Самые редкие сплавы металлов список: 10 самых дорогих металлов в мире

alexxlab | 28.04.2020 | 0 | Разное

Содержание

10 самых дорогих металлов в мире

В мире множество самых разнообразных металлов. Стоимость металла напрямую зависит от его количеств на планете. Металлы делятся на природные и искусственно получаемые в лабораторных условиях. И безусловно, как можно предположить, искусственно созданные будут дороже.

В Топ-10 не попадает серебро, которое остаётся на 12 месте, немного опережая 13 место — индий и уступая 11 месту — рутению.

10 место СКАНДИЙ

Природный редкоземельный металл. Легкий и высокопрочный, серебристого цвета с желтым отливом. Впервые элемент был обнаружен в 1879 году шведским химиком Ларсом Нильсоном, который назвал его в честь Скандинавии. Скандий применяется в мире высоких и инновационных технологий. Его используют при конструировании роботов, ракет, самолетов, спутников и лазерной техники. Сплавы данного металла служат в спортивной сфере — для изготовления высококлассного инвентаря. Самые крупные месторождения богатых скандием минералов находятся в Норвегии и на Мадагаскаре.

10 самых дорогих металлов в мире, фото № 1

Стоимость грамма скандия зависит от чистоты металла, но усреднённая стоимость 3-4 доллара. На биржах драгметаллов не продаётся. В ювелирной промышленности используют оксид скандия для производства фианитов.

9 место РЕНИЙ

Существование металла было предсказано Д.И.Менделеевым в 1871 году, но впервые его открыли в 1925 году немецкие химики и назвали в честь реки Рейн. Относительно чистый рений удалось получить только в 1928 году. Для получения 1 грамма рения требовалось переработать более 600 кг норвежского молибденита.

Рений — серебристо-белый металл, очень плотный, занимает третье место по температуре плавления среди металлов. Используется в электронной и химической промышленности. Имеет стратегическое значение, т.к. используется в космических и военных целях.

По природным запасам рения на первом месте в мире стоит Чили, на втором США, а на третьем Россия. Рений получают при переработке сырья с очень низким содержанием целевого компонента. Его запасы в России не более 15 тонн.

10 самых дорогих металлов в мире, фото № 2

Цена на грамм рения в среднем 5 долларов.

В ювелирной промышленности не используется.

На международных биржах металл не продаётся.

8 место ОСМИЙ

Был открыт в 1803 году двумя британскими химиками. Название металл получил от греческого слова osme, что означает «запах». Осмию присущ довольно резкий и неприятный запах, напоминающий смесь чеснока и хлорки.

Осмий — голубовато-серебристый металл платиновой группы, характеризующийся высокой плотностью, тяжёлый, хрупкий. В чистом виде не существует, встречается только в связках с другим металлом из платиновой группы — иридием.

Добывают данный металл на Урале, в Сибири, Южной Африке, Канаде, США и Колумбии. Используется в сплавах в химической промышленности и фармакологии.

10 самых дорогих металлов в мире, фото № 3

Цена одного грамма осмия на мировом рынке составляет 12-17 долларов.

В ювелирной промышленности не используется.

На биржах металл не продаётся.

7 место ПЛАТИНА

Цивилизации Анд доколумбовой Южной Америки добывала и использовала её с незапамятных времён. Первыми европейцами, познакомившимися с платиной в середине 16 века, были испанские конкистадоры, которые и дали ему пренебрежительное название, что означало в переводе «маленькое серебро», «серебришко». Отношение объясняется тугоплавкостью платины, которая не поддавалась переплавке и долгое время не находила применения, она ценилась вдвое ниже серебра.

Примечательно, что испанский король в 1735 году повелел платину в Испанию не ввозить, чтобы мошенники не могли расплачиваться ей вместо ценного серебра. При разработке россыпей в Колумбии повелевалось отделять её от золота и топить под надзором королевских чиновников в глубокой речке, которую стали именовать Платино-дель-Пинто. Королевское распоряжение было отменено через 40 лет, когда мадридские власти приказали доставлять платину в Испанию, чтобы самим фальсифицировать золотые и серебряные монеты. С нею познакомились алхимики, считавшие самым тяжёлым металлом золото, а оказавшаяся более тяжёлой платина была наделена адскими чертами.

В 1790 году во Франции из платины был изготовлен эталон метра, а позже эталон килограмма.

В России платину впервые обнаружили на Урале близ Екатеринбурга 1819 году, а в 1824 году были открыты платиновые россыпи в Нижнетагильском округе. Разведанные запасы платины были столь велики, что Россия на долгие годы заняла первое место в мире по добыче этого металла. В настоящее время лидером является ЮАР.

В природе платина встречается только как сплав с другими металлами.

Металл отличается особым блеском и пластичностью. Активно используют в ювелирной, оружейной, медицинской промышленности. В России и СССР платина применялась при изготовлении монет и знаков отличия за выдающиеся заслуги.

Российский спрос на ювелирную платину в настоящее время составляет 0,1 % от мирового уровня.

10 самых дорогих металлов в мире, фото № 4

Ещё несколько лет назад платина была дороже золота, но в настоящее время цена её составляет не более 28-30 долларов за грамм.

Платина торгуется на международной бирже драгметаллов.

6 место ИРИДИЙ

Мир впервые узнал о нем в 1803 году благодаря британскому химику С. Теннанту, который его открыл одновременно с осмием.

Иридий- металл платиновой группы, тяжелый, твердый и одновременно хрупкий, серебристо-белого цвета. Имеет высокую коррозийную стойкость даже при температуре 2000 °C.

В чистом виде в земных породах не встречается, поэтому высокая концентрация иридия в образцах породы является индикатором космического метеоритного происхождения последних.

Самостоятельно иридий практически нигде не применяется и используется для создания сплавов. Ювелиры добавляют его к платине, поскольку он делает её твёрже, а украшение из такого сплава становится практически вечным. Также он востребован при изготовлении хирургических инструментов, электроконтактов, точных лабораторных весов. Из него делают кончики для дорогих авторучек. Иридий применяется в аэрокосмической технике, биомедицине, стоматологии, химической промышленности.

10 самых дорогих металлов в мире, фото № 5

В течение года мировая металлургия расходует приблизительно одну тонну данного металла. Основное месторождение иридия находится в ЮАР.

Его стоимость равняется около 47-50 долларам за грамм.

Иридий продаётся на биржах драгметаллов.

5 место ЗОЛОТО

Люди добывают золото с незапамятных времён, археологи находят его в обиходе человека с 5 тысяч лет до н.э. в эпоху неолита в самородках. Начало системной добыче было положено на Ближнем Востоке, откуда поставлялись золотые украшения, в т.ч. в Египет.

В России до Елизаветы золото не добывалось. Оно ввозилось из-за границы в обмен на товары и взималось в виде ввозных пошлин. Первое открытие запасов золота было сделано в 1732 году в Архангельской губернии, где вблизи одной деревни была обнаружена золотая жила.

Латинское aurum означает «жёлтое».

Золото — один из немногих металлов, встречающихся исключительно в чистом виде. Чистое золото — металл жёлтого цвета, тяжёлый плотный металл, мягкий, высокопластичный.

Традиционным и самым крупным потребителем золота является ювелирная промышленность. Все ювелирные изделия изготавливают не из чистого золота, а из его сплавов с другими металлами, значительно превосходящими золото по механической прочности и стойкости.

Запасы золота в мире распределено так: около 10 % — в промышленных изделиях, остальное делится приблизительно поровну между централизованными запасами (в основном, в виде стандартных слитков химически чистого золота), собственностью частных лиц в виде слитков и ювелирными изделиями.

10 самых дорогих металлов в мире, фото № 6

США, Китай и Австралия — лидеры по золотодобыче.

Стоимость грамма золота на мировом рынке около 45-50 долларов. Золото и иридий постоянно соперничают в цене, меняясь местами в рейтинге самых дорогих металлов.

4 место ПАЛЛАДИЙ

Назван в честь астероида Паллада, открыт во время изучения платиновых руд в 1803 году.

Палладий — легкий, пластичный серебристо-белый металл из платиновой группы. Он очень легкоплавкий, хорошо полируется, не тускнеет и довольно стоек к коррозии.

Главное направление использования палладия — ювелирная промышленность. Мастера ценят его гибкость и легковесность, что позволяет создавать из него самые удивительные произведения ювелирного искусства.

Металл широко применяется в химической промышленности, медицине, для создания электроники и пр.

Крупнейшее месторождение палладия находится в России.

10 самых дорогих металлов в мире, фото № 7

Стоимость палладия за последние несколько лет сильно возросла и составляет около 60 долларов за грамм.

Палладий торгуется на международной бирже драгметаллов.

3 место РОДИЙ

Открыт в Англии в 1803 году (плодородный год на открытие металлов!!!) в ходе работ с самородной платиной. Назван в честь розы (греч.), т.к. типичные соединения родия имеют глубокий тёмно-красный цвет.

Родий — это твердый благородный металл, обладающий мощнейшими отражающими свойствами, стойкостью к окислению и коррозии. За год во всем мире добывается всего лишь 30 тонн родия.

Применяют для изготовления зеркал и фар, в автомобильной и химической промышленности.

Ювелиры используют электролиты родия для получения износостойких и коррозионно-устойчивых покрытий. В дорогой и высококачественной бижутерии можно встретить родированное покрытие.

Монеты из родия выпускает США, но не как платёжное средство, а в качестве объекта инвестирования средств.

Руанда выпускает монету из чистого родия как платёжное средство.

10 самых дорогих металлов в мире, фото № 8

Самые крупные месторождения находятся в России, Канаде и ЮАР.

Стоимость родия сильно выросла за последнее время, колеблется в пределах 185 -190 долларов за грамм.

Родий торгуется на международной бирже драгметаллов.

2 место ОСМИЙ-187

Металл осмий-187 изотоп, является результатом распада изотопа рения с огромнейшем периодом полураспада. Соотношения изотопного состава осмия и рения позволяет определять возраст горных пород и метеоритов.

Изотопов осмия множество и их разделение представляет собой сложную задачу. Именно поэтому некоторые изотопы довольно дороги.

Самый редкий среди них осмий-187, процесс добычи которого отличается особой сложностью и занимает около девяти месяцев. В результате его получают в виде черного мелкокристаллического порошка с фиолетовым оттенком. Его считают самым плотным на планете. При этом он очень хрупок, его можно растолочь в обычной ступе на мелкие частички. Он имеет важное научно-исследовательское значение, его используют как катализатор химических реакций, для изготовления измерительных приборов высокой точности и в медицинской отрасли.

10 самых дорогих металлов в мире, фото № 9

Казахстан — первое и единственное государство, продающее чистый Осмий-187 на мировом рынке.

Стоимость Осмия-187 оценивается в 200 тысяч долларов за 1 грамм.

Этот изотоп не торгуется на бирже драгметаллов и более того, его международная торговля строго контролируется, пресекается любая контрабандная продажа.

Лидер рейтинга! 1 место КАЛИФОРНИЙ-252

На земле сегодня нет металла, который стоил бы дороже. Рекорд стоимости зафиксирован в Книге Гиннеса. Он является одним из изотопов калифорния.

Баснословная цена составляет 10 миллионов долларов за грамм.

Мировой запас — 8 граммов, а ежегодная добыча –30-40 микрограмм. Получают редкий металл путем сложнейшей и долговременной работы в лабораторных условиях. В чистом природном виде не встречается, полностью искусственного происхождения. Впервые был получен учёными в 1950 году в США.

10 самых дорогих металлов в мире, фото № 10

Главная ценность калифорния-252 состоит в его невероятной энергии, сравнимой с энергией среднего атомного реактора. Применяется в ядерной физике и в медицине в качестве лучевой терапии раковых новообразований. С его помощью научились определять месторождения золота и серебра. Используют для выявления дефектов в реакторах и самолетах, которые невозможно выявить даже при помощи рентгена.

В мировом рейтинге самых дорогих веществ калифорний-252 занимаем 2 место, уступая по цене лишь Антиматерии.

Публикация моего второго магазина на Ярмарке Мастеров «Самые дорогие камни в мире» https://www.livemaster.ru/topic/3252536-article-samye-dorogie-kamni-v-mire-interesnye-istorii

5 самых редких металлов в мире :: RateThemAll

1

60 Голосов

Поддержите лидера! Голосуйте

Лидер рейтинга

Калифорний (Cf)

Именно калифорний является самым редким и одновременно дорогим металлом в мире. На его производство уходит от 1,5 до 8 лет и в начале XXI века в мире существовало не более 10 г калифорния. И вряд ли его запасы резко возрастут. Ведь производят этот металл, затрачивая несколько десятков миллионов долларов на процесс добычи нескольких граммов, всего две лаборатории в мире. Одна находится в России, а другая — в США. Серебристо-белый калифорний вовсе не тот металл из которого можно заказать колечко. Он радиоактивен. Зато с применением изотопов калифорния ученые проводят очень важные эксперименты. Он используется в лучевой терапии рака мозга и шеи, рентгенографии самолетов, выявляющей усталость металла, при калибровке приборов, работающих в ядерных реакторах.

Калифорний (Cf)

2

41 Голос

Достоин первого места? Голосуйте

Осмий (Os)

Один из металлов платиновой группы, как и все они являющийся благородным и драгоценным, серебристо-голубой осмий является самым плотным простым веществом на земле. В природе его можно обнаружить в комплексных рудах. Осмий187 — редкий изотоп этого металла, чья стоимость составляет около 10 тысяч долларов за грамм. На его производство уходит порядка 9 месяцев. Сам осмий, обладающий чрезвычайно высокой температурой плавления, используется для упрочения платиновых сплавов для электронной промышленности. Изотоп же необходим химикам, инженерам и медикам.

Осмий (Os)

3

36 Голосов

Достоин первого места? Голосуйте

Галий (Ga)

Удивительный металл галлий очень любят фокусники. Ведь он может расплавиться в кружке с теплой водой или даже в руках. Если же его поместить в серную кислоту, галлий начнет пульсировать. Этот редкий и дорогой серебристо-голубой металл крайне востребован промышленностью. Термометры из кварца именно с галлием внутри используются для измерения высоких температур, на основе галлия делаются металлические клеи, арсенид этого металла необходим для производства некоторых лазеров и сверхвысокочастотной электроники.

Галий (Ga)

4

33 Голоса

Достоин первого места? Голосуйте

Тантал (Ta)

Тантал — дорогой и редкий металл. За 1 килограмм тантала, в зависимости от его чистоты, можно получить от 500 до 4500 долларов. Именно из-за трудности получения в чистом виде этот серый металл и назван в честь героя греческих мифов, вечно пытающегося достать хоть немного воды и еды. Кроме производства электронных приборов и химической промышленности, в тантале очень нуждается медицина. Этот металл уникален своей биосовместимостью. Протезы из него воспринимаются организмом «как родные».

Тантал (Ta)

5

24 Голоса

Достоин первого места? Голосуйте

Рений (Re)

Рений – один из элементов, чье существование предвидел Д. И. Менделеев. Впервые 2 мг рения были выделены в 1926 году. Этот серебристо-белый металл получают при переработке молибденита. Следует обработать несколько сотен килограммов, чтобы получить один грамм этого редкого металла. Рений востребован в производстве реактивных двигателей, турбинных лопаток, сверхточных приборов.

Рений (Re)

виды, добыча, свойства, характеристики, месторождения

Редкие металлы — условная группа из 60 химических элементов. Они похожи свойствами, характеристиками, редко попадаются в природе. Разработка месторождений редких металлов — перспективное направление. Представители этой группы еще до конца не изучены, что делает их ценными для применения в промышленности, исследования учеными.

Фото 861Редкие металлы

Редкие сплавы, металлы можно разделить на несколько групп зависимо от химических, физических характеристик.

Легкие

К ним относятся химические элементы 1 и 2 группы периодической таблицы Менделеева. Их главное сходство — малый удельный вес. Представители — цезий, литий, рубидий, бериллий. Вторая похожая особенность — высокая химическая активность. Для получения проводится металлотермия, электролиз.

Тугоплавкие

Переходные элементы, которые находятся в 4, 5 и 6 группе периодической таблицы Менделеева. Внутренние электронные уровни у этих металлов достраиваются при переходе одного элемента к соседнему. Они образуют твердые, тугоплавкие, химически устойчивые соединения с различными металлоидами, которые обладают небольшим атомным радиусом.

Тугоплавкие редкие металлы выделяются среди остальных высокой прочностью кристаллической решетки, высокой температурой плавления (свыше 1660°C), повышенной твердостью.

Для получения применяется технология порошковой металлургии. Из расходного сырья получается металлический порошок, который прессуется в специальных формах и спекается для получения однородного материала.

Таблица Менделеева (Фото: Instagram / techade.ru)

Рассеянные

Особенность — малое количество минералов, в которых содержатся эти металлы или их полное отсутствие. Чаще подобные химические элементы встречаются в виде изоморфных примесей. Еще реже их можно встретить в небольшой концентрации в сторонних минералах.

Единственный прибыльный способ получения — переработка отходов производства основных металлов.

Редкоземельные

Второе название — лантаноиды. В этой группе находится 15 химических элементов. Они имеют похожее строение атомов, электронных уровней. В природе редкоземельные металлы часто попадаются рядом друг с другом. Первый этап переработки расходного сырья — выделение разных соединений, в основном смесей окислов.

Радиоактивные

В этой группе находятся естественные радиоактивные металлы. Основные из них — актиноиды, актиний, радий, полоний. К подгруппе актиноидов относятся уран, протактиний, торий.

По радиоактивным свойствам ученые определяют где лучше применять эти металлы, для каких сфер промышленности они подойдут. При добыче руды радиоактивные металлы встречаются совместно, часто разбавляются редкоземельными.

История открытия

Редкие металлы — относительно новый термин, к которому относятся малоизученные химические элементы. Впервые такое обозначение появилось в 20-х годах прошлого столетия. За рубежом первым термином появился Less Common Metals. Если переводить его дословно — менее обычные металлы.

Резкий скачок добычи, производства редких металлических элементов был зафиксирован после окончания Второй Мировой Войны. Тогда нужно было восстанавливать основные сферы промышленности. Новые химические элементы позволяли создавать инновационные материалы, развивать новые технологии в ускоренном режиме.

Добыча металлов (Фото: Instagram / metinvest)

Сферы применения

Сферы применения:

  • скоростная авиация;
  • судостроение, самолетостроение;
  • производство электроники;
  • ядерная промышленность;
  • атомная энергетика;
  • машиностроение;
  • химическая промышленность, нефтепереработка;
  • ракетостроение, оборонная промышленность.

Из редких металлов изготавливаются сверхпроводники, магниты большой мощности, фотоэлементы, фотоумножители, люминесцентные лампы, кинескопы, катодно-лучевые трубки, химические источники тока, солнечные батареи, электроды, электрические конденсаторы, электровакуумные приборы и т. д.

Люминисцентная лампа (Фото: Instagram / legendlamp)

Среди всех известных металлов на нашей планете можно выделить 5 более редких элементов.

Калифорний

Этот материал считается самым дорогим и редким в мире. Особенности:

  1. Общее количество к началу XXI века — не более 10 грамм. Производством занимается только 2 лаборатории.
  2. Радиоактивность
  3. Серебристо-белый цвет.

Применяется в для ядерной энергетике, медицине (при облучении злокачественных новообразований), изготовлении измерительных приборов.

Осмий

Еще одно обозначение — осмий 187. Многие причисляют его к группе благородных. Особенности:

  • серебристо-голубой цвет;
  • большой показатель плотности;
  • высокая температура плавления.

Применяется в электронной, химической промышленности, медицине.

Осмий 187 (Фото: Instagram / blog_dylym)

Галий

Часто используется фокусниками для представлений, поскольку плавится от температуры тела. Другие особенности:

  1. Если залить галий серной кислотой, он будет пульсировать.
  2. Серебристо-голубой цвет.

Применяется для изготовления термометров из кварца, металлических клеев, сверхвысокочастотной электроники, лазерных установок.

Рений

Впервые был произведен в 1926 году. Особенности:

  1. Серебристо-белый цвет.
  2. Один грамм рения получается после переработки нескольких сотен килограмм молибдена.

Применяется для изготовления турбинных лопаток, реактивных двигателей, сверхточных измерительных приборов.

Рений (Фото: Instagram / chemical_elements)

Тантал

Обладает уникальным свойством биосовместимости. Из него изготавливаются высококачественные протезы, которые хорошо воспринимаются организмом. Применяется в химической промышленности, производстве электронных приборов.

К группе редких металлов относятся разные химические элементы, содержание которых в природе минимально по сравнению с остальными. Они похожи многими характеристиками, но обладают уникальными свойствами. Применяются в разных сферах промышленности, продолжают изучаться учеными.

Самые дорогие металлы в мире. Топ-13

На планете существует большое количество разнообразных металлов, различающихся редкостью и сложностью добычи. Специалисты данной области делят их на две группы: природные и искусственно получаемые в лабораторных условиях. Стоимость некоторых представителей второй группы сильно отличается от стоимости природных металлов, присутствующих на мировом рынке, по причине длительного и трудоемкого процесса их изготовления.
В данном рейтинге представлено 13 самых дорогих металлов в мире.


13-место: Индий – ценный серебристо-белый металл из группы легких металлов, обладающий сильным блеском. Был открыт в 1863 году в Германии в химической лаборатории ученых Фердинанда Рейха и Теодора Рихтера, которые изучали добытые в горах Саксонии цинковые минералы. Он мягкий, легкоплавкий и ковкий, его без труда можно порезать обычным ножом. Самостоятельных месторождений индий не образует и входит в состав руд цинка, свинца, меди и олова. Ежегодно производится несколько сотен тонн данного металла. Благодаря своим уникальным свойствам он нашел широкое применение в микроэлектронике, полупроводниковой технике, машиностроении. Его используют для изготовления зеркал, фотоэлементов, зубных цементов, в качестве уплотнителя и даже в космических технологиях. Цена 1 грамма металла индия равняется 0,5-0,7 долларам.

 

12-е место: Серебро – известный с давних времен и один из популярнейших драгоценных металлов, встречающийся как в самородном состоянии, так и в виде соединений. Используется для покрытия зеркал, изготовления ювелирных украшений и монет. Он активно применяется в электронике, стоматологии, фотографии, обладает отличной электро- и теплопроводностью. Крупнейшие запасы данного металла сосредоточены в Польше, Китае, Мексике, Чили, Австралии, США и Канаде. Стоимость грамма серебра составляет 0,55-1 у.е.


11-е место: Рутений – яркий серебристый металл, характеризующийся тугоплавкостью, твердостью и хрупкостью одновременно, самый редкий из платиновой группы. Был открыт в 1844 году профессором Карлом Клаусом, занимавшимся исследованиями в Казанском университете. Характеристики рутения делают его востребованным материалом в ювелирном деле, химической и электронной промышленности. Его используют для изготовления лабораторной посуды, контактов, электродов, проводов. В Японии и Западной Европе большое количество рутения идет на производство печатных схем и резисторов, а также для получения хлора и разнообразных щелочей. Данный металл часто используется как катализатор для множества химических реакций. Его производство полностью сосредоточено в ЮАР. Стоимость одного грамма рутения составляет 1,5-2 доллара.


10-е место: Скандий – легкий и высокопрочный металл серебристого цвета с желтым отливом. Впервые элемент был обнаружен в 1879 году шведским химиком Ларсом Нильсоном, который назвал его в честь Скандинавии. Скандий активно применяется в мире высоких и инновационных технологий. Его используют при конструировании роботов, ракет, самолетов, спутников и лазерной техники. Также сплавы данного металла служат в спортивной сфере – для изготовления высококлассного инвентаря, такого как клюшки для гольфа и высокопрочные рамы для велосипедов. Самые крупные месторождения богатых скандием минералов находятся в Норвегии и на Мадагаскаре. Стоимость одного грамма данного металла равняется 3-4 долларам США.


9-е место: Рений – серебристо-белый металл, относящийся к самым востребованным, труднодоступным и редким элементам в мире. Он очень плотный и имеет третью самую высокую температуру плавления среди всех своих сородичей. Обнаруженный в 1925 году металл используется в электронной и химической промышленности. Высокая плотность позволяет изготовлять из него лопатки турбин, сопла для реактивных двигателей и т.д. Цена на грамм рения колеблется от 2,4 до 5 условных единиц за грамм.


8-е место: Осмий – голубовато-серебристый металл, характеризующийся высокой плотностью и хрупкостью. В чистом виде в недрах его не существует, встречается только в связках с другим металлом из платиновой группы – иридием. Был открыт в 1803 году двумя британскими химиками Смитсоном Теннантом и Уильямом Волластоном. Свое название металл получил от греческого слова osme, что означает “запах”. Осмию действительно присущ довольно резкий и неприятный запах, напоминающий смесь чеснока и хлорки. Добывают данный металл на Урале, в Сибири, Южной Африке, Канаде, США и Колумбии. Используется в основном в химической промышленности в качестве катализатора и в фармакологии. Цена одного грамма осмия на мировом рынке составляет 12-15 долларов.


7-е место: Иридий – тяжелый, твердый и одновременно хрупкий металл серебристо-белого цвета. Мир впервые узнал о нем в 1803 году благодаря британскому химику С. Теннанту, который также открыл вышеупомянутый элемент. Самостоятельно иридий практически нигде не применяется и чаще всего используется для создания сплавов. Он обладает высокой температурой плавления, плотный и выступает в качестве наиболее коррозиестойкого металла. Ювелиры добавляют его к платине, поскольку он делает ее втрое тверже, а украшения из такого сплава практически не изнашиваются и очень красиво выглядят. Также он востребован при изготовлении хирургических инструментов, электроконтактов, точных лабораторных весов. Из него делают кончики для дорогих авторучек. Иридий применяется в аэрокосмической технике, биомедицине, стоматологии, химической промышленности. В течение года мировая металлургия расходует приблизительно одну тонну данного металла. Основное месторождение иридия находится в ЮАР. Его стоимость равняется 16-18 долларам за 1 грамм.


6-е место: Палладий – легкий, гибкий серебристо-белый металл из платиновой группы. Он очень пластичный, легкоплавкий, хорошо полируется, не тускнеет и довольно стоек к коррозии. Был открыт в 1803 году британским химиком Уильямом Волластоном, отделившим незнакомый металл от платиновой руды, которая прибыла из Южной Америки. Сегодня палладий приобретает все большую популярность среди ювелиров, поскольку невысокая цена, доступность и легковесность позволяют дизайнерам создавать из него самые смелые ювелирные творения, относящиеся к различным ценовым категориям и стилям. Платиновый металл широко используется в очистительных устройствах и для антикоррозийных покрытий. Наибольшее количество данного элемента на мировые рынки поступает из России, но крупные месторождения также есть в ЮАР. Стоимость палладия составляет 25-30 у.е. за один грамм.


5-е место: Родий – твердый благородный металл из платиновой группы серебристого цвета, обладающий сильными отражающими свойствами. Он очень твердый, устойчив к воздействию высоких температур и окислению. Был открыт в 1803 году в Англии химиком Уильямом Волластоном в процессе работы с самородной платиной. Родий считается редким элементом – ежегодно добывается около 30 тонн данного металла. Самые крупные месторождения находятся в России, ЮАР, Колумбии и Канаде. Примерно 80 % родия служит катализатором в автомобильной и химической промышленности. Из него изготовляют зеркала и фары для автомобилей, а в ювелирном деле он применяется в ходе конечной обработки изделий. Главное достоинство родия – участие в производстве ядерных реакторов. Стоимость ценного платинового металла колеблется в пределах 30-45 долларов за 1 грамм.


4-е место: Золото – главный драгоценный металл, который в природе встречается исключительно в чистом виде. Оно очень прочно, однородно, устойчиво к коррозии и считается самым ковким. Из-за своей долговечности и пластичности уже много лет золото носит звание самого популярного благородного металла. Широко используется в ювелирной, электронной промышленности, стоматологии. Крупнейшие страны-золотодобытчики – США, Китай, ЮАР, Австралия. Стоимость одного грамма золота на мировом рынке составляет 35-45 у.е.


3-е место: Платина – благородный металл серебристо-белого цвета с особенным блеском, встречающийся в природе только как естественный сплав с другими металлами: благородными и неблагородными. Она приобрела большую популярность благодаря присущей ей пластичности, плотности и отличному виду. Получение данного металла осуществляется в результате сложных химических процессов. Кроме производства ювелирных изделий и монет, платина широко используется в медицинской и электронной промышленности, в аэронавтике, производстве оружия. Крупнейшие страны-добытчики платины – ЮАР, Россия, США, Зимбабве, Канада. Цена одного грамма данного металла колеблется в пределах 40-50 долларов.


2-е место: Осмий-187 – редкий изотоп, процесс добычи которого отличается особой сложностью и занимает около девяти месяцев. Он представляет собой черный мелкокристаллический порошок с фиолетовым оттенком, носящий звание самого плотного вещества на планете. При этом изотоп Осмий-187 очень хрупок, его можно растолочь в обычной ступе на мелкие частички. Он имеет важное научно-исследовательское значение, его используют как катализатор химических реакций, для изготовления измерительных приборов высокой точности и в медицинской отрасли. Казахстан – первое и единственное государство, продающее Осмий-187 на мировом рынке. Рыночная стоимость уникального металла составляет 10 тысяч у.е. за 1 грамм, а в книге рекордов Гиннесса он оценивается в 200 тысяч американских долларов.


1-е место: Калифорний-252 – один из изотопов калифорния, самый дорогой металл в мире, стоимость которого достигает 10 миллионов долларов США за 1 грамм. Его баснословная цена вполне оправдана – ежегодно производится всего 20-40 микрограммов данного элемента, а общий мировой запас составляет не более 8 граммов. Создают калифорний-252 в лабораторных условиях с помощью двух ядерных реакторов, которые находятся в США и России. Впервые данный металл был получен в Калифорнийском Университете в Беркли в 1950 году. Уникальность калифорния кроется не только в его стоимости, но и в его особых свойствах – энергия, вырабатываемая одним граммом изотопа, равняется энергии среднего атомного реактора. Применение самого дорогого металла в мире распространяется на область медицины и научные исследования ядерной физики. Калифорний-252 – мощный источник нейтронов, что позволяет использовать его для обработки злокачественных опухолей, где другая лучевая терапия бездейственна. Уникальный металл позволяет просвечивать части реакторов, детали самолетов, и обнаруживать повреждения, которые обычно тщательно скрываются от рентгеновских лучей. С его помощью удается находить запасы золота, серебра и месторождения нефти в недрах земли.

На фото – калифорний рядом с гвоздем

Редкие металлы и сплавы. Физико-химический анализ и металловедение :: Книги по металлургии

СПЛАВЫ РЕДКИХ МЕТАЛЛОВ

 

Основным препятствием для применения в технике особо проч­ных сложнолегированных твердых растворов замещения на основе металлов VAгруппы (ванадий, ниобий, тантал) является ухудше­ние технологической пластичности. Поэтому, например, в ниобий вводится не больше 25% вольфрама, 10% молибдена, 7% ванадия, 5% циркония, 3—5% хрома [26]. По этой же причине ограничены возможности упрочнения за счет образования твердых растворов замещения большой концентрации для металлов VIAгруппы (хром, молибден, вольфрам).

Основой этих сплавов являются малолегированные твердые растворы, а упрочнение достигается в результате выделения дис­персных включений второй фазы, которая образуется в результате взаимодействия термодинамически активных тугоплавких метал­лов с примесями внедрения. Обычно вторая фаза выделяется в ви­де окислов, карбидов, нитридов или более сложных соединений (оксикарбидов, карбонитридов и т. д.). Пожалуй, единственным исключением получения высоколегированных сплавов промышлен­ного значения на основе металлов VIAгруппы являются сплавы систем вольфрам—рений, молибден—рений, вольфрам—молиб­ден. В данной главе будут рассмотрены данные о структуре, свой­ствах и применении некоторых важных для современной техники сплавов на основе редких металлов.

 

СПЛАВЫ ВОЛЬФРАМА

Самая высокая среди металлов температура плавления, минималь­ный коэффициент линейного расширения, высокие упругость и прочностные свойства делают вольфрам наиболее перспективной основой для разработки высокопрочных и жаропрочных сплавов, материалов с заданным комплексом физических свойств.

Сплавы вольфрама широко используются в самых различных отраслях современной техники: ракетно-космической, ядерной, радиоэлектронике, светотехнике и др. Па сегодняшний день по-прежнему значительная часть всей вольфрамовой продукции производится методами порошковой металлургии. Но наряду с этим все больше проявляется тенденция разработки новых вакуум-плавленных сплавов вольфрама и расширения масштабов их производства и потребления. В США более 25 % вольфрамовой продукции выпускается из плавленного вольфрама. Интенсифи­цируются работы в направлении решения проблем хладноломкости, окисляемости и плохой свариваемости вольфрама, являющихся основными причинами, сдерживающими его применение [26].

Проводятся интенсивные работы по изучению влияния леги­рования на свойства вольфрама. При этом особый интерес пред­ставляет легирование с целью повышения не только прочности и жаропрочности, но также жаростойкости и пластичности. Большинство разрабатываемых вольфрамовых сплавов представ­ляет твердые растворы, упрочненные дисперсными частицами неметаллических соединений. В качестве легирующих добавок используются хром, никель, молибден, ниобий, тантал, титан, цирконий, гафний, углерод. Добавки этих элементов к вольфраму, как правило, не превышают 5 мас.%. Сплавы вольфрама с боль­шим количеством легирующих элементов замещения характери­зуются резким снижением технологической пластичности. Исклю­чение представляют сплавы системы вольфрам—рений (как и системы молибден—рений), которые будут рассмотрены отдельно.

Легирование вольфрама переходными .металлами в области твердых растворов замещения приводит к возрастанию предела прочности и снижению пластичности в широком интервале тем­ператур. Сплав вольфрама с 20 мас.% молибдена дуговой вакуум­ной плавки при комнатной температуре имеет оь = 90 кгс/мм2, а δ — 7% [394]. Сплав вольфрам—15 мас.% молибдена— 27 мас.% рения имеет аь = 132 кгс/мм2, δ = 5% [395].

В интервале температур 1600—2200е С наиболее прочными ока­зались сплавы вольфрама с небольшими добавками гафния, нио­бия и тантала (до 3 ат.%) [396]. Предел прочности деформирован­ного сплава вольфрама с 1,7% гафния составляет 54 и 12 кгс/мм2 при 1650 и 2200″ С соответственно. Рост прочности пропорциона­лен разнице в атомных диаметрах вольфрама и легирующего эле­мента. Но при этом надо отметить, что легирование металлами IVA—VAгрупп резко снижает растворимость углерода в воль­фраме, и сплавы этих систем являются не однофазными, а двух-или трехфазными. Содержание циркония и гафния в вольфраме до 1 ат.% изменяет форму и характер распределения W2C, а даль­нейшее увеличение содержания этих металлов приводит к появле­нию в структуре сплавов мелкодисперсных карбидов типа МеС.

Низкая растворимость углерода и кислорода в вольфраме при­водит к тому, что практически всегда в исходном вольфраме содер­жатся избыточные фазы карбидов и окислов. При этом форма расположения их крайне неблагоприятная. Как показали наши исследования [487], проведенные с помощью сканирующей элек­тронной микроскопии, окислы могут располагаться в виде топких пленок по границам зерен, а карбиды имеют форму шипов или дендритов, располагающихся как по границам, так и внутри зерен. Поэтому при создании вольфрамовых сплавов с необходи­мыми прочностными и пластическими характеристиками надо нейтрализовать охрупчивающее воздействие примесей внедрения. Это достигается или путем глубокой очистки вольфрама или изме­нением состава, формы и характера расположения фаз, содержащих примеси внедрения.

Вредное влияние кислорода, связанное с наличием пор и окисных пленок, может быть устранено раскислением. Содержание углерода можно снизить за счет взаимодействия его с кислородом или водородом. При разработке сплавов в комплексе с термоди­намически активными добавками углерод может быть и полезной примесью с точки зрения повышения жаропрочности, а в ряде случаев и технологической пластичности.

 

Интерес представляет легирование вольфрама бором. Хотя бор — менее эффективный упрочнитель по сравнению с углеродом [405], по-видимому, он в комплексе с другими легирующими эле­ментами будет полезной добавкой к вольфрамовым сплавам вслед­ствие модифицирующего и рафинирующего действия.

Несмотря на достигнутые успехи в разработке вольфрамовых сплавов, надо отметить, что задача создания вольфрамовых спла­вов, сочетающих высокую прочность и пластичность, окончатель­но не решена. Как один из путей повышения пластичности воль­фрамовых сплавов (наряду с рафинировкой, модифицированием и т. д.), по нашему мнению, известную перспективу имеет создание сплавов с прочнопластичной эвтектической структурой, где проч­ной составляющей будут кристаллы вольфрама или твердого раствора на его основе, а мягкой — кристаллы пластичного ме­талла. Примером такой системы могли бы быть сплавы системы вольфрам—титан, но их приготовление осложняется большой разницей в температурах плавления и упругости пара компо­нентов. Видимо, перспективным путем может быть создание ком­позиционных материалов, в которых высокопрочные волокна вольфрамовых сплавов армированы пластичной составляющей.

 

Наряду с отмеченным выше карбидным упрочнением эффек­тивное упрочнение вольфрама (металлокерамического) происходит при добавлении тугоплавких окислов, например окислов тория, иттрия и др. В работе [40G] приводятся данные по непровисающему вольфраму с кремнеалюмощелочными присадками. Пред­ложен механизм этого упрочняющего влияния [407—410J. Он заключается в том, что дисперсные пузырьки, образуемые парами калия или других щелочных металлов, располагаются вдоль направления волочения проволоки и являются, подобно дисперс­ным тугоплавким частицам, эффективными барьерами для пласти­ческих сдвигов. Благодаря этим цепочкам включений образуется направленная вдоль оси проволоки структура, обеспечивающая формоустойчивость и высокие механические свойства.

Имеются попытки упрочнения вольфрама дисперсными части­цами нитрида гафния [408, 411].

Определенный интерес представляют сплавы вольфрама с ме­таллами платиновой группы, а также металлами группы железа. Установлено, что добавки осмия к вольфраму повышают его пластичность [412]. Аналогичное влияние оказывает и рутений. Механизм действия этих элементов до конца не ясен, но можно предполагать, что одна из причин повышения пластичности за­ключается в появлении двойникования как дополнительного к скольжению механизма деформации. Благоприятное влияние металлов VIIAи VIII групп на пластичность вольфрама связывают также с изменением электронной структуры образующихся твер­дых растворов замещения [308, 413, 414], с нейтрализацией вред­ного влияния углерода ввиду большой растворимости карбидов в гексагональных металлах по сравнению с оцк металлами [108].

Бесспорный интерес представляет исследование сплавов воль­фрама с марганцем, поскольку последний по своим химическим свойствам близок к рению. Однако получение этих сплавов пред­ставляет сложную технологическую задачу и, по-видимому, дол­жно проводиться под сравнительно большим давлением инертных газов или методами порошковой металлургии.

Методами порошковой металлургии удается вводить в воль­фрам и молибден небольшие добавки марганца, которые значи­тельно повышают технологическую пластичность благодаря нейтрализации вредного влияния примесей, особенно кислорода.

Несмотря на технологические трудности, связанные с приго­товлением сплавов вольфрама,   их  обработкой и сваркой, они находят все большее применение в современной технике. Имеются сообщения об использовании вольфрама для изготовления сопел топливных ракетных двигателей, частей плазменных двигателей и носовых конусов ракет, возвращающихся в плотные слои атмо­сферы [415, 416]. Для сопел твердотопливных ракетных двига­телей применяется пористый вольфрам, пропитанный серебром или медью [417]. Это значительно улучшает обрабатываемость вольфрама, а также теплоотдачу и сопротивление тепловому уда­ру. В связи с тем, что продукты горения твердого топлива являют­ся восстановителями, значительная окисляемость вольфрама не является препятствием работе в ракетных соплах. В этих условиях отмечается хорошее сопротивление вольфрама эрозии вплоть до температуры плавления.

Применение вольфрама в соплах ракетных двигателей вызва­ло необходимость разработки технологии изготовления вольфра­мовых деталей больших размеров. Эта задача решается как путем прессования и ковки вакуум-плавленного вольфрама, так и мето­дами порошковой металлургии. 

Самые интересные металлы / Хабр


Кто не слушает металл — тому бог ума не дал!

— Народное творчество

Привет, %username%.

gjf снова на связи. Сегодня буду совсем краток, потому что через шесть часов вставать и ехать.

А рассказать я сегодня хочу о металле. Но не о том, который музыка, — о том мы можем поговорить как-нибудь за кружечкой пива, а не на Хабре. И даже не о металле — а о металлах! И рассказать я хочу о тех металлах, которые меня в жизни так или иначе поразили своими свойствами.

Поскольку все участники хит-парада отличаются какими-то своими суперспособностями, то мест и победителей не будет. Будет — металлическая десятка! Так что порядковый номер ничего не означает.

Поехали.

1. Ртуть

Ртуть — самый жидкий металл: температура её плавления составляет -39 °C. О том, что она токсична — и даже очень — я уже писал, а потому повторяться не буду.

С древних времён на ртуть разве что не молились — ещё бы, «жидкое серебро»! Алхимики считали, что именно во ртути где-то прячется знаменитый философский камень, например Джабир ибн Хайян считал, что раз ртуть — это жидкий металл, то она — «абсолютна»: она свободна от любых примесей, присущих твёрдым металлам. Сера — другой предмет восхищения Хайяна — элемент огня, он способен давать чистое «абсолютное» пламя, а потому все остальные металлы (а поскольку это был VIII век — их было негусто: семь) образованы из ртути и серы.

Что в VIII веке, что сейчас — если смешать ртуть и серу, то получится чёрный сульфид ртути (и это, кстати, один из способов дезактивации пролитой ртути) — но уж никак не металл. Эту досадную неудачу Хайян объяснял тем, что все тупые не хватает некоего «созревателя», который из чёрной ерунды приведёт к получению металла. И конечно все бросились искать «созреватель», чтобы получить золото. История поиска философского камня официально объявлена открытой.

%username%, ты вот сейчас смеёшься над алхимиками — но ведь они-таки добились своего! В 1947 году американскими физиками при бета-распаде изотопа Hg-197 получен единственный устойчивый изотоп золота Au-197. Из 100 мг ртути добыли целых 35 мкг золота — и они сейчас красуются в Чикагском музее науки и промышленности. Так что алхимики были правы — ведь можно! Только, блин, дорого…

Кстати, единственным алхимиком, который не верил в возможность получения золота из других металлов был Абу Али Хусейн ибн Абдуллах ибн аль-Хасан ибн Али ибн Сина — а для тёмных неверных — просто Авиценна.

Между прочим, со ртутью по своему виду очень соперничает другой металл — галлий. Его температура плавления 29 °C, в школе мне показывали эффектный фокус: на руку кладётся кусок какого-то металла…

.. и вот что получается

Кстати, галлий сейчас можно купить на алике, чтобы показывать такой фокус. Не знаю, правда, проедет ли он таможню.2. Титан

Суровый титан — это тебе не ртутные сопли! Это — самый твёрдый металл! Ну в моём детстве и юношестве титаном писали на всех этих стёклах в общественном транспорте. Потому что царапал — и мелкой металлической пылью окрашивал.

Все знают, что титан благодаря твёрдости и лёгкости используют в авиации. Расскажу о некоторых интересных применениях.

Будучи нагретым, титан начинает поглощать разные газы — кислород, хлор и даже азот. Это используют в установках очистки инертных газов (аргона, например) — его продувают через трубки, заполненные титановой губкой и нагретые до 500-600 °C. Кстати, при этой температуре титановая губка взаимодействует с водой — кислород поглощается, водород отдаётся, но обычно водород в инертных газах никого не беспокоит, в отличие от воды.

Белый диоксид титана TiO2 используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171. Кстати, при производстве диоксида титана обязательно контролируют его элементный состав — но вовсе не для того, чтобы снизить примеси, а чтобы добавить «белизны»: нужно, чтобы окрашивающих элементов — железа, хрома, меди и т.д. — было поменьше.

Карбид титана, диборид титана, карбонитрид титана — конкуренты карбида вольфрама по твёрдости. Недостаток — они его легче.

Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, так как имеет цвет, похожий на золото. Все эти «медицинские сплавы», похожие на золото — это покрытие нитридом титана.

Кстати, упорные учёные недавно сделали всё-таки сплав, который твёрже титана! Только чтобы этого добиться — пришлось смешать палладий, кремний, фосфор, германий и серебро. Штука получилась недешёвая, а потому опять победил титан.

3. Вольфрам

Вольфрам — тоже противоположность ртути: самый тугоплавкий металл с температурой плавления 3422 °C. Он известен ещё с XVI века, правда, известен не сам металл, а минерал вольфрамит, в котором содержится вольфрам. Кстати, название Wolf Rahm на языке суровых немцев означает «волчьи сливки»: немцы, которые плавили олово, очень не любили примеси вольфрамита, который мешал плавке, переводя олово в пену шлаков («пожирал олово как волк овцу»). Сам металл уже выделили позже, примерно через 200 лет.

То, что на фото — не вольфрам на самом деле, а карбид вольфрама, так что если у тебя на руке такое кольцо, %username%, то не сильно задавайся. Карбид вольфрама — тяжёлое и крайне твёрдое соединение — а потому используется во всяких деталях, которыми бьют, кстати «победит» — это 90% карбида вольфрама. А ещё карбид вольфрама добрые люди добавляют в качестве наконечника бронебойных снарядов и пуль. Но не только его, позже расскажу про другой металл.

Кстати, хоть вольфрам и тяжёлый — но несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, радиационная защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах или более эффективной при равном весе. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением других металлов либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе. Выходит легче, эффективнее — но только дороже. Так что в случае фолаута, %username%, бери себе вольфрамовую броню!

Кстати, на своём «вечном кольце» я умудрился какой-то химией поставить пятно — и даже не знаю, чем. Так что «вечное» оно только у обычных людей )))

4. Уран

Единственный природный металл, который используют, как топливо, и при этом используется без остатка, буквально на атомном уровне.

Когда я был ещё школьником, но был вхож в университет (не скажу почему!), то меня всегда смешила реакция иностранных студентов, когда им в микроскоп показывали кристаллы уранил-ацетата натрия. Ну есть такая качественная реакция. Когда иностранцам говорили слово «уранил» — их сдувало с этажа. Все смеялись.

Мне смешно и грустно, что теперь и большая часть наших людей тоже считают, что уран- страшен, опасен и ужасен. Падение образования налицо.

На самом деле ещё в древнейшие времена природная окись урана использовалась для изготовления жёлтой посуды. Так, возле Неаполя найден осколок жёлтого стекла, содержащий 1 % оксида урана и датируемый 79 годом н. э. Он не светится в темноте и не фонит. Я был в Жёлтых Водах на Украине, где добывают урановый концентрат. Никто там не светится и не фонит. А разгадка проста: природный уран слаборадиоактивен — не более, чем граниты и базальты, а также терриконы и метрополитен. Тот уран, который УРАН — это изотоп U-235, которого в природе всего 0,7204%. Его так мало, что для ядерщиков нужно выделять и концентрировать этот изотоп («обогащать») — так просто работать реактор не будет.

Кстати, раньше в природе U-235 было больше — просто со временем он распался. И поскольку его было больше — ядерный реактор сделать можно было прямо на коленке. В прямом смысле. Так и произошло в Габоне на месторождении Окло примерно 2 миллиарда лет назад: через руду бежала вода, вода — естественный замедлитель нейтронов, которые вылетают при распаде урана-235 — в итоге энергии нейтронов было как раз столько, сколько нужно для захвата ядром урана-235 — и пошла-поехала цепная реакция. И уранчик горел себе несколько сотен лет, пока не выгорел…

Обнаружили это значительно позже, в 1972 году, когда на урановой обогатительной фабрике в Пьерлате (Франция) во время анализа урана из Окло было найдено отклонение от нормы изотопного состава урана. Содержание изотопа U-235 составило 0,717% вместо обычных 0,720%. Уран — не колбаса, тут недовес строго карается: все ядерные объекты подвергаются жёсткому контролю с целью недопущения незаконного использования расщепляющихся материалов в военных целях. А потому учёные стали исследовать, нашли ещё пару элементов, типа неодима и рутения, и поняли — U-235 украли до нас просто выгорел, как в реакторе. То есть ядерный реактор природа изобрела задолго до нас. Впрочем, как и всё.

Обеднённый уран (это когда 235-й забрали и отдали атомщикам, а остался U-238) — тяжёлый и твёрдый, напоминает чем-то по свойствам вольфрам, а потому — точно так же используется там, где надо бить. Об этом есть история из бывшей Югославии: там использовали бронебойные снаряды с бойком, содержащим уран. Проблемы у населения были, но вовсе не из-за радиации: мелкая урановая пыль попадала в лёгкие, усваивалась — и давала плоды: уран токсичен для почек. Вот так-то — и нечего бояться уранил-ацетата! Правда, законам РФ это не указ — а потому вечные проблемы с заездом химических реактивов, содержащих уран — потому как для чиновника уран бывает только один.

А ещё есть урановое стекло: небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию.

И это, блин, красиво!


Кстати, очень полезно предложить гостям яблоки или салатик, а потом включить немножко ультрафиолета и показать, как красиво. Когда все закончат восторгаться — небрежно так бросить: «Ну да, ещё бы, это же урановое стекло…» И откусить кусочек яблочка с вазы…5. Осмий

Ну раз уж поговорили о тяжёлых уранах-вольфрамах, то настало время назвать самый тяжёлый металл вообще — это осмий. Его плотность составляет 22,62 г/см3!

Однако осмию, будучи самым тяжёлым, ничего не мешает быть ещё и летучим: на воздухе он постепенно окисляется до OsO4, который летучий — и кстати, очень ядовитый. Да — это элемент платиновой группы, но он вполне себе окисляется. Название «осмий» происходит от древнегреческого ὀσμή — «запах» — именно благодаря этому: химические реакции растворения щелочного сплава осмиридия (нерастворимого остатка платины в царской водке) в воде или кислоте сопровождаются выделением неприятного, стойкого запаха OsO4, раздражающего горло, похожего на запах хлора или гнилой редьки. Этот запах почувствовал Смитсон Теннант (о нём позже), работавший с осмиридием — и так и назвал металл. И знаю я, что осмий должен быть в порошке и его нужно греть, чтобы процесс пошёл интенсивно — но в любом случае я не стремлюсь долго находиться рядом с этим металлом.

Кстати, есть ещё такой изотоп Os-187. В природе его очень мало, а потому из осмия его выделяют на центрифугах путем масс-сепарации — прямо как уран. Разделения ждут 9 месяцев — да-да, вполне уже можно родить. А потому Os-187 — один из самых дорогих металлов, именно его содержание обуславливает рыночную цену природного осмия. Но он не самый дорогой, о самом расскажу ниже.

6. Иридий

Раз уж заговорили о платиновой группе, то стоит ещё вспомнить об иридии. Осмий отнял у иридия звание самого тяжёлого металла — но разошлись в копейках: плотность иридия 22,53 г/см3. Осмий с иридием даже открыты были вместе в 1803 году английским химиком С. Теннантом — оба в качестве примесей присутствовали в природной платине, доставленной из Южной Америки. Теннант был первым среди нескольких учёных, кому удалось получить в достаточном количестве нерастворимый остаток после воздействия на платину царской водки и определить в нём ранее неизвестные металлы.

Но в отличие от осмия, иридий — самый, блин, стойкий металл: в виде слитка он не растворяется ни в каких кислотах и их смесях! Вообще! Даже грозный фтор берёт его только при 400-450 °C. Чтобы всё-таки растворить иридий, приходится его сплавлять с щелочами — да ещё желательно в токе кислорода.

Механическая и химическая прочность иридия используется в Палате мер и весов — из платиноиридиевого сплава изготовлен эталон килограмма.

В настоящий момент иридий не является банковским металлом, но и в этом уже есть сдвиги: в 2013 году иридий впервые в мире был применён в изготовлении официальных монет Национальным банком Руанды, который выпустил монету из чистого металла 999-й пробы. Иридиевая монета была выпущена номиналом 10 руандийских франков. И чёрт — я бы хотел такую монету!

Кстати, я в глубокой молодости в «Юном технике» как-то прочитал какой-то фантастический рассказ, когда паренёк к успеху шёл смог наменять песок на иридий по курсу 1:1 с какими-то там инопланетянами в подвале. Ну им видите ли кремний был нужен! Название и автора рассказа уже и не вспомню. спасибо Wesha — напомнил: В.Шибаев. Кабель «оттуда».

7. ЗолотоДа ну его — все видели


В жизни часто бывает, что есть чемпион фактический и формальный. Если иридий — фактический чемпион по химической стойкости, то золото — формальный: это самый электроотрицательный металл, 2,54 по шкале Полинга. Но это не мешает золоту растворяться в смесях кислот, так что как обычно — лавры достались тому, кто побогаче.

И действительно, в настоящий момент, благодаря тому, что Китай и РФ уходят от политики накопления золотовалютного запаса в долларах США к политике накопления собственно золота, золото — самый дорогой банковский металл: по цене он давно обогнал платину — да и вообще всю платиновую группу. Так что храни деньги в сберегательной кассе золоте, %username%!

Поскольку алхимический способ добычи золота показал свою дороговизну, получают этот металл на аффинажных заводах. А монетки делают уже на монетных дворах. Так вот, как человек, побывавший и там и там, могу сказать: работники подобных предприятий при посещении зоны, где есть драгметалл, либо переодеваются — и на рабочей одежде нет ни единой булавки или скрепки — рамки на проходной совсем не такие, как в аэропортах, там всё жёстче. Или действует так называемый «голый режим» — да-да, ты понял правильно: проходная для мальчиков и проходная для девочек — оденетесь уже внутри. Если у тебя имплант из металла — куча справок, куча разрешений, каждый раз индивидуально проверяют, что имплант на месте, где должен быть.

Кстати, а как ты думаешь — как организованы проходные на банкнотном дворе? Бумажки же не звенят на рамках!

Ответ тут, но подумай чуток сам

После работы не выпускают никого, включая руководство, пока не посчитают всю продукцию. Да — всё строго. Зато никто не против, когда в трудные времена зарплату выдавали продукцией.


8. Литий

В отличие от тяжёлых осмиев-иридиев литий — самый лёгкий металл, его плотность всего 0,534 г/см3. Это — щелочной металл, но самый неактивный из всей группы: в воде не взрывается, а спокойно взаимодействует, на воздухе тоже не сильно окисляется, да и поджечь его непросто: после 100 °C так хорошо покрывается оксидом, что дальше и не окисляется. Поэтому литий — единственный щелочной металл, который не хранят в керосине — зачем, если он достаточно инертный? И это к счастью — из-за своей низкой плотности литий бы в керосине плавал.

Природный литий состоит из двух изотопов: Li-6 и Li-7. Поскольку сам атом так мал, то лишний нейтрон значимо влияет на радиус орбитали и энергию возбуждения электрона, а потому обычный атомный спектр этих двух изотопов отличается — следовательно, возможно определять их даже без всяких масс-спектрометров — и это единственное исключение в природе! Оба изотопа очень важны в ядерной энергетике, кстати, дейтерид Li-6 используется как термоядерный порох в термоядерном оружии — и больше я не скажу ни слова на эту тему!

Литий также используют психиатры в качестве нормометика для лечения и профилактики маний. Когда я студентом подрабатывал на кафедре, к нам приходила тётенька с плазмой крови, в которой надо было определять литий. С какого-то раза я взял и полез в литературу (интернета ещё не было), чтобы понять, зачем там вообще литий определять? И узнал… Со следующего визита я так невзначай спросил тётю, а чья кровь вообще была? Когда она ответила, что её, я больше старался с ней лично не встречаться.

Ну то так — литий и литий, он даже в воде иногда определяется. Кстати, во Львове в воде его довольно много.

Да и кстати — с ростом популярности электромобилей, портативных девайсов и всего, что работает на литий-содержащих аккумуляторах, есть мнение, что цена на литий довольно быстро вырастет. Так что может деньги лучше хранить не в золоте, а в литии. Но это неточно, особенно после того, как на рынок лития вышла ещё и Австралия.

9. Франций

У франция целый набор титулов. Ну во-первых, франций — самый редкий металл. Всё его содержание — полностью радиогенное: он существует как промежуточный продукт распада урана-235 и тория-232. Общее содержание франция в земной коре оценивается в 340 граммов. Так что пятно на картинке выше — это не фото чёрной дыры в анфас, а около 200 000 атомов франция в магнитно-оптической ловушке. Все изотопы франция радиоактивны, самый долгоживущий из изотопов — Fr-223 — имеет период полураспада 22,3 минуты. Потому франция так и мало.

Тем не менее, франций имеет самую низкую электроотрицательность из всех элементов, известных в настоящее время, — 0,7 по шкале Полинга. Соответственно, франций является и самым химически активным щелочным металлом и образует самую сильную щёлочь — гидроксид франция FrOH. И не спрашивай, %username%, как это всё определяли с элементом, которого пшик — да маленько, и которого каждые 22,3 минуты становится ещё в два раза меньше, а исследователь светится сам всё ярче. А потому всё это интересно и занимательно, но франций практически нигде не используется.

10. Калифорний/>

Калифорния в этом мире нет совсем, а производят его в двух местах: Димитровграде в РФ и Окриджской национальной лаборатории в США. Для производства одного грамма калифорния плутоний или кюрий подвергают длительному нейтронному облучению в ядерном реакторе — от 8 месяцев до 1,5 лет. Вся линейка распадов выглядит следующим образом: Плутоний-Америций-Кюрий-Берклий-Калифорний. Калифорний-252 является конечным результатом цепочки — этот элемент невозможно превратить в более тяжелый изотоп, так как его ядро как бы говорит «спасибо, наелось» слабо откликается на воздействие нейтронами.

На пути преобразования плутония в калифорний из 100% ядер распадается 99,7%. Лишь 0,3% ядер удерживается от распада и проходит до конца весь этап. А ещё продукт нужно выделить! Выделение изотопа происходит методом экстракции, экстракционной хроматографии либо вследствие ионного обмена. Чтобы придать ему металлический вид, производится восстановительная реакция.

На получение одного грамма калифорния-252 затрачивается 10 килограммов плутония-239.

Ежегодное количество добываемого калифорния-252 составляет 40-80 микрограмм, а по оценкам специалистов мировой запас калифорния составляет не более 8 граммов. Поэтому калифорний, а точнее — калифорний-252 – самый дорогой в мире промышленный металл, стоимость его одного грамма в разные годы варьировала от 6,5 до 27 миллионов долларов.

Логичный вопрос: а кому он вообще нужен? Цепь из него на шею не сделаешь, любимой в виде кольца не подаришь. Дело в том, что Cf-252 имеет высокий коэффициент размножения нейтронов (выше 3). Грамм Cf-252 испускает около 3⋅1012 нейтронов в секунду. Да, потенциально можно сделать атомную бомбу, но из урана и того же плутония дешевле, поэтому сам калифорний используется как источник нейтронов в различных исследованиях, в том числе в промышленных поточных нейтронно-активационных анализаторах на конвейерной ленте. Кстати, %username%, я лично видел этот калифорний в виде маленькой ампулки, которую вытащили из здоровенной бочки радиационной защиты и быстренько засунули в нужное место анализатора.

Понятно, что за такие деньги калифорний просто обязан быть ядом, пусть и не таким крутым, как полоний, который лупит альфа-частицами, но нейтроны — тоже ничего. Но выходит дороговато, конечно.

Ну вроде всё — осталось поспать примерно четыре часа перед дорогой. Надеюсь, что вышло интересно, и я всё это корябал не зря.

Желаю тебе, %username%, быть твёрдым, как титан, лёгким на подъём, как литий, непреклонным, как иридий и ценным, как калифорний! Ну и побольше золота в кармане, само собой.
(можешь блеснуть этим тостом на следующем празднике — не благодари)

P.S. Поскольку с титаном к твёрдости придрались (почему-то больше ни к чему не придрались???) — достану туз из рукава.

11. Радий

Радий — это металл обмана и разочарования. И я поясню. Сам металл довольно редок и полностью радиогенен — возникает при распаде урана-238, урана-235 или тория-232; из четырёх найденных в природе наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. За время, прошедшее с момента его открытия супругами Кюри, — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержала лишь около 0,1 г радия-226.

Радий в буквальном смысле слова испаряется: все изотопы радия (за исключением радия-228) распадаются до газа радона — кстати, тоже радиоактивного. Тип распада — α, однако гамма-кванты тоже выделяются.

Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало XX века в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.

А ещё этот металл красиво светится в темноте.

Понятно, что при таком наборе свойств и цене только ленивый не стал добавлять радий в свою продукцию и рассказывать, как она чудодейственна. Появилась масса «докторов», докторами не являющихся (и что мне это напоминает) — тот же Вилльям Дж. А. Бейли. Во Франции 1930-х изготовители наиболее популярных кремов для лица, «ThoRadia», похвалялись обогащением своих мазей торием и радием. В Германии производили зубную пасту с радием. Видимо именно оттуда возникло выражение «Ваше лицо сияет» и «Ваши зубы ослепительны». Ну не знаю.

Имелись содержащие радий крекеры, а добавление бромида радия к шоколаду было запатентовано в Германии в 1936 г. Шоколадки и крекеры можно было запить радиоактивной минеральной водой. Эта вода продавалась по высоким ценам, а в рекламах гордо именовалась как «имеющая высокое содержание радиоактивных элементов». Наиболее известным брендом такой минералки был Radithor в 60-ти мл бутылках, содержащих по 2 микрокюри радия (именно его всем предлагал уже упомянутый «доктор» Бейли якобы как стимулятор эндокринной системы).

Примеры суперпродукции


Радий — щелочноземельный металл, а значит по химизму очень сходен с кальцием и магнием. И очень неплохо заменяет их в костях — а оттуда начинает прямой наводкой бомбардировать костный мозг, лёгкие и прочие нежные органы. Немного утешает то, что доступна радиевая продукция была только действительно богатым людям…

11 апреля 1932 года журнал Time сообщил, что известный богач, спортсмен и светский лев, любитель гольфа и водички Radithor (после того как повредил руку в 1927 году) Эбен Байер умер от отравления радием.

Статья Time

В 1965 его тело было эксгумировано. Обнаружено, что Байер суммарно принял порядка 500 микрокюри радия. Неудивительно, что причина смерти — множественные новообразования, абсцессы в мозгу и в прямом смысле слова дыры в черепе — проще говоря, рак.

Если ты думаешь, %username%, что это кого-то чему-то научило — то ошибаешься: вплоть до 1970-х радий вместе с люминофором — обычно, сульфидом цинка — наносили на стрелки различных приборов, в том числе часов. Это называлось «светомасса постоянного действия» — или СПД. В СССР СПД обычно была горчично-жёлтая, а в Америке — зеленовато-белая или голубоватая.

Некоторые примеры

Так вот, СПД со временем начинается иссыхаться и превращаться в пыль, ты эту пыль вдыхаешь — и куда попадает радий? Правильно! Пять! В смысле — пять лет жизни тебе осталось. Наверное. Ну в любом случае — немного.

Кстати, даже есть группа в ВК, где выкладывают фото с СПД.

Кстати, с именем радий исторически связаны и другие изотопы, никакого отношения к радию не имеющие. А именно:
Радий A 218Po
Радий B 214Pb
Радий C 214Bi
Радий C1 214Po
Радий C2 210Tl
Радий D 210Pb
Радий E 210Bi
Радий F 210Po

На самом деле эти изотопы были открыты как продукты в цепочке дальнейшего распада радия, но до их идентификации как элементов — их называли радием А, В и так далее. Ну а потом имена прижились.

Вот так вот бывает, когда ты к элементу со всей душой — а он тебе… Жизнь — боль.

Я оправдался за титан? 😉

Топ 10 самых прочных металлов в мире

Металлы в обыденной жизни стали применять в древности. Медь была первым элементом, который начал использовать человек, так как в природе её было просто найти, и она легко обрабатывалась. Неслучайно археологами найдены многочисленные предметы, сделанные из меди. В ходе своего развития люди научились делать сплавы, из которых изготавливались орудия труда, а затем и оружие. В наши дни проводятся исследования для выявления прочнейших металлов. Давайте узнаем больше о свойствах и использовании десяти самых прочных металлов в мире.

10. Титан

ТитанТитан

Его называют металлом будущего, поскольку окончательное его место в жизни людей пока не определено. Человек быстро оценил его лучшие качества. Титан лёгкий и высокопрочный, устойчивый к высоким температурам, отличается низкой плотностью, стойкостью к коррозии. Сферы применения: авиационная техника и ракетная отрасль, судостроение. Титановые сплавы имеют большие перспективы применения, но сдерживаются его высокой стоимостью и недостаточной распространённостью.

9. Уран

УранУран

Наиболее распространенный металл, отличается большой прочностью, в привычных условиях слабо радиоактивен. Обнаружение учёными урана считается открытием планетарного масштаба. Наделен парамагнитными свойствами, гибкий, ковкий и относительно пластичный, благодаря таким качествам нашёл применение в разнообразных производственных сферах: является основой для ядерного оружия, соединения урана используются в производстве стекол, в качестве красителей.

8. Вольфрам

ВольфрамВольфрам

Характеризуется высокой тугоплавкостью, также принадлежит к прочнейшим металлам на планете Земля. Являясь твёрдым элементом бело-серого цвета с характерным блеском, вольфрам высокопрочный, тугоплавкий, устойчив к воздействию кислотной и щелочной среды. Наделен ковкостью, при повышении температур W саморазогревается, а также растягивается в тоненькую нить, используемую в лампах.

7. Рений

РенийРений

Парамагнитный рений, один из более «тяжёлых» элементов высокой плотности (21.03 г/см3). На земле RE существует в чистом виде, особенно значительно содержание в виде примеси в молибдените до 0,5%. Ярко выраженными свойствами RE считаются высочайшая прочность, жаростойкость, характеризуется тугоплавкостью, стойкостью к окислению, пластичностью, малой коррозией при воздействии многих химических веществ. Рений — дорогостоящий металл. Сферы применения многообразны: электроника, ракетостроение, авиастроение (например, производство запчастей для сверхзвуковых истребителей), металлургическая отрасль, медицина, судостроение.

6. Осмий

ОсмийОсмий

Металл серебристо-светлой окраски, отливающий голубизной. Входя в группу платиноидов, считается одним из более плотных элементов. Характеризуется твёрдостью. Os является хрупким металлом, но при этом характеризуется устойчивостью к механическому воздействию и влиянию кислой среды. Учёными засвидетельствовано присутствие осмия в металлических метеоритах. Образуя идеальный состав с другими элементами, получил широкое использование в медицине, электронике, химии и нефтехимии, ракетостроении, нашёл широкое применение при производстве ручек.

5. Бериллий

БериллийБериллий

Металл серого цвета с серебристым оттенком, приобретающий при соприкосновении с воздухом матовый оттенок по причине образования оксидной плёнки. Металл, характеризующийся твёрдостью, высоко токсичный. В отличие от других металлов прекрасно проводит тепло и характеризуется низким электрическим сопротивлением. Обладая уникальными свойствами, Be получил применение в авиакосмической области, ракетостроении, ядерной энергетике, металлургической промышленности, атомной энергетике, лазерной технике. Учитывая высокую твёрдость Ве, его применяют для получения легирующих сплавов, материалов, отличающихся своими огнеупорными качествами.

4. Хром

ХромХром

Хром – металл бело-голубого цвета. Характеризуется высокой прочностью, твёрдостью, ярко выраженными магнитными свойствами, не подвергается водородному охрупчиванию, стойкий к влиянию кислотной и щелочной среды. Его используют, создавая различные сплавы, а те в свою очередь востребованы для изготовления медоборудования. Кроме того, Cr применяется при синтезе искусственных рубинов, соли хрома четырехвалентного используют для сохранения древесины и дубления кож.

3. Тантал

ТанталТантал

Тантал входит в тройку прочнейших элементов на земле. Его характеризуют серо-металлический цвет с серебристым блеском, высокая твёрдость и атомная плотность. Образующаяся сверху оксидная плёнка придаёт ему свинцовый отлив. Несмотря на высокую твёрдость и прочность, это металл характеризуется пластичностью, и по такому качеству сравним с золотом. Металл тугоплавкий, стойкий к коррозии и окислению. Нашел активное применение в металлургии, строительстве энергетических установок, химической отрасли.

2. Рутений

РутенийРутений

Имя 2-го по прочности металла на древнем языке означает – Россия. Металл имеет серебристый цвет, относится к платиноидам, содержится в тканях мышц у всех живущих на земле существ. Высокопрочный металл, твёрдый, тугоплавкий, обладает стойкостью к воздействию химических веществ, способен образовывать комплексные соединения. Рутений используется в космической отрасли, медицине, электронике, в качестве добавки, придающей золоту чёрный цвет.

1. Иридий

ИридийИридий

Лидером среди всех металлов, обладающих высокой прочностью, считается Иридий. Твёрдый и тугоплавкий элемент серо-белого цвета принадлежит к платиноидам. Сегодня на поверхности Земли почти не встречается, но нередко встречается в соединениях с осмием. По причине твердости воздействие на металл затруднено, а значит и обработка, стоек под влиянием химических веществ. Его значение в обыденной жизни весьма велико. Иридий используется для придания таким металлам, как титан, хром и вольфрам лучшей устойчивости к влиянию кислотной и щелочной среды. Применяется для изготовления термопар, топливных баков, термоэлектрических генераторов, в медицине, нашёл широкое применение для сплавов с платиной у ювелиров.

Завод по производству редких металлических сплавов, Производственная компания OEM / ODM по изготовлению редких металлических сплавов на заказ

Всего найдено 381 фабрика и компания по производству сплавов редких металлов с 1143 продуктами. Выбирайте высококачественные сплавы из редких металлов на нашем большом количестве надежных заводов по производству сплавов из редких металлов. Золотой член
Тип бизнеса: Торговая компания
Основные продукты: Редкая Земля, Редкая Соли земли, Редкая Оксиды Земли Редкая Земля Металлы и Сплавы , Редкоземельные Магниты
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM
Расположение: Ганьчжоу, Цзянси
Золотой член
Тип бизнеса: Торговая компания
Основные продукты: Бромид натрия, химические продукты, металлургия Металлы , предметы повседневного использования
Mgmt.Сертификация:

ISO 14064, GMP

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM
Расположение: Нанкин, Цзянсу
Бриллиантовый член
Тип бизнеса: Торговая компания
Основные продукты: Никелевый лист, катодная медь, цинковый слиток, алюминиевый пруток, алюминиевый слиток
Mgmt.Сертификация:

ISO 9001, ISO 14064

Собственность завода: Общество с ограниченной ответственностью
Расположение: Ханьдань, Хэбэй
Основные рынки: Внутренний
Золотой член
Тип бизнеса: Торговая компания
Основные продукты: Магнит NdFeB, Магнит SmCo, Магнит AlNiCo, Ферритовый магнит, Резиновый магнит
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM
Расположение: Сямэнь, Фуцзянь
Тип бизнеса: Торговая компания
Основные продукты: Стальной шар, стальная заготовка, фильтр-мешок
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, собственный бренд
Расположение: Шанхай, Шанхай
Бриллиантовый член
Тип бизнеса: Торговая компания
Основные продукты: Оловянный стержень, оловянный слиток, оловянное серебро , сплав , цинк , сплав , цинковый слиток
Mgmt.Сертификация:

ISO 9001, ISO 9000, ISO 14001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: ODM
Расположение: Ханьдань, Хэбэй
Бриллиантовый член
Тип бизнеса: Производитель / Завод
Основные продукты: Полоса сопротивления, медно-никелевый сплав , полоса из сплава , полоса из FeCrAl, прецизионная полоса , сплав
Mgmt.Сертификация:

ISO9001: 2015

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: ODM, OEM
Расположение: Ханчжоу, Чжэцзян
.

GCSE Металлы | Измените свойства их смеси в сплавах

Это первая из наших викторин по химии GCSE на тему металлов. В нем мы узнаем о некоторых свойствах и использовании сплавов, металлов, образованных путем смешивания двух или более (обычно металлических) элементов.

Несмотря на то, что металлы обладают некоторыми невероятными свойствами, сами по себе металлы не всегда подходят для использования нами. Большинство металлов, которые мы используем в повседневной жизни, – это сплавы. Чистая медь, золото, железо и алюминий слишком мягкие для многих работ, так что мы можем сделать, чтобы улучшить их свойства? Что ж, мы можем смешивать их с другими элементами, чтобы образовать сплавы.Сплавы обычно (но не всегда) представляют собой смесь двух или более металлических элементов. Хорошим примером этого является смешивание углерода с железом для производства различных сталей. Железо из доменной печи – хрупкий материал, но при смешивании с нужным количеством углерода оно становится чрезвычайно ковким и пластичным. Его можно сколоть и согнуть, либо растянуть на тонкую проволоку.

Люди прошли несколько «веков», чтобы стать тем, чем мы являемся сегодня. В каменном веке (на самом деле признано три каменных века) единственными известными металлами были те, которые возникли естественным образом – золото, возможно, немного меди и немного железа из недавно упавших метеоритов.Это сделало металлы очень редкими и, следовательно, ценными. Медь и олово легко плавятся, но они мягкие, однако ранние люди обнаружили, что они могут смешивать их вместе, чтобы получить более твердый металл, который можно было бы затачивать и использовать для инструментов и оружия – наступил бронзовый век. В Британии это было около 4500 лет назад, поэтому сплавы использовались довольно давно! Потребовалось еще около 1700 лет, чтобы в обиход вошел следующий сплав – сталь. Люди вступили в железный век. Они открыли, как извлекать железо из железной руды с помощью древесного угля, и это удары раскаленного железа, на поверхности которого были следы древесного угля, производили материал, который был более твердым и долговечным, чем бронза.Конечно, они не знали химию и не понимали, что они заставляли атомы углерода проникать в слои атомов железа, делая их сильнее и пластичнее.

В течение девятнадцатого и двадцатого веков, вызванных промышленной революцией, ученые разработали множество других новых сплавов, которые используются для множества различных работ. Сплавы обычно изобретались так, чтобы они были более твердыми, легкими и более устойчивыми к коррозии, чем металлы, из которых они сделаны, однако есть множество исключений, например, нитинол “ запоминает ” свою первоначальную форму при нагревании и используется для изготовления очков. рамы, в то время как припой предназначен для быстрого плавления и повторного затвердевания для соединения других металлов.

.Завод металлических сплавов

, Производственная компания OEM / ODM по изготовлению металлических сплавов на заказ

Всего найдено более 2000 заводов и компаний по производству металлических сплавов, выпускающих более 6000 продуктов. Закажите высококачественные металлические сплавы на нашем большом количестве надежных заводов по производству металлических сплавов. Бриллиантовый член
Тип бизнеса: Производитель / Завод , Торговая компания
Основные продукты: Черепица, Алюминиевая катушка, Алюминиевые катушки с цветным покрытием, Алюминиевый лист, Носовой мост
Mgmt.Сертификация:

ISO 9001

Объем НИОКР: OEM, собственный бренд
Расположение: Ляочэн, Шаньдун
Производственные линии: 4
Бриллиантовый член
Тип бизнеса: Производитель / Завод , Торговая компания
Основные продукты: Обработка деталей с ЧПУ, сварочная конструкция, пресс-форма, гибочные детали, гибочные трубы
Mgmt.Сертификация:

ISO 9001, ISO 9000

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: Собственный бренд, ODM, OEM
Расположение: Нинбо, Чжэцзян
Бриллиантовый член
Тип бизнеса: Производитель / Завод , Торговая компания
Основные продукты: Стоматологический наконечник, Светодиодная лампа полимеризации, Стоматологические файлы, Стоматологический инструмент, Апекс-локатор
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM, собственный бренд
Расположение: Фошань, провинция Гуандун
Бриллиантовый член
Тип бизнеса: Производитель / Завод
Основные продукты: Прототип, литье под давлением, литье под давлением, пресс-форма, обработка с ЧПУ
Mgmt.Сертификация:

ISO 9001, ISO 9000, ISO 14001, ISO 14000, ISO 14064 …

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: ODM, OEM
Расположение: Дунгуань, Гуандун
Бриллиантовый член
Тип бизнеса: Производитель / Завод
Основные продукты: Алюминиевый слиток, Медный лом, Слиток цинка, Слиток магния
Mgmt.Сертификация:

ISO 9001, ISO 9000

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM
Расположение: Синтай, Хэбэй
.

Фабрика редких металлов, OEM / ODM производственная компания по изготовлению редких металлов на заказ

Всего найдено 982 завода и компании по производству редких металлов с 2 946 продуктами. Получите высококачественный редкий металл из нашего огромного выбора надежных заводов по производству редких металлов. Бриллиантовый член
Тип бизнеса: Производитель / Завод
Основные продукты: Титановая трубка / труба, титановый лист / пластина, титановый стержень / стержень, нитиноловая проволока, нитиноловая трубка
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM, собственный бренд
Расположение: Сучжоу, Цзянсу
Золотой член
Тип бизнеса: Торговая компания
Основные продукты: Редкая Земля, Редкая Соли земли, Редкая Оксиды Земли, Редкая Земля Металлы и сплавы, Редкие Магниты Земли
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: OEM, ODM
Расположение: Ганьчжоу, Цзянси
Бриллиантовый член
Тип бизнеса: Производитель / Завод
Основные продукты: Графитовая постоянная форма, графитовая лодочка, графитовая пресс-форма, графитовая трубка, графитовый тигель
Mgmt.Сертификация:

ISO9001: 2015, ISO14001: 2015, OHSAS18001: 2007

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: Собственный бренд, ODM, OEM
Расположение: Наньчан, Цзянси
Бриллиантовый член
Тип бизнеса: Производитель / Завод
Основные продукты: Спеченный магнит NdFeB, постоянный магнит, магнит SmCo, ферритовый магнит, Neocubes
Mgmt.Сертификация:

ISO 9000

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: Собственный бренд, ODM, OEM
Расположение: Нинбо, Чжэцзян
Тип бизнеса: Производитель / Завод , Торговая компания
Основные продукты: Молибден, вольфрам, высокотемпературный молибденовый стержень, молибденовый сплав, молибденовый стержень
Объем НИОКР: OEM, ODM, собственный бренд
Расположение: Лоян, Хэнань
Производственные линии: 10
Тип бизнеса: Производитель / Завод
Основные продукты: Вольфрамовая проволока, Вольфрамовый нагреватель, Вольфрамовая пластина, Медно-вольфрамовый сплав, Вольфрам-никелевый сплав
Расположение: Сиань, Шэньси
Тип бизнеса: Производитель / Завод , Торговая компания
Основные продукты: Титан, титановый стержень, титановая поковка, титановое кольцо, титановый диск
Mgmt.Сертификация:

ISO 9001

Расположение: Баоцзи, Шэньси
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *