Расчет железа трансформатора тороидального: elektrosat – Расчёт тороидального трансформатора онлайн

alexxlab | 09.06.1990 | 0 | Разное

Содержание

Калькулятор расчета тороидального трансформатора онлайн

Энергосистема опознала нового радиотехника и приветливо моргнула всем домом. А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами. При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один – массогабаритные показатели. Всё остальное – сплошной минус.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Расчет трансформатора на стержневом сердечнике в онлайн
  • Расчет габаритной мощности тороидального трансформатора
  • Способ рассчитать тороидальный трансформатор по сечению
  • Расчет тороидальных трансформаторов
  • Расчет габаритной мощности тороидального трансформатора
  • Уважаемый Пользователь!
  • Расчёт трансформатора на калькуляторе в домашних условиях
  • расчет трансформатора онлайн

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Расчет тороидального трансформатора

Расчет трансформатора на стержневом сердечнике в онлайн


Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД – коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.

Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа.

Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.

В результате получаем необходимые расчетные данные трансформатора, например сечение обмоточных проводов, которые сравниваются со стандартными обмоточными проводами и представляются для дальнейшего расчёта.

Диапазон обмоточных проводов сечением от 0, до 4, мм 2 , всего 63 позиции. На основании имеющихся данных рассчитывается площадь занимаемой обмотками трансформатора, для определения возможности их размещения в окнах трансформатора. Хотелось бы узнать в комментариях ваше мнение, и практические результаты, чтобы если это возможно сделать более качественный расчёт.

Жужгов – Об авторском праве на контент сайта. Статьи электрика. Онлайн расчет обмоток трансформатора Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования.


Расчет габаритной мощности тороидального трансформатора

То есть это даже не фигура, а замкнутая поверхность, имеющая одну общую для любой размещенной на ней точки сторону. Но, если не вдаваться в дебри терминологии, тор — это бублик, или окружность, вращающаяся вокруг некой не пересекающей ее оси, с которой располагается в одной плоскости. Именно в форме такого бублика может быть выполнен трансформатор-тороид. Основная его характеристика — высокий КПД при небольших, в сравнении с другими типами сердечников, размерах.

Помогите с расчётом силового тороидального трансформатора для блока питания В и 25А. Габариты железа: внутренний.

Способ рассчитать тороидальный трансформатор по сечению

Перед конструкторами радиоэлектронной аппаратуры често ставится задача создания таких устройств, которые отличались бы небольшими размерами и минимальным весом. Практика показала, что лучше всего применить трансформаторы с тороидальным магнитопроводом. В сравнении с броневыми сердечниками из Ш-образных пластин они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмотки и повышенным к. В связи с тем, что полный расчет силовых трансформаторов на тороидальных сердечниках слишком громоздок и сложен, приводам таблицу, с помощью которой радиолюбителю будет легче произвести расчет тороидального трансформатора мощностью до ВА. Точность расчета вполне достаточна для любительских целей. Расчет параметров тороидального трансформатора, не вошедших в таблицу, аналогичен расчету трансформаторов на Ш-образном сердечнике. Таблицей можно пользоваться при расчете трансформаторов на сердечниках из холоднокатаной стали Э, Э, Э с толщиной ленты 0,35—0,5 мм и стали , Э, Э с толщиной ленты 0,05—0,1 мм при частоте питающей сети 50 Гц.

Расчет тороидальных трансформаторов

Занимаясь расчетами мощного источника питания, я столкнулся с проблемой – мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы – где найти такой расчет. Прочитал статью ; зная, что ошибки могут присутствовать, я детально разобрался с данной темой.

Коэффициенты заполнения для пластинчатых сердечников указаны в скобках при изоляции пластин лаком или фосфатной пленкой. После того как Вы определились с габаритной мощностью трансформатора, можно приступить к расчету напряжения одного витка:.

Расчет габаритной мощности тороидального трансформатора

Программный онлайн расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета — исходные данные для расчёта, поле жёлтого цвета — данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета — рассчитанное значение. Войти через uID. Войти через uID Старая форма входа.

Уважаемый Пользователь!

Код для вставки без рекламы с прямой ссылкой на сайт. Код для вставки с рекламой без прямой ссылки на сайт. Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор. Калькулятор справочный портал. Избранные сервисы.

Программный (он-лайн) расчет трансформатора, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно.

Расчёт трансформатора на калькуляторе в домашних условиях

Трансформатор является главным узлом сварочного аппарата независимо от его конструкции. Какой требуется намоточный провод? И даже более того — можно учесть текущие реалии нашей действительности такие как, например пониженное напряжение в сети вашего дома.

расчет трансформатора онлайн

ВИДЕО ПО ТЕМЕ: Расчет тороидального трансформатора калькулятор

Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь. Не получили письмо с кодом активации? Фотографии из альбомов пользователей.

Нужны еще сервисы? Архив Каталог тем Добавить статью.

Главная Контакты. Пароль Регистрация Забыли пароль? Схемы на микроконтроллерах Схемы аналоговые Аrduino проекты Технологии радиолюбителя Авто электроника Схемы авто проводки Программаторы Софт для радиолюбителя Библиотека Ремонт и заправка принтеров Онлайн калькулятор для MC Рекомендуемые статьи. Преобразователь интерфейсов RS в RS на доступных деталях схема. Универсальный программатор для практически любых радиостанций схема. Схема очень простого балансира, для правильной зарядки литиевых аккумуляторов.

Коэффициенты заполнения для пластинчатых сердечников указаны в скобках при изоляции пластин лаком или фосфатной пленкой. После того как Вы определились с габаритной мощностью трансформатора, можно приступить к расчету напряжения одного витка:. После определения диаметра провода, следует учитывать, что диаметр провода рассчитывается без изоляции, воспользуйтесь таблицей данных обмоточных проводов для определения диаметра провода с изоляцией. Для отправки комментария вам необходимо авторизоваться.


Онлайн расчет тороидального трансформатора

Коэффициенты заполнения для пластинчатых сердечников указаны в скобках при изоляции пластин лаком или фосфатной пленкой. После того как Вы определились с габаритной мощностью трансформатора, можно приступить к расчету напряжения одного витка:. После определения диаметра провода, следует учитывать, что диаметр провода рассчитывается без изоляции, воспользуйтесь таблицей данных обмоточных проводов для определения диаметра провода с изоляцией. Для отправки комментария вам необходимо авторизоваться. Ваш IP: Радиотехнические калькуляторы


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Расчет габаритной мощности тороидального трансформатора
  • Простой расчет тороидальных трансформаторов (по таблице)
  • Способ рассчитать тороидальный трансформатор по сечению
  • Расчет трансформатора, онлайн калькулятор
  • Расчет тороидальных трансформаторов
  • Расчёт трансформатора на калькуляторе в домашних условиях
  • Уважаемый Пользователь!
  • Расчёт тороидальных и других видов трансформаторов
  • Намотка тороидального трансформатора глазами практика.
    Отделка и крепёж
  • Расчёт тороидальных и других видов трансформаторов

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Трансформатор для чайников. Как узнать,сколько витков на вольт?

Расчет габаритной мощности тороидального трансформатора


Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом. Случается так, что при выходе трансформатора из строя или при самостоятельном изготовлении радиоприборов не получается найти устройство с нужными параметрами серийного производства.

Поэтому приходится выполнять расчёт трансформатора и его изготовление самостоятельно. Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты.

Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов :. В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током.

Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов зарядов. Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле.

Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным. Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их.

При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод сердечник передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила ЭДС.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот. От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе.

Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше.

На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т.

Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник. Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции.

Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны. Зная форму сердечника, несложно рассчитать мощность трансформатора. Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате.

Полученный результат измеряется в ваттах. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник. Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику.

Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:.

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:. Следует отметить, что если конструируется устройство с несколькими выводами во вторичной обмотке, то в четвёртом пункте все мощности суммируются, и их результат подставляется вместо P2.

После того как первый этап выполнен, приступают к следующей стадии расчёта. При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений. Например, мощность магнитопровода Вт, на входе вольт, на выходе требуется получить вольт.

Разница напряжений составляет 20 В, при мощности Вт ток будет равен 12,5 А. Трансформатор имеет одну обмотку на В с отводом на В, который подключён к сети. Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А. Таким образом, автотрансформатор позволяет получить на выходе мощность значительно больше, чем трансформатор на таком же сердечнике при небольшом коэффициенте передачи.

Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются.

В качестве таких данных используются:. Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:. Все значения коэффициентов берутся из справочника радиоаппаратуры РЭА. Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.

Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой.

Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах. По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

Высококачественные трансформаторы широко используются в различных отраслях. Многие мастера ценят такие агрегаты за то, что они достаточно компактны и легки, а вот коэффициент полезного действия находится на высоком уровне. Такие характеристики особенно важны в сварочных аппаратах и стабилизаторах напряжения. Но чтобы такой агрегат исправно работал, нужно правильно рассчитать тороидальный трансформатор. Современные производители занимаются промышленным изготовлением нескольких разновидностей магнитопроводов для трансформаторов — броневого, стержневого, тороидального.

Если сравнивать их эксплуатационные характеристики и сферы использования, то более эффективным можно считать последний вариант. Всё дело в том, что такое устройство обладает исключительно положительными параметрами , благодаря чему активно применяется в современной промышленности.

Высокая производительность и длительный эксплуатационный срок повлияли на то, что сейчас тороидальный трансформатор является базовым элементом в осветительной технике, стабилизаторах напряжения, источниках бесперебойного питания, радиотехнике, а также медицинском и диагностическом оборудовании.

Сами производители утверждают, что такой агрегат представлен в виде однофазной установки, которая может как понижать, так и повышать мощность. Для качественной эксплуатации трансформатор оборудован мощным сердечником с двумя и более обмотками. Но принцип его эксплуатации ничем не отличается от тех моделей, которые оснащены броневой или стержневой намоткой. В независимости от эксплуатационных характеристик, трансформатор — это устройство, главная задача которого основана на преобразовании электроэнергии из одной величины в другую.

Однако даже самые минимальные изменения в конструктивном исполнении могут существенно изменить итоговые размеры и вес электрической установки. Благодаря этому, технико-экономические параметры будут только возрастать. У такого трансформатора магнитопровод имеет форму тороида, иными словами — все кольца отличаются прямоугольным сечением. Уникальные эксплуатационные характеристики высоко ценятся как в бытовых, так и промышленных сферах.


Простой расчет тороидальных трансформаторов (по таблице)

Программный онлайн расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета — исходные данные для расчёта, поле жёлтого цвета — данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета — рассчитанное значение. Войти через uID.

и диаметр провода, то эта программа справится лучше всяких онлайн сервисов. Скачать программу OER для расчёта обмоток трансформатора.

Способ рассчитать тороидальный трансформатор по сечению

Код для вставки без рекламы с прямой ссылкой на сайт. Код для вставки с рекламой без прямой ссылки на сайт. Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор. Калькулятор справочный портал. Избранные сервисы. Кликните, чтобы добавить в избранные сервисы. Расчет трансформатора, онлайн калькулятор позволит вам рассчитать параметры трансформатора, такие как мощность, ток, количество витков и диаметр провода в обоих обмотках, по его размерам, входному и выходному напряжению. Входное напряжение: В Габаритный размер a: см Габаритный размер b: см Габаритный размер c: см Габаритный размер h: см Выходное напряжение: В Трансформатор — это статическое электромагнитное устройство, состоящее из двух или более индуктивно-связанных обмоток, намотанных на общий ферромагнитный сердечник, предназначенное для преобразования напряжения переменного тока посредством электромагнитной индукции.

Расчет трансформатора, онлайн калькулятор

Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50 72х Расчет трансформатора с магнитопроводом типа ШЛ32х50 72х18 показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна.

Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД – коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.

Расчет тороидальных трансформаторов

Высококачественные трансформаторы широко используются в различных отраслях. Многие мастера ценят такие агрегаты за то, что они достаточно компактны и легки, а вот коэффициент полезного действия находится на высоком уровне. Такие характеристики особенно важны в сварочных аппаратах и стабилизаторах напряжения. Но чтобы такой агрегат исправно работал, нужно правильно рассчитать тороидальный трансформатор. Современные производители занимаются промышленным изготовлением нескольких разновидностей магнитопроводов для трансформаторов — броневого, стержневого, тороидального.

Расчёт трансформатора на калькуляторе в домашних условиях

В настоящее время наиболее распространены магнитопроводы следующих типов: Кое-где еще можно встретить Ш-образные плаcтинчатые сердечники, расчет таких трансформаторов аналогичен расчету Ш-образного ленточного. Тороидальный трансформатор может использоваться при мощностях от 30 до Вт, когда требуется минимальное рассеяние магнитного потока или когда требование минимального объема является первостепенным. Имея некоторые преимущества в объеме и массе перед другими типами конструкций трансформаторов, тороидальные являются вместе с тем и наименее технологичными удобными в изготовлении. Исходными начальными данными для упрощенного расчета являются: напряжение первичной обмотки U1; напряжение вторичной обмотки U2; ток вторичной обмотки I2; 1. Расчет трансформатора Расчет габаритной мощности трансформатора При выборе железа для трансформатора надо учитываять, чтобы габаритная мощность трансформатора была строго больше расчетной электрической мощности вторичных обмоток. Другими словами – габаритная мощность трансформатора – это мощность которую способно “вынести” железо. Прежде чем перейти к формуле, сделаем несколько оговорок: Главный качественный показатель силового трансформатора для радиоаппаратуры это его надежность. Следствие надежности – это минимальный нагрев трансформатора при работе иными словами он должен быть всегда холодным!

Упрощенный расчет тороидальных силовых трансформаторов действия) тороидального трансформатора, который определяется по таблице 1.

Уважаемый Пользователь!

В связи с тем, что полный расчет силовых трансформаторов на тороидальных сердечниках слишком громоздок и сложен, приводим таблицу, с помощью которой легко рассчитать тороидальный трансформатор мощностью до Вт. Точность расчета вполне достаточна для любительской практики. Расчет параметров тороидального трансформатора, не вошедших в таблицу, аналогичен расчету трансформаторов на Ш-образном сердечнике.

Расчёт тороидальных и других видов трансформаторов

Расчет тороидального трансформатора. Программный он-лайн расчет трансформатора, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы.

Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом.

Намотка тороидального трансформатора глазами практика. Отделка и крепёж

Если у вас есть трасформаторное железо и вам нужно рассчитать количество витков и диаметр провода, то эта программа справится лучше всяких онлайн сервисов. Просто введите необходимые данные, все расчёты программа произведёт самостоятельно. Вам не нужно брать в руки калькулятор и рассчитывать число витков трансформатора по сложным формулам, за вас всё сделает программа в один клик! Скачать программу OER для расчёта обмоток трансформатора. Когда будете наматывать витки на каркас, вставьте внутрь деревянный брусок, это предотвратит его смятие. Самодельный станок для намотки трансформаторных катушек, с укладчиком и счетчиком витков. Сделай трансформатор сам.

Расчёт тороидальных и других видов трансформаторов

Перед конструкторами радиоэлектронной аппаратуры често ставится задача создания таких устройств, которые отличались бы небольшими размерами и минимальным весом. Практика показала, что лучше всего применить трансформаторы с тороидальным магнитопроводом. В сравнении с броневыми сердечниками из Ш-образных пластин они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмотки и повышенным к. В связи с тем, что полный расчет силовых трансформаторов на тороидальных сердечниках слишком громоздок и сложен, приводам таблицу, с помощью которой радиолюбителю будет легче произвести расчет тороидального трансформатора мощностью до ВА.


Калькулятор расчета трансформатора на ферритовом кольце — Строй Обзор

Содержание

  1. Сайт для радиолюбителей
  2. Маркировка размеров кольцевых сердечников
  3. Расчет индуктивности катушки на тороидальном ферритовом сердечнике
  4. Расчет начальной магнитной проницаемости ферритовых колец по пробной обмотке
  5. Добавить комментарий Отменить ответ

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное — при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание “что-то подправить в консерватории”. Объясняется это желание просто — существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней — просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных — EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.

Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.

Мощность блока
питания, Вт
Размеры кольца, мм ;
(габаритная мощность, Вт)
Количество витков
первичной обмотки
Индуктивность
обмотки, мГн
25R 20×12×6 2000НМ (33,8 Вт)
R 22,1×13,7×6,35 №87 (51,5 Вт)
50R 22,1×13,7×12,5 №87 (100,1 Вт)
R 22,1×13,7×7,9 №87 (63,9 Вт)
R 27×18×6 2000НМ (85,3 Вт)100R 28×16×9 2000НМ (136 Вт)
R 32,0×20,0×6,0 №27 (141 Вт)200R 28×16×18 2000НМ (268 Вт)
R 29,5×19,0×14,9 №87 (297 Вт)
R 30,5×20,0×12,5 №87 (265 Вт)
R 34,0×20,5×10,0 №87 (294 Вт)
R 34,0×20,5×12,5 №87 (371 Вт)
R 38×24×7 2000НМ (278 Вт)400R 36,0×23,0×15,0 №87 (552 Вт)
R 38×24×14 2000НМ (565 Вт)
R 40×25×11 2000НМ (500 Вт)800R 40×25×22 2000НМ (998 Вт)
R 45×28×16 2000НМ (1036 Вт)
R 45×28×24 2000НМ (1580 Вт)1500R 50,0×30,0×20,0 №87 (1907 Вт)
R 58,3×32,0×18,0 №87 (2570 Вт)

Как следует мотать первичную обмотку трансформатора?


Рис. 2 а) б) в) г) д)

Если используются кольца 2000НМ отечественного производителя, то для начала — посредством наждачной бумаги скругляем наружные острые грани до состояния, приведённого на Рис.2 а).

Далее на кольцо следует намотать термостойкую изоляционную прокладку (Рис.2 б). В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, или сантехническую фторопластовую ленту.

Для буржуйских колец фирмы EPCOS первые два пункта практической ценности не имеют.

Настало время намотать однослойную обмотку «виток к витку» (Рис.2 в). Обмотка должна быть равномерно распределена по периметру магнитопровода — это важно!

Если в закромах радиолюбительского хозяйства не завалялся обмоточный провод необходимого диаметра, то обмотку можно намотать сразу в два, или несколько проводов меньшего диаметра (Рис.2 г). Не забываем, что зависимость тока от диаметра квадратичная и если, к примеру, нам надо заменить провод диаметром 1мм, то это будет не два провода по 0,5мм, а четыре (или два провода по 0,7мм).

Ну и для завершения первичного процесса поверх первичной обмотки трансформатора наматываем межобмоточную прокладку — пару слоёв лакоткани или другой изолирующей ленты (Рис.2 д).

А вот теперь мы плавно переходим к выполнению второй части упражнения.
Казалось бы, расчёты количества витков вторичной обмотки импульсного трансформатора настолько банальны и очевидны, что, как говаривал товарищ Мамин-Сибиряк — «яйца выеденного не стоят».
Да только вот опять — не складываются куличики в пирамидку, потому как далеко не каждый источник информации радует ожидаемым результатом. Поэтому для начала приведём формулу зависимости выходного напряжения от соотношения количества витков обмоток:
W1 (Uвх — Uдм1)/2 — Uнас ,
W2 (Uвых+Uдм2)

где Uвх — значение выпрямленного напряжения сети, равное 1,41×220≈310В,
Uдм1 — падение напряжения на входном диодном мосте ≈ 1В,
Uдм2 — падение напряжения на выходном диодном мосте ≈ 1В,
Uнас — напряжение насыщения на ключевом транзисторе ≈ 1,6В.
Подставив значения, получаем конечную формулу W2 = W1×(Uвых+1)/153.
Это формула верна для случаев, когда мы хотим получить расчётное значение выходного напряжения на холостом ходу.
Если же данный параметр нас интересует при максимальном токе нагрузки, то практика показывает, что количество витков вторичной обмотки следует увеличить на 10%.

Теперь, что касается диаметра провода вторичной обмотки трансформатора. Диаметр этот достаточно просто вычисляется по формуле:
D = 1,13× I / J ,
где I — ток обмотки, а J — параметр плотности тока, напрямую зависящий от мощности трансформатора и принимающий для кольцевых сердечников значения:
≈4,5 для мощностей до 50Вт; ≈4 для 50-150Вт; ≈3,25 для 150-300Вт и ≈2,75 для 300-1000Вт.

И в завершении приведу незамысловатый калькулятор для расчёта параметров вторичной обмотки импульсного трансформатора.

Точно так же, как и в случае с первичной обмоткой — вторичная должна быть как можно более равномерно распределена по периметру магнитопровода.

Количество вторичных обмоток ограничено только размерами магнитопровода. При этом суммарная величина снимаемых с обмоток мощностей не должна превышать расчётную мощность трансформатора.

При необходимости поиметь двуполярный источник питания, обе обмотки следует мотать одновременно, затем присовокупить начало одной обмотки к концу другой, а уже потом направить это соединение, в зависимости от личных пристрастий — к земле, средней точке, общей шине, корпусу, или совсем на худой конец — к GND-у.

Ну что ж, с трансформатором определились, пора озадачиться полным джентльменским набором настоящего мужчины — плавками с меховым гульфиком, а главное, непосредственно импульсным блоком питания, оснащённым такими значимыми прибамбасами, как устройства мягкого пуска и защиты от токовых перегрузок и КЗ.
Всё это хозяйство подробно опишем на странице Ссылка на страницу.

Несколько упрощенных формул для расчета обычных и импульсных трансформаторов ИБП и БП.

Упрощенная формула для расчета ферритовых трансформаторов для ИБП.
5760/F(кГц) = К
Sсеч/К = V(вольт) на 1виток

где:
F — частота преобразования в Гц.
S — сечение ферритового магнитопровода в мм.
V — количество вольт на 1 виток
К — коэффициент зависимости от частоты.

Упрощенная формула для расчета обычных трансформаторов 50Гц.
Sсеч.мм*0.0003=V(вольт) на 1 виток
где:
S — сечение магнитопровода в мм
V — кол.вольт на 1 виток

Упрощенная формула для определения сечения круглого обмоточного провода
D х D / 1.27 = Sсеч.мм
где:
D — диаметр провода
S — площадь сечения провода

Упрощенная усредненная формула для расчета необходимого сечения намоточного провода
A / 3.85 = Sсеч.мм
где:
A — номинальный ток нагрузки
S — площадь сечения провода

Пример расчета трансформатора импульсного БП.
Допустим, имеем Ш образный ферритовый сердечник с размерами центрального столбика 11 и 12мм. Необходимо определить площадь сечения магнитопровода.
Перемножаем размеры между собой 11х12=132мм Sсеч=132мм.кв. Один параметр уже есть!
О определяем частоту преобразования ИБП, возьмем к примеру 50кГц. F(Гц)=50кГц это второй параметр!
Теперь нужно определить коэффициент зависимости от частоты К. Берем первую формулу из файла: 5760/F(кГц)=К, подставляем цифры 5760/50=115 Kз.ч.= 115. Мы определили коэффициент зависимости от частоты, он равен 115
Берем вторую формулу из файла S/K=V(вольт) на 1виток. Снова подставляем цифры которые у нас уже есть. 132/115=1.1 вольт на 1 виток, то есть если нам нужно намотать 150В первичку для полумостовой схемы ИБП. Делим 150/1.1=136 витков. Остальные обмотки рассчитываются так же. Допустим нам нужна вторичка 12В, значит 12/1.1=11 витков.

Специально для начинающих: Артур (Левша)

Сайт для радиолюбителей

Маркировка размеров кольцевых сердечников

Сначала цифрами указывается величина начальной магнитной проницаемости, затем марка используемого материала, и потом размер кольца в миллиметрах:

2000НН D x d x h

Где — 2000 величина начальной магнитной проницаемости, НН – марка материала, D – внешний диаметр, d – внутренний диаметр, h – толщина кольца, все размеры в миллиметрах.

Для более простых расчетов стоит воспользоваться оценочными формулами, позволяющими получить приближенные значения параметров катушки по известным характеристикам:

При D1/D2> 1.75При D1/D2

Расчет индуктивности катушки на тороидальном ферритовом сердечнике

Расчет начальной магнитной проницаемости ферритовых колец по пробной обмотке

Равномерно по всему кольцу намотайте не менее 5 витков провода, измерьте индуктивность полученной катушки и заполните предложенную форму.

В качестве эксперимента был взят тороидальный ферритовый сердечник с магнитной проницаемостью 2000 с внешним диаметром 46 мм, внутренним диаметром 28, высотой 8 мм. Намотав равномерно по всему кольцу 17 витков провода была получена индуктивность 444 мкГн (измерена при помощи Е7-21).

Вот результаты расчета по данному примеру:

Обновлено: 27. 04.2017 в 08:24 | Просмотров: 66 614

  • Похожие статьи
  • Простой приемник коротковолновика — Используя микросхемы разработанные для бытовой РЭА можно изготовить несложный приемник для наблюдений за работой радиолюбительских станций. В статье описан вариант на диапазон 160 метров( 1,81…2,0 МГц) Он собран на трех интегральных микросхемах по супергетеродинный схеме и содержит минимум.
  • Приемники прямого усиления (приемник с выходным контуром повышенной добротности) — Приемник предназначен для приема сигналов в диапазоне ДВ(150кГц. 300кГц). Главная особенность приемника в антенне, которая имеет большую индуктивность чем обычная магнитная антенна. Что позволяет применить емкость подстроечного конденсатора в пределах 4. 20пФ, а так же такой приемник обладает.
  • Перестраиваемый малошумящий антенный усилитель — Данный усилитель обеспечивает усиление в зависимости от частоты — 18(50МГц) до 14(230МГц)дБ. В нем применен малошумящий полевой транзистор, что обеспечивает высокую чувствительность. Входной контур образован индуктивностью L1 и емкостями варикапов, диодов и транзистора, обеспечивает частотную.
  • Коротковолновый усилитель мощности — Применение автоматической регулировки тока покоя лампы по огибающей однополосного сигнала позволяет значительно снизить его и приблизить режим работы усилителя к идеальному. Вторым, не менее важным, узлом в усилителе является стабилизатор напряжения экранной сетки, которому в любительском.
  • Адаптер для питания ноутбука в автомобиле — Преобразователь может питаться от 10В до 15В, на выходе 19В при максимальном токе 2,5А. Так же есть схема защиты входного напряжения от падения его ниже 10В. Контроллер импульсов переменной скважности выполнен на UC3843(А1). Выходные импульсы поступают на затвор мощного ключевого полевого.

Добавить комментарий

Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Тороидальный калькулятор Amidon (железный порошок)

Категории

  • Проекты (антиквариат)
    • ENVICO : Система мониторинга параметров окружающей среды
      • Базовый блок ENVICO: «мозг»
      • Температурный адаптер ENVICO
      • Адаптер барометра ENVICO
      • Адаптер влажности ENVICO
      • Адаптер освещенности ENVICO
      • Адаптер излучения ENVICO γ
      • База облаков / Расчет точки росы
      • Программное обеспечение ENVICO Data Hijacker
      • Дисплей ENVICO @ Thingspeak. com
    • Волновой проигрыватель Eprom
    • Частотомер • Аксессуары
      • Частотомер CETH-60
      • DIY Mini VHF Частотный дисплей
      • Предусилитель
      • Предварительный делитель: 1000/1,5 ГГц
      • Предварительный делитель: 1000/12 ГГц
      • Предварительный делитель: 1000/17 ГГц
      • Предварительный делитель: счетчик 1000/24 ​​ГГц (Arduino)
      • Рубидиевый эталон частоты Efratom LPR101
      • ОСХО 10 МГц
      • Daramod – Усилитель-распределитель 10 МГц
    • Генератор функций
    • (с XR2206)
    • Синтезатор УКВ с AD9859 :: RF-2859
    • Приемник радиодиапазона VHF с Si570 и AD8361
    • Измеритель кривой (простой)
    • Измеритель кривых (расширенный)
    • Генератор сигналов DCF-77 (устаревший)
    • Синтезатор DCF-77. С Ардуино. Он же “ТаймДуино”
    • Логарифмический усилитель с AD8307
    • Усиление – Фаза – Адаптер с использованием AD 8302
    • RFID
      • Считыватель RFID 125 кГц (устарело)
      • Считыватель RFID 125 кГц: CoffeeDuino
      • Устройство считывания/записи RFID, 13,56 МГц
  • Микропроекты • Инструменты
    • Светодиодный панельный измеритель Atmega8 (U,I,°C,°F)
    • Счетчик клиентов Corona для магазина/места
    • ЖК-адаптер • Интерфейс
    • Микрофонный предусилитель
    • ПОВОРОТНЫЙ ЭНКОДЕР (STEC11B03)
    • SDRSharp и флешка DVB-T: анализатор спектра за 20 евро?
    • Датчик магнитного поля до 3 ГГц
    • UART-мост RS232 (ST232CDR)
    • UART — USB-мост (MCP2200)
    • Мост UART — ETHERNET (LANTRONIX XPORT)
    • USB — инфракрасный трансивер
    • USB-PLL/DDS-интерфейс
  • проектов Arduino • Экраны
    • Анализатор спектра • Измерительный приемник
      • А DC-19Анализатор спектра 9 МГц VISIONARY с Si4432
      • Анализатор спектра 15–2700 МГц с RF Explorer 3G+
      • Levelmod – Измеритель мощности микроволн от постоянного тока до дневного света
      • Интеллектуальный микродатчик мощности — с AD8319, TMP101
      • Polarmod — IQ-процессор с AD9958
      • Wacharamod – FM-стереоприемник с TEA5767
      • Wanmod, частотно-селективный измеритель уровня, 29,999 МГц
    • Частотомер • Эталон частоты
      • Countermod — счетчик частоты 1 ГГц
      • Daramod – GPS-приемник 10 МГц с NEO-7N
      • Daramod – Усилитель-распределитель 10 МГц
      • Standardmod – A 10,000000 МГц OCXO
    • Генераторы низкой частоты (AF)
      • Kilomod – Генератор TTL PWM 15 мГц . .. 5 кГц
      • Mannmod – Генератор PRBS (скоро)
      • Генератор сигналов Micro USB — с AD9833
    • Высокочастотный (РЧ) синтезатор
      • Kumod – Синтезатор 1 МГц … 200 МГц с AD9958
      • Micromod – Синтезатор 220 МГц с Si570
      • Macromod — синтезатор 850 МГц с LMK61E2
      • Ningmod – ВЧ-синтезатор с AD9953 + коллеги
      • Supermod — синтезатор 23,5–6000 МГц с MAX2871
      • Teramod – Синтезатор от 2 до 15 ГГц
      • Ultramod – Синтезатор 9,9–3200 МГц с Si564
    • Блоки питания • Стандарты напряжения
      • Самроимод – Блок питания 32 В / 1 А
      • Sungmod – Блок питания 270 В / 1 мА
      • Supplymod — Блок питания 20 В / 2 А
      • Thormod, блок питания для фотодиодов
    • Измерительные приборы • U • I • P
      • Nuumod — микровольтметр с LTC2400
      • Pingumod – монитор мощности с INA260
    • Радиопереключатели • Аттенюаторы
      • Switchmod (RF), двойной переключатель SPDT RF с PE4250
    • Что это вообще за “. .. мод”?
    • Дополнительные компоненты для всех модов
    • Прочие шилды для Arduino
      • Экран BHUMI : Эталон напряжения, программируемый
      • CALC-DUINO, простая защита карманного калькулятора (MAX7219)
      • ЧАСЫ-DUINO, часы, чтобы показать моим учителям 🙂
      • Щит FLO : Регистратор данных окружающей среды, он же ENVICO light
      • Экран FLO : Отображение результатов измерения
      • Shield LEO : SMS при отключении питания
      • Shield NRVD : Двойной измеритель мощности УВЧ
      • Shield MARCELLA : Управляйте лабораторными устройствами
      • Экран RENÉ : Источник опорного напряжения, он же REFDUINO
      • Щит ТАНАЧАЙ : Анализатор характеристик транзистора
      • Shield TOBI : скалярный сетевой анализатор 60 МГц, 80 дБ
      • Надстройка BRUNO : Универсальный тестер аккумуляторов (зарядка/разрядка)
  • Финальные проекты Arduino: IPA
    • Ipamod 2022: высокоточный цифровой измеритель емкости
  • База знаний Arduino
    • Фрагменты кода Arduino
    • Обзор I 2 C Адреса
  • Bluepill • Проекты Blackpill
    • Millimod — синтезатор звуковой частоты с AD9102
  • Подростковые проекты
    • Suthimod – Анализатор радиочастотных антенн
  • лабораторных экспериментов Python 🐍
    • Основы, например, «Привет, Ардуино» и т. д.
    • Долгосрочная регистрация данных в файл (Wanmod)
    • Испытательный стенд VCO (Supplymod, Levelmod, Countermod)
    • Амплитудная характеристика Полоса пропускания 10,7 МГц (Ningmod, Wanmod)
    • Частотный спектр ВЧ-диапазонов (Wanmod)
    • Печенье • Панировочные сухари
      • Развертка частоты с Ningmod
  • Источники питания
  • • Расчеты
    • Искусственный грунт
    • Характеристика источника питания
    • Конструктор источников питания: исправление
    • Конструктор источников питания: Линейный регулятор
    • Галерея источников питания (база данных опыта)
    • Измерения пульсаций и шума источника питания
    • Еще один калькулятор LM317
    • Поиск делителя напряжения обратной связи (LM2576 и т. д.)
    • Высоковольтный источник питания (MC34063, повышающий)
    • Низковольтный источник питания (MC34063, понижающий)
    • VB 408 Замена
    • Leomod, блок питания ±15 В, 1 А
    • Powermod, блок питания с LM317/LM337
    • Самроимод – Блок питания 32 В / 1 А
    • Sungmod – Блок питания 270 В / 1 мА
    • Supplymod — Блок питания 20 В / 2 А
    • Thormod, блок питания для фотодиодов
    • Источник питания PETH-6 • ± 15 В, 100 мА
    • Блок питания PETH-6 • +7,5 В, для Arduino / Genuino
    • Источник питания PETH-20 • ± 15 В, 600 мА
    • Источник питания PETH-30
    • PETH-40 B3 Блок питания ±15 В, 1200 мА
    • Источник питания PETH-40-HAM • ± 15 В, 1,5 А
    • Источник питания PETH-49 • 1 . .. 19 В, 2 А
    • PETH-200V – Источник питания высокого напряжения
    • Источник питания PETH-581 • Понижающий преобразователь. с линейным дожигателем
    • Источник питания PETH-1074 • Понижающий с помощью LT1074
    • PETH-8093 Источник питания • Понижающее и линейное регулирование
    • PETH-9910 Источник питания • 8 … 16 В, 10 А
  • Конструкция усилителя • Усилители
    • Калькулятор смещения усилителя MAR, ERA, GALI
    • Конструктор буферного усилителя BJT (смещение обратной связи коллектора)
    • Конструктор буферных усилителей BJT (базовая сеть смещения)
    • Конструктор буферного усилителя BJT (смещение обратной связи по напряжению)
    • Конструктор буферного усилителя BJT (смещение обратной связи эмиттера)
    • Широкополосный ОВЧ-усилитель мощности, 3 … 540 МГц, 1,5 Вт
    • Широкополосный предусилитель УВЧ, > 3 ГГц, 20 дБ, NF 2,4 дБ
    • Широкополосный измерительный усилитель
    • Широкополосный усилитель мощности, 1 Вт, от 2 до 2500 МГц
    • Sojamod, ВЧ-усилитель с уровнем усиления 20 дБ и частотой более 1,5 ГГц
  • Схемы операционных усилителей • Знания
    • Каскадные операционные усилители для увеличения пропускной способности
    • Максимальная пропускная способность для каскадных операционных усилителей
    • Вопросы скорости нарастания
    • Максимальное выходное напряжение в зависимости от частоты
    • Выбор подходящего операционного усилителя для управления АЦП (SAR ADC)
    • Драйвер АЦП с биполярного напряжения на униполярное напряжение
    • Цепь ЦАП с однополярным напряжением на биполярное напряжение
    • Дифференциальный усилитель
    • Инвертирующий усилитель
    • Инвертирующий компаратор с гистерезисом • Триггер Шмитта
    • Неинвертирующий усилитель
    • Неинвертирующий компаратор с гистерезисом • Триггер Шмитта
    • Суммирующий усилитель
    • Вспоминая Роберта А. Писа, также известного как «RAP»
  • Антенный конструктор 📡
    • Руководство по выбору антенны
    • Конструктор антенн Vivaldi Antipodal
    • Bi-Quad Антенный конструктор
    • Галстук-бабочка • Крыло летучей мыши • Дипольный калькулятор бабочки
    • Калькулятор антенны
    • Конструктор дискоконусных антенн
    • Дипольный калькулятор – сложенный
    • Дипольный калькулятор – прямой
    • Антенный калькулятор HB9CV
    • Калькулятор антенны Helix
    • Антенна Helix с калькулятором соответствия
    • J-образная антенна
    • Конструктор наземных самолетов Lambda/4
    • Калькулятор логарифмической периодической дипольной антенны
    • Калькулятор микрополосковой патч-антенны
    • Вокатенна Дизайн
    • Конструктор антенн Yagi Uda (техническое примечание NBS 688)
    • Конструктор антенн Yagi Uda (Rothammel/DL6WU)
  • Конструктор фильтров (аудио, AF)
    • Фильтры нижних частот
      • Фильтр нижних частот Бесселя 24 дБ/октава
      • Фильтр нижних частот Баттерворта 24 дБ/октава
      • Фильтр нижних частот Linkwitz 24 дБ/октава
      • Саллен-Ки Lowpass
    • Полосовые фильтры
      • Руководство по проектированию полосового фильтра
      • Полосовой фильтр Бесселя 4-го порядка
      • Полосовой фильтр Баттерворта 4-го порядка
      • Полосовой фильтр Чебышева 4-го порядка
      • Полосовой фильтр Делияниса
      • Узкополосный фильтр
      • Ленточный фильтр Sallen-Key
      • Простой полосовой фильтр
    • Фильтры высоких частот
      • Фильтр высоких частот Бесселя 24 дБ/октава
      • Фильтр высоких частот Баттерворта 24 дБ/октава
      • Фильтр верхних частот Linkwitz 24 дБ/октава
      • Саллен-Ки Highpass
    • Полосовые режекторные фильтры • Режекторные фильтры
      • Калькулятор узкополосного фильтра Bainter
      • Режекторный фильтр Fliege
      • Двойной Т-образный режекторный фильтр
  • Конструктор фильтров (радио, радио)
    • Фильтры нижних частот
      • Фильтр нижних частот Баттерворта
      • Фильтр нижних частот Чебышева
      • Фильтр нижних частот с константой K
      • Коаксиальный фильтр нижних частот со ступенчатым импедансом Designer
    • Полосовые фильтры
      • Полосовой фильтр Баттерворта
      • Керамические полосовые фильтры
      • Полосовой фильтр Чебышева
      • Конструкция полосового фильтра Combline
      • Коаксиальный бак V. H.F. (Полосовой) Конструктор фильтров
      • Полосовой фильтр с постоянной К
      • Дизайн кристаллического фильтра #0: купите много кристаллов 🙂
      • Конструкция кристаллического фильтра № 1: измерение данных замены
      • Схема кристаллического фильтра № 2: расчет лестничного фильтра
      • Схема кристаллического фильтра №3: ​​проверка результатов
      • Конструктор полосовых фильтров резонатора с прямой связью
      • Конструктор спиральных полосовых фильтров
      • Межштыревой полосовой фильтр
    • Фильтры высоких частот
      • Фильтр верхних частот Баттерворта
      • Фильтр верхних частот Чебышева
      • Фильтр верхних частот с константой K
    • Полосовые режекторные фильтры • Режекторные фильтры
      • Фильтр Butterworth Bandstop (Notch)
      • Режекторный режекторный фильтр Чебышева
      • Дизайнер коаксиальных узкополосных режекторных фильтров
  • PLL, VCO, DDS, генераторы
    • Модуль АПД 4350
    • Источник опорной частоты 100 МГц, привязанный к 10 МГц
    • Дополнительный модуль опорной частоты 100 МГц, форм-фактор DIL-28
    • Универсальная плата VCO – MC100EL1648DG и PGA-103+
    • Универсальная плата XCO/PLL — NB3N501/502/511
    • Осциллятор блокировки впрыска с PLL (и NB3N502)
    • МЭМС-генераторы — SiT8008/SiT8208/SiT8209
    • Синтезатор DDS – с AD9851, ≈70 МГц
    • Дочерняя плата DDS с низким уровнем шума — с AD9859, ≈ 160 МГц
    • ВЧ эталонный источник — для калибровки измерителя мощности
    • 4046 Калькулятор ГУН
    • Мини-синтезатор с 74HCT9046A
    • Конструктор контурных фильтров PLL, 2-й и 3-й порядок
    • Калькулятор делителя PLL
    • Осциллятор NE 555
    • NE 555 Монофлоп
    • RC HCT Инверторный генератор
    • Генератор венского моста
    • Коллекция схем: генераторы
  • Микшер • Частот. Преобразователи
    • Как измерить характеристики смесителя
    • A Mixer Tinker Board с почтенным NE/SA 612
    • Универсальный преобразователь частоты с Si564
    • Широкополосный фазовращатель для приложений микширования IQ (ECL)
    • Радиочастотный фазовращатель для приложений IQ-микширования (LVC)
  • Шумные вещи
    • Шум • Введение
    • Расчет каскадного коэффициента шума
    • Самодельный источник шума с BFR92
    • Самодельный источник шума с 2 разъемами BGA2869 (60 дБ) и сопротивлением 50 Ом
    • Что это вообще за ENR?
    • Как измерить коэффициент шума с помощью метода Y-фактора
    • Как измерить коэффициент шума с помощью метода усиления
    • Как измерить уровень шума вашего анализатора спектра
  • RF Toolbox, версия 3599
    • Бустер (Усилитель) для Red Pitaya e.a.
    • Связанный резонатор L-C Bandpass
    • Блок постоянного тока
    • Эквалайзер • Наклон – компенсатор
    • Первопроходец
    • Фильтр нижних частот, 9-полюсный, L-C
    • Предварительный делитель :2 :4 :8 :10 :20 :40 :80 MC12093 MC12095 MC12080
    • Арифметический блок квантового компьютера: сумматор
    • Арифметический блок квантового компьютера: вычитатель
    • Арифметический блок квантового компьютера: инвертор
    • Арифметическая единица квантового компьютера: множитель
    • Арифметический блок квантового компьютера: Делитель
    • Разделение резистивной мощности, постоянный ток – 3000 МГц, 9,5 дБ, 3 канала
    • Ограничитель напряжения (скоро)
  • Компоненты • Сети
    • Резисторы, NTC
      • Цветовой код резистора (декодер:-) :: 4 КОЛЬЦА
      • Цветовой код резистора (декодер:-) :: 5 КОЛЬЦЕВ
      • Цветовой код резистора (декодер:-) :: 6 КОЛЬЦЕВ
      • Основы NTC
      • Найти параллельную комбинацию резисторов
      • Найти серийный номер Комбинация резисторов
      • Калькулятор делителя напряжения 1 (фиксированный)
      • Калькулятор делителя напряжения 2 (регулируемый)
    • Конденсаторы
      • Калькулятор дисковых воздушных конденсаторов
      • Калькулятор импеданса: XL, XC
    • Катушки индуктивности, трансформаторы
      • Согласование импеданса широкополосного доступа с трансформатором
      • Тороидальная ферритовая катушка (Amidon)
      • Калькулятор спиральных катушек
      • Калькулятор импеданса: XL, XC
      • Тороидальная катушка из железного порошка (амидон)
      • Конструкция силового трансформатора
      • :: EI • M Core
      • Калькулятор индуктивности проводов
    • Направленные ответвители
      • Самодельный двунаправленный ответвитель, 5–1500 МГц, 10/20 дБ
      • A Самодельный двухнаправленный ответвитель, 5–2850 МГц, 17 ±1 дБ
      • Понимание направленности
      • Как измерить направленность направленных ответвителей
    • микрополосковая
      • Микрополосковый калькулятор импеданса
      • Калькулятор микрополоскового угла 90°
    • Сети (в основном РФ)
      • Коаксиальный разъем питания
      • Диплексер Bandpass
      • Диплексер нижних частот
      • Калькулятор балуна с сосредоточенными элементами
      • Соответствующая сеть
      • Калькулятор согласованного аттенюатора
      • Калькулятор нижних частот ШИМ в постоянный ток
      • Резистивная согласующая сеть, L-Pad
      • Резистивный делитель равной мощности
      • Резистивный неравный делитель мощности
      • Уилкинсон Power Split
    • Коаксиальный кабель Калькулятор
    • Диэлектрический коаксиальный резонатор
    • Калькулятор радиатора
  • конверсий
    • Добавление нескольких операторов связи
    • AWG • Преобразование в метрические единицы
    • Коэффициент шума • Темп.
    • Преобразователь коэффициента отражения в импеданс
    • Конвертер КСВ в возвратные потери (дБ)
    • Конвертер обратных потерь (дБ) в КСВН
    • Преобразование мощности: дБм – вольты – ватты
    • Преобразователь фазового шума в фазовый джиттер
    • Преобразователь фазового джиттера в фазовый шум
    • Конвертер
    • ppm в Гц
  • разное Расчеты
    • Патлосс / RSSI
    • Потеря несоответствия
    • Калькулятор IP3/SFDR
    • IP3, IP2, 1 дБ комп. Визуализатор SFDR
    • Ящик диаграммы SOA (визуализатор зоны безопасной работы)
  • Оборудование • Программное обеспечение 💾
    • Самодельная подставка для SMD-жал
    • Обязательное избранное (Windows)
    • Инструменты CodeVisionAVR • Фрагменты
      • ЖК-генератор кодов пользовательских символов
  • Спецификации • Руководства
    • Техническое описание Коллекция наших проектов
    • Руководства по обслуживанию FLUKE
    • Руководства по обслуживанию HP
    • Документы Чанпуака
    • Коллекции инженерных формул / Полезности
  • Учебники • DHE
    • Выберите правильный предохранитель (не путайте 🙂
    • Сделайте свою переднюю панель с помощью Gedakop®
    • Клиррфактор
    • Среднее время наработки на отказ • Вопросы надежности
    • Семинар по ФАПЧ
      • Семинар №1 по PLL — Теория
      • Семинар №2 по PLL — расчеты контурных фильтров
      • PLL Семинар №3 — Моделирование с помощью LTSpice
    • Коллекции инженерных формул / Полезности
    • Доктор Хэт Электроникс
  • Устранение неполадок • Ремонт 🔧
    • DS1307 (I2C RTC) отображает 165. 165.XXX
    • Вскрытие Thorlabs PDA8GS
    • UT803 :: Давайте серийный номер
    • UT803 :: Давайте поговорим об Arduino/Genuino
    • Проблема с этим Foldback Ограничение тока

Статистика

С 08.08.2014
Учитывается только, если “DNT = отключено”.


Ваш IP 161.97.168.212
vmi1024469.contaboserver.net

Внимание!

Все расчеты выполняются с помощью Javascript. Вы его отключили, поэтому они не работают.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Информация

เรา จะ ทำ แบบ วิศวกร ผู้ ยิ่ง ใหญ่

9. Октябрь 2022

Ваше ценное мнение:

amidon_toroid_calculator.php    24274 байт    21-12-2021 15:49:20



Калькулятор тороидов Amidon


Железный порошок

✈ Загрузки


✈ Поделитесь своими мыслями


✈ Обычный webmastere не читает эти комментарии.
✈ Срочные вопросы следует отправлять по электронной почте.

расчеты тороидального трансформатора с железным сердечником

Добро пожаловать на EDAboard.com

Добро пожаловать на наш сайт! EDAboard.com — это международный дискуссионный форум по электронике, посвященный программному обеспечению EDA, схемам, схемам, книгам, теории, документам, asic, pld, 8051, DSP, сети, радиочастотам, аналоговому дизайну, печатным платам, руководствам по обслуживанию… и многому другому. более! Для участия необходимо зарегистрироваться. Регистрация бесплатна. Нажмите здесь для регистрации.

Регистрация Авторизоваться

JavaScript отключен. Для лучшего опыта, пожалуйста, включите JavaScript в вашем браузере, прежде чем продолжить.