ – коэффициент мощности

Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:

  • если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
  • если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.

Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.

Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65 Электролитические неполярные конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В 400; 450; 630 220-275; 300; 450
Номинальный ряд, мкФ 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 5; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсатора

Экономьте время: отборные статьи каждую неделю по почте

Программа выбора емкости конденсатора для электродвигателя, позволяет рассчитать рабочую емкость С, при включении 3-х фазного двигателя в однофазную сеть в зависимости от типа соединения обмоток двигателя.

  1. Выбираем известную мощность или ток двигателя.
  2. Указываем напряжение однофазной сети, В.
  3. Указываем тип соединения обмоток двигателя «звезда» либо «треугольник».
  4. Нaжимаем кнопку «Считать».

Как мы видим данная программа позволяет, в кратчайшее время выбрать емкость конденсатора.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Программа «Резистор v2.2» позволяет оперативно определить номинал резистора по разным видам цветовой и.

Расчеты токов короткого замыкания (ТКЗ) свыше 1000 В, требуют значительных трудозатрат и на их выполнение.

В данной статье, я хочу Вас познакомить с программой «Аврал версии 3.0.8″, кто не знает, данная.

Содержание 1. Введение2. Функциональность программы:2.1 Расчет токов КЗ в сети 0,4 кВ — трехфазных.

Обучающая программа по релейной защите и автоматике предназначена для обучения и тестирования.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Вашему вниманию представляется расчёт ёмкости конденсаторов для нормальной работы трёхфазных электродвигателей.

На двигателях с конденсаторами, включенных в однофазную сеть, предполагается уменьшение ёмкости конденсатора с увеличением оборотов двигателя.

Предложенный калькулятор предназначен для вычисления емкостей двух параллельно соединенных конденсаторов — пускового Cп и рабочего Ср.

Расчет рабочей емкости производится по формуле:

Cр=2800*I/U – если обмотки двигателя соединены “звездой”;
Cр=4800*I/U – в случае соединения обмоток “треугольником”.

Для расчёта тока используется такая формула:

где P- мощность двигателя, U- напряжение сети, cosφ-коэффициент мощности и η- коэффициент полезного действия.

Емкость пускового конденсатора подбирается в 2-3 раза большая, чем рабочая. В данном калькуляторе используется следующий расчет: Cп=2,5*Cр

Общая процедура расчета производительности двигателей с постоянными раздельными конденсаторами (PSC) (электродвигатели)

6.4.2

Переменные для расчета

Расчет постоянных обмотки и пазов

Примечание: Описание переменных см. на рисунках. k представляет постоянную первичной (статорной) прорези, а k2 представляет постоянную вторичной (роторной) прорези. Их находят с использованием одного и того же набора уравнений, стараясь использовать уравнение, наиболее близкое к уравнению рассматриваемого слота.
Постоянная круглого дна щели k1 или k2 (обратите внимание, что Fi различается для двух констант): Форма щели A (см. рис. 6.29)

Реактивные сопротивления утечки Проницаемость утечки щели Pxslot:

Промежуточные расчетные значения

4

5
Текущие расчеты


Метод балансировки двигателя PSC. См. схему однофазного постоянного разделенного конденсатора на рис. 6.42.
Переменные, используемые в следующих уравнениях балансировки PSC:

РИСУНОК 6.42 Схема однофазного постоянного разделенного конденсатора.


Процедура расчета

1. Спроектируйте основную обмотку для достижения необходимого максимального крутящего момента.
2. Рассчитайте производительность двухфазного двигателя.
3. Найдите K.
• Ka должно быть функцией кубического корня из 2, так как размеры проводов различаются в этом отношении.
• Предположим, что Ka будет одним из следующих значений: 1,26, 1,59 или 2,00.
• Установите значение K в правой части уравнения равным Ka.
• Найдите K, замените это значение предполагаемым значением и выполните вторую итерацию.
4. Найдите Xc.
5. Рассчитайте конденсатор из Xc и исправьте предыдущие решения, если Rc слишком сильно ошибается.
6. Рассчитайте напряжение на конденсаторе Ec и вольтампер на конденсаторе.
7. Рассчитайте уравнения производительности на основе рассчитанных потерь в первичной обмотке, потерь в конденсаторе и коэффициента мощности.
Используйте процедуры расчета, описанные в разделе «Многофазный», чтобы вычислить крутящий момент заблокированного ротора.Если оно неудовлетворительное, может потребоваться уменьшить К, увеличить микрофарад или увеличить сопротивление ротора.
Описанная процедура позволит подобрать правильное значение емкости для достижения баланса. Однако невозможно сбалансировать двигатель при любой желаемой нагрузке. Соотношение витков и емкость должны быть изменены для достижения сбалансированной работы в желаемой точке нагрузки. Однако в любой точке нагрузки будет значение емкости, которое даст минимальную составляющую обратного поля
.
Уравнения для расчета балансировки двигателя PSC Мощная составляющая первичного тока главной обмотки A:

Схема подключения односкоростного двигателя PSC показана на рис. 6.43. В некоторых случаях достаточно вывести из двигателя только три провода с помощью внутреннего соединения. Конденсатор часто называют рабочим конденсатором, хотя он остается подключенным к двигателю как во время пуска, так и во время работы. Двигатели
PSC обычно используются для многоскоростных приложений. Три общих соединения показаны на рис.6.44 и 6.45. На рис. 6.44 показан двигатель с Т-образным соединением. На рис. 6.45 представлен двигатель с L-образным соединением. Скорость выбирается подключением источника питания между общим проводом и одним из проводов скорости. Показанные свинцовые цвета обычно используются, но их можно заменить другими.

РИСУНОК 6.43 Схема подключения PSC.

РИСУНОК 6.44 Т-образный многоскоростной двигатель PSC.

РИСУНОК 6.45 Многоскоростной двигатель PSC с L-образным соединением.


Понимание коэффициента мощности – Laurens Electric Cooperative

Коррекция коэффициента мощности конденсаторами

Описание:

Коэффициент мощности – это соотношение (фаза) тока и напряжения в электрических распределительных системах переменного тока.В идеальных условиях ток и напряжение находятся «в фазе», а коэффициент мощности равен «100 %». Если присутствуют индуктивные нагрузки (двигатели), коэффициент мощности менее 100 % (обычно от 80 до 90 %).

Низкий коэффициент мощности, с точки зрения электротехники, приводит к тому, что в линиях распределения электроэнергии течет более сильный ток, чтобы обеспечить заданное количество киловатт сверх электрической нагрузки.

Эффекты?

Система распределения электроэнергии в здании или между зданиями может быть перегружена избыточным (бесполезным) током.

Мощность систем производства и распределения электроэнергии, принадлежащих Laurens Electric, измеряется в кВА (килоамперах).

кВА = ВОЛЬТ X АМПЕР X 1,73 (трехфазная система) / 1000

При единичном коэффициенте мощности (100%) потребуется 2000 кВА мощности генерирующей и распределительной сети для обеспечения 2000 кВт. Однако, если бы коэффициент мощности упал до 85%, потребовалась бы мощность 2353 кВА. Таким образом, мы видим, что более низкий коэффициент мощности оказывает обратное влияние на генерирующие и распределительные мощности.

Низкий коэффициент мощности перегружает генерирующие, распределительные и сети с избыточным кВА.

Если вы владеете большим зданием, вам следует рассмотреть возможность коррекции низкого коэффициента мощности по одной или обеим из следующих причин:

  • Чтобы снизить вероятность дополнительных сборов за коэффициент мощности в случае, если Laurens Electric начнет выставлять счета за корректировку коэффициента мощности и
  • Для восстановления мощности (кВА) перегруженных фидеров в здании или комплексе зданий.

Существует несколько методов коррекции более низкого коэффициента мощности.Обычно используются: емкость.

Блоки конденсаторов

Наиболее практичным и экономичным устройством коррекции коэффициента мощности является конденсатор. Это улучшает коэффициент мощности, потому что влияние емкости прямо противоположно влиянию индуктивности.

Значение var номинальной мощности конденсатора показывает, сколько реактивной мощности будет отдавать конденсатор. Поскольку этот вид реактивной мощности нейтрализует реактивную мощность, вызванную индуктивностью, каждый киловар емкости уменьшает чистую потребность в реактивной мощности на ту же величину.Например, конденсатор на 15 кВАр компенсирует 15 кВА индуктивной реактивной мощности.

Конденсаторы

могут быть установлены в любой точке электрической системы и улучшат коэффициент мощности между точкой приложения и источником питания. Однако коэффициент мощности между нагрузкой и конденсатором останется неизменным. Конденсаторы обычно добавляются к каждой единице неисправного оборудования, перед группами двигателей (перед центрами управления двигателями или распределительными панелями) или в основных службах.

Конденсатор двигателя

– типы, характеристики, применение и тестирование

Конденсатор двигателя переменного тока представляет собой конденсатор, специально разработанный для работы двигателей переменного тока или компрессоров. Он в основном используется в вентиляторах, водяных насосах, морозильных установках, концентраторах кислорода и т. д. В зависимости от применения они в основном бывают двух типов. Они запускают и запускают конденсаторы. Однако также может быть конденсатор двойного типа, который работает как в режиме запуска, так и в режиме запуска.

В этом блоге мы будем обсуждать различия между этими типами конденсаторов двигателя.Также мы будем рассчитывать необходимую мощность для данного электродвигателя.

Сколько существует типов конденсаторов двигателя?

1. Рабочий конденсатор

Рабочий конденсатор — это тип конденсатора двигателя, который необходим для работы однофазного электродвигателя переменного тока. Таким образом, он имеет 100% рабочий цикл, что означает, что рабочий конденсатор постоянно используется.

Скорее всего конденсаторы полимерные, пропиленовые пленочные. Наиболее распространенными номиналами напряжения являются 370 и 440 В переменного тока .Наиболее распространенными значениями емкости рабочих конденсаторов являются 1,5, 2,5, 5, 10, 15, 20, 25, 30, 40, 50 и 60 мкФ .

2. Пусковой конденсатор

Пусковой конденсатор — тип конденсатора двигателя, который необходим для запуска однофазного электродвигателя переменного тока. После включения мотора он остается пассивным.

В основном это неполяризованные алюминиевые электролитические конденсаторы с нетвердым электролитом.

Номинальное напряжение ниже 370 В переменного тока .Наиболее часто встречающиеся номиналы напряжения: 125, 165, 250 и 330 В переменного тока . Точно так же номинал емкости выше 70 мкФ .

Рабочий конденсатор против пускового конденсатора

Некоторые общие различия между рабочими и пусковыми конденсаторами заключаются в следующем.

Рабочий конденсатор Пусковой конденсатор двигателя
Работает при напряжении выше 370 В переменного тока. Работает при напряжении ниже 370 В переменного тока.
Как правило, он имеет низкое значение емкости (ниже 70 MFD). Как правило, он имеет высокое значение емкости (выше 70 MFD).
В основном точная емкость указана на внешней поверхности конденсатора. В основном диапазон значений емкости указан на внешней поверхности конденсатора.
Конденсатор всегда используется Конденсатор используется только один раз, для включения двигателя.

(Примечание: Номинальные значения также могут быть указаны в MFD вместо мкФ.Здесь MFD означает Micro Farad, что тоже одно и то же. )

Можно ли использовать рабочий конденсатор в качестве пускового?

Да, рабочий конденсатор можно использовать в качестве пускового конденсатора двигателя . Но из-за малой емкости рабочего конденсатора его будет недостаточно для включения двигателя. В таком случае вам необходимо добавить его в параллельную комбинацию. При параллельном соединении общая емкость увеличивается. Таким образом, общей емкости будет достаточно для двигателя.

Мы не можем использовать пусковой конденсатор в качестве конденсатора для работы двигателя . Мы знаем, что пусковой конденсатор работает с более высокой емкостью. Таким образом, использование его в качестве рабочего конденсатора приведет к нагреву двигателя. Таким образом, сокращается срок службы двигателя.

Расчет конденсатора однофазного двигателя

Прежде чем приступать к расчетам, необходимо знать, является ли конденсатор рабочим или пусковым. Зная тип, вы можете использовать приведенную ниже формулу.

Для пускового конденсатора

C (мкФ)     = (I x 1000000)/(2ΠFV)

              = (I x 1000000)/(6,285FV)

где I = ток

F = частота переменного тока, в основном 50 Гц или 60 Гц (в зависимости от страны)

В = номинальное напряжение, указанное на внешней поверхности однофазного двигателя переменного тока.

Π= 22/7 = 3,14

Используйте приведенную ниже формулу для расчета значения тока

.

I = Мощность/(В x P.е)

где В = напряжение

P.f = коэффициент мощности

(Примечание. Если вы найдете коэффициент мощности машины, используйте его в формуле. В противном случае предположим, что значение коэффициента мощности для данного двигателя равно 0,8.

Если мощность указана в лошадиных силах (л.с.), переведите ее в ватты по формуле 1 л.с. = 746 ватт )

Теперь возьмем пример

Дано,

Мощность = 1 л.с.

П. ф = 0.8 (предположительно)

Напряжение (В) = 220 В переменного тока

Частота (F) = 50 Гц

Текущий ток (I) = Мощность/(Напряжение X P.f)

= (1 х 746)/(220 х 0,8)

= 4,238 А

Сейчас,

Кл (мкФ) = (I x 1000000)/(2ΠFV)

= (4,238 х 1000000)/(2 х 3,14 х 50 х 220)

= 4238000/ 69080

= 91,349 мкФ

Следовательно, пусковой конденсатор двигателя мощностью 1 л.с. имеет приблизительное значение 91,349 мкФ.

(Примечание: возможно, вам не удастся найти номер 91.Пусковой конденсатор 349 мкФ на рынке. В таком случае выберите конденсатор с немного большей емкостью.)

Для рабочего конденсатора

C (мкФ) = (Мощность X Эффективность (в %) X 1000)/ (В² X Ф)

где Eff = КПД (если значение задано в двигателе, то подставить его в формулу. Иначе считать, что КПД однофазного двигателя равен 80 %. Также при использовании этой формулы подставить значение КПД в процентах)

В= номинальное напряжение (заданное в двигателе)

F = частота переменного тока

Теперь возьмем пример

Мощность = 1 л.с.

Эффективность = 80% (предположим)

В = 220 В переменного тока

F = 50 Гц

Затем,

C (мкФ) = (Мощность X Эффективность X 1000)/ (В² X F)

= (1 х 746 х 80 х 1000)/(220² х 50)

= 59680000/2420000

= 24.661 (мкФ)

Следовательно, рабочий конденсатор двигателя мощностью 1 л.с. имеет приблизительное значение 24,661 мкФ.

(Примечание: рабочий конденсатор на 24,661 мкФ может отсутствовать в продаже. В таком случае выберите рабочий конденсатор с немного большей емкостью.)

Таблица размеров конденсатора двигателя

Как видно из приведенного выше расчета, конденсатор двигателя может зависеть от ряда факторов, таких как частота переменного тока, напряжение, КПД машины и т. д.Следовательно, я не могу дать вам общую таблицу размеров конденсатора двигателя.

Различные двигатели могут иметь разные таблицы размеров. Однако диаграмму можно определить для двигателей различной мощности, используя приведенные выше формулы.

Признаки неисправности конденсатора двигателя

Основные симптомы неисправности конденсатора двигателя следующие.

  • Конденсатор может быть сломан, разорван или вздут. Из него тоже могут быть утечки.
  • В случае пускового конденсатора двигателя двигатель может не включиться.Или может быть некоторая задержка перед запуском двигателя.
  • В случае конденсатора двигателя двигатель может перегреться или может не вращаться с полной эффективностью.
  • Конденсаторы могут дымить из-за перегрева. Кроме того, двигатель может отключиться.

Испытание конденсатора двигателя

Прежде всего осмотрите конденсатор снаружи. Если конденсатор внешне исправен, то проверить его можно следующими способами.

Перед выполнением любого теста обязательно посмотрите показания на поверхности конденсатора.

Первый метод

Первый способ довольно рискованный. Кроме того, результат, который вы получите, также не будет надежным. Таким образом, это наименее рекомендуемый метод. В этом методе возьмите источник переменного тока. Подсоедините два кабеля к двум клеммам конденсатора. Затем подключите другие концы кабелей к источнику питания. Теперь включите питание на долю секунды. За это время происходит зарядка конденсатора

(Примечание: зарядка должна производиться с точностью до доли секунды.Если вы заряжаете его в течение секунды или более, конденсатор выйдет из строя. )

После этого снимите две клеммы с блока питания. Затем закоротите две клеммы. Здесь происходит процесс разрядки. Итак, вы увидите искры с шумом в процессе разрядки. Если он не производит никаких искр вместе с шумом, то конденсатор может быть неисправен.

Как было сказано ранее, этот метод неэффективен. Метод показывает только зарядку и разрядку конденсатора.Тем не менее, он не может измерить значение емкости.

Второй метод

Второй способ аналогичен первому. Тем не менее, это несет низкий риск.

Для этого метода подайте питание постоянного тока на данный конденсатор двигателя в течение короткого периода времени. За это время конденсатор зарядится. После полной зарядки приложите нагрузку (например, зуммер постоянного тока) к тем же двум точкам. При этом происходит разрядка конденсатора. Следовательно, нагрузка активируется (например, зуммер издаст шум).

Третий метод

Для третьего метода нужен мультиметр (клещи).

Прежде всего разрядите конденсатор. После этого поставьте мультиметр на шкалу Ом. Подсоедините два щупа мультиметра к двум клеммам конденсатора. Затем наблюдайте за значением на дисплее. Конденсатор начинает заряжаться. Следовательно, значение сопротивления начинает расти. В определенный момент на дисплее появится символ OL, обозначающий перегрузку. Это означает, что конденсатор полностью заряжен.

После этого поменяйте местами два щупа в точке конденсатора. Затем наблюдайте за дисплеем. Здесь значение будет уменьшаться от OL до 0. Это означает, что конденсатор разряжен. После этого значение снова будет увеличиваться в обратном направлении. Таким образом, зарядка будет происходить на противоположной обкладке конденсатора.

Четвертый метод

Четвертый и самый лучший способ – использовать мультиметр с функцией измерения емкости.

Для этого подключите два вывода конденсатора к мультиметру.Установите мультиметр в емкостной режим. Затем наблюдайте за результатом на дисплее измерителя. Если полученное значение находится в пределах номинального значения конденсатора, то он исправен. В противном случае он может быть неисправен.

Пятый метод

В первую очередь измерьте напряжение питания. Затем подключите два вывода конденсатора к двум точкам источника питания с помощью провода. Затем поместите крючок зажима на провод под напряжением. После этого включите питание.Токоизмерительные клещи показывают силу тока в амперах. Через 5 секунд отключить блок питания

(Примечание: – Если конденсатор рабочего типа, вы можете подать питание на 5-10 секунд. Однако, если конденсатор пускового типа, вы не должны подавать питание более чем на 5 секунд. , В противном случае пусковой конденсатор может выйти из строя.)

После получения напряжения и тока можно использовать следующую формулу для расчета емкости.

(Примечание. Не снимайте конденсатор голыми руками. Поскольку он несет заряд, вы можете получить удар электрическим током. Вы можете закоротить два контакта и разрядить их. После этого снимите конденсатор)

Формула
  • Емкость в МФУ (50 Гц) = 3100 * Ампер/Напряжение
  • Емкость в МФД (60 Гц) = 2650*Ампер/Напряжение

где МФД обозначает микрофарад

После получения значения сравните его с фактическим значением, указанным на внешней поверхности конденсатора.Если полученное значение выходит за пределы требуемой емкости, то замените конденсатор на такой же.

Калькулятор коэффициента мощности

Калькулятор коэффициента мощности. Расчет коэффициента мощности, полной мощности, реактивной мощности и емкости корректирующего конденсатора.

Этот калькулятор предназначен для образовательных целей.

Конденсатор коррекции коэффициента мощности должен быть подключен параллельно к каждой фазе нагрузки.

При расчете коэффициента мощности не различаются опережающие и отстающие коэффициенты мощности.

При расчете коррекции коэффициента мощности предполагается индуктивная нагрузка.

Расчет однофазной цепи

Расчет коэффициента мощности:

PF = |cos φ| = 1000 × P (кВт) / ( В (В) × I (А) )

Расчет полной мощности:

|S (кВА) | = В (В) × I (А) / 1000

Расчет реактивной мощности:

Q Q (KVAR) = √ ( | S (KVA) | 2 P (кВт)

Расчет емкости конденсатора коррекции коэффициента мощности:

S скорректированный (кВА) = P (кВт) / PF скорректированный

Q скорректированный (кВАр) = √( S скорректированный (кВА) 2 P (кВт) 2

2 2

Q c (кВАр) = Q (кВАр) Q скорректированный (кВАр)

C (F) = 1000 × Q c (кВАр) / (2π f (Гц) × В (В) 2 )

Расчет трехфазной цепи

Для трехфазного питания со сбалансированной нагрузкой:

Расчет линейного напряжения

Расчет коэффициента мощности:

PF = |cos φ| = 1000 × P (кВт) / ( 3 × V L-L(V) × I (А) )

Расчет полной мощности:

|S (кВА) | = 3 × В L-L(V) × I (А) / 1000

Расчет реактивной мощности:

Q Q (KVAR) = √ ( | S (KVA) | 2 P (кВт)

Расчет емкости конденсатора коррекции коэффициента мощности:

Q c (кВАр) = Q (кВАр) Q скорректированный (кВАр)

C (F) = 1000 × Q c (кВАр) / (2π f (Гц) × В L-L(V) 2 )

Расчет с линейным напряжением

Расчет коэффициента мощности:

PF = |cos φ| = 1000 × P (кВт) / (3 × В L-N(V) × I (A) )

Расчет полной мощности:

|S (кВА) | = 3 × В L-N(V) × I (А) / 1000

Расчет реактивной мощности:

Q Q (KVAR) = √ ( | S (KVA) | 2 P (кВт)

Расчет емкости конденсатора коррекции коэффициента мощности:

Q c (кВАр) = Q (кВАр) Q скорректированный (кВАр)

C C (F) = 1000 × Q C (KVAR) / (3 × 2π F (HZ) × V LN (V) 2 )

 

Калькулятор мощности ►

 


См. также

Основные расчеты конденсатора

— инженерное мышление

Конденсаторы

используются во многих цепях для разных целей, поэтому мы собираемся изучить некоторые основные расчеты конденсаторов для цепей постоянного тока.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube

Конденсаторы в цепях постоянного тока

Конденсаторы

обычно выглядят так. У нас есть конденсатор электролитического и керамического типа. Электролитик поляризован, что означает, что одна сторона должна быть подключена к плюсу, а другая к минусу источника питания. Керамический тип, как правило, может быть подключен любым способом. На стороне электролитического конденсатора мы находим пунктирную линию, указывающую на отрицательную сторону, длинный вывод также указывает на положительную сторону нового конденсатора.Но они обычно обрезаются во время установки, поэтому не полагайтесь только на это. Эти два конденсатора представлены такими символами, обратите внимание, что поляризованный конденсатор имеет небольшой символ плюса, указывающий на положительную сторону.

При подключении к источнику постоянного тока напряжение батареи будет выталкивать электроны в конденсатор, поэтому конденсатор заряжается до того же напряжения, что и батарея. Конденсаторы заряжаются почти мгновенно при прямом подключении к батарее, но мы почти всегда используем резистор, это задержит время зарядки, и позже в этой статье мы увидим, как это рассчитать.

Внутри конденсатора с одной стороны скопилось много электронов, они не могут двигаться из-за изолирующего материала между двумя сторонами. Поскольку электроны заряжены отрицательно, у нас есть накопление заряда на одной стороне по сравнению с другой, поэтому у нас есть разница в напряжении между двумя выводами.

Эти электроны удерживаются на месте, и конденсатор может удерживать этот заряд в течение длительного периода времени. Когда указан путь, они будут разряжаться, пока не опустеют.Электроны не проходят через конденсатор; они просто накапливаются внутри, а затем высвобождаются.

Количество заряда, накопленного в конденсаторе, рассчитывается по формуле Заряд = емкость (в фарадах), умноженная на напряжение. Итак, для этого конденсатора 12 В 100 мкФ микрофарад мы конвертируем микрофарады в фарады (100/1 000 000 = 0,0001 Ф). Затем умножаем это на 12 В, чтобы увидеть, что он хранит заряд 0,0012 кулона.

Если нам нужно сохранить заряд, скажем, 0,0002 кулона, то мы просто делим его на напряжение, в данном случае 12 В, чтобы увидеть, что нам нужен 0.2
= 0,5 x 0,0001F x 144
= 0,0072 Дж

Мы знаем, что конденсатор будет заряжаться до напряжения аккумулятора. Итак, если мы подключим конденсатор таким образом, каково будет напряжение на конденсаторе? Будет 1,5В. Если мы вот так подключим конденсатор, каково будет его напряжение? Тоже будет 1,5В. Это два разных способа соединения конденсаторов в цепях, последовательное или параллельное. Это приведет к тому, что конденсаторы будут работать по-разному.

Параллельные конденсаторы

Если мы поставили конденсатор параллельно с лампой, то при извлечении батарейки конденсатор начнет питать лампу, она медленно тускнеет по мере разрядки конденсатора.Если бы мы использовали два конденсатора, мы могли бы питать лампу дольше.

Допустим, конденсатор 1 = 10 мкФ, а конденсатор 2 = 220 мкФ. Как рассчитать общую емкость? Это очень просто, ответ 230 мкФ. Конденсаторы соединены параллельно. Итак, 10 мкФ + 220 мкФ = 230 мкФ. Мы можем продолжать добавлять больше, например, конденсатор на 100 мкФ, и общее количество будет просто суммой всех конденсаторов. Размещая их параллельно, мы, по сути, объединяем их, чтобы сформировать больший конденсатор. Это очень полезно, потому что, если, например, нам нужен большой конденсатор на 2000 мкФ, но у нас его нет, мы можем просто использовать более мелкие конденсаторы, такие как 2x 1000 мкФ или 4x 500 мкФ и т. д.Он также часто используется для фильтрации шума и обеспечения большего тока в цепях с высоким спросом.

Общий заряд, хранящийся в параллельных конденсаторах, равен: заряд = общая емкость, умноженная на напряжение. Итак, у нас есть батарея на 9 В и два конденсатора общей емкостью 230 мкФ. Поскольку это параллельно, этот провод 9 В, а этот 0 В, поэтому оба конденсатора заряжены до 9 В. Следовательно, 0,00023 Ф, умноженное на 9 В = 0,00207 кулона. И с тремя конденсаторами у нас есть 330 мкФ (0.00033 F), умноженное на 9V = 0,00297 кулона.

Мы также можем рассчитать заряд каждого конденсатора в отдельности. Мы просто используем одну и ту же формулу для каждого конденсатора, вы можете увидеть ответы на экране.
Конденсатор 1 = 0,00001 F x 9V = 0,00009 Coulembs
Конденсатор 2 = 0,00022 F x 9v = 0,00028 Coulombs
Конденсатор 3 = 0,0001 F x 9v = 0,0009 Coulembs
Всего = 0,00009 + 0,00198 + 0,0009 = 0,00297 Coulembs

Конденсаторы серии

Если мы поместим конденсатор последовательно с лампой, когда мы нажмем переключатель, она загорится, но затем станет тусклее, когда конденсатор достигнет уровня напряжения батареи, и как только это будет достигнуто, лампа погаснет.Помните, что электроны не могут проходить через конденсатор из-за изолирующего материала внутри. Электроны просто накапливаются внутри одной пластины и по мере их накопления отбрасывают такое же количество с противоположной пластины. Таким образом, ток может течь только тогда, когда конденсатор заряжается или разряжается. В настоящее время, когда батарея удалена, конденсатор не может разрядиться, поэтому он будет удерживать напряжение на том же уровне. Неважно, подключаем мы аккумулятор или отключаем, лампа не включится.Однако, если мы обеспечим другой путь, то при нажатии переключателя конденсатор теперь может разряжаться, так что электроны могут течь через лампу и освещать ее. Он станет тусклее по мере разрядки конденсатора.

Что, если бы у нас было 2 конденсатора, соединенных последовательно, опять же, конденсатор 1 – 10 мкФ, а конденсатор 2 – 220 мкФ. Как найти полную емкость? Для этого мы используем эту формулу, она может показаться сложной, но на самом деле она очень проста. Все, что нам нужно сделать, это ввести значения наших конденсаторов 10 и 220 мкФ.Мы можем ввести это как это на наших калькуляторах или в Excel. Но при ручном вычислении мы делаем 1, деленное на 10, что равно 0,1, и 1, деленное на 220, что составляет 0,00454. Мы сложим их вместе, чтобы получить 0,10454, а затем 1, деленная на это, даст в общей сложности 9,56 мкФ. Обратите внимание, что общая емкость теперь меньше конденсатора с наименьшим значением.

Если мы добавили в схему третий конденсатор на 100 мкФ, то получим общую емкость 8,73 мкФ. Значит, уменьшилось еще больше. Это потому, что, объединяя их последовательно, мы существенно увеличиваем толщину изоляционного материала, поэтому притяжение отрицательно заряженных электронов к положительно заряженным отверстиям на противоположной пластине становится слабее.

Общий заряд последовательных конденсаторов находится по формуле: заряд = емкость (в фарадах), умноженная на напряжение. Итак, если мы использовали батарею на 9 В, мы конвертируем микрофарады в фарады и видим, что общий заряд равен 0,00008604 кулона
(0,00000956F x 9В = 0,00008604 кулона)

.

Общий заряд цепи конденсатора из 3 рядов составляет 0,00007857 кулонов
(0,00000873 x 9 В = 0,00007857 кулонов)

Заряд, удерживаемый каждым конденсатором в отдельности, очень легко рассчитать в последовательных цепях.Это то же самое, что общее количество. Каждый конденсатор содержит одинаковое количество электронов при последовательном соединении. Это потому, что когда мы заряжали конденсаторы, ток был одинаковым во всех частях цепи. То же самое количество электронов, которые были вытолкнуты в одну пластину, были вытеснены из противоположной пластины, поэтому каждый последовательный конденсатор может быть заряжен только до одного и того же уровня. Таким образом, наименьший конденсатор будет ограничивающим фактором.

Однако, поскольку каждый конденсатор может иметь разную емкость, напряжение каждого конденсатора будет разным.Напряжение каждого конденсатора находим по формуле напряжение = заряд (в кулонах) деленное на емкость (в фарадах).

Итак, для этой схемы мы видим, что конденсатор 1 на 7,8 В, конденсатор 2 на 0,35 В и конденсатор 3 на 0,78 В. Они объединяются в общее напряжение батареи, которое составляет 9 В.

Конденсатор 1: 0,00007857 C / 0.000077857 C / 0,00001 F = 7,857 В
Конденсатор 2: 0.00007857 C / 0.00022 F = 0,357 В
Конденсатор 3: 0.00007857 C / 0,0001 F = 0,786 В
Общее напряжение = 7,857 В + 0,357 В + 0.786В = 9В

Время заряда конденсатора

Допустим, у нас есть батарея 9 В, конденсатор 100 мкФ, резистор 10 кОм и переключатель, все последовательно. Конденсатор полностью разряжен, и мы считываем 0 В на двух выводах.

Когда мы замыкаем переключатель, конденсатор заряжается. Напряжение будет увеличиваться до тех пор, пока не сравняется с напряжением батареи. Рост напряжения не мгновенный, он имеет экспоненциальную кривую. Сначала напряжение быстро увеличивается, а затем замедляется, пока не достигнет того же уровня напряжения, что и батарея.

Мы разделили эту кривую на 6 сегментов, но нас интересуют только первые 5, потому что на отметке 5 мы в основном находимся при полном напряжении, поэтому мы можем игнорировать все, что дальше этого. Каждый сегмент представляет нечто, называемое постоянной времени. Следовательно, поскольку у нас есть 5 сегментов, у нас есть 5 постоянных времени, поэтому потребуется 5 постоянных времени, чтобы зарядить конденсатор от 0 до чуть менее 100%. Все, что нам нужно сделать, это вычислить длину одной постоянной времени, а затем умножить ее на 5.

Чтобы вычислить одну постоянную времени, мы используем эту формулу.

Постоянная времени (в секундах) = сопротивление (в Омах), умноженное на емкость (в Фарадах). Итак, мы конвертируем резистор в омы, а емкость конденсатора в фарады и видим, что 10 000 Ом, умноженные на 0,0001 фарад, равняются 1. Итак, в этом примере постоянная времени равна 1 секунде. Следовательно, 5 из них — это 5 секунд. Это означает, что для полной зарядки этого конденсатора до 9 В требуется 5 секунд.

Если бы резистор был всего 1000 Ом, постоянная времени была бы 0,1 секунды, поэтому это заняло бы 0.5 секунд, чтобы достичь 9В. Если бы конденсатор был 1000 микрофарад, это заняло бы всего 50 секунд. Таким образом, с увеличением размера конденсатора время, затрачиваемое на это, увеличивается. Если значение резистора увеличивается, время, необходимое для этого, также увеличивается.

Возвращаясь к нашей первоначальной схеме. Таким образом, мы можем рассчитать уровень напряжения для каждой постоянной времени. В точке 1 напряжение всегда равно 63,2 %, в точке 2 — 86,5 %, в точке 3 — 95 %, в точке 4 — 98,2 % и в точке 5 — 99,3 %.

Итак, в этом примере через 1 секунду напряжение на конденсаторе равно 5.68 В, через 2 секунды 7,78 В, через 3 секунды 8,55 В, через 4 секунды 8,83 В и через 5 секунд 8,94 В

Если вам нужен более точный ответ, мы можем рассчитать каждую точку следующим образом.

Точка 1 = 9В-0В)x0,632 = 5,6880В
Точка 2 = ((9В – 5,688В)x0,632)+5,68В = 7,7812В
Точка 3 = ((9В-7,7812В)x0,632) +7,7812В = 8,5515В
Точка 4 = ((9В-8,55В)x0,632)+8,5515В = 8,8349В
Точка 5 = ((9В-8,8349В)x0,632)+8,8349В = 8,9393В

Помните, что при последовательном соединении ток в цепи уменьшается, а напряжение на конденсаторе увеличивается.При полном напряжении ток в цепи не течет. Если бы резистор был лампой, он мгновенно достиг бы полной яркости, когда переключатель был замкнут, но затем стал бы тусклее, когда конденсатор достиг полного напряжения.

Время разрядки конденсатора

Когда мы обеспечиваем путь для разрядки конденсатора, электроны покидают конденсатор, и напряжение на конденсаторе уменьшается. Он не разряжается мгновенно, а следует экспоненциальной кривой. Мы разделяем эту кривую на 6 сегментов, но нас интересуют только первые 5.В точке 1 напряжение всегда будет 36,8%, в точке 2 будет 13,5%, в точке 3 будет 5%, в точке 4 будет 1,8% и в точке 5 будет 0,7%.

Например, если бы у нас была батарея на 9 В, лампа с сопротивлением 500 Ом и конденсатор на 2000 мкФ, наша постоянная времени была бы 500 Ом, умноженная на 0,002 фарад, что составляет 1 секунду.
Итак, в тот момент, когда батарея отключена, конденсатор будет на 9 В, и, поскольку он питает цепь, лампа также будет. Через 1 постоянную времени, в данном случае 1 секунду, напряжение будет равно 36.8%, что составляет 3,312 В, через 2 секунды — 1,215 В, через 3 секунды — 0,45 В, через 4 секунды — 0,162 В и через 5 секунд — 0,063 В. Таким образом, лампа будет гореть чуть менее 3 секунд. Явно становится тусклее.


Повышение коэффициента мощности с помощью конденсаторов ~ Изучение электротехники

Используя эту формулу, вы можете легко рассчитать компоненты KVA и KVAR электрической системы, учитывая коэффициент мощности (P.F) и компонент KW.

Повышение коэффициента мощности с помощью конденсаторов

Реактивную составляющую (KVAR) любой системы распределения электроэнергии можно легко уменьшить, чтобы улучшить коэффициент мощности с помощью конденсаторов.Конденсаторы в основном реактивные нагрузки. Они имеют тенденцию генерировать реактивную мощность, поэтому они находят хорошее применение в приложениях для коррекции коэффициента мощности. Таким образом, вместо того, чтобы коммунальная компания поставляла реактивную мощность, за которую вы в конечном итоге будете платить, приобретите конденсаторную батарею и попросите их поставлять компонент реактивной энергии, как показано ниже:

Повышение коэффициента мощности с помощью конденсаторов

Как видно из диаграммы выше, при коэффициенте мощности 0.7, потребность в кВА для нагрузки составляет 142 кВА, а необходимая реактивная мощность составляет 100 кВАр. С установленными конденсаторами для улучшения коэффициента мощности и коэффициентом мощности, улучшенным до 0,95, потребность в кВА снижается до 105 кВА, в то время как требуемая реактивная мощность теперь составляет 33 квар, баланс в 67 квар теперь обеспечивается конденсатором, что значительно влияет на счета за коммунальные услуги.

Преимущества улучшения коэффициента мощности с помощью конденсаторов

Когда конденсаторы используются для улучшения коэффициента мощности, получаются следующие преимущества:

1.Уменьшенные счета за электроэнергию

2. Снижает потери I2R в электрических проводниках

3. Снижает нагрузку на трансформаторы, высвобождая емкость системы

.

4. Улучшает напряжение в системе распределения электроэнергии, что позволяет двигателям работать более эффективно и охлаждаться. Это помогает продлить работу и срок службы двигателя.

Конденсаторы уменьшают счета за коммунальные услуги

Как подробно описано ниже, улучшение коэффициента мощности с помощью конденсаторов окажет значительное влияние на счета за коммунальные услуги с течением времени, как показано в разбивке системы выставления счетов за коммунальные услуги в таблице ниже:

 Как конденсаторы снижают стоимость

Коммунальные предприятия выставляют счет за каждый ампер тока, как активного, так и реактивного.Счет обычно основан на пиковом токе

.

Конденсаторы уменьшают реактивный ток и, следовательно, пиковый ток

Потребность в кВт с регулировкой коэффициента мощности

Коммунальные предприятия выставляют счет за потребность в кВт плюс надбавку за низкий коэффициент мощности. Например, вы можете заплатить за любой коэффициент мощности ниже 0,85

.

Конденсаторы увеличивают коэффициент мощности до необходимого минимума, устраняя дополнительную нагрузку.Иногда можно было получить кредит за высокий коэффициент мощности.

Потребление кВт с платой за реактивное потребление

Коммунальные предприятия выставляют счет за потребность в кВт плюс надбавку за чрезмерную реактивную потребность

Конденсаторы снижают реактивную нагрузку, тем самым устраняя дополнительную плату


Пример расчета коэффициента мощности

Пример задачи:

Завод работает с несколькими асинхронными двигателями и другими нагрузками.Его коэффициент мощности составляет 0,65, и он потребляет в среднем 195 кВт за данный расчетный период. Рассчитать:

(a) Потребление кВА

(б) Реактивная мощность, кВАр

(c) Если требуется улучшить коэффициент мощности до 0,95, какой емкости конденсатора в кВАр требуется?

(d) Предположим, что коммунальная компания, поставляющая электроэнергию этому заводу, имеет следующий режим выставления счетов:

1. Тариф на электроэнергию = 3,6 доллара США за

кВтч.

2. Плата за спрос = 1,9 доллара США за кВт

3.Штраф за коэффициент мощности = 0,18 доллара США за KVARH

Рассчитайте общий счет за электроэнергию за месяц и экономию при улучшении коэффициента мощности. Предположим, расчетный период составляет 30 дней.

Образец решения:

(а) P.F = кВт/кВА;

КВА = кВт/П.Ф; теперь кВт = 195, П.Ф = 0,65

Следовательно, кВА = 195/0,65 = 300 кВА

(b) Теперь KVA2 = KW2 + KVAR2 ;

KVAR = SQRT[(300*300) – (195*195)] = 227,98

(с) В П.F = 0,95, кВА = 195/0,95 = 205,26

KVAR = SQRT[(205,26*205,26) – (195*195)] = 64,09

KVAR конденсаторов, необходимых для коррекции коэффициента мощности, составляет

.

= 227,98 – 64,09 = 163,89

(d) Общее количество часов в месяц = ​​30 x 24 = 720

При коэффициенте мощности 0,65:

Плата за энергию в месяц = ​​195 x 720 x 3,6 доллара США = 505 440 долларов США

Плата за спрос в месяц = ​​195 x 1,9 USD = 370,5 USD

Штраф за коэффициент мощности в месяц = ​​227.98 х 720 х 0,18 доллара = 29 546,2

долларов

Общий счет за месяц = ​​505 440 долл. США + 370,5 долл. США + 29 546,2 долл. США = 535 356,7 долл. США

Теперь с коэффициентом мощности теперь улучшен до 0,95:

Плата за энергию в месяц одинаковая = 505 440

долларов США.

Плата за спрос такая же = 370,5

долларов США.

Штраф за коэффициент мощности в месяц = ​​64,09 x 720 x 0,18 USD = 8 306,06 USD

Общий счет за месяц = ​​505 440 долл. США + 370,5 долл. США + 8 306,06 долл. США = 514 116,56 долл. США

Экономия на счетах за коммунальные услуги = 535 356 долларов.7 – 514 116,56 долл. США = 21 240,14

долл. США

Оптимизация конденсатора для привода подводного двигателя

Аннотация

Оптимизация конденсатора для применения в подводном электроприводеСтудент: Умеш ТапаНаучный руководитель: проф. Ларс НорумКонтактное лицо: Эспен ХауганОписание проблемыПодводные приводы — очень крупное и дорогое оборудование. Обычно подводные приводы герметизируют в толстостенных резервуарах, выдерживающих давление в 1 атмосферу. Поскольку новые газовые месторождения постоянно открываются в более глубоких водах, этот тип решения становится все более дорогостоящим.Таким образом, резко возрос интерес к изучению возможности минимизации размеров приводов электродвигателей и воздействия на силовое электронное оборудование высокого давления окружающей среды на дне моря. Вся силовая электроника будет погружена в диэлектрическое масло, которое имеет такое же давление, как и окружающая морская вода. Одним из важных компонентов привода электродвигателя является конденсатор. Он используется для поддержания постоянного напряжения хорошего качества и уменьшения пульсаций в звене постоянного тока привода. Это означает, что конденсатор звена постоянного тока должен выдерживать очень высокое давление 200-300 бар.Часто именно конденсаторы звена постоянного тока составляют большую часть объема электропривода, веса, а также стоимости инвертора. Электролитические конденсаторы доминируют на рынке силовых приводов из-за их высокой емкости. Но конденсатор часто бывает громоздким, с низкой пропускной способностью по току, умеренным сроком службы (около 10 000 часов) и высоким ESR. Электролитические конденсаторы слабы и имеют менее жесткую конструкцию, чтобы выдерживать такое высокое давление. Альтернативой могут быть пленочные конденсаторы, которые обычно имеют большие размеры, но имеют длительный срок службы (> 100 000 часов), низкое ESR, высокую пропускную способность по току и, что наиболее важно, они демонстрируют тенденцию выдерживать очень высокое давление.Теперь вопрос на миллион долларов: действительно ли можно найти метод расчета конденсатора, который резко уменьшит размер конденсатора по сравнению с алюминиевым электролитическим конденсатором? РезюмеЭта магистерская работа в основном посвящена теории конденсаторов и различным методам расчета емкости конденсатора звена постоянного тока в приводе электродвигателя. Какие факторы необходимо учитывать перед выбором конденсатора, было уделено большое внимание. Как и какие факторы повлияют на размер конденсаторов, также обсуждалось.Также обсуждается, почему анализ гармоник или пульсаций входного тока и напряжения инверторов ШИМ очень важен для спецификации фильтра постоянного тока. Наглядно показаны простые методы расчета пульсаций тока и напряжения конденсатора для оптимизации конденсатора. Для подтверждения проанализированных результатов было выполнено моделирование в Mathlab. В этой магистерской диссертации была предпринята попытка исследовать подходящий конденсатор, который удовлетворяет как электрическим, так и механическим свойствам для приводов подводных двигателей.В диссертации также на примере сравниваются важные электрические и механические свойства электролитических и пленочных конденсаторов. Если импульсы тока больше не являются ограничивающим фактором при выборе конденсаторов, то единственным параметром, который следует учитывать при выборе конденсаторов, будут коэффициенты пульсаций напряжения. Расчет в примере показывает, что размеры выбранных пленочных конденсаторов в 10 раз меньше алюминиевых электролитических конденсаторов. Испытание таких пленочных конденсаторов под давлением, проведенное SINTEF ENERGY RESEARCH [Magnar Hernes and Riccardo Pittini, позволяющее использовать устойчивые к давлению силовые электронные преобразователи для подводного применения], показывает, что пленочные конденсаторы выдерживают очень высокое давление.Некоторые конденсаторы были подвергнуты атмосферному давлению азота 100 бар, а другие – давлению до 300 бар (пассивное испытание) в Midel®7131. Конденсаторы были испытаны в условиях длительной нагрузки при полном номинальном напряжении постоянного тока и полной пульсации тока конденсатора, ограниченной температурой. Испытание не показало видимых повреждений. Пленочные конденсаторы стоят дороже в пересчете на мкФ/объем, чем электролитические конденсаторы. Но из-за высокой пропускной способности по току, длительного срока службы, низкого ESR и ESL, жесткой конструкции; это получает больше внимания в применении инвертора.Дипломная работа показала на примере, что величина емкости, необходимая для конструкции конденсатора шины инвертора, намного меньше для пленочного конденсатора, чем для электролитического конденсатора, потому что пленочный конденсатор не ограничен номинальным пульсирующим током, как электролитический конденсатор. Следовательно, размер конденсатора звена постоянного тока может быть значительно уменьшен за счет использования пленочных конденсаторов. Наконец, пленочные конденсаторы можно рассматривать как сильные кандидаты в приводы подводных электродвигателей и прямую замену мкФ в электроприводах.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *