Расчет реечной зубчатой передачи: Реечная передача. Расчет в Excel.

alexxlab | 05.01.2019 | 0 | Разное

Содержание

Реечная передача. Расчет в Excel.

Опубликовано 24 Окт 2015
Рубрика: Механика | 39 комментариев

(Статья полностью обновлена 19.03.2017.)

Небольшой расчет, представленный далее, предназначен для ориентировочного быстрого определения габаритов зубчатой реечной передачи и её основных силовых и кинематических параметров.

Предложенный ниже алгоритм основан на расчете поверхностной прочности зубьев по контактным напряжениям.

Реечная передача может служить для преобразования вращательного движения шестерни в поступательное движение рейки или вала самой шестерни, а может быть использована для преобразования поступательного движения рейки во вращательное движение зубчатого колеса. Расчет реечной передачи, по сути, аналогичен расчету зубчатой цилиндрической передачи. С математической точки зрения рейка – это зубчатое колесо с радиусом равным бесконечности.

Проектировочный расчет в Excel реечной зубчатой передачи.

Для выполнения расчетов будем использовать программу MS Excel или Calc из бесплатных офисных пакетов

 Apache OpenOffice или LibreOffice.

Заполняя исходные данные для расчета, пользователь может изменять характеристики используемого для передачи материала, относительную ширину и угол наклона зубьев, нагрузку и скорость.

Схема реечной передачи представлена на рисунке чуть ниже.

Уважающих труд автора прошу скачивать файл с расчетной таблицей после подписки на анонсы статей (подписные формы — в конце статьи и наверху страницы).

Ссылка на скачивание файла с программой: reyechnaya-peredacha (xls 59KB).

Исходные данные:

1. Значение модуля упругости материала передачи в МПа записываем

в ячейку D3: 215000

Для стали E=215000 МПа.

2. Коэффициент Пуассона материала μ вписываем

в D4: 0,3

Для стали

 μ=0,3.

3. Твердость поверхности зубьев по шкале C Роквелла HRC вводим

в D5: 27

Для различных режимов термообработки стали HRC≈17…65.

К примеру, круг из Стали 45 в состоянии поставки имеет твердость около HRC 22.

4. Величину безразмерного коэффициента ширины зубчатого венца шестерни ψbd заносим

в D6: 0,6

ψbd=b2/d=0,6…0,4.

5. Угол наклона зубьев β вводим в градусах

в D7: 15,0000

Если проектируемая реечная передача прямозубая, то

 β=0°.

Если передача косозубая, то β≈8°…22°.

6. Вращательный момент на валу шестерни вписываем в Н*м

в D8: 500

Этот момент определяет нагрузочную способность реечной передачи и задается в техническом задании.

7. Скорость центра вала шестерни относительно рейки в м/с заносим

в D9: 0,050

Скорость определяется из назначения механизма и является одним из пунктов технического задания на проектирование.

Результаты расчетов:

8. Допускаемое контактное напряжение Hв МПа вычисляем

в ячейке D11: =ЕСЛИ(D5<38;2*127,57*EXP (0,0266*D5)+70; ЕСЛИ(D5<=56;18*D5+150;23*D5))=600,0

При HRC<38  

H]=2*127,57*e(0,0266*HRC)+70

При 38≤HRC≤56  H]=18*HRC+150

При HRC≥56  H]=23*HRC

9. Расчетный делительный диаметр dв мм вычисляем

в D12: =(2*2*D8*1000*D3/(ПИ()*(1-D4^2)*D11^2*D6*SIN (2*20/180* ПИ())))^(1/3)=102,7

dp≥(4000*T*E/(π*(1- μ2)*H]2*ψbd*sin(2*α)(1/3)

10. Расчетный модуль зацепления mв мм определяем

в D13: =D12/(17*COS (D7/180*ПИ())^3) =6,70

mp= dp/(17*(cos (β))3)

11. Выбираем ближайшую к расчетному значению величину модуля из стандартного ряда, представленного в примечании к ячейке D14, и вписываем

в  D14: 6,00

12. Минимальное расчетное число зубьев шестерни zрассчитываем

в D15: =17*COS (D7/180*ПИ())^3 =15,3

z1=17*(cos (β))3

Число зубьев шестерни определяется из условия отсутствия подрезки ножек зубьев.

13. Назначаем число зубьев шестерни z1 и записываем его

в D16: 17

Рекомендуется назначить число зубьев таким, чтобы делительный диаметр шестерни был не меньше расчетного делительного диаметра.

14. Делительный диаметр шестерни в мм вычисляем

в D17: =D14*D16/COS (D7/180*ПИ()) =105,598

d=m*z1/cos (β)

Если полученное значение делительного диаметра окажется меньше расчетного значения, поле ячейки D15 «подсветится» красным цветом, что заставит пользователя обратить внимание на ошибку и увеличить число зубьев, модуль или угол наклона зубьев.

15. Диаметр вершин зубьев шестерни dв мм находим

в D18: =D17+2*D14 =117,598

da=d+2*m

16. Диаметр впадин зубьев шестерни dв мм рассчитываем

в D19: =D17-2,5*D14 =90,598

df=d-2,5*m

17. Ширину зубчатого венца шестерни bв мм считаем

в D20: =ОКРУГЛ(D21+0,6*D21^0,5;0) =68

b1b2+0,6*b2(½)

18. Ширину зубьев рейки bв мм находим

в D21: =ОКРУГЛ(D17*D6;0)=63

b2d*ψbd

19. Окружную силу на шестерне Fв Н рассчитываем

в D22: =2*D8/(D17/1000) =9470

Ft=2*T/d

20. Мощность на валу шестерни в Вт вычисляем

в D23: =D22*D9 =473

P=Ft*v

21. Частоту вращения вала шестерни в об/мин определяем

в ячейке D24: =60*D9/ПИ()/(D17/1000) =9,043

n=60*v/(π*d)

Расчет в Excel завершен.

Заключение.

Мы рассмотрели пример, в котором была рассчитана зубчатая реечная передача по упрощенной схеме.

Детальный и полный расчет передачи, учитывающий десяток дополнительных факторов, может позволить на 5%…10% уменьшить габаритные размеры передачи! Это следует понимать и помнить.

Если требуется уменьшить число зубьев шестерни менее 14-и, необходимо спроектировать и изготовить её возможно не только с наклоном зубьев, но и/или с положительным смещением исходного контура. При этом нужно следить за отсутствием заострения вершин зубьев, производя соответствующую проверку.

Важными параметрами, обеспечивающими плавность работы реечной передачи, являются коэффициенты осевого и торцевого перекрытия. Их значения всегда следует контролировать.

О проверке качества зубчатого зацепления по геометрическим показателям читайте в следующих новых статьях на блоге.

Подписаться на анонсы статей можно через специальные окна, расположенные в конце любой статьи или наверху любой страницы сайта.

Можете оставлять ваши комментарии, уважаемые читатели, ниже этого текста в блоке «Отзывы».

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Реечная передача: расчет, механизм, КПД, применение

Всем редукторам и коробкам передач предшествовала кремальера. Ее использовали для вертикального перемещения котла над огнем. Повар крутил ручку и прикрепленный к рейке котел поднимался вверх и опускался вниз. Самая длинная реечная передача сделана в Италии на железной дороге. Чтобы поезд не скатывался по крутым склонам вниз, между рельсами прокладывали зубчатую рейку. На оси колес устанавливалась шестерня, которая и тянула поезд вверх. Ответное колесо вместо рейки для передачи крутящего момента появилось позже.

Реечная передачаРеечная передача

Общая информация

Реечная зубчатая передача получила свое название по одной из деталей – рейке. Это единственное зацепление шестерни, которое меняет не скорость и направление крутящего момента, а тип движения. Вращение привода изменяется на движение в заданной плоскости.

Отличительной особенностью реечной передачи является ее неограниченная продолжительность. Рейки укладываются в один ряд. На стыках подгоняются, чтобы выдерживался модуль. Для этого просто укладывают на стык в зацепление зубчатую планку с таким же модулем или одну из приготовленных к монтажу реек. Крепеж устанавливается по подметке, что сводит к минимуму погрешность.

Соединение зубчатой рейки и шестерни бывает разных видов:

  • прямозубое;
  • косозубое;
  • многорядное.

Обеспечить нормальную работу реечного узла можно точной установкой деталей относительно друг друга.

Зубья должны соприкасаться по средней линии.

Модуль подбирается по усилию, которое необходимо передать для движения. Увеличить прочность и допустимую нагрузку можно различными способами:

  • увеличить площадь контакта за счет большей ширины зуба;
  • заменить прямозубое соединение косозубым;
  • использовать шестерню большего диаметра.

Прямозубое зацепление имеет широкое распространение. Для реечных механизмов, не требующих большой точности смещения, детали могут отливаться из чугуна. Зубчатое колесо и рейка имеют шероховатую поверхность и сильно шумят. Они неприхотливы, работают при высоких температурах, в условиях сильной запыленности. Часто применяются для открывания термических и литейных печей с выдвижным подом, перемещают загрузочные тележки на металлургических печах. Рейка обычно перевернута зубом вниз. Шестерня и привод установлен в яме.

Зубчатая рейка прямозубаяЗубчатая рейка прямозубая

Косозубая реечная пара способна передать большее усилие при зацеплении. За счет расположения зуба под углом, площадь контакта увеличивается. Узел производит при работе меньше шума. Детали требуют высокой точности при изготовлении и тонкой регулировки. По мере стирания поверхности зубьев, надо смещать межцентровое расстояние. При нарушении угла, нагрузка смещается и происходит быстрое разрушение шестерни.

Движение может передаваться и от реек к зубчатому колесу. Примером служат детские игрушки и механические фонарики, изготавливаемые в прошлом веке. Когда на торец пластины нажимали рукой, рейка приводила в движение ротор и лампочка начинала светить.

КПД реечной передачи, в зависимости от типа зубьев, составляет:

  • цилиндрическая — 0,96…0,98
  • коническая — 0,95…0,97.

Применение реечной передачи

В большинстве реечных механизмов происходит превращение вращения в поступательное движение. При проектировании оборудования, конструкторам приходится делать сложные расчеты эвольвенты зуба и расстояния от средней линии рейки до оси шестерни. Им на помощь приходят готовые таблицы с нормализованными деталями. Это упрощает процессы расчета, поскольку в большинстве случаев эксплуатации узла с малыми нагрузками берутся стандартные пары.

Передача реечная широко используется в механизмах совершенно разного назначения:

  • металлорежущее оборудование;
  • термические печи;
  • сдвижные ворота;
  • фуникулеры;
  • кранбалки;
  • мостовые краны;
  • шахтные тележки;
  • сварочные автоматы;
  • промышленные роботы;
  • станки с ЧПУ.

Станок на реечной передачеСтанок на реечной передаче

Известный всем водителям реечный механизм является узлом рулевого колеса. Вращение колеса превращает в поступательное перемещение тяг и синхронный поворот колес.

Широкое применение получили реечные передачи в производственном оборудовании. На строгальных и продольно фрезерных станках стол перемещается по направляющим станины. Между ними расположена рейка. Передача движения от привода осуществляется через расположенную в нижней части стола шестерню. Она тянет стол в режиме резания, и быстро его возвращает в исходное положение на холостом ходу.

Шпиндельная группа сверлильных и вертикально фрезерных станков перемещается вверх и вниз по колонне, на которой закреплена планка с зубьями. Реечная передача получает вращение от электродвигателя шпинделя через ремень и шкив.

Примеры использования реечных узлов в быту встречаются часто. Все откатные ворота имеют внизу или на середине полотна рейку. Двигатель с шестерней устанавливаются на столбе. Включить привод и открыть ворота можно дистанционно, из дома или посредством электронного пульта управления.

Данные для расчета

Расчет реечной передачи производится посредством ряда формул, в которых используются данные:

  • высота зуба;
  • его ширина по средней линии;
  • диаметр шестерни;
  • угол поворота при повороте на один зуб.

Расстояние от делительного диаметра до оси шестерни задается конструктором изначально. По завершении расчетов размер корректируется, поскольку используются нормализованные детали.

Модуль зуба реечной передачи подбирается исходя из нагрузки, которую он должен выдержать и коэффициента прочности.

Боковой зазор регулируется в процессе эксплуатации смещением шестерни с учетом износа зуба. От правильно сделанного натяга зависит плавность пуска, размер люфта и точность перемещения.

Величины отклонений размеров деталей и нормы шероховатости поверхности зуба заложены в ГОСТ 2789-73 и ГОСТ 2.309-73.

Скачать ГОСТ 2.309-73

Скачать ГОСТ 2789-73

Прочностной расчет учитывает предельные допустимые значения и коэффициенты:

  • напряжения изгиба;
  • угол наклона;
  • модуль зацепления;
  • перекрытие;
  • форму зубьев;
  • окружную силу.

Прочностной расчет реечной передачиПрочностной расчет реечной передачи

При проектировании оборудования, конструктора по нагрузкам подбирают нормализованные детали. Практическим путем определяется только длина рейки.

Преимущества и недостатки

Узлы с зубчатыми рейками считают устаревшими и громоздкими. На самом деле реечная механическая передача представляет собой зубчатое зацепление малой шестерни с сегментом колеса, имеющего бесконечно большой диаметр. Идеальный механизм в настоящее время не изобретен и приходится выбирать передачу, с учетом ее технических характеристик.

Недостатки

Передача обладает рядом недостатков, к ним относят следующие:

  • устаревшая технология;
  • большой люфт;
  • сильный шум;
  • маленькая точность перемещений;
  • большая погрешность на стыке реек;
  • требует высокой точности изготовления;
  • ручная сборка;
  • боится грязи;
  • низкая производительность;
  • ограничен спектр применения.

Производство зубчатых реекПроизводство зубчатых реек

Узел обладает всеми недостатками зубчатых передач. Основное из них, это разрушение зубьев при перегрузе. На ременных передачах, когда нагрузка резка увеличивается, происходит проскальзывание ремня по шкиву. У зубьев нет такой возможности. По аналогии в предохранительные муфты вставляют пальцы, и через них передается вращательный момент. При перегрузе они разрушаются и заменяются новыми.

Разница в том, что изготовить шпильку с посадочным диаметром намного проще и дешевле. Шестерни делаются из легированных сталей. Процесс их изготовления сложный, многоступенчатый. Деталь дорогостоящая.

Точность изготовления зубчатой рейки выше, чем шестерни. Чем сильнее изгиб линии основания зуба, тем больше погрешность при его нарезании.

Механическое взаимодействие двух деталей всегда сопровождается шумом. Частично его снижает смазка. Плавно и тише работают косозубые и многорядные передачи.

Если не будет зазора по эвольвенте, то детали «склеятся» на молекулярном уровне. Такой эксперимент проводили в конце прошлого века. Проектировщики создали зубчатую пару с идеальными размерами и чистотой. В результате сделав несколько оборотов, шестерни сварились, и рассоединить их не получилось.

Зазор нужен для компенсации расширения металла при нагреве. Любое трение сопровождается повышением температуры.

Рейки сложной формыРейки сложной формы

Точность перемещения не позволяет полностью автоматически делать различные операции. На старом оборудовании имеется дополнительная точная доводка. В станки ЧПУ вмонтирован электронный контроль координат, который через блок управления выполняет точную настройку координат.

При стыке реек используют специальные шаблоны, и погрешность шага зуба минимизируется до допустимого размера. Сборка реечных передач в большинстве случаев остается ручной, многочисленные доводки и подгонки невозможно автоматизировать. Исключение составляют узлы без больших нагрузок с малым перемещением, как например в автомобиле.

Достоинства

Реечная передача имеет превосходство перед аналогичными узлами. Это простая конструкция и неограниченная длина перемещения. Тележки походят сотни метров, поезда километры на тяге реечной передачи.

Зубья можно расположить в любом направлении и грязь с них будет опадать сама. Привод можно устанавливать неподвижно, это уменьшает габариты, и вес подвижной части механизма.

Проектирование зубчато – реечной передачи

Описание

Проектирование зубчато – реечных передач (Демоверсия)

ДЕМОВЕРСИЯ является сокращенным вариантом статьи (книги) позволяющим получить общее представление о содержащимся в ней материале, прежде всего, в части наличия примеров конструктивного исполнения рассматриваемых технических решений

     1 Назначение и область применения реечной передачи 

       Реечная передача (см. Рис. 1) может быть получена при бесконечном увеличении диаметра основной окружности зубчатого колеса, которое превращается в рейку, эвольвента в прямую, а эвольвентный зуб в трапецеидальный с прямолинейным рабочим профилем, нормальным к линии зацепления.

Рис. 1 Общий вид реечной передачи

            Основным назначением реечной передачи является преобразование вращательного движения в поступательное. По сравнению с передачей винт – гайка, которая также используется для преобразования вращательного движения в поступательное, она позволяет обеспечить более высокую скорость движения стола, или каретки, при значительной величине перемещения (10м и более) с высоким к.п.д. Реечная передача обладает и рядом недостатков, которые заключаются в отсутствии самоторможения и значительной погрешности привода при малых перемещениях, из – за наличия зазора в зацеплении, что требует введения в конструкцию передачи специальных устройств для выбора зазора при ее использовании в приводе станков с ЧПУ.

Рис. 2 Реечный привод для перемещения каретки на большое расстояние

               В машиностроении реечная зубчатая передача в качестве привода применяется:
– для перемещения на значительное расстояние с большой скоростью шпиндельной бабки портально – фрезерного станка (см. Рис. 2а), каретки автоматического     оборудования для изготовления деталей из фасонного проката (см. Рис. 2б)
– для перемещения кареток с инструментом в трубогибочных автоматах (см. Рис. 3а), в портальных сварочных автоматах и станках для плазменной и лазерной резки с ЧПУ (см. Рис. 3б), для перемещения суппорта в автоматических пильных центрах (см. Рис. 3в),
– для перемещения по трем координатам руки со схватом в портальных       манипуляторах (см. Рис. 3г),
– для поступательного перемещения зажимного элемента технологической оснастки (см. Рис. 36 – 41), в приводе поворотных столов (см. Рис 19), в рулевом управлении автомобиля (см. Рис. 45).

Рис 3 Примеры использования реечной передачи

               В рассмотренных примерах использования зубчато – реечной передачи в качестве привода поступательного движения, перемещаемым агрегатом были каретки, на которых размещался привод их перемещения. Вторым вариантом использования зубчато – реечной передачи является ее применение в качестве привода поступательного перемещение тяжелых крупногабаритных столов по направляющим станины, испытывающих в процессе движения на большое расстояние (10м и более) значительные технологические нагрузки, при этом, привод, включающий выходную шестерню неподвижно устанавливается на станине станка, а подвижная рейка крепится на поступательно движущемся столе.

Рис 4 Общий вид продольно – фрезерного станка и червяка червячно – реечного привода поступательного перемещения стола

           В этом случае используются не только ортогональные зубчато – реечные передачи, но и передачи с наклонной осью вращения ведущей шестерни к направлению движения рейки, а также червячно – реечные, гидростатические червячно – реечные и червячно – реечные передачи качения (см. раздел 9, 10). На Рис 4 показан общий вид продольно – фрезерного станка и червяк червячно – реечного привода поступательного перемещения его стола

2. Геометрические параметры ортогональной зубчато – реечной передачи.

Расчет геометрических параметров эвльвентного зубчатого колеса ортогональной зубчато – реечной передачи выполняется согласно ГОСТ16532 – 70. Расчет геометрических параметров зубчатой рейки выполняется согласно ГОСТ 13755-81.

Рис. 5 Геометрические параметры зубчатой рейки

          Модуль m зубчато – реечной передачи на данном этапе проектирования рассчитывается из условия прочности на изгиб и ведется по шестерне (см. Раздел 4), а основным исходным элементом для расчета является тяговое усилие, которое необходимо приложить к корпусной детали перемещаемого агрегата ( стола, суппорта, каретке), для обеспечения нормальной работы проектируемого технического объекта (см. радел 5). Число зубьев шестерни z устанавливается исходя из скорости перемещения агрегата, кинематики привода (общего передаточного отношения), и числа оборотов выбранного двигателя.

3. Допуски на геометрические параметры зубчатой рейки

         Допуски на геометрические параметры зубчатой рейки, как и степень ее точности, определяются ГОСТ 10242-81, который устанавливает 12 (1 – 12) классов точности. В зависимости от степени точности передачи стандарт предусматривает нормы кинематической точности, плавности работы и нормы контакта. Степень точности зубчатой рейки выбирается в зависимости от назначения передачи (силовая или кинематическая) и скорости вращения зубчатого колеса. Независимо от степени точности передачи боковой зазор между зубьями рассчитывается в зависимости от условий ее работы и накладываемых ограничений, а затем выбирается его наиболее близкая величина по ГОСТ 10242-81, который предусматривает шесть видов сопряжения зубьев: A, B, C, D, Е, Н. Выбор вида сопряжения реечной передачи, определяющего боковой зазор между зубьями колеса и рейки j, который должен обеспечить нормальные условия работы, осуществляется расчетным путем или на основании опыта проектирования передач аналогичного назначения.

       Боковой зазор в реечной передаче обеспечивается за счет уменьшения толщины зубьев колеса и рейки путем дополнительного смещения исходного контура или другими словами зуборезного инструмента при нарезании зубьев.

Рис 6 Чертеж зубчатой рейки.

             На размеры рейки, показанные на Рис 6 устанавливаются следующие требования по точности:
b, ширина рейки выполняется по h22,
h, высота рейки выполняется по h21,
d, допуск на диаметр ролика устанавливается согласно ГОСТ 2475 – 81,        неперпендикулярность привалочной плоскости рейки к базовой плоскости А устанавливается по 8 – 9 степени точности ГОСТ 24643 – 81,
L, длина нарезанной части рейки (справочный размер)
Для обеспечения нормальной работы зубчатых колес и рейки их рабочие и базовые поверхности должны быть выполнены с определенной шераховатостью. Требования к шераховатости поверхностей рейки установленные ГОСТ 2789-73 и ГОСТ 2.309-73, приведены в таблице 1.

                                                                                               Таблица 1

4. Прочностной расчет реечной передачи.

Прочностной расчет реечной передачи ведется по ведущей шестерни в соответствии с ГОСТ 21354-87.

5. Расчет привода поступательного перемещения
с зубчато – реечной передачей.

          В качестве примера для рассмотрения последовательности расчета используем привод каретки для подачи заготовки из углового проката по роликам подающего стола в рабочую зону технологического оборудования, поступательное перемещение которой осуществляется посредствам зубчато – реечной подачи. Конструктивная схема каретки с зубчато – реечным приводом показана на Рис 7.

Рис 7 Конструктивная схема поступательно перемещающейся каретки

      Она состоит из корпуса, установленного по-средствам роликов на цилиндрических направляющих рамы подающего стола, на котором закреплен приводной двигатель, понижающий редуктор, выходная шестерня которого зацепляется с неподвижно закрепленной на раме стола зубчатой рейкой. Кроме того, на корпусе каретки установлен механизм зажима, подаваемой по роликам подающего стола, исходной заготовки.
Для разработки конструкторской документации рассмотренного агрегата необходимо выполнить следующие расчеты:
– силовой расчет привода,
– расчет потребной мощности,
– кинематический расчет привода,
– прочностной расчет зубчатых передач, валов и подшипников привода
– геометрический расчет зубчатых колес.
В результате проведения силового расчета привода каретки определяется потребное усилие Q (см. Рис. 7), которое необходимо создать в зацеплении ведущей шестерни с рейкой, обеспечивающее перемещение каретки с исходной заготовки по роликам подающего стола с требуемой скоростью.

В данном разделе полной версии статьи приводятся формулы
для расчета потребного усилия Q.

       Прочностной расчет зубчатых передач понижающего редуктора выполняется в соответствии с ГОСТ21354 – 87. Прочностной расчет валов понижающего редуктора выполняется исходя из передаваемой мощности и делительного диаметра зубчатых колес. Опорные подшипники выходного вала привода предварительно выбираются исходя из действующих на них нагрузок ,величины которых рассчитываются при выполнении прочностного расчета вала, и рассчитанных на предыдущем этапе диаметров опорных цапф вала. После этого в соответствии с ГОСТ 18855 – 94 выполняется расчет долговечности выбранных подшипников, в результате которого возможно изменение типа и типоразмера подшипников. Расчет геометрических параметров зубчатых колес привода каретки выполняется в соответствии с ГОСТ 16532 – 70, а рейки в соответствии с рекомендациями раздела 2.

5. Материалы для изготовления зубчатого колеса и рейки

            Для изготовления зубчатого колеса и рейки используются различные конструкционные и лигированные стали, которые для повышения нагрузочной способности, как правило, упрочняются термическим и химико – термическими методами. При этом необходимо помнить основное правило выбора материала и назначения термообработки зубчатого колеса и рейки работающих в паре, согласно которого твердость боковой поверхности зубьев шестерни должна быть на 30-50 ед HB или на 3-5ед HRC больше, чем у рейки, что обеспечивает их хорошую приработку, позволяющую получить требуемое пятно контакта в передаче.

       Для изготовления зубчатого колеса и рейки, которые работают в условиях невысоких нагрузок и скоростей применяются качественные углеродистые стали: Сталь 35, 45, 50, стали с повышенным содержанием марганца: Сталь 40Г2, 50Г и низколигированные стали типа: 40Х, 40ХН, 40ХНТ, 35ХГС.

В данном разделе статьи приводятся рекомендации по назначению твердости боковой поверхности зубьев и методы термической обработки зубчатых колес для ее получения

6. Технология изготовления зубчатых реек.

            В машиностроении изготавливаются незакаливаемые рейки 8 – 9 степени точности и объемно закаливаемые и цементуемые рейки 5 – 7 степени точности по ГОСТ 10242 – 81, длиной до 800 мм.

       В данном разделе полной версии статьи приводится последовательность изготовления обеих типов реек

7. Сборка зубчато – реечной передачи

        Работоспособность реечной передачи в значительной степени зависит от взаимного расположения боковых поверхностей зубьев колеса и зубчатой рейки, которое определяется двумя показателями: боковым зазором и пятном контакта, обеспечиваемыми при сборке и зависящими от точности как зубчатого колеса и рейки, так и деталей входящих в привод (корпус, валы, подшипники). Боковой зазор jn между зубьями колеса и зубчатой рейки определяемый по формуле, приведенной в разделе 3 для точных передач уточняется при расчете размерных цепей А и В, при этом предельное отклонение монтажного расстояния fa заменяется на AΔ, допуск непаралельности осей fx заменяется на ВΔ, допуск на перекос осей fy заменяется на тΔ (см. Рис. 8).

Рис 8 Размерные цепи определяющие собираемость
реечной передачи.

В данном разделе статьи подробно рассматриваются звенья размерных цепей определяющие выходные параметры зубчато – реечной передачи

      8. Основные конструктивные элементы реечной передачи

Реечная передача содержит следующие конструктивные элементы:
– рейку, закрепленную на станине или на каретке (в зависимости от того, что перемещается: рейка вместе со столом, приводимая шестерней, или шестерня перекатывающаяся по рейке вместе с кареткой ),
– шестерню, установленную на валу двигателя, или закрепленную на валу который на подшипниках расположен в расточке каретки, или корпуса понижающего редуктора, закрепленного на станине,
– возвратно – поступательно перемещающийся посредствам направляющих скольжения или качения стол, или каретка,
– устройства для выбора бокового зазора в передаче.

8.1 Конструкция зубчатой рейки

В машиностроении обычно используются два типа реек, рейки прямоугольного сечения и рейки круглого сечения, при этом рейка первого типа используется в приводе столов и кареток , поэтому неподвижно крепится к станине или раме (см. Рис. 9а), а рейка второго типа используется в механизмах преобразования поступательного движения во вращательное (например в пневматических и гидравлических поворотниках) и поэтому располагается в цилиндрических направляющих с возможностью осевого перемещения (см. Рис. 9б)

Рис. 9 Типы конструктивного исполнения рейки

         В отдельных случаях рейка может изготавливаться с двухсторонней нарезкой, либо с дополнительными направляющими поверхностями, а также иметь дополнительные конструктивные элементы, но при проектировании реечной передачи усложнения формы рейки желательно избегать, поскольку это существенным образом увеличивает трудоемкость ее изготовления. При создании беззазорной реечной передачи, например в приводе станков с ЧПУ, в конструкцию рейки может включаться устройство для выбора бокового зазора в передаче.

В данном разделе полной версии статьи приведено 5 примеров
конструктивного исполнения зубчатой рейки (см. Рис. в таб.)

8.2 Конструкция шестерни сопряженной с рейкой

Шестерня, сопряженная с рейкой, как правило, имеет традиционную конструкцию, реечные передачи в этой части отличаются только местом расположения шестерни на приводном валу. В приводах кареток шестерни располагаются консольно, либо на валу двигателя (см. Рис. 13а), или на выходном валу понижающей передачи (см. Рис. 13б), при этом, обычно, подшипник большего типоразмера устанавливается в ближайшей к шестерне опоре вала, а промежуточное зубчатое колесо может быть выполнено за одно целое с шестерней в виде зубчатого блока. В приводах столов и поворотных механизмах с подвижной рейкой шестерня, чаще всего, располагается между подшипниковыми опорами приводного вала .

Рис 13 Варианты консольного расположения шестерен реечной передачи в приводе каретки

В данном разделе полной версии статьи приведено 8 примеров
конструктивного исполнения конструкции
зубчато – реечной передачи (см. Рис. в таб.)

          

9. Зубчато – реечная передача с наклонной осью вращения
ведущей шестерни к направлению движения рейки.

          Основным недостатком ортогональной зубчато – реечной передачи, является низкая редукция, что требует введения в состав привода поступательно перемещаемого агрегата дополнительного редуктора с большим передаточным отношением, и невысокая нагрузочная способность, делающая невозможным ее применение в приводе тяжело нагруженного оборудования с большим перемещением стола. Поэтому на определенном этане развития машиностроения на смену ортогональной зубчато – реечной передаче пришла зубчато – реечная передача с наклонным осью вращения ведущей шестерни к направлению движения рейки, обладающая, прежде всего, повышенной нагрузочной способностью.

Рис. 20. Зубчато – реечная передача с наклонной осью вращения ведущей шестерни к направлению движения рейки

            В этой передачи ось вращения ведущей шестерни и направление движения рейки располагаются под углом приблизительно равным β= 45 град, поэтому шестерню можно считать многозаходным червяком углом наклона винтовой линии которого равен γ = 45 град
На Рис 20 показана конструкция привода поперечно – строгального станка с зубчато – реечной передаче пришла зубчато – реечная передача с наклонным по отношению к рейке приводом с косозубой шестерней. Он содержит приводной электродвигатель 1, соединенный посредствам муфты 2 с ведущим валом понижающего редуктора 3, выходной вал которого посредствам муфты 4 соединен с валом 6, одна цапфа которого установлена в подшипнике 5, а вторая посредствам карданной муфты 7 соединена с валом косозубой шестерни 9 установленной на подшипниках качения в корпусе 8 закрепленным на станине 14, при этом шестерня 9 зацепляется с рейкой 10, закрепленной на столе 11, который на направляющих 12 и 13 установлен в ответных направляющих станины 14. Основными недостатками данной передачи является низкая крутильная жесткость вала соединяющего шестерню с редуктором, и значительные осевые нагрузки на подшипники ведущей шестерни и поперечные нагрузки на направляющие стола и станины, вызываемые значительным наклоном зубьев шестерни и рейки.

10. Червячно – реечная передача.

Червячно – реечная передача (см. Рис.21б) в отличие от зубчато – реечной передачи (см. Рис. 21а) состоит из ведущего червяка являющегося коротким ходовым винтом с трапецеидальным профилем и червячной рейки являющейся неполнообхватной гайкой, при этом для снижения распорных сил в зацеплении применяют уменьшенную величину угла профиля резьбы ( вместо 30 град для стандартной трапецеидальной резьбы – =15 град)

Рис 21 Схемы зубчато – реечной и червячно – реечной передач

           Основным преимуществом червячно – реечной передачи является увеличенная редукция по сравнению с зубчато – реечной передачей. Так, например, при повороте ведущей шестерни зубчато реечной передачи на угол 360 град перемещение рейки составит : L = πmz ( где: m, z – модуль и число зубьев шестерни), а при повороте червяка червячно – реечной передачи перемещение рейки составит: L = πm (где m – модуль червячной передачи). Таком образом, редукция червячно – реечной передачи в z раз больше чем у зубчато – реечной (например, при числе зубьев ведущей шестерни z = 15 соответственно в 15раз больше). Кроме того червячно – реечная передача за счет многопарности зацепления обладает гораздо – большей нагрузочной способностью

Рис 23 Конструкция червяно – реечной передачи с устройством для выбора бокового зазора, содержащим дополнительный червяк

           На Рис 23 показана конструкция червяно – реечной передачи с устройством для выбора бокового зазора основанная на этом приеме. Она содержит ведущую вал – шестерню вал 1, который на роликовых подшипниках 2 и упорных шарикоодшипниках 4 поджатых гайкой 5 установлен в наклонной расточке корпуса 3 и своим коническим зубчатым венцом 6 , зацепляется с конической шестерней 7 закрепленной посредствам шлицевого соединения на валу 8, установленным в горизонтальной расточке корпуса 3 на роликоподшипниках 9, 10 и упорных шарикоподшипниках 11, 12 поджатых в соевом на-правлении гайкой 13. Также на валу 8 посредствам шлицевых соединений закреплены основной 14 и дополнительный 15 червяки зацепляющиеся с рейкой, закрепленной на столе станка (рейка на Рис 19 не показана), а между ними установлен плунжерный гидроцилиндр 16, с плунжер

Расчет реечной передачи онлайн

Цилиндрические шестерни → Реечная передача

Для преобразования вращательного движения в поступательное и наоборот применяют реечную передачу, которая является частным случаем цилиндрической зубчатой передачи. Рейку рассматривают как зубчатое колесо, диаметр которого увеличен до бесконечности.

ЗАО «НПО «Механик» изготавливает цилиндрические реечные передачи со следующими характеристиками:

— Класс точности — до 6 включительно;

— Модуль — до 30 включительно;

— Длина рейки — до 3 500 мм включительно.

Изготавливаем цилиндрические реечные передачи в штучном и серийном производстве. Возможно изготовление по образцам и эскизам заказчика. Индивидуальный подход.

Реечная передача отличается простотой конструкции, благодаря чему она надежна в эксплуатации. Кроме этого у реечной передачи достаточно высокий КПД (0,94 — 0,98). Составляющие реечной передачи изготавливаются из относительно недорогих углеродистых конструкционных или легированных сталей. К недостаткам реечной передачи можно отнести то, что ее передаточное число равно 1 и поэтому выигрыш в силе отсутствует.

Основной размерный параметр зубчато-реечной передачи — шаг между зубьями рейки. Шаг рейки может рассчитываться по метрической или по модульной системе. В модульной системе расстояние между зубьями рейки рассчитывается по формуле:

m = D/z,
где m — модуль пары рейка-шестерня;
z — количество зубьев шестерни;
D — делительный диаметр шестерни (диаметр окружности, проходящей через полувысоту зуба шестерни; для некорригированных зацеплений начальные и делительные окружности совпадают).

Поскольку значение модуля дробное и представляет собой бесконечную десятичную дробь, для расчетов применяют его округленное значение. В передачах рейка-шестерня используют общепринятые значения модуля в пределах от 0,5 до 25 мм.

Классы точности зубчато-реечной передачи
Накопленная погрешностьна длине 1м, мм
0,023
0,033-0,040
0,06-0,08
0,070-0,095
0,07-0,10
0,22

В метрической системе расстояние между зубьями рейки измеряется в миллиметрах. Метрическая система применяется в случаях, когда по технологии производства передачи зубчатое колесо подбирается под рейку, а модульная — наоборот, когда зубчатая рейка подбирается под шестерню. Модульная система, соответственно, используется преимущественно в производстве комплектных приводов (серийный мотор-редуктор, шестерня, рейка), а метрическая — для решений в области модернизации или построения нестандартных машин и механизмов.

При вращении зубчатого колеса вокруг неподвижной оси зубчатая рейка перемещается прямолинейно-поступательно при каждом обороте колеса на величину S, равную длине начальной окружности зубчатого колеса (в мм), т. е.:

S = π·d = π·m·z,
где d — диаметр начальной окружности зубчатого колеса, мм;
m — модуль зубчатой рейки, мм;
z — число зубьев колеса.

Вместо зубчатой рейки можно заставить перемещаться зубчатое колесо, в этом случае путь пройдет не зубчатая рейка, а ось реечного зубчатого колеса при перекатывании по неподвижной зубчатой рейке.

Зная число оборотов зубчатого колеса в минуту реечной передачи, скорость, с которой перемещается зубчатая рейка, рассчитывают по формуле:

v =π·D·n/1000 = π·m·z·n/1000
где v — скорость перемещения зубчатой рейки, м/мин;

n — число оборотов в минуту зубчатого колеса.

Формулы для расчета реек
Расчетные формулы
а=20°
не более 20°
mnпринимается конструктивно и определяется расчетом
mt= mn/cosβ
Рn = π·mn
Pt= Рn/cosβ
ha= mn
h = 2,25·mn
b = (2..10) mn
b1= b/cosβ
L= Y·Pt z/360°
у=L·360/ Pt·z

Зубчато-реечные передачи выполняются с прямыми зубьями для работ на малых и средних скоростях, с косыми зубьями для использования на средних и высоких скоростях или когда требуется повышенная точность перемещения.

Базовыми поверхностями рейки называют поверхности, относительно которых задается положение делительной прямой и направление зуба рейки.

По вопросам изготовления реечных передач с прямым и косым зубом обращайтесь в отдел продаж по телефону:

Расчет зубчатого колеса

1. Число зубьев шестерни z=20
2. Модуль m=1,5 мм.
3.Угол профиля α=20°
4. Делительный диаметр d1=z*m=20*1.5=30 мм.
5. Межосевое расстояние между рейкой и колесом а=d1/2=30/2= 15мм.
6. Диаметр вершины зуба da1=d1+2m=30+2*1,5=33 мм.
7. Диаметр впадины зуба df1=d1-2(c+m)=30-2*(0,375+1,5)=26.25 мм.
8. Постоянная хорда ss=1,387*m=2,08 мм.
9. Высота до постоянной хорды hc=0,748*m=1,12 мм.

Расчет рейки

1. Угол профиля зуба рейки α=20°
2. Угол наклона рекомендуется применять не более 20° 3. Модуль нормальный mn=1,5 мм.
4. Модуль основной(торцевой) mt=mn/cоsβ=1,5/cоs20°=1,6 мм.
5.Шаг нормальный pn=π*mn=4,71 мм.
6. Шаг торцевой pt=(π*mn)/cоsβ=5 мм.
7. Высота головки зуба ha=mn=1,5 мм.
8. высота зуба h=2,25*mn=3,375 мм.
9. Ширина рейки b=(2÷10)*mn=12 мм.
10. Рабочая длина нарезаемой части L=25 мм.

(Статья полностью обновлена 19.03.2017.)

Небольшой расчет, представленный далее, предназначен для ориентировочного быстрого определения габаритов зубчатой реечной передачи и её основных силовых и кинематических параметров.

Предложенный ниже алгоритм основан на расчете поверхностной прочности зубьев по контактным напряжениям.

Реечная передача может служить для преобразования вращательного движения шестерни в поступательное движение рейки или вала самой шестерни, а может быть использована для преобразования поступательного движения рейки во вращательное движение зубчатого колеса. Расчет реечной передачи, по сути, аналогичен расчету зубчатой цилиндрической передачи. С математической точки зрения рейка – это зубчатое колесо с радиусом равным бесконечности.

Проектировочный расчет в Excel реечной зубчатой передачи.

Для выполнения расчетов будем использовать программу MS Excel или Calc из бесплатных офисных пакетов Apache OpenOffice или LibreOffice.

Заполняя исходные данные для расчета, пользователь может изменять характеристики используемого для передачи материала, относительную ширину и угол наклона зубьев, нагрузку и скорость.

Схема реечной передачи представлена на рисунке чуть ниже.

Уважающих труд автора прошу скачивать файл с расчетной таблицей после подписки на анонсы статей (подписные формы — в конце статьи и наверху страницы).

Ссылка на скачивание файла с программой: reyechnaya-peredacha (xls 59KB).

Исходные данные:

1. Значение модуля упругости материала передачи E в МПа записываем

в ячейку D3: 215000

Для стали E =215000 МПа.

2. Коэффициент Пуассона материала μ вписываем

в D4: 0,3

3. Твердость поверхности зубьев по шкале C Роквелла HRC вводим

в D5: 27

Для различных режимов термообработки стали HRC ≈17…65.

К примеру, круг из Стали 45 в состоянии поставки имеет твердость около HRC 22.

4. Величину безразмерного коэффициента ширины зубчатого венца шестерни ψ bd заносим

в D6: 0,6

ψbd = b2 / d =0,6…0,4.

5. Угол наклона зубьев β вводим в градусах

в D7: 15,0000

Если проектируемая реечная передача прямозубая, то β =0°.

Если передача косозубая, то β ≈8°…22°.

6. Вращательный момент на валу шестерни T вписываем в Н*м

в D8: 500

Этот момент определяет нагрузочную способность реечной передачи и задается в техническом задании.

7. Скорость центра вала шестерни относительно рейки v в м/с заносим

в D9: 0,050

Скорость определяется из назначения механизма и является одним из пунктов технического задания на проектирование.

Результаты расчетов:

8. Допускаемое контактное напряжение H] в МПа вычисляем

в ячейке D11: =ЕСЛИ(D5 =600,0

При HRC H] =2*127,57*e (0,0266* HRC ) +70

При 38≤ HRC ≤56 H] =18* HRC +150

При HRC ≥56 H] =23* HRC

9. Расчетный делительный диаметр d p в мм вычисляем

в D12: =(2*2*D8*1000*D3/(ПИ()*(1-D4^2)*D11^2*D6*SIN (2*20/180* ПИ())))^(1/3) =102,7

dp ≥(4000* T * E /(π*(1- μ 2 )* H] 2 * ψbd *sin(2* α ) (1/3)

10. Расчетный модуль зацепления m p в мм определяем

в D13: =D12/(17*COS (D7/180*ПИ())^3) =6,70

mp = dp /(17*(cos ( β )) 3 )

11. Выбираем ближайшую к расчетному значению величину модуля m из стандартного ряда, представленного в примечании к ячейке D14, и вписываем

в D14: 6,00

12. Минимальное расчетное число зубьев шестерни z 1 рассчитываем

в D15: =17*COS (D7/180*ПИ())^3 =15,3

z1 =17*(cos ( β )) 3

Число зубьев шестерни определяется из условия отсутствия подрезки ножек зубьев.

13. Назначаем число зубьев шестерни z1 и записываем его

в D16: 17

Рекомендуется назначить число зубьев таким, чтобы делительный диаметр шестерни был не меньше расчетного делительного диаметра.

14. Делительный диаметр шестерни d в мм вычисляем

в D17: =D14*D16/COS (D7/180*ПИ()) =105,598

d = m * z1 /cos ( β )

Если полученное значение делительного диаметра окажется меньше расчетного значения, поле ячейки D15 «подсветится» красным цветом, что заставит пользователя обратить внимание на ошибку и увеличить число зубьев, модуль или угол наклона зубьев.

15. Диаметр вершин зубьев шестерни d a в мм находим

в D18: =D17+2*D14 =117,598

da = d +2* m

16. Диаметр впадин зубьев шестерни df в мм рассчитываем

в D19: =D17-2,5*D14 =90,598

df = d -2,5* m

17. Ширину зубчатого венца шестерни b1 в мм считаем

в D20: =ОКРУГЛ(D21+0,6*D21^0,5;0) =68

b1 b2 +0,6* b2 (½)

18. Ширину зубьев рейки b 2 в мм находим

в D21: =ОКРУГЛ(D17*D6;0) =63

b2 d * ψbd

19. Окружную силу на шестерне Ft в Н рассчитываем

в D22: =2*D8/(D17/1000) =9470

Ft =2* T / d

20. Мощность на валу шестерни P в Вт вычисляем

в D23: =D22*D9 =473

P = Ft * v

21. Частоту вращения вала шестерни n в об/мин определяем

в ячейке D24: =60*D9/ПИ()/(D17/1000) =9,043

n =60* v /(π* d )

Расчет в Excel завершен.

Заключение.

Мы рассмотрели пример, в котором была рассчитана зубчатая реечная передача по упрощенной схеме.

Детальный и полный расчет передачи, учитывающий десяток дополнительных факторов, может позволить на 5%. 10% уменьшить габаритные размеры передачи! Это следует понимать и помнить.

Если требуется уменьшить число зубьев шестерни менее 14-и, необходимо спроектировать и изготовить её возможно не только с наклоном зубьев, но и/или с положительным смещением исходного контура. При этом нужно следить за отсутствием заострения вершин зубьев, производя соответствующую проверку.

Важными параметрами, обеспечивающими плавность работы реечной передачи, являются коэффициенты осевого и торцевого перекрытия. Их значения всегда следует контролировать.

О проверке качества зубчатого зацепления по геометрическим показателям читайте в следующих новых статьях на блоге.

Подписаться на анонсы статей можно через специальные окна, расположенные в конце любой статьи или наверху любой страницы сайта.

Можете оставлять ваши комментарии, уважаемые читатели, ниже этого текста в блоке «Отзывы».

Расчет зубчатой реечной передачи – Энциклопедия по машиностроению XXL

I3. Пример расчета зубчатой реечной передачи  [c.307]

РАСЧЕТ ЗУБЧАТОЙ РЕЕЧНОЙ ПЕРЕДАЧИ  [c.616]

На рис. 6.14 дай алгоритм расчета на ЭВМ зубчатой реечной передачи.  [c.306]

Применяемые на станках реечные передачи преимущественно тихоходные, за исключением строгальных станков, где реечная передача претерпевает ударные нагрузки при сравнительно больших ускорениях стола в период реверсирования. Расчет тихоходных реечных передач ведется аналогично обычным расчетам зубчатых передач, причем рассчитывается реечное зубчатое колесо, как наиболее напряженная деталь этой пары.  [c.616]


Условные графические обозначения на кинематических схемах в ортогональных проекциях установлены ГОСТ 2.770—68 (СТ СЭВ 2519—80). Наглядные пояснения основных из них были даны на рис. 230. Другие обозначения, часто встречающиеся в кинематических схемах, поясняются в этом стандарте. Применяют также наглядные (в аксонометрических проекциях) схемы (рис. 233, сведения, необходимые для кинематических расчетов, не приведены). Преимущества таких схем очевидны более наглядно показана передача с помощью цилиндрических зубчатых колес 7, конических 6, 8 червячные передачи 2, 12 реечная передача с сектором 3 кулисно-рычажная система с диском 5.  [c.277] Особенности расчета зубчатых прямозубых реечных передач.  [c.187]

Расчет показателей точности передач и кинематических цепей. Методы расчета кинематических цепей, состоящих из нерегулируемых зубчатых, червячных и реечных передач, и передачи винт — гайка без учета упругих деформаций элементов этих передач установлены ГОСТ 21098—82. В качестве показателей точности цепи принимают кинематическую погрешность и мертвый ход.  [c.366]


Как уже отмечалось, обычно при точностных расчетах зубчатых передач, а также и реечно-зубчатых передач методом максимума-минимума наибольшую кинематическую погрешность передачи вычисляют путем арифметического суммирования наибольших кинематических погрешностей колеса и рейки  [c.79]

Зубчатая рейка и зубчатое колесо (см. рис. 4, ( ). В этой передаче зубчатую рейку можно представить как часть зубчатого колеса с бесконечно большим делительным диаметром и прямыми профилями зубьев. При вращении цилиндрического зубчатого колеса сопряженная рейка будет перемещаться по прямой перпендикулярно оси зубчатого колеса, преобразовывая таким образом вращательное движение в поступательное. Реечная передача, относящаяся к передаче с параллельными осями, может быть с прямыми и косыми зубьями она проста в расчетах и изготовлении, широко применяется в различных механизмах.  [c.17]

В расчете реечной пары исходным является так называемое тяговое З силие, которое предполагается приложенным к зубу реечного зубчатого колеса. Величина тягового усилия реечной передачи определяется в зависимости от формы направляющих салазок и распределения составляющих сил резания в процессе работы.  [c.617]

По вычисленным значениям тягового усилия определяется мощность подачи, по которой подсчитывается модуль реечного зубчатого колеса, с использованием приведенных выше формул расчетов зубчатой передачи на статическую прочность.  [c.617]

Допускаемые напряжения для реечной передачи определяются общими табличными данными для расчета обычных зубчатых передач.  [c.617]

В обозначениях основных параметров, необходимых для геометрического расчета и выполнения чертежей цилиндрических зубчатых колес (табл. 83. .. 92, рис. 564, 565) и реечных передач, использованы индексы, значения которых таковы  [c.443]

Основные формулы геометрического расчета цилиндрических зубчатых передач, нарезанных инструментом реечного типа, приведены в табл. 9.  [c.226]

Реечный домкрат. Между весом поднимаемого груза и усилием рабочего на рукоятке имеется зависимость, определяемая расчетом (рис. 63) Передаточное число зубчатой передачи  [c.140]

Особенности геометрии зубчатых передач внутреннего зацепления. При одних и тех же параметрах исходного контура и коэффициентах смещения и при одной и той же системе расчета зубья колес, нарезанных долбяками, получаются более высокими, чем зубья колес, нарезанных реечным инстру.ментом.  [c.159]

В первой части справочника содержались указания по выбору коэффициентов смещения (коррекции), формулы для геометрического расчета и альбом блокирующих контуров для зубчатых передач, составленных из колес, нарезанных инструментом реечного типа (червячные фрезы, гребенки, шлифовальные круги и т. д.). Вторая часть содержит аналогичные материалы для передач внешнего и внутреннего зацепления, составленных из колес, нарезанных долбяками. Необходимость выделения этих материалов в особую книгу объясняется теми особенностями геометрии колес, которые вызваны спецификой нарезания их долбяком.  [c.3]

Расчет геометрии цилиндрической зубчатой передачи внешнего зацепления. Инструмент реечный, ГОСТ 3058—54 (а = 20° 7 = 1 = 0,25)  [c.429]

Во втором томе приведены современные справочные сведения по расчету и конструкциям осей, валов, подшипников скольжения и качения, муфт, зубчатых, червячных, реечных, винтовых, цепных, плоско- и клиноременных передач, вариаторов, шарико-винтовых передач, храповых зацеплений и разъемных соединений болтовых, шпоночных и шлицевых.  [c.4]

Примечания t. Допуск на наибольшую иинематическую погрешность реечной передачи определяют по форгауле где ft — по табл. 46 в зависимости от = – – г, — число зубьев рейки па рабочей длине Zl Г — число зубьев зубчатого колеса — по ГОСТ 1643—72 — по табл. 45. 2. Допуск па наибольшую кинематическую погрешность реечной передачи при ее селективной сборке может быть уменьшен исходя из расчета.  [c.304]

Альбом блокирующи.х контуров для передачи с прямозубыми ко/и. сами, изготовленными стандартным реечным инструментом, имеется в справочном руководстве (см. Болотовская Т. П., Болотовский И. А., Бочаров Г. С и др. Справочник по геометрическому расчету эвольвентных зубчатых и червячных передач. М., 1963) и в приложении к стандарту на зубчатые передачи (см. ГОСТ 16530—83, 16531—83, 16532—70). В этом приложении содержатся также рекомендации по выбору ко,эффициентов смещения х, и Хд и порядок геометрического расчета эвольвентной цилиндрической зубчатой передачи внешнего зацепления.  [c.382]


Назначение реечных передач. Виды и достоинства реек

Зубчато-реечная передача представляет собой особый вариант зубчатой передачи, в котором вместо второго зубчатого колеса используется косозубая либо прямозубая зубчатая рейка. Устройства такого типа нашли широкое применение в механизмах и станках, где необходима передача вращательного движения с его преобразованием в поступательное (преобразование крутящего момента и угловых скоростей в линейные величины). Например, в качестве элемента трансмиссии механизм рейка-шестерня служит для преобразования вращательного движения вала мотор-редуктора в возвратно-поступательное и наоборот.

Прямозубые и косозубые зубчатые рейки

Для работы на малой и средней скорости применяются прямозубые зубчатые рейки. В свою очередь косозубая зубчатая рейка применяется там, где необходима высокая точность перемещения, большие или средние скорости работы.

Прямозубые передачи шестерня-рейка

Прямозубые передачи шестерня-рейка могут не только изготавливаться из стали, но и отливаться из чугуна. Такой метод изготовления практикуется там, где нет необходимости в высокой точности смещения, но эксплуатация механизма ведется в условиях сильной запыленности или высоких температур. Рейка и колесу в этом случае имеют шероховатую поверхность, производят сильный шум при движении. Применяется такая реечная передача, преимущественно, в металлургии, причем, рейка устанавливается зубом вниз, а привод и шестерня в специально оборудованной яме.

Косозубая зубчатая реечная пара

Косозубая зубчатая реечная пара при зацеплении способна передавать большее усилие, нежели прямозубая, при работе она производит меньше шума. Изготовление косозубой зубчатой рейки и шестерни требует высокой точности, а установка тонких регулировок. Изначально передача имеет увеличенную площадь контакта за счет расположения зубьев, но по мере истирания их поверхности межцентровое расстояние необходимо смещать. В противном случае нагрузка при изменении угла смещается, и процесс разрушения зубчатого колеса идет очень быстро.

Основные параметры зубчатых передач «шестерня – рейка»

Для зубчато-реечной передачи основным размерным параметром считается шаг (расстояние) между зубьями рейки. Эта величина может рассчитываться двумя способами: по модульной системе либо по метрической системе. Расстояние между зубьями рейки в модульной системе должно рассчитываться по формуле m = D/z, в которой литерой m обзначен модуль пары рейка-шестерня, литерой z — количество зубьев шестерни, а литерой D делительный диаметр шестерни. В последнем случае имеется в виду диаметр окружности, которая проходит через полувысоту зуба шестерни. Для некорригированных зацеплений делительные и начальные окружности совпадают.

Значение модуля передачи рейка-шестерня дробное. Оно представляет собой бесконечную десятичную дробь, и в процессе расчета реечной передачи используется округленное значение этой величины. Общепринятые значения данного параметра могут составлять, как правило, от 0,5 до 25 мм. Расстояние между зубьями рейки в метрической системе мер измеряется в миллиметрах. Для зубчатых передач шестерня-рейка у каждого производителя есть линейка стандартных размеров, что, впрочем, не ограничивает возможности заказа реечной передачи с нестандартными параметрами на отечественных металлообрабатывающих и машиностроительных предприятиях.

Стоит учитывать, что модульная система подбора используется в случаях, когда зубчатая рейка подбирается под шестерню. Такой порядок практикуется, преимущественно, на производстве, где выпускаются комплектные приводы — рейка + шестерня + серийный мотор-редуктор. Если же технология производства передачи предусматривает подбор зубчатого колеса под рейку, применяется метрическая система. Обычно этот способ используют в процессе поиска оригинальных конструкторских решений, реализации ноу-хау, проектирования нестандартного оборудования, приспособлений, машин и механизмов.

Изготовление зубчатых колес и реек

Порядок расчета и базовые характеристики зубчатых механизмов шестерня-рейка регламентируются следующими стандартами: для зубчатого колеса ГОСТ 16532-70, для зубчатой рейки ГОСТ 13755-81, для допусков зубчатой рейки ГОСТ 10242-81. Степень точности при проектировании зубчато-реечной передачи зависит от назначения механизма (кинематический либо силовой) и скорости вращения зубчатого колеса. Расчет прочности выполняется по ведущей шестерне, при расчете руководствуются требованиями ГОСТ 21354-87. При изготовлении реечных передач величины отклонений размеров рейки и колеса заданы в ГОСТ 2789-73, нормы шероховатости — в ГОСТ 2.309-73.

Материалы

Зубчатые рейки и шестерни зубчато-реечных передач обычно изготавливают из стали. При этом для механизмов, которым в процессе эксплуатации не приходится испытывать высокие нагрузки и работать на большой скорости достаточно выбрать углеродистую сталь хорошего качества — например, сталь марок 35, 45, 50. Подойдут также низколегированные стали 35ХГС, 40Х, 40ХН, 40ХНТ и сталь марок 40Г2, 50Г — в их составе повышено содержание марганца. Если передача рейка-шестерня будет эксплуатироваться при повышенных нагрузках, в процессе производства изделие подвергают термической и химикотермической обработке с целью повысить его прочностные характеристики. Кроме того, можно использовать конструкционные и легированные стали.

Точность и прочность

При выборе материала и дополнительных способов обработки для реечной передачи рекомендуется стремиться к тому, чтобы в паре шестерня-рейка у зубчатого колеса твердость боковой поверхности зубьев была больше, чем у рейки, на 3-5ед HRC или на 30-5-ед HD. Это дает хорошую приработку элементов пары, позволяет получить в передаче оптимальное по величине и форме пятно контакта. Машиностроительные предприятия в нашей стране поставляют на рынок цементируемые и объемно-закаливаемые рейки 5-7 степени точности, незакаливаемые рейки 8-9 степени точности в соответствии с ГОСТ 10242-81, длина изделия до 800 мм. Современное оборудование позволяет производить зубчатые рейки длиной 3500 мм и более, в процессе монтажа оборудования рейки можно сращивать со стороны подошвы, что практически не отражается на точности зацепления зубцов.

Плюсы и минусы реечных передач

Причина широкого распространения, которое получили зубчатые рейки и шестерни в машиностроении, заключается в том, что в этих механизмах наиболее удачно сочетаются динамические, нагрузочные и точностные характеристики. Кроме того, несомненным преимуществом реечной передачи является высокая надежность, удобство монтажа и простота конструкции. И, разумеется, веским аргументом в пользу механизма данного типа является возможность перемещения чего-либо на неограниченное расстояние вдоль зубчатой рейки.

Среди недостатков принято называть устаревшую технологию, сильный шум, низкую производительность, необходимость ручной сборки и наладки, слабую точность перемещений, склонность к разрушению зубьев при избыточной нагрузке и даже ограниченность области применения. Но пока зубчато-реечным передачам в этой, пусть ограниченной, области нет альтернативы, они будут выпускаться.

Расчет зубчатой передачи в Excel

Опубликовано 22 Июн 2013
Рубрика: Механика | 104 комментария

Для полного и точного проектировочного расчета зубчатой цилиндрической эвольвентной передачи необходимо знать: передаточное число передачи, крутящий момент на одном из валов, частоту вращения одного из валов, суммарное машинное время работы передачи,…

…тип передачи (прямозубая, косозубая или шевронная), вид передачи (с внешним зацеплением или внутренним), график нагрузки (режим работы – доля времени действия максимальных нагрузок), материал и термообработку шестерни и колеса, схему расположения передачи в редукторе и в общей схеме привода.

На основании вышеперечисленных исходных данных при помощи многочисленных таблиц, разнообразных диаграмм, коэффициентов, формул определяются основные параметры зубчатой передачи: межосевое расстояние, модуль, угол наклона зубьев, число зубьев шестерни и колеса, ширины зубчатых венцов шестерни и колеса.

В детальном алгоритме расчетов — около пятидесяти смысловых программных шагов! При этом часто при работе приходится возвращаться на несколько шагов назад, отменять принятые ранее решения и вновь двигаться вперед, понимая, что, возможно, придется вновь вернуться. Найденные в результате такой кропотливой работы расчетные значения межосевого расстояния и модуля необходимо в конце расчетов округлить до ближайшего большего значения из стандартизованного ряда…

То есть, считали-считали, а в конце — «бац» — и просто на 15…20% результаты увеличили…

Студентам в курсовом проекте по «Деталям машин» такой расчет делать нужно! В реальной жизни инженера, я думаю, это не всегда целесообразно.

В предлагаемой вашему вниманию статье я расскажу как быстро и с приемлемой для практики точностью выполнить проектировочный расчет зубчатой передачи. Работая инженером-конструктором, я довольно часто применял изложенный ниже алгоритм в своей работе, когда не требовалась высокая точность прочностных расчетов. Так бывает при единичном изготовлении передачи, когда проще, быстрее и дешевле спроектировать и изготовить зубчатую пару с некоторым излишним запасом прочности. Используя предлагаемую программу расчета, можно легко и достаточно быстро проверить результаты, полученные, например, с помощью другой аналогичной программы или убедиться в правильности «ручных» расчетов.

По сути, данная статья является в какой-то мере продолжением темы, начатой в посте «Расчет привода тележки». Там результатами расчета были: передаточное число привода, статический момент сопротивления движению, приведенный к валу колеса и статическая мощность двигателя. Для нашего расчета они будут частью исходных данных.

Проектировочный расчет цилиндрической зубчатой передачи будем выполнять в программе MS Excel.

Начинаем. Обращаю  ваше внимание, что материалом для всех зубчатых колес выбираем Сталь40Х или Сталь45 с твердостью HRC 30…36 (для шестерни – «потверже», для колеса – «помягче», но в этом диапазоне) и допустимыми контактными напряжениями [σH]=600МПа. В практике – это наиболее распространенный и доступный материал и термообработка.

Расчет в примере будет выполнен для косозубой передачи. Общая схема зубчатой передачи изображена на представленном далее рисунке.

Запускаем Excel. В ячейках со светло-зеленой и бирюзовой заливкой пишем исходные данные и уточненные пользователем (принятые) расчетные данные. В ячейках со светло-желтой заливкой считываем результаты расчетов. В ячейках со светло-зеленой заливкой помещены мало подверженные изменениям исходные данные.

Заполняем ячейки исходными данными:

1. Коэффициент полезного действия передачи КПД (это КПД эвольвентного зубчатого зацепления и КПД двух пар подшипников качения) пишем

в ячейку D3: 0,931

2. Значение интегрального коэффициента K, зависящего от типа передачи (смотри примечание к ячейке D4), записываем

в ячейку D4: 11,5

3. Угол наклона зубьев (предварительный)  bп в градусах выбираем из рекомендованного диапазона в примечании к ячейке D5 и вводим

в ячейку D5: 15,000

4. Передаточное число uп, определенное в предварительных расчетах,  записываем

в ячейку D6: 4,020

5. Записываем мощность на быстроходном валу передачи P1 в Ваттах

в ячейку D7: 250

6. Частоту вращения быстроходного вала n1 в оборотах в минуту вводим

в ячейку D8: 1320

Программа расчета зубчатой передачи выдает первый блок расчетных параметров:

7. Вращательный момент на быстроходном валу T1  в Ньютонах умноженных на метр

в ячейке D9: =30*D7/(ПИ()*D8)=1,809

T1=30*P1/(3,14*n1)

8. Мощность на тихоходном валу передачи P2  в Ваттах

в ячейке D10: =D7*D3=233

P2=P1*КПД

9. Частота вращения тихоходного вала n2  в оборотах в минуту

в ячейке D11: =D8/D6=328

n2=n1/uп

10. Вращательный момент на тихоходном валу T2  в Ньютонах умноженных на метр

в ячейке D12: =30*D10/(ПИ()*D11)=6,770

T2=30*P2/(3,14*n2)

11. Расчетный диаметр делительной окружности шестерни d  в миллиметрах

в ячейке D13: =D4*(D12*(D6+1)/D6)^0,33333333=23,427

d1р=K*(T2*(uп+1)/uп )^0,33333333

12. Расчетный диаметр делительной окружности колеса d  в миллиметрах

в ячейке D14: =D13*D6=94,175

d2р= d*uп

13. Максимальный расчетный модуль зацепления m(max  в миллиметрах

в ячейке D15: =D13/17*COS (D5/180*ПИ())=1,331

m(max)р=d1р/17*cos(bп)

14. Минимальный расчетный модуль зацепления m(min  в миллиметрах

в ячейке D16: =D15/2 =0,666

m(min)р=m(max)р/2

15. Выбираем модуль зацепления m в миллиметрах из диапазона рассчитанных выше значений и из стандартизованного ряда, приведенного в примечании к  ячейке В17 и записываем

в ячейку D17: 1,250

Далее в диалоговом режиме пользователя и программы определяем следующие основные параметры зубчатой передачи:

16. Расчетная ширина зубчатого венца колеса b  в миллиметрах

в ячейке D18: =D13*0,6=14,056

b2р= d1р*0,6

17. Округляем ширину зубчатого венца колеса b2 в миллиметрах и вводим

в ячейку D19: 14,000

18. Программа определяет ширину зубчатого венца шестерни b1  в миллиметрах

в ячейке D20: =D19+4=18,000

b1=b2+4

19. Далее находится расчетное число зубьев шестерни z

в ячейке D21: =D13*COS (D5/180*ПИ())/D17 =18,1

z1р=d1р*cos(bп)/m

20. Округляем полученное выше значение числа зубьев шестерни z1 и записываем

в ячейку D22: 19

21. Далее по аналогии — расчетное число зубьев колеса z

в ячейке D23: =D22*D6 =76,4

z2р=z1*uп

22. Округленное число зубьев колеса z2 записываем

в ячейку D24: 77

23. Уточняем расчетом передаточное число (окончательное) u

в ячейке D25: =D24/D22=4,053

u=z2/z1

24. Рассчитываем отклонение передаточного числа окончательного от предварительного delta в процентах и сравниваем с допустимыми значениями, приведенными в примечании к ячейке D26

в ячейке D26: =(D25/D6-1)*100=0,81

delta=u/uп-1

25. Далее программа находит расчетное межосевое расстояние зубчатой передачи awр в миллиметрах

в ячейке D27: =D17*(D22+D24)/(2*COS (D5/180*ПИ())=62,117

awр=m*(z1+z2)/(2*cos(bп))

26. Округляем в большую сторону расчетное значение межосевого расстояния зубчатой передачи по стандартизованному ряду, приведенному в примечании к ячейке D28, и вводим окончательное межосевое расстояние aw в миллиметрах

в ячейку D28: 63,000

27. В завершение программа уточняет угол наклона зубьев зубчатой передачи b в градусах

в ячейке D27: =ЕСЛИ(D5=0;0;ACOS (D17*(D22+D24)/(2*D28))/ПИ()*180)=17,753

b=arccos(m*(z1+z2)/(2*aw))

Итак, мы выполнили по упрощенной схеме проектировочный расчет зубчатой цилиндрической передачи, целью которого было определение основных габаритных параметров на основе заданных силовых.

Далее конструктору для выполнения чертежей элементов передачи необходимо выполнить геометрический расчет зацепления. Но это, возможно, тема другого поста.

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

ОСТАЛЬНЫМ можно скачать просто так… — никаких паролей нет!

Буду рад увидеть ваши комментарии, уважаемые читатели.

Ссылка на скачивание файла: raschet-zubchatoi-peredachi (xls 38,5KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Расчет зубчатой ​​рейки и шестерни, как это сделать?

Вернуться к обзору

Рассчитайте реечный привод, как это сделать?
Если вы погрузитесь в это, вы запутаетесь с терминами и формулами, которые очень усложняют ситуацию. Поэтому в этой статье мы постараемся объяснить вам, как сделать такой расчет наиболее простым.

Важный принцип состоит в том, что вы понимаете, что расчет и выбор (рейка, шестерня, коробка передач и двигатель) выполняются методом проб и ошибок: у вас есть хороший шанс, что вам придется снова провести расчеты с другими параметрами, такими как диаметр шестерни или качество (в данном случае – твердость) рейки.

Расчет зубчатой ​​рейки: важные определения

Чтобы прояснить, дадим вам несколько важных определений:

  • Касательная сила или сила подачи.
    Это сила [в Н], необходимая для обеспечения профиля линейного перемещения.
  • Момент.
    Это то, что видит шестерня, и это просто тангенциальное усилие * плечо (радиальная шестерня) [в Нм]. В этом случае F 2T = 2 * T 2B / d.
  • Коэффициент безопасности.
    Apex рекомендует коэффициент безопасности не менее 2 для горизонтальных и 3 для вертикальных приводов.
  • Коэффициент трения.
    Насколько тяжелая – или легкая – работает система? Широко используется значение 0,1 или 0,15.
  • Внешние силы.
    Например: используется ли система для продвижения товаров? Затем эту силу нужно добавить к касательной.

Внимание при выборе зубчатой ​​рейки

Иногда мы путаем вопросы или делаем не совсем верные предположения. Это только усложняет расчет рейки и шестерни.Поэтому имейте в виду следующее:

  • Шестерня примерно с 20 зубьями математически оптимальна с точки зрения касательной силы и люфта системы. Шестерня большего размера обеспечивает больший люфт, шестерня меньшего размера может передавать меньший крутящий момент и имеет более высокий износ.
  • Модуль большего размера НЕ должен означать, что тангенциальная сила выше! Модуль 2 стойки с качеством 5 может передавать более высокую тангенциальную силу, чем модуль 3 с качеством 8!
  • Качество стеллажа – это не только погрешность на метр, но также обработка и твердость.Например, качество 8 имеет лучшую цену, чем качество 10!
  • Люфт вызван взаимодействием ВСЕХ компонентов. Нет смысла брать коробку передач с очень низким люфтом, например, с более крупной шестерней или менее качественной рейкой.
  • Допуски реек и шестерен НЕ стандартизированы, на практике мы часто наблюдаем отклонения. Например, указав общее отклонение на 300 мм вместо 1000 мм. Первые 12 страниц нашего каталога посвящены допускам НАШИХ продуктов, их определению и их ценности.Можно найти ВСЕ допуски, от линейного отклонения до твердости и прямолинейности.
  • Для бесшумного привода с низким люфтом и длительным сроком службы рекомендуется использовать шестерню и рейку от 1 поставщика. Допуски, особенно для винтовых зубцов, очень важны!

Расчет зубчатой ​​рейки: инструмент для расчета

С помощью приведенной ниже таблицы вы можете выполнить расчеты:

Приложение Горизонтальное движение Вертикальное движение
Блок Настройки приложения
Общая масса груза м кг кг
Скорость в м / с м / с
Время разгона та с с
Гравитация г / с 2 / с 2
Коэффициент трения мкм
Шестерня шагового круга г мм мм
Прочие силы F N N
Коэффициент безопасности S B
Формулы
∝ = В / t∝ (м / с 2 ) ∝ = В / t∝ (м / с 2 )
Касательная сила F N F N = M * g * µ + M * a + F (н.) F N = M * g * µ + M * a + F (н.)
Крутящий момент т н T N = (F N * d) / 2000 (Нм) T N = (F N * d) / 2000 (Нм)
Расчетный крутящий момент т НВ T NV = T N * S B (Нм) T NV = T N * S B (Нм)
Макс.шестерня Н В Н В = (В * 19100) / d (об / мин) Н В = (В * 19100) / d (об / мин)

Таблицы находятся в нашем каталоге после сектора шестерен, здесь F 2T и T 2B указаны для различных шестерен и реек. На основании этого и технических характеристик серводвигателя можно рассчитать редуктор.

Поскольку установка зубчатой ​​рейки часто выполняется методом проб и ошибок, нам хотелось бы избавить вас от этих расчетов.Когда мы получаем правильную информацию о приложении, наши клиенты – часто в течение дня – получают лист расчетов, расценки и чертежи STP всех элементов: стойки, шестерни и коробки передач.

Этот лист является основой для выбранных компонентов и может быть частью файла технической конструкции. Мы также можем указать на люфт системы, чтобы его можно было даже оптимизировать.

Итак, если вам нужна система реечного привода или вы хотите, чтобы приложение было рассчитано еще раз, свяжитесь с нами для получения лучшего совета, конкурентоспособного предложения и отличных сроков поставки!

Apex Dynamics поставляет стойки классов 4–10, модули 1–12 и длиной от 500 до 2000 мм.Стандартные шестерни имеют качество 4 или 5, все они закалены и отшлифованы. А с 49 сериями коробок передач мы всегда можем поставить подходящую коробку передач с правильным передаточным числом.

,

Расчет зубчатой ​​рейки и зубчатой ​​рейки

Описание продукта

Расчет зубчатой ​​рейки и зубчатой ​​шестерни

Преимущества зубчатой ​​рейки :

0

Гарантированное превосходное качество

2. Завод напрямую поставляет по конкурентоспособной и разумной цене

3. Длительный и надежный срок службы

4. Упаковка в соответствии с требуемыми спецификациями

5.Положительные отзывы клиентов на зарубежном и внутреннем рынках

6. Профессиональное производство и лучший сервис.

7. Предоставляемые нестандартные / стандартные / OEM / ODM / индивидуальные услуги.

Спиральная и прямая зубчатая рейка и шестерня могут поставляться.

Стойки Mod1.25, Mod1.5, Mod2, Mod2.5, Mod3 – богатый сток.

Название продукта Марка PEK Стойка и шестерня
Номер модуля: M 1.25-M10
Твердость зуба: 50-55HRC
Материал: S45C, SCM440
Обработка зуба: Шлифованный, фрезерованный
OEM: Принято
Твердость Закаленная, закаленная
Тип зуба: Прямой, спиральный
Угол зубца: 20 °
Правый угол: 19 ° 31 ’42 “
Термическая обработка: Индукционная закалка поверхности зуба
Длина: 1000 мм
Погрешность шага / 1000 мм: 0.021

Преимущества использования длинных стеллажей

Благодаря постоянному совершенствованию технологий производства, Jingrui удалось уменьшить общую ошибку шага для стеллажей длиной 1000 мм из закаленной и отшлифованной стали, при этом достигнув значительного сокращения от общей погрешности шага 1500 мм и длиной 2000 мм закаленные и отшлифованные стойки.

Информация о компании

,

Shandong Jingrui Transmission Technology Co ,.Ltd. является профессиональным производителем систем линейного перемещения и компонентов автоматизации.

Завод производит широкий ассортимент линейных направляющих , блоков (кареток) и опорных валов, шариковых винтов и концевых опор, зубчатых реек и линейных подшипников. Линейные рельсы могут быть изготовлены стандартной длины или разрезаны по любому желанию как часть полной сборки.

Shandong Jingrui предлагает универсальные решения для любого приложения управления движением. Неважно, являетесь ли вы разовым пользователем или крупным OEM-производителем, мы можем помочь вам в достижении ваших преимуществ и выбрать наиболее экономичное решение для успешного завершения. ваши задачи автоматизации.

Добро пожаловать, чтобы связаться с нами для обсуждения деталей.

Упаковка и доставка

Упаковка и Стойка для доставки :
1. Упаковка :

1). Внутренняя упаковка: полиэтиленовый мешок, ящик.
2). Наружная упаковка: деревянный ящик или поддон.
3). Также доступна индивидуальная упаковка.


2. Del ивери :
1).Образец: 3-10 рабочих дней после подтверждения оплаты.
Оптовый заказ: 15-20 рабочих дней после сдачи на хранение.
2). Доставка: экспресс (DHL, UPS, TNT, FedEx, EMS и т. Д.) Или морем.

3.P ayment:
1. Образец заказа: Мы требуем 100% T / T заранее. образец срочно требует оплаты запроса клиентов
Оптовый заказ: 30% T / T заранее, баланс T / T перед доставкой.

T / T, Paypal, Western Union приемлемо.

Наши услуги

Наши услуги:
1.Помогите клиенту выбрать правильную модель с помощью чертежей в формате CAD и PDF для справки.
2. Профессиональная команда продаж, сделайте вашу покупку гладкой.
3. В течение гарантийного срока, если возникнут какие-либо проблемы с качеством продукции PEK, после подтверждения мы вышлем новую для замены.

FAQ

Q1: Вы торговая компания или производитель?

A: Мы на заводе.

Q2: Сколько времени занимает ваше время доставки и отгрузки?

1. Время выполнения образца: обычно 7 рабочих дней.
2. Сроки выполнения продукции: 15-20 рабочих дней после сдачи на хранение.

3 кв. Каковы ваши условия оплаты?

A: T / T 30% в качестве депозита и 70% перед доставкой.

Перед оплатой остатка мы покажем вам фотографии продуктов и пакетов.

Q4: Каковы ваши преимущества?

1. Производитель, самые конкурентоспособные цены и хорошее качество.

2. Отличные технические инженеры предоставят вам лучшую поддержку.

3.OEM доступен.

4. Богатый склад и быстрая доставка.

Q5. Если вы не можете найти товар на нашем сайте, что делать дальше?

Отправьте нам запрос с изображениями и чертежами продуктов по электронной почте или другим способом, и мы проверим.

Если вы не можете найти нужные вам продукты, пожалуйста, также свяжитесь с нами, спасибо!

.Расчеты стойки и шестерни

– Купить расчет стойки и шестерни, высокоточная стойка и шестерня с ЧПУ, малые зубчатые колеса и шестерни продукт на Alibaba.com

20 зубьев Используемая винтовая рейка и шестерня

Jinan Kaibo Machinery & Electronics Co., Ltd – высокотехнологичное предприятие , обеспечивающее Платформа решения и покупки

для завода станков с ЧПУ.У нас есть 6000 м2 обрабатывающих и производственный цех, и 4000 м2 склад. Мы находимся

в Цзинане, красивом городе в провинции Шаньдун в Китае. Мы в этой линейке 10 лет. Мы всегда обеспечиваем высокое качество

ЧПУ и первоклассное техническое обслуживание для наших клиентов.

Используемая винтовая рейка и шестерня 20 зубьев

Описание продукта

Отверстие Размер отверстия под штифт Угол наклона по спирали
Прямая стойка 1 м 10 * 12 * 670 мм
Прямая стойка 1.25M 24 * 25 * 670 мм / 1440 мм 11 мм 6 мм
Винтовая стойка 1,25 22 * ​​25 * 670 мм / 1440 мм 11 мм 6 мм 12,5 °

Упаковка и доставка

Преимущество

Наша цель – профессиональное качество литья, услуги для создания стоимости.
Наша миссия: стремиться к глобальному производству и стремиться к глобальному интеллектуальному производству.
Наша бизнес-идея – профессионализм и честность, качественные инновации, совершенство, приверженность ЧПУ.
Ценность нашей услуги заключается в решении проблем, связанных с производством станков с ЧПУ, в реализации комплексного решения по проектированию, закупке, качеству и послепродажному обслуживанию. Таким образом можно сэкономить время, снизить стоимость доставки и повысить эффективность производства.
Если вы производитель оборудования с ЧПУ, мы предоставим максимально удобные услуги по закупке и запасные части для ЧПУ

Веб-сайт: www.kaibo-cnc.en.alibaba.com

Skype: kaibo-4.china1

QQ: 898808904

Контактное лицо: Anything

сделать для вас, пожалуйста, свяжитесь с нами напрямую.

Такие как: цена, гарантия, качество и параметры.

Приглашаем посетить наш сайт и с нетерпением ждем возможности связаться с вами.

,

Горячая продажа расчетов стойки и шестерни по низкой цене

US $ 10.00–200 долларов США / Устанавливать | 1 компл. / Компл. (Мин. Заказ)

Перевозка:
Служба поддержки Морские перевозки
,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *