Самая низкая теплопроводность у: Низкая теплопроводность утеплителя PIR-плита | Купить плиты PIR
alexxlab | 31.07.1993 | 0 | Разное
Ученые открыли материал с самой низкой теплопроводностью
https://ria.ru/20210715/teploprovodnost-1741391973.html
Ученые открыли материал с самой низкой теплопроводностью
Ученые открыли материал с самой низкой теплопроводностью – РИА Новости, 15.07.2021
Ученые открыли материал с самой низкой теплопроводностью
Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это… РИА Новости, 15.07.2021
2021-07-15T21:00
2021-07-15T21:00
2021-07-15T21:00
наука
технологии
великобритания
химия
физика
/html/head/meta[@name=’og:title’]/@content
/html/head/meta[@name=’og:description’]/@content
https://cdnn21.img.ria.ru/images/07e5/07/0f/1741376784_0:401:1392:1184_1920x0_80_0_0_e989180d69619a141bcde475f93aa833.jpg
МОСКВА, 15 июл — РИА Новости. Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это открытие будет иметь решающее значение для разработки термоэлектрических материалов нового поколения. Результаты исследования опубликованы в журнале Science.Примерно семьдесят процентов всей энергии, производимой в мире, расходуется в виде тепла. Для сокращения этих потерь необходимы материалы с низкой теплопроводностью. Разработка новых и более эффективных термоэлектрических материалов, которые могут преобразовывать тепло в электричество, считается ключевым вопросом перехода на источники чистой энергии.Исследователи из Ливерпульского университета вместе с коллегами из Университетского колледжа Лондона, британской национальной лаборатории Резерфорда — Эплтона и французской лаборатории кристаллографии и материаловедения CRISMAT путем дизайна на атомном масштабе создали новый материал, обладающий уникально низкой теплопроводностью.Материал объединяет две разные атомные структуры, каждая из которых замедляет скорость передачи тепла сквозь твердое тело. Самой сложной задачей было соединить обе структуры в одном материале, так как для этого нужно точно контролировать расположение каждого атома.
Подбирая экспериментальным путем химические варианты различных атомных расположений, ученые интуитивно ожидали получить среднее значение физических свойств двух компонентов, но синергетический эффект превзошел их ожидания.”Обнаруженный нами материал имеет самую низкую теплопроводность среди всех неорганических твердых тел и проводит тепло почти так же плохо, как воздух”, — приводятся в пресс-релизе Ливерпульского университета слова руководителя исследования профессора Мэтта Россейнски (Matt Rosseinsky).Если принять теплопроводность стали за единицу, то показатель титанового стержня составит 0,1; вода и строительного кирпича — 0,01; воздуха — 0,0005; а нового материала — 0,001.Сначала авторы определили механизмы, ответственные за снижение теплопередачи в каждой из двух структур, а потом создали комбинированную компоновку атомов, имеющую имеет гораздо более низкую теплопроводность, чем любой из двух исходных материалов.”Захватывающий вывод этого исследования состоит в том, что можно улучшить свойства материала, используя атомистические взаимодействия, — говорит еще один из авторов статьи доктор Джон Алария (Jon Alaria), научный сотрудник химического факультетаЛиверпульского университета и Института возобновляемых источников энергии Стивенсона.
— Помимо переноса тепла, эта стратегия может быть применена к другим важным фундаментальным физическим свойствам, таким как магнетизм и сверхпроводимость, обеспечивающим меньшее энергопотребление и более эффективную передачу электричества”.По мнению авторов, их открытие представляет собой прорыв в управлении тепловым потоком на атомном масштабе и имеет большое значение как для фундаментального понимания свойств материалов, так и для практического применения в термоэлектрических устройствах, например, для разработки термоизолирующих покрытий.
https://ria.ru/20201224/ekran-1590713308.html
https://ria.ru/20210616/sverkhprovodnik-1737244365.html
великобритания
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2021
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og. xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
1920
1080
true
1920
1440
true
https://cdnn21.img.ria.ru/images/07e5/07/0f/1741376784_0:270:1392:1314_1920x0_80_0_0_2ff0d6390b219f4514dab73413f22c0b.jpg
1920
1920
true
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
1
5
4.7
96
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
технологии, великобритания, химия, физика
Наука, Технологии, Великобритания, Химия, Физика
МОСКВА, 15 июл — РИА Новости. Британские и французские ученые синтезировали новый неорганический материал с самой низкой на сегодняшний день теплопроводностью. По мнению авторов, это открытие будет иметь решающее значение для разработки термоэлектрических материалов нового поколения. Результаты исследования опубликованы в журнале Science.
Примерно семьдесят процентов всей энергии, производимой в мире, расходуется в виде тепла. Для сокращения этих потерь необходимы материалы с низкой теплопроводностью. Разработка новых и более эффективных термоэлектрических материалов, которые могут преобразовывать тепло в электричество, считается ключевым вопросом перехода на источники чистой энергии.
Исследователи из Ливерпульского университета вместе с коллегами из Университетского колледжа Лондона, британской национальной лаборатории Резерфорда — Эплтона и французской лаборатории кристаллографии и материаловедения CRISMAT путем дизайна на атомном масштабе создали новый материал, обладающий уникально низкой теплопроводностью.
Материал объединяет две разные атомные структуры, каждая из которых замедляет скорость передачи тепла сквозь твердое тело. Самой сложной задачей было соединить обе структуры в одном материале, так как для этого нужно точно контролировать расположение каждого атома.
Подбирая экспериментальным путем химические варианты различных атомных расположений, ученые интуитивно ожидали получить среднее значение физических свойств двух компонентов, но синергетический эффект превзошел их ожидания.
24 декабря 2020, 12:27Наука
Ученые создали материал для смартфонов, который умеет регенерироваться
“Обнаруженный нами материал имеет самую низкую теплопроводность среди всех неорганических твердых тел и проводит тепло почти так же плохо, как воздух”, — приводятся в пресс-релизе Ливерпульского университета слова руководителя исследования профессора Мэтта Россейнски (Matt Rosseinsky).
Если принять теплопроводность стали за единицу, то показатель титанового стержня составит 0,1; вода и строительного кирпича — 0,01; воздуха — 0,0005; а нового материала — 0,001.
Сначала авторы определили механизмы, ответственные за снижение теплопередачи в каждой из двух структур, а потом создали комбинированную компоновку атомов, имеющую имеет гораздо более низкую теплопроводность, чем любой из двух исходных материалов.
“Захватывающий вывод этого исследования состоит в том, что можно улучшить свойства материала, используя атомистические взаимодействия, — говорит еще один из авторов статьи доктор Джон Алария (Jon Alaria), научный сотрудник химического факультета
Ливерпульского университета и Института возобновляемых источников энергии Стивенсона. — Помимо переноса тепла, эта стратегия может быть применена к другим важным фундаментальным физическим свойствам, таким как магнетизм и сверхпроводимость, обеспечивающим меньшее энергопотребление и более эффективную передачу электричества”.
По мнению авторов, их открытие представляет собой прорыв в управлении тепловым потоком на атомном масштабе и имеет большое значение как для фундаментального понимания свойств материалов, так и для практического применения в термоэлектрических устройствах, например, для разработки термоизолирующих покрытий.
16 июня 2021, 15:41Наука
Открыт новый топологический сверхпроводник
Самая низкая теплопроводность у
Теплоизоляция необходима в любом помещении, где температура в какое-либо время года не должна быть равной температуре окружающей среды.
Оптимальная температура в помещении достигается с помощью работы обогревательных или охлаждающих устройств.
Чтобы искусственно настроенная температура внутри здания не изменялась из-за диффузии неодинаково нагретых частей внутри и снаружи здания, используют строительные материалы с наименьшим коэффициентом теплопроводности.
Что такое теплопроводность?
Теплопроводность — физическое свойство тела (тел) обменивать внутреннюю энергию с помощью диффузии атомов и молекул, которые хаотически перемещаются от более нагретых частей к более холодным.
Атомы и молекулы двигаются в хаотичном порядке до тех пор, пока температура по всему занимаемому объёму не выровняется.
Чем больше теплопроводность вещества, тем быстрее сквозь него передаётся более высокая или более низкая температура.
Теплопроводность определяется количеством теплоты в Дж, которая, при разнице температур в противоположно расположенных параллельных плоскостях в 1 К, проходит через 1 м² за 1 ч.
Коэффициент теплопроводности выражают в Вт/м*К.
Роль коэффициента теплопроводности при принятии архитектурно-строительного решения
Теплопроводность твёрдых тел, каковыми являются все строительные материалы, проявляется за счёт переноса тепла, происходящего в результате колебаний кристаллической решётки.
Большая теплопроводность строительного материала недопустима для возведения архитектурных сооружений. Чем больше теплопроводность, тем меньше теплоизоляционные качества материала, необходимые для поддержания в помещении температуры, отличной от температуры окружающей среды.
Строительные материалы с низкой теплопроводностью помогают сохранить достигнутый градус в помещении вне зависимости от погодных условий, благодаря минимальному поддержанию диффузии между разными по температуре частицами.
Чем меньше коэффициент теплопроводности материала, тем лучше его теплоизоляционные качества.
Хорошая теплоизоляция избавит от сквозняков, холодных стен, быстрого остывания, промерзания или нагрева помещения, позволит существенно сэкономить на устройствах обогрева или охлаждения.
Или почитайте ЗДЕСЬ об установке пластиковых окон своими руками.
Конструкционные материалы и их теплопроводность
Теплопроводность вещества зависит от его плотности. Чем больше плотность вещества, тем выше теплопроводность. С увеличением пористости понижается ее коэффициент.
Низкий коэффициент теплопроводности материала определяет его хорошие теплоизоляционные качества.
Бетон
- Плотность: 500 кг/м³–2 500 кг/м³. Показатель зависит от состава смеси.
- Теплопроводность: 1,28–1,51 Вт/м*К. Показатель меняется в зависимости от консистенции бетона.
Бетонная смесь используется для заливки монолитного фундамента, а бетонные блоки – для закладки фундамента и возведения стен.
Железобетон
- Плотность: 2 500 кг/м3; бетонная смесь без вибрирования (применения глубинного вибратора) – 2 400 кг/м3.
- Теплопроводность: 1,69 Вт/м*К.
Лёгкий бетон на пористых заполнителях называют ячеистым бетоном.
Используют в качестве конструкционного и теплоизоляционного материала. Самые распространённые строительные материалы из бетона на пористых заполнителях — газобетон, пенобетон, керамзитобетон.
Данные материалы применяются для возведения многоэтажных, частных домов и для дополнительных пристроек: бань, гаражей, сараев.
Керамзитобетон
Полнотелые керамзитобетонные блоки производятся с помощью вибропрессования. Не имеют пустот и отверстий. Часто используются для кладки несущих стен или закладки фундамента.
Пустотелые керамзитобетонные блоки делают с применением специальных форм, позволяющих при заливке смеси сформировать герметичные или сквозные пустоты.
Обладают меньшей прочностью по сравнению с полнотелыми керамзитобетонными блоками. Имеют меньшую теплопроводность, что делает их оптимальным материалом для возведения нетяжёлых конструкций с требуемой высокой теплоизоляцией.
- Плотность: 500 кг/м³–1 800 кг/м³.
- Теплопроводность: 0,14–0,66 Вт/м*К.
Газобетон
Изготавливается из газосиликата. С помощью специализированных газообразователей внутри блока формируют приблизительно сферические поры (пустоты), их диаметр 1–3 мм.
- Плотность: 300–800 кг/м3. Зависит от количества и размера пустот.
- Теплопроводность: 0,1–0,3 Вт/м*К.
Пенобетон
Изготавливается с применением пенообразующих добавок. Имеет пористую структуру.
- Плотность: 600–1 000 кг/м3.
- Теплопроводность: 0,1–0,38 Вт/м*К.
Саманный кирпич
Изготавливается из глины и наполнителя.
- Плотность: 500 кг/м³–1 900 кг/м³;
- Теплопроводность: 0,1–0,4 Вт/м*К.
Керамический кирпич
Изготавливается из обожжённой глины.
- Плотность: полнотелый – 1 600 кг/м³–1 900 кг/м³; пустотелый – 1 100 кг/м³–1 400 кг/м³;
- Теплопроводность: полнотелый – 0,56–0,86 Вт/м*К; пустотелый–0,35–0,41 Вт/м*К.
Силикатный кирпич
Изготавливается из песка и извести.
- Плотность: 1 100 кг/м³–1 900 кг/м³;
- Теплопроводность: 0,81–0,87 Вт/м*К.
Дерево
- Плотность: 150 кг/м³–2 100 кг/м³;
- Теплопроводность: 0,2–0,23 Вт/м*К.
Строительные конструкционные материалы, даже с низкой теплопроводностью, нуждаются в дополнительном утеплении.
Или почитайте ЗДЕСЬ о несъемной опалубке из пенополистирола.
Утеплители и их теплопроводность
Используются для утепления фундамента, пола, стен здания внутри и снаружи, потолка и крыши.
Пенопласт
- Плотность: 15 кг/м³–50 кг/м³;
- Теплопроводность: 0,31–0,33 Вт/м*К.
Пенополистирол
- Плотность: 15 кг/м³–50 кг/м³;
- Теплопроводность: 0,028–0,035 Вт/м*К.
Минеральная вата
Минеральная вата имеет способность впитывать влагу. Вода легко накапливается, но очень долго испаряется из данного звуко- и теплоизоляционного материала.
Если минвата перенасытится влагой, то потеряет свои основные изоляционные свойства. Чтобы не допустить впитывание влаги, минвату с двух сторон герметично закупоривают слоем гидроизоляции.
Стекловата
- Плотность: 15 кг/м³–45 кг/м³;
- Теплопроводность: 0,038–0,046 Вт/м*К.
Базальтовая (каменная) вата
- Плотность: 30 кг/м³–200 кг/м³;
- Теплопроводность: 0,035–0,042 Вт/м*К.
Эковата
- Плотность: 30 кг/м³–110 кг/м³;
- Теплопроводность: 0,032–0,041 Вт/м*К.
Сравнительные характеристики теплопроводности конструкционных строительных материалов и утеплителей необходимо проанализировать, выбрав для постройки или дополнительной теплоизоляции самый подходящий материал.
Видео о характеристиках теплоизоляционных материалов
автор Сергей Соболев 2.1k Просмотров Мнений
Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям.
Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.
Читайте в статье:
Что такое теплопроводность
Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.
То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:
- бетон –1,51 Вт/м×К;
- кирпич – 0,56;
- древесина – 0,09-0,1;
- песок – 0,35;
- керамзит – 0,1;
- сталь – 58.
Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.
Что такое коэффициент теплопроводности
Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.
В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.
Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.
Что влияет на теплопроводность строительных материалов
Есть несколько параметров, которые сильно влияют на тепловую проводимость.
- Структура самого материала.
- Его плотность и влажность.
Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее.
Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.
У влажной стены тепловая проводимость выше
Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.
Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица
Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.
- через стены уходит до 30% тепловой энергии общего расхода.
- Через полы – 10%.
- Через окна и двери – 20%.
- Через крышу – 30%.
Теплопотери дома
То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.
Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.
Устройство каркасного дома в плане его утепления
Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.
Самая низкая теплопроводность твердых материалов, аэрогель sio2
Новое поколение теплоизоляционных материалов, аэрогель. В настоящее время признана самой низкой теплопроводностью среди твердых материалов. Он был занесен в Книгу рекордов Гиннеса как самый легкий твердый материал в мире. Аэрогели SiO2 являются наиболее широко используемыми материалами, которые имеют сверхлегкое качество и полупрозрачный цвет, известный как твердый дым, синий дым.
Аэрогель представляет собой гелевый материал с дисперсионной средой в виде газа. Внутренняя часть представляет собой сильно непрерывную сшитую трехмерную сетчатую нанополую структуру с большой удельной поверхностью (500-1300 м2 / г), низкой плотностью (30-150 кг / м3), высокой пористостью (85% -9).9%), малый средний размер пор (2-50нм), теплопроводность ниже температуры окружающего воздуха (0,01-0,02Вт/мК) и другие характеристики, в настоящее время признана самой низкой теплопроводностью твердого материала.
Производительность,
1. Легирование металлов для улучшения температурных характеристик
Аэрогели SiO2 используются при температуре ниже 650 ° C в течение длительного времени. При высокой температуре происходит спекание, что приводит к разрушению пористой структуры, нарушению работы изоляции. Добавление гетерогенных элементов (Cu, Al, Y и др.) в аэрогели SiO2 для подавления спекания аэрогелей SiO2 и значительного повышения термостойкости аэрогелей SiO2.
2. Армированный волокном, модифицированный для улучшения механических свойств
Аэрогель SiO2, армированный неорганическим керамическим волокном, не только может улучшить механические свойства, но также может улучшить свои характеристики изоляции при высоких температурах.
Модифицированные аэрозольные композиты могут улучшить механические свойства и термическую стабильность аэрозольных композитов, а также могут придать композитам хорошие волновые характеристики.
Стекловолокно представляет собой разновидность армированного волокна, которое обычно используется для улучшения аэрогелей SiO2. Однако ударная вязкость низкая, поэтому эффект очевиден, а эффект повышения прочности не очевиден.
Прочность органического волокна сильно влияет на модификацию ударной вязкости аэрогеля SiO2.
Нанометровый диаметр нановолокон сравним с диаметром аэрогелей SiO2, что позволяет улучшить свойства поверхности раздела композитов, чтобы получить желаемый эффект повышения ударной вязкости (углеродные нанотрубки, углеродные нановолокна)
3. Вторичный композит, усиленный SiO2 механические свойства аэрогелей
Аэрогель обычно изготавливают в виде гранул, а затем смешивают с другими материалами. Этот метод больше подходит для требований к производительности изоляции не высокие, высокие механические свойства областей применения.
4. Добавьте глушитель инфракрасного излучения (например, сажу, SiC, TiO2 и т. д.), чтобы улучшить адиабатические характеристики аэрогеля в высокотемпературной среде.
5. Используя трехмерную структуру различных текстильных волокнистых материалов в качестве основы композитного нанопористого аэрогеля, он становится гибкой матрицей адиабатических композитов аэрогеля для повышения комплексных характеристик композитов аэрогеля и уменьшения количества аэрогеля, тем самым снижая затраты. . Метод может использоваться в соответствии с различными потребностями для изменения матричных текстильных волокнистых материалов, расширения применения аэрогелей SiO2.
Новый материал побил рекорд низкой теплопроводности – Physics World
Стратегия новых материалов обеспечивает самую низкую теплопроводность среди неорганических материалов. Предоставлено: Университет ЛиверпуляНовый неорганический материал с самой низкой теплопроводностью, о которой когда-либо сообщалось, может стать благом для технологий, которые преобразуют отработанное тепло в энергию. Материал, который проводит тепло почти так же плохо, как воздух, был разработан и синтезирован таким образом, что он сочетает в себе два различных расположения атомов, каждое из которых замедляет скорость прохождения тепла через него.
Из всей энергии, вырабатываемой в мире, ошеломляющие 70% в настоящее время идут на сбросное тепло. Помимо вреда для окружающей среды, отработанное тепло также вызывает перегрев электронных устройств, что снижает их эффективность и срок службы. Однако часть этого тепла можно использовать, используя материалы с низкой теплопроводностью κ для преобразования его в электричество.
Уменьшение переноса тепла через фононы
Теплопроводность твердого тела определяется поведением его фононов, которые представляют собой колебания его кристаллической решетки. Есть два основных способа уменьшить перенос тепла через фононы: уменьшить длину, на которую рассеиваются фононы, или уменьшить скорость, с которой они путешествуют как группа.
Длина рассеяния фононов зависит от рассеяния между самими фононами и рассеяния фононов на дефектах или границах внутри материала. Групповая скорость фононов, с другой стороны, зависит от структуры и состава материала. Исследователи ранее пытались уменьшить длину рассеяния фононов за счет инженерных дефектов в материалах и производства материалов с наноструктурами, специально разработанными с низким значением κ . Другие методы включают изменение слоев между кристаллами для изменения фононных взаимодействий на границе раздела слоев.
Синергические комбинации
В последней работе Мэтт Россейнски, Джон Алариа и их коллеги из Ливерпульского университета, Великобритания, создали композитный материал, содержащий слои, которые избирательно нацеливаются на фононы, путешествующие вдоль и поперек объема материала. Путем сопряжения слоев BiOCl и Bi 2 O 2 Se с Bi 4 O 4 SeCl 2 удалось подавить (соответственно) вклады продольных и поперечных фононов в общую теплопроводность материала. . Полученный композит имеет теплопроводность всего 0,1 Вт на метр Кельвина (Вт/м·К) при комнатной температуре в направлении его укладки — один из самых низких показателей среди всех сыпучих неорганических материалов и всего в четыре раза больше, чем теплопроводность воздуха.
«Отправной точкой нового исследования было понимание того, как структура материала позволит нам контролировать перенос тепла через него», — объясняют Россеинский и Аларай. Во время их продолжающегося пятилетнего исследования так называемых множественных анионных материалов им сначала нужно было разработать новую химию, которая позволила бы им синтезировать свой материал путем синергетического объединения двух разных и необычных расположений атомов. Им также необходимо было определить механизмы, ответственные за снижение теплопередачи в каждом устройстве, путем измерения и моделирования теплопроводности различных задействованных структур.
«Трудно объединить механизмы в одном материале, потому что вы должны точно контролировать, как в нем расположены атомы», — объясняют они. «Интуитивно вы ожидаете получить среднее значение физических свойств двух компонентов. Выбрав благоприятные химические границы между каждым из этих различных атомных расположений, мы экспериментально синтезировали материал, который сочетает в себе их оба».
Улучшенные материалы с низким значением κ
Важно отметить, что новый материал имеет гораздо более низкую теплопроводность при комнатной температуре, чем любой из материалов, содержащих только одну такую конструкцию. Этот неожиданный результат показывает, что расположение различных атомов в структуре важно, и помогает объяснить, почему свойства целого лучше, чем свойства его составных частей.