Расчет трансформатор: Как рассчитать трансформатор, количество витков намотки на вольт. Габаритная мощность трансформатора. Диаметр провода обмотки.

alexxlab | 07.05.2023 | 0 | Разное

Содержание

Как рассчитать трансформатор, количество витков намотки на вольт. Габаритная мощность трансформатора. Диаметр провода обмотки.

В раздел: Советы → Расcчитать силовой трансформатор

Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника – сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток – амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Формула для расчета витков трансформатора

50/S

Сопутствующие формулы: P=U2*I2    Sсерд(см2)= √ P(ва)    N=50/S    I1(a)=P/220    W1=220*N    W2=U*N    D1=0,02*√i1(ma)    D2=0,02*√i2(ma)   K=Sокна/(W1*s1+W2*s2)

   50/S – это эмпирическая формула, где S – площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
   Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
   Если вы планируете намотать трансформатор с достаточно “жёсткой” характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора.

Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.

Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:

1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:
I2 = 1,5 Iн,
где: I2 – ток через обмотку II трансформатора, А;
Iн – максимальный ток нагрузки, А.
2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:
P2 = U2 * I2,
где: P2 – максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 – напряжение на вторичной обмотке, В;
I2 – максимальный ток через вторичную обмотку трансформатора, А.
3. Подсчитываем мощность трансформатора:
Pтр = 1,25 P2,
где: Pтр – мощность трансформатора, Вт;
P2 – максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.
Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.
4. Определяют значение тока, текущего в первичной обмотке:
I1 = Pтр / U1,
где: I1 – ток через обмотку I, А;
Ртр – подсчитанная мощность трансформатора, Вт;
U1 – напряжение на первичной обмотке трансформатора (сетевое напряжение).
5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:
S = 1,3 Pтр,
где: S – сечение сердечника магнитопровода, см2;
Ртр – мощность трансформатора, Вт.
6. Определяем число витков первичной (сетевой) обмотки:
w1 = 50 U1 / S,
где: w1 – число витков обмотки;
U1 – напряжение на первичной обмотке, В;
S – сечение сердечника магнитопровода, см2.
7. Подсчитывают число витков вторичной обмотки:
w2 = 55 U2 / S,
где: w2 – число витков вторичной обмотки;
U2 – напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.
8. Высчитываем диаметр проводов обмоток трансформатора:
d = 0,02 I,
где: d-диаметр провода, мм;
I-ток через обмотку, мА.

Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.

 Таблица 1
Iобм, ma<2525 – 6060 – 100100 – 160160 – 250250 – 400400 – 700700 – 1000
d, мм0,10,150,20,250,30,40,50,6

После выполнения расчетов, приступаем к выбору самого трансформаторного железа, провода для намотки и изготовление каркаса на которой намотаем обмотки.

Для прокладки изоляции между слоями обмоток приготовим лакоткань, суровые нитки, лак, фторопластовую ленту. Учитываем тот факт, что Ш – образный сердечник имеют разную площадь окна, поэтому будет не лишним провести расчет проверки: войдут ли они на выбранный сердечник. Перед намоткой производим расчет – поместится ли обмотки на выбранный сердечник.
Для расчета определения возможности размещения нужного количества обмоток:
1. Ширину окна намотки делим на диаметр наматываемого провода, получаем количество витков наматываемый
на один слой – N¹.
2. Рассчитываем сколько необходимо слоев для намотки первичной обмотки, для этого разделим W1 (количество витков первичной обмотки) на N¹.
3. Рассчитаем толщину намотки слоев первичной обмотки. Зная количество слоев для намотки первичной обмотки умножаем на диаметр наматываемого провода, учитываем толщину изоляции между слоями.
4. Подобным образом считаем и для всех вторичных обмоток.
5. После сложения толщин обмоток делаем вывод: сможем ли мы разместить нужное количество витков всех обмоток на каркасе трансформатора.

Еще один способ расчета мощности трансформатора по габаритам.
Ориентировочно посчитать мощность трансформатора можно используя формулу:
P=0.022*S*С*H*Bm*F*J*Кcu*КПД;
P – мощность трансформатора, В*А;
S – сечение сердечника, см²
L, W – размеры окна сердечника, см;
Bm – максимальная магнитная индукция в сердечнике, Тл;
F – частота, Гц;
Кcu – коэффициент заполнения окна сердечника медью;
КПД – коэффициент полезного действия трансформатора;
Имея в виду что для железа максимальная индукция составляет 1 Тл.
   Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 – магнитная индукция [T], j =2.5 – плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 – 0,33.

Если вы располагаете достаточно распространенным железом – трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
Расшифровка обозначений ОСМ: О – однофазный, С – сухой, М – многоцелевого назначения.
По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.
Что же в этом случае делать?
Имеется два пути решения.
1. Смотать все обмотки и намотать заново.
2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.
При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие – количество витков меньше.

Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год.

  • 0,063 – 998 витков, диаметр провода 0,33 мм
  • 0,1 – 616 витков, диаметр провода 0,41 мм
  • 0,16 – 490 витков, диаметр провода 0,59 мм
  • 0,25 – 393 витка, диаметр провода 0,77 мм
  • 0,4 – 316 витков, диаметр провода 1,04 мм
  • 0,63 – 255 витков, диаметр провода 1,56 мм
  • 1,0 – 160 витков, диаметр провода 1,88 мм

ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма

Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции, параллельное включение вторичных обмоток.

В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное – то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.

Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.
Как подобрать трансформатор?
С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.
Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.
После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.

Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29).
После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.
Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности.
Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток.

Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя.

По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.
Разные вопросы и советы.
   1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной.
   2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса.
   3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата.
   4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода.
   5. При разборке – сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью).

Соединение обмоток отдельных трансформаторов

Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?
Для того чтобы получить от двух трансформаторов постоянное напряжение, к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт.

Силовые трансформаторы, простой расчет — Радиомастер инфо

от admin

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

 

 

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и  токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см2) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см2.

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

N = (50 ÷70)/S (см2)

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

N = 60/13,5 = 4,44

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

D(мм) = (0,7÷0,8)√I(А)

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Расчет трансформатора | EC&M

Примечание. Эта статья основана на NEC 2020 года.

Трансформатор передает электрическую энергию (мощность) от одной системы к другой посредством индукции без физического соединения между двумя системами (кроме заземления и соединения). Таким образом, Национальный электротехнический кодекс (NEC) называет трансформаторы «отдельно производными системами».

Большинство трансформаторов повышают или понижают напряжение, но изолирующие трансформаторы этого не делают; они просто отделяют первичную обмотку от вторичной.

Некоторые основы

Обмотка трансформатора, подключенная к источнику напряжения, является «первичной». Обмотка трансформатора, подключенная к нагрузке, является «вторичной».

Напряжение, которое может индуцироваться во вторичной обмотке первичным магнитным полем, зависит от количества петель (витков) вторичного проводника, разрезаемых первичным электромагнитным полем. Напряжение на первичной стороне — это «первичное линейное напряжение», а напряжение на вторичной стороне — «вторичное линейное напряжение».

Трансформаторы рассчитаны на киловольт-ампер (кВА), где 1 кВА = 1000 вольт-ампер (ВА).

Треугольник и звезда

Трансформаторы, соединенные треугольником, имеют три обмотки, соединенные встык. Линейные проводники подключаются к каждой точке, где встречаются две обмотки. Эта система называется «Дельта», потому что в развернутом виде она выглядит как треугольник (греческий символ «Дельта» для буквы D). Для трансформатора треугольник/треугольник и первичная, и вторичная обмотки соединены треугольником ( Рис. 1 ).

При работе с дельта-трансформаторами не забывайте о «высокой ножке» (см. врезку в конце этой статьи).

Трансформаторы, соединенные звездой, имеют по одному проводу от каждой из трех обмоток, соединенных с общей точкой. Другие выводы от каждой из обмоток подключаются к линейным проводникам. Вторичная обмотка, выполненная по схеме «звезда», часто представлена ​​Y-образным расположением обмоток ( рис. 2 )

Линейные токи

Вы можете рассчитать линейный ток трансформатора, используя соответствующую формулу для однофазных или трехфазных систем:

Однофазный:  I = ВА ÷ E

3-фазный:  I = ВА ÷ (E × 1,732 ) 

Защита от перегрузки по току

Для защиты обмоток трансформатора от перегрузки по току используйте проценты, указанные в таблице 450. 3(B) и соответствующих примечаниях.

Раздел 450.3(B) касается защиты обмоток трансформатора, а не проводников, питающих или выходящих из трансформатора.

Для токов 9А и более, гл. 450.3(B), применяется Примечание 1. Если 125 % первичного тока не соответствует стандартному предохранителю или нерегулируемому автоматическому выключателю, вы можете использовать следующий более высокий номинал устройства защиты от перегрузки по току (OCPD), как указано в гл. 240,6 (А).

Первичная максимальная токовая защита, пример менее 9 А

Вопрос: Каков максимальный первичный номинал OCPD для однофазного трансформатора 240 В с постоянной нагрузкой 2 кВА?

Первичный ток = (Номинальная мощность трансформатора ВА) ÷ (Первичное напряжение)
Первичный ток = 2000 ВА ÷ 240 В
Первичный ток = 8,33 А

Первичная защита = (Первичный ток) × (Таблица 450.3(B) в процентах) 8,33 A × 167 %
Первичная защита = 13,92 A

Первичная максимальная токовая защита более 9 А пример

Вопрос: Какова максимальная первичная номинальная мощность OCPD для 3-фазного трансформатора 480 В с непрерывной нагрузкой 45 кВА ( Рис. 3 )?

Первичный ток =  Номинальная мощность трансформатора ВА ÷ (Первичное напряжение × 1,732)
Первичный ток = 45 000 ВА ÷ (480 В × 1,732)
Первичный ток = 54 А
Первичная защита = 54A × 125%
Первичная защита = 68A

Таким образом, в этой ситуации используйте OCPD на 70A. [Разд. 240.6(A) и таблица 450.3(B), примечание 1]

Размер первичного проводника

Размер первичных проводников должен составлять не менее 125 % длительных нагрузок, плюс 100 % непостоянных нагрузок, исходя из номинальных токов клемм при температуре перечисленных в Таблице 310.15(B)(16), перед любой регулировкой тока [Sec. 210.19(А)(1)].

Защита проводников от перегрузки по току в соответствии с их силой тока после регулировки емкости, как указано в гл. 310,15 [240,4]. Вы можете использовать следующий более высокий стандартный номинал OCPD (выше допустимой нагрузки защищаемых проводников), если номинал OCPD не превышает 800 А [разд. 240.4(В)].

Пример размера первичного проводника

Вопрос: Первичный проводник какого сечения можно использовать для трехфазного трансформатора мощностью 45 кВА с постоянной нагрузкой, 480 В, где первичный OCPD рассчитан на 70 А?

Шаг 1 : Размер первичного проводника должен быть равен 125 % от номинального тока первичной обмотки.

I = 45 000 ВА ÷ (480 В × 1,732) = 54 А

54 А × 1,25 = 68 А

Проводник 4 AWG рассчитан на 70 А при 60°C [Разд. 110.14(C)(1)(a)(1) и табл. 310.15(B)(16)].

Шаг 2 : Убедитесь, что проводники защищены в соответствии с их током [Разд. 240.4].

Проводник 4 AWG с номинальным током 70 А при 60°C может быть защищен первичным OCPD на 70 А.

Сечение вторичного проводника

Сила тока вторичного проводника должна быть как минимум равна номиналу устройства, питаемого вторичными проводниками или OCPD на конце вторичных проводников [разд. 240.21(С)(2)]. Предположим, что вторичные проводники будут непрерывно нести полную мощность трансформатора.

Шаг 1 : Определите номинал устройства, питаемого от вторичных проводников, при 125% вторичного номинала [Разд. 215.2(А)(1)(а)].

Шаг 2 : Размер вторичных проводников должен быть таким, чтобы их допустимая нагрузка была не меньше номинала устройства, обеспечиваемого вторичными проводниками [Разд. 240.21(С)].

Пример размера вторичного проводника

Вопрос: Какой размер вторичного проводника можно использовать для трехфазного трансформатора мощностью 45 кВА с непрерывной нагрузкой, 480–120/208 В?

Шаг 1 : Определите номинальный ток вторичной обмотки.

Вторичный ток = Трансформатор ВА ÷ (Вторичное напряжение × 1,732)
I = 45 000 ВА ÷ (208 В × 1,732)
I = 125 А

Шаг 2 : Определите размер вторичного OCPD для постоянной нагрузки (125 % номинального тока вторичной обмотки) [Разд. 215.3].

125 А × 1,25 = 156 А

Таким образом, в этой ситуации используйте OCPD на 175 А [разд. 240,6 (А)].

Шаг 3 : Размер вторичного проводника должен быть таким, чтобы он имел допустимую нагрузку не менее 175 А вторичного OCPD (Шаг 2) [Разд. 240.21(С)(2)].

Используйте 2/0 AWG номиналом 175 А при 75°C [Разд. 110.14(C)(1)(b) и таблица 310.15(B)(16)]

Заземление и соединение

Системная соединительная перемычка, размеры указаны в сек. 250.102(C) исходя из площади вторичных проводников [разд. 250.30(А)(1) и гл. 250.28(D)(1)], должен быть установлен в том же месте, где проводник заземляющего электрода заканчивается в нейтральной точке трансформатора [разд. 250.102(С)].

Проводник заземляющего электрода должен соединять нейтральную точку отдельной системы с заземляющим электродом типа, указанного в гл. 250,30 (А) (4). Размер проводника заземляющего электрода в сек. 250.66, исходя из площади незаземленного вторичного провода [гл. 250.30(А)(5)].

Как избежать ошибок

Ошибка в расчетах может иметь трагические последствия. Так как же уменьшить вероятность ошибки в расчетах трансформатора?

Математика здесь не особо сложная, но если вы выберете неправильную формулу, ваши результаты будут неправильными, даже если ваши математические расчеты верны. Эти четыре простых шага помогут выбрать правильную формулу для данного приложения:

  1. Дважды проверьте номинал ВА.
  2. Определите первичное и вторичное напряжение, а также однофазное или трехфазное.
  3. Дважды проверьте параметры нагрузки и расчеты.
  4. Убедитесь, что вы использовали правильные формулы. Вот совет, который поможет вам сделать это без остекления глаз: ссылайтесь на неправильные формулы. Например, вы работаете в однофазной системе. Посмотрите на формулу для 3-х фазного. Это то, что вы использовали? Если нет, отлично. Перейдите к следующему элементу и используйте аналогичный процесс.

Эти материалы предоставлены нам компанией Mike Holt Enterprises в Лисбурге, штат Флорида. Чтобы ознакомиться с учебными материалами Code, предлагаемыми этой компанией, посетите сайт www.mikeholt.com/code.


Часто задаваемые вопросы – Schneider Electric

 {"searchBar":{"inputPlaceholder":"Поиск по ключевому слову или задать вопрос","searchBtn":"Поиск","error":"Пожалуйста введите ключевое слово для поиска"}} 

Можно ли смоделировать функциональные блоки PTO в SoMachine Basic?

6.2.1″> Проблема: Можно ли смоделировать функциональные блоки PTO в SoMachine Basic? Линейка продуктов: M221, TM221 Решение: Как и в случае с блоками PID, вы не можете имитировать блоки функций PTO в SoMachine Basic. Вы будете…

Как прочитать переставленные значения с плавающей запятой в Modbus и хочет подтвердить значения, считываемые программным обеспечением, таким как Power Monitoring Expert (PME), с помощью SwappedFloat…

Каков IP-адрес по умолчанию ПЛК M580?

IP-адрес M580 по умолчанию — 10.10.x.x. X.x — это последние два октета MAC-адреса, преобразованные из шестнадцатеричной системы в десятичную.

Прошивки IMC имеют 2 номера версии (vx.x.x.x и vx.xiex). Как узнать…

vx.x.x.x — версия устройства SoMachine vx.xiex — версия микропрограммы на стороне диска SoMachine v3 v1.1ie31 v1.1.2.8 v1.1ie32 v1.1.2.9 v1.1ie36 v1. 1.2.13 v1.1ie38 v1.1.2.15 SoMachine v4: v4.0ie8…

Популярные видео FAQsПопулярные видео

Видео: преобразование проекта ProWORX 32 в Unity Pro

Привод ATV61/71 для 3 проводов…

Видео: Как настроить регистр с помощью ION Setup 3.0

Узнайте больше в разделе «Общие вопросы и ответы» Общие знания

0.0.0″> Проверка сопротивления изоляции и влажности

Проблема: Как влияет влажность результаты проверки сопротивления изоляции? Линейка продуктов: автоматические выключатели Окружающая среда: выключатели в литом и изолированном корпусах Разрешение: высокая влажность может значительно…

В чем разница между PNP и NPN при описании 3-проводных…

Большинство промышленных бесконтактных датчиков (индуктивные , емкостные, ультразвуковые и фотоэлектрические) являются твердотельными. Термин твердотельный относится к типу компонентов, используемых в датчике. Твердотельный…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *