Схема и принцип работы сварочного инвертора: узлы, элементы, детали. – интернет-магазин ВсеИнструменты.ру

alexxlab | 11.04.1975 | 0 | Разное

Содержание

устройство аппарата, из чего состоит и как работает?

На чтение 10 мин Просмотров 2.9к. Опубликовано

Сварка относится к самым эффективным методам, позволяющим надежно соединять металлические детали. Достигнуть наиболее качественных результатов в создании разнообразных конструкций из металла можно с помощью инвертора.

Данный инструмент широко применяется не только в производственных целях, но и в бытовых условиях. Поэтому важно понимать принцип работы .

Устройство и основные характеристики инверторов

Еще совсем недавно подобные агрегаты были достаточно простыми по схеме работы. Со временем аппарат был существенно модернизирован и дополнен электроникой.

В результате такие характеристики инверторных аппаратов, как его эффективность и функциональность существенно повысились. А самое главное, в процессе подобных модификаций, устройство не стало стоить дороже.

Как показывают современные тенденции, цена на аппарат, наоборот, снизилась, что не может не радовать сварщиков.

Устройство сварочного инвертора очень схоже с блоками питания, используемыми в компьютерах.

Вольт амперная характеристика инвертора для сварки.

Их схожесть заключается в принципе преобразования энергии, которое осуществляется в соответствии со следующими основными этапами:

  • выпрямление переменного напряжения электросети 220 В;
  • преобразование напряжения в переменное высокой частоты;
  • снижение высокочастотного U;
  • выпрямление пониженного напряжения.

Выше лишь кратко перечислены основные действия данного прибора. Как видно, импульсные блоки питания персональных компьютеров выполняют такие же операции, что известно даже чайникам.

Раньше главным узлом являлся мощный трансформатор. Он также позволял понижать входное напряжение и снимать со вторичной обмотки большие токи, величина которых могла достигать сотен ампер. Данных параметров было вполне достаточно, чтобы осуществлять сварку.

Недостатком такого агрегата является слишком большой вес, делающий мобильность инструмента минимальной. С целью уменьшения габаритов и веса были разработаны инверторы.

Из чего состоит данный узел? Главными элементами тут являются транзисторы, подключенные к понижающему трансформатору. Они переключаются со значительно большей частотой вплоть до 80 кГц. Это позволяет уменьшить размеры трансформатора до минимума. В то же время их мощность остается такой же высокой, как и у больших собратьев.

Однако напряжение в сварочном инверторе должно быть постоянным. В этих целях используется выпрямитель, представленный диодным мостом и конденсаторами, работающими на сглаживание выходного напряжения.

Принцип работы устройства

Принцип работы сварочного аппарата с инвертором основан на преобразовании токов высокой частоты до необходимой величины. Это и есть основное отличие от традиционного трансформаторного устройства.

В следствие того, что токи преобразуются непосредственно перед процедурой сварки, подобные устройства отличаются относительно малыми габаритами и весом.

Всем известно, в бытовой электросети величина напряжения составляет 220 вольт, а частота переменного тока – 50 Гц. Такие значения не подходят для проведения сварочных работ.

Аппарат инверторного типа позволяет обеспечить необходимые значения, подходящие для розжига дуги и поддержания ее горения.

Важным моментом является возможность инверторной обеспечивать указанные величины питания в широком диапазоне значений, что позволяет сваривать металлы в различных условиях.

Принцип работы инвертора для сварки.

Внутреннее устройство прибора предполагает наличие выпрямителя. Он запитывается от обычной бытовой электросети. Его главная задача: преобразование переменного тока в постоянный. Во время данного процесса напряжение не изменяется. Далее блок устройства выполняет обратное преобразование.

В результате указанных операций, частота тока значительно увеличивается. Вместо стандартного значения в 50, оно повышается до нескольких десятков тысяч герц. Такие большие величины достигаются благодаря использованию тиристоров и транзисторов.

В результате, на трансформатор поступает напряжение с высокой частотой. Далее происходит увеличение силы тока за счет снижения напряжения. Трансформаторы, позволяющие осуществить такой переход, отличаются незначительным весом и размерами.

В результате сварочные аппараты стали более мобильными. Такие устройства проще использовать в бытовых целях, например, в маленькой мастерской, на даче или даже дома.

Стоит отметить, что современные устройства отличаются высоким коэффициентом полезного действия, вплоть до 90 процентов.

Раньше данные приборы имели более простое устройство, очень близкое к описанному выше. Однако современные конструкции предусматривают наличие дополнительной электроники, повышающей функциональность инструмента.

Достаточно часто используются различные электронные узлы, на основе микропроцессоров. В результате осуществляется контроль напряжения и тока. Если их значения отклоняются от оптимальных, тогда они корректируются.

Таким образом, оборудование может функционировать без сбоев, а также повышается диапазон выбора параметров сварки.

https://youtu.be/DqRvaDfc7xE

Технические параметры

Итак, как работает инверторный сварочный аппарат – понятно. Данный принцип остается неизменным для всех типов таких устройств. Тем не менее на рынке доступно большое количество различных моделей, представленных как отечественным производителем, так и зарубежными компаниями.

Хотя принцип действия инверторных сварочных аппаратов остается неизменным, некоторые характеристики все же отличаются, а именно:

  • величина сварочного тока может варьироваться в широком диапазоне значений: профессиональным устройствам свойственны широкие интервалы, а вот бытовым вариантам более узкие;
  • продолжительность включения, показывающая длительность работы на выбранном токе без перерывов.
  • холостой ход;
  • напряжение электросети.

Таким образом, характеристики будут зависеть от параметров выходного выпрямителя, а также преобразователя частоты тока.

Еще к немаловажным критериям относится мощность прибора. В промышленных агрегатах она может быть очень высокой и достигать двадцати киловатт. Конечно же, использовать подобное оборудование в бытовых целях невозможно. Простая электросеть попросту не рассчитана на подобные нагрузки.

Характеристики сварочного инвертора.

Стоит понимать: стоимость инструмента будет зависеть от мощности. Чем она выше, тем больше придется заплатить.

Практически все современные типы подобных устройств способны осуществлять следующие :

  • полуавтоматическая в среде инертных или активных газов, так называемая MIG/MAG;
  • ручная дуговая с применением электродов;
  • аргонодуговая в среде защитного газа.

В случае использования устройств в последнем типе сварки, инверторы могут комплектоваться дополнительными функциями. К таким относится возможность постепенного снижения силы тока, бесконтактное зажигание дуги, сварка в импульсном режиме, регулировка длительности обдува поверхности газом и т.д.

Процесс сварки в ручном режиме становится более простым и комфортным из-за наличия функции форсажа дуги – ее розжига простым касанием поверхности соединяемых металлических частей конструкции.

В инверторах могут быть реализованы и другие функции. Все они призваны сделать процесс сварки более простым. Тут важно понимать: количество «наворотов» устройства неукоснительно ведет к увеличению его стоимости.

Работа в среде инертных газов также может быть облегчена некоторыми дополнительными возможностями агрегата.

Среди них:

  • «мягкий финиш» – автоматическое дожигание проволоки после окончания ее подачи;
  • «синергетика» – автоматическое «подстраивание» параметров сварки под значения, заранее заданные мастером;
  • «2/ такта» – возможность переключения подачи проволоки с автоматического режима на ручной и обратно;
  • «индуктивность» – позволяет понизить количество разбрызгиваемого металла, а также контролировать ширину шва и стабильность дуги.

Плюсы и минусы инверторной сварки

Устройство инверторного обладает рядом несомненных преимуществ. Благодаря им данный тип оборудования получил широкое распространение как в промышленности, так и в домашнем использовании.

Как известно, все, что необходимо от сварщика – это плавное перемещение электрода над линией соединения без соприкосновения с поверхностью детали. Электрод должен находиться на расстоянии в несколько миллиметров от изделия.

На первый взгляд кажется, что подобная операция достаточно легка. На деле же этот простой процесс превращается в невероятно тяжелую процедуру. Это связано с особенностями работы в маске, в которую постоянно летят искры, не дающий контролировать процесс соединения с высокой точностью.

Применения простого трансформатора сопровождено некоторыми рисками, описанными ниже.

Таблица силы тока для сварки инвертором.

Так, например, касание электрода поверхности изделия приведет к короткому замыканию. Если подобное произойдет, то оторвать его будет достаточно тяжело. Придется приложить приличные усилия, в противном случае сработает теплозащита или, что еще хуже, загорится обмотка трансформатора.

В инверторе такой недостаток попросту отсутствует. Случайное прикосновение электрода к поверхности не повлечет за собой катастрофических последствий. Микропроцессор практически мгновенно отреагирует на падение напряжения и подплавит электрод. В результате оторвать его от детали не составит труда.

Если же соприкосновения не происходит, но электрод находится достаточно близка к поверхности конструкции, процессор распознает такой сценарий действий и прекратит поступление выходного напряжения. Это позволит избежать перегрева трансформатора.

Технологические достоинства

Устройство и принцип работы сварочного инвертора обладает рядом преимуществ по сравнению со своими традиционными аналогами, работающими по трансформаторной схеме, а именно:

  • достаточно большая , соизмеримая с низкочастотными трансформаторами;
  • маленький вес и габариты, позволяющие без труда перемещать оборудование по цеху, мастерской или дому;
  • широкие возможности по настройке параметров сварки;
  • низкий расход электродов;
  • высокая эффективность;
  • возможность осуществления сварочного процесс в различных пространственных положениях;
  • совместимость с разными типами электродов.

Выше перечислены лишь основные плюсы. На деле, каждый откроет для себя еще больше положительных сторон использования подобного инструмента.

В любом случае повышенный комфорт сварки и возможность выполнения более качественной работы по достоинству оценит любой сварщик.

https://youtu.be/5RmnsgUOL14

Недостатки

Как показано выше, обладает множеством положительных моментов. В таком случае возникает вопрос: почему же многие сварщики до сих пор используют традиционные трансформаторные приборы?

Параметры сварочных инверторов.

Главной причиной такого положения вещей является высокая стоимость оборудования. Инверторы минимум в два раза дороже. Данный факт относится к ключевым при ответе не поставленный вопрос.

Еще одним недостатком сварочного инвертора является высокий процент выхода устройств из строя. Достаточно лишь загрязниться электронике – и аппарат может сломаться.

В связи с отмеченной проблемой возникает необходимость в постоянной чистке «внутренностей» с применением сжатого воздуха.

Маленькие размеры инструмента также не относятся только к плюсам. Есть и обратная сторона медали. Наличие большого количества электронных систем ограничивает возможность работы с устройством на открытой местности во время дождя или при повышенной влажности.

Плохая погода может попросту поломать прибор, а ряд дешевых устройств и вовсе не будет функционировать при отрицательных температурах. Работа в пыльных условиях также сопряжена с риском поломки.

Со сваркой тоже не все так гладко, как может показаться на первый взгляд. В первую очередь это относится к резке толстого металла. Если напряжение на выходе сварочного аппарата будет нестабильным, что связано с перепадами в сети, характерными для сельской местности, то преобразующий узел выйдет из строя.

Один из самых больших минусов – это дорогой ремонт. В основе работы прибора заложен транзисторный блок, стоимость которого может достигать четверти стоимости самого инструмента. Таким образом, окончание срока гарантийного обслуживания сопряженно со значительными тратами в случае поломки.

Подобные агрегаты сильно востребованы в сельской местности, где постоянно появляются задачи, связанные с соединением тех или иных металлических изделий.

Высокая мобильность позволяет без труда использовать их во дворе, перенося устройство с одного места на другое. Однако отсутствие сервисных центров станет большой проблемой в случае выхода аппарата из строя.

Итог

Принцип работы сварки с использованием инвертора вместо трансформатора обладает рядом достоинств. Благодаря им подобное оборудование широко применяется и в промышленности и бытовых условиях.

В данной статье достаточно детально рассмотрено устройство такого аппарата. Эта информация позволит не только разобраться с основами работы инвертора, но и поможет при выборе и покупке инверторной сварки.

Принцип работы сварочного инвертора

Работа сварочного инвертора заключается в преобразовании переменного тока 220 или 380В с частотой 50Гц в постоянный ток сварки с соответствующими параметрами


по напряжению холостого хода, силе тока и падающей вольтамперной характеристики. Но принцип работы сварочного инвертора существенно отличается от сварочных выпрямителей, основанных на диодномостовой схеме выпрямления. Если на обычных выпрямителях происходит однократное выпрямление переменного тока после понижающего силового трансформатора, то у инвертора используется многократное преобразование по частоте, напряжению и выпрямлению. Естественно, что качественные характеристики выпрямленного тока получаются выше, особенно в части пульсации.

Принцип работы сварочного инвертора можно разобрать на основе работы последовательно инвертора. Структурная схема изображена на схеме.

В представленной схеме нагрузочные сопротивления и коммутационные элементы (индукционные и емкостные) включены в последовательную цепь. Управляющий модуль построен на работе двух тиристоров. Первичный сетевой выпрямитель преобразует переменный ток и подает на фильтр постоянный ток, не меняя напряжения. Постоянный ток сглаживается сетевым фильтром, для уменьшения пульсации, и подается на частотный преобразователь для преобразования его в переменный ток высокой частоты. Частота тока достигает значений 50-100кГц. Ток высокой частоты подается на импульсный сварочный трансформатор. Сварочный трансформатор понижает ток высокой частоты до напряжения холостого тока сварки. Выпрямление тока высокой частоты происходит на выходе устройства во вторичном выпрямляющем блоке сварки. Силовой выпрямительный блок содержит сглаживающие емкостные фильтры для улучшения качества выпрямленного тока. Управляющий модуль осуществляет контроль и изменение параметров работы инвертора.

Работа любого инвертора, включая сварочный преобразователь, лежит в области использования импульсного резонанса. Это новое направление в развитии электротехники позволило уменьшить габариты многих громоздких устройств основанных на классической электротехнике. Следует заметить, что сварочные устройства на инверторном принципе преобразования тока остаются намного дороже испытанных выпрямителей и трансформаторов силового плана. Сложные схемы преобразования и управления снижают их надежность, но все остальные плюсы работы инверторов перевешивают во многих отраслях связанных со сварочными работами. На промышленном уровне использования, им нет равноценной замены для автоматической и полуавтоматической сварки.

Читайте также


  • Сварка сварочным инвертором

    В чем достоинства и недостатки сварки с помощью инвертора, а так-же основные типы работ данный устройством, вы узнаете из данной статьи. ...


  • Самодельный сварочный инвертор

    Описание простейшего самодельного сварочного инвертора, который займет достойное место в небольшой домашней мастерской, вы найдете в данной статье. ...


  • Ремонт сварочных инверторов своими руками

    В данной статье вы найдете всю необходимую информацию для того, чтобы понять тип неисправности сварочного инвертора, и возможно осуществить ремонт ...


Принцип работы сварочного инвертора и его устройство (видео)

Сегодня рынок сварочных аппаратов прочно удерживают сварочные инверторы. Принцип работы сварочного инвертора существенно отличается от старых аппаратов (трансформаторных). Такие агрегаты захватили рынок относительно недавно, в середине нулевых, причинами успеха стали их достоинства и резко снизившаяся цена из-за удешевления электроники.

Конструкция сварочного инвертора.

Что такое инвертор

До появления сварочного инвертора для сварки использовали аппараты с мощными трансформаторами, которые выдавали ток до 500 А. Они были громоздкими и тяжелыми, их масса достигала 20, а иногда и 25 кг. Современные инверторы занимают мало места и весят на порядок ниже. Но для того чтобы понять принцип работы сварочного инвертора, необходимо знать принцип сварки как процесса.

Схема инверторного сварочного аппарата.

Как уже было сказано выше, сварочный аппарат дает на выходе большой ток. Этот ток позволяет получить электрическую дугу, которая имеет высокую температуру и плавит металл. Дуга возникает между металлической поверхностью (той, что требуется заварить) и электродом. Капли расплавленного дугой металла заливают щель свариваемых деталей. После застывания металла, которое происходит очень быстро, образуется шов, который обладает высокой прочностью. Такая дуговая сварка является основной, на ее долю приходится более 80% всех соединений.

Главное в сварке – это ток, который раньше получали при помощи мощных трансформаторов, однако уже середина 70-х годов прошлого века была отмечена изобретением инверторного сварочного аппарата. Он имеет малые габариты и массу, питается от бытовой сети в 220 В (или промышленной в 380 В), а на выходе дает широкий диапазон необходимых токов.

Вкратце принцип работы инвертора можно описать так: ток от сети (переменный, с частотой 50 или 60 Гц) идет на выпрямитель, где преобразуется в постоянный. Далее идет фильтр, который «сглаживает» постоянный ток. После фильтра следует инвертор, который преобразует постоянный ток в переменный высокой частоты. Далее напряжение понижается, и на выходе получается высокое значение переменного тока. Регулируя частоту, можно регулировать ток в широком диапазоне.

Подробное описание работы

Принцип работы сварочного аппарата.

В инверторах происходит увеличение рабочих частот с 50/60 Гц до 60 – 80 кГц (при этом увеличение рабочих частот в 4 – 6 раз позволяет снизить массу и габариты устройства в 2 – 3 раза). Повышение частоты (рабочей) происходит в контуре с мощными силовыми ключевыми транзисторами. Однако для работы транзисторов, которые на выходе дают большой ток высокой частоты, следует подать постоянный ток на вход. Постоянный ток получается после прохождения переменного тока питания (от внешней сети) выпрямителя. Электрическую схему можно условно разделить на 2 части: силовую и управления. Описание начинается с силовой части. Итак, сетевой выпрямитель представляет собой мощный диодный мост, который преобразует переменный ток в постоянный.

Для фильтрования применяются конденсаторы (часто электролитические). Фильтр необходим для сглаживания импульсов, которые происходят после прохождения диодного моста. При этом значение напряжения на выходе фильтра будет примерно в 1,4 раза выше входного напряжения диодного моста (т.е. на корень из 3). При этом важно знать то, что подобные схемы чувствительны к перепадам напряжения. При повышении входного напряжения более чем на 10% выходное повышается на 15%, этого достаточно, для того чтобы схема сгорела. Также важным конструктивным элементом выпрямителя является радиатор, который охлаждает диодный мост. Это связано с тем, что диоды и резисторы в диодном мосту сильно нагреваются под воздействием больших токов.

Помимо радиатора, на диодный мост устанавливается и термопредохранитель, в задачи которого входит немедленное отключение питания при нагреве моста более чем на 80 – 90°С.

Принципиальная электрическая схема сварочного инвертора.

Перед выпрямительным узлом устанавливают фильтр ЭМС (электромагнитная совместимость), он защищает сеть от высокочастотных помех и представляет собой дроссель и связку конденсаторов. Инвертор же представляет собой сборку транзисторов (часто из 2 штук) по схеме «косой мост». Коммутация постоянного напряжения в переменное происходит переключением транзисторов, частота которых может составлять десятки или сотни килогерц. Полученный на выходе ток имеет прямоугольную форму. Защиту транзисторов от сгорания обеспечивают RC-цепи, которые называют демпфирующими. Чтобы получить высокий ток на выходе инвертора, после косого моста стоит понижающий трансформатор напряжения. За ним находится мощный силовой выпрямитель, тоже диодный мост, который преобразует переменный ток в постоянный. Именно постоянный ток на выходе генерируют инверторы.

Все силовые контуры имеют охлаждение и термодатчики, которые отключают аппарат при превышении допустимого значения температуры. Чтобы обеспечить плавный запуск аппарата, используют стабилизаторы напряжения. Мягкий пуск необходим из-за того, что после зарядки конденсаторов фильтра на выходе получается большое значения тока, которое может сжечь силовые транзисторы.

Для управления силовой частью используют контроллер ШИМ. Он выдает сигналы на полевой транзистор. Выходные сигналы полевого транзистора попадают на трансформатор разделительный, у которого 2 выходные обмотки. С обмоток выходные сигналы поступают на силовые ключевые диоды (из силовой части). Также для закрытия силовых транзисторов применяется «обвязка» из 2 транзисторов. Для контроля выходного силового сигнала в системе управления применяется схема с использованием операционного усилителя, который подает входной сигнал ШИМ-контроллеру. На узел операционного усилителя, помимо выходных сигналов, заводятся сигналы со всех защитных контуров, в результате чего прекращается генерация сигнала управления и схема перестает работать (отключается).

Достоинства инверторов

Способы подключения сварочного инвертора.

Инверторы имеют следующие преимущества:

  1. Малая масса. Транзисторы весят значительно меньше трансформатора, поэтому масса прибора составляет 5 – 12 кг против 18 – 35 кг.
  2. КПД инверторов достигает порядка 90%. Это связано с меньшими потерями на нагрев «железа». Сварочные трансформаторы сильно греются.
  3. В связи с высоким КПД и низкими потерями в железе почти в 2 раза снижается электропотребление аппарата.
  4. Устройство сварочного инвертора дает возможность регулирования силы тока, что позволяет осуществить сварочные работы в широком диапазоне, т.е. не требуется специальных аппаратов для различных материалов (типа меди или латуни). Это делает такой аппарат универсальным.
  5. Сварочные инверторы более «лояльны» к ошибкам сварщиков. Почти все аппараты имеют автоматические режимы, которые не позволяют электроду залипнуть.
  6. Стабильное выходное напряжение, не зависящее от перепадов (до 10%) напряжения в сети. Это позволяет получить стабильную сварочную дугу, параметры которой регулируются автоматически, при этом могут быть учтены даже мелкие помехи типа ветра.
  7. Есть возможность применения любого типа электродов.
  8. Многие аппараты позволяют программировать режимы работы. Это дает возможность более точно настроить аппарат на конкретную задачу.

Недостатки инверторов

  1. Главным недостатком инверторов является цена, которая выше стоимости классических сварочных аппаратов на 20 – 50%.
  2. Высокая стоимость ремонта. Обычно у этих аппаратов выходят из строя силовые транзисторы, которые составляют до 60% стоимости всего устройства. Соответственно, их замена влетит «в копеечку».
  3. Невозможно использование инверторов в плохих климатических условиях: в дождь, снег или морозы. При снеге или морозах сварка должна проводиться в специальных шатрах, где обеспечивается температура выше 0 градусов.

Стоит отметить и короткие кабели питания, т.е. нельзя использовать удлинители. Обычно кабель питания имеет длину порядка 2 метров. Это вызвано тем, что в них наводятся помехи, которые вредят работе инвертора. В результате инверторы жестко привязаны к точкам подключения.

Автор:

Иван Иванов

Поделись статьей:

Оцените статью:

Загрузка...

Электрическая схема сварочного инвертора

В статье представлен обзор схемотехники силовой части источников сварочного тока инверторного типа, рассмотрены общие принципы работы, недостатки и преимущества каждой из схем. Приведены несколько запатентованных способов стимулирования зажигания дуги, представлена синтезированная типовая структурная схема инверторного сварочного аппарата.
Инверторные преобразователи напряжения на мощности от единиц ватт до десятков киловатт давно и успешно применяются при построении источников питания различного назначения. Особенностью этого класса преобразователей является работа на статическую нагрузку. В последнее десятилетие прошлого века инверторные преобразователи стали применяться при построении электросварочных аппаратов, где нагрузкой является сварочная дуга. Если первые модели таких инверторов выполнялись на тиристорах, то сейчас в качестве коммутирующих активных элементов применяются исключительно силовые МДП транзисторы. Абсолютное большинство сварочных инверторов предназначено для осуществления сварки на постоянном токе. Их структурная схема представлена на рис. 1
Рис. 1. Структура электросварочного аппарата инверторного типа.
1 – входной выпрямитель с емкостным накопителем энергии;
2 – инверторный модуль;
3 – выходной выпрямитель.
При питании от однофазной сети бестрансформаторный входной выпрямитель заряжает накопительную емкость до напряжения величиной около 300В. Инверторный модуль, выполненный на ключевых активных элементах, осуществляет преобразование энергии постоянного тока в энергию тока высокой частоты с последующим его выпрямлением для питания сварочной дуги. Причем частота преобразования составляет несколько десятков килогерц. Инверторный модуль кроме ключевых элементов и системы управления ими обязательно содержит высокочастотный импульсный трансформатор. Понятно, что схемотехническое построение нверторного модуля во многом определяет качественные и количественные параметры всего сварочного аппарата. Анализ схемотехнического построения (топологии) сварочных инверторов зарубежных и отечественных производителей дает основание полагать, что число вариантов таких решений весьма ограниченно и все их можно разделить на однотактные и двухтактные. Однотактные схемы формируют импульсы одной полярности, двухтактные - двухполярные импульсы. Во всех схемах транзисторы работают в ключевом режиме, причем время включенного состояния может регулироваться, что дает возможность изменять величину нагрузочного тока. Наиболее распространенные схемотехнические решения инверторных модулей представлены на рис. 2
Рис. 2. Схемы инверторных модулей сварочных аппаратов
а) Двухтактная схема – «полный мост»
б) Двухтактная схема – «полумостовая схема»
в) Однотактная схема – «косой полумост»
В двухтактной мостовой схеме формирование двухполярных импульсов происходит за счет попарного отпирания транзисторов (VT1 и VT3), (VT2 и VT4). При номинальной мощности нагрузки через транзисторы протекает лишь половина полного тока моста, а напряжение на каждом из них составляет половину напряжения на емкости С. Однако здесь требуется обеспечить полную симметрию плеча моста для исключения возможности протекания через первичную обмотку трансформаторе тока подмагничивания. Кроме того, для предотвращения опасности сквозного короткого замыкания через транзисторы необходимо задать некоторое «мертвое время», т.е. паузу между началом процесса отключения одной пары транзисторов и включения другой. В полумостовой схеме за счет наличия емкостного делителя (С2, С3) напряжение на каждом из транзисторов и на первичной обмотке трансформатора составляет 0.5Uвх т.е при питании схемы от бестрансформаторного сетевого выпрямителя оно не превышает 150В. Обеспечение сварочного тока величиной 120 – 150 А при относительном малом коэффициенте трансформации приводит к необходимости применения мощных транзисторов (либо их группового соединения) и увеличению тока, потребляемого из питающей сети.
В такой схеме так же необходимо задавать «мертвое время». Косой полумост является однотактным инвертором. Транзисторы VT1 VT2 открываются и закрываются одновременно и здесь нет опасности сквозного КЗ. На транзисторах в запертом состоянии напряжение не превышает 0,5 Uвх. Энергия выбросов, возникающих при запирании транзисторов, сбрасывается во входную емкость С через диоды VD1 и VD2. Недостатком схемы является подмагничивание сердечника трансформатора постоянной составляющей выходного тока. Эту проблему можно решить, например, путем изготовления сердечника с зазором или выбором магнитного материала сердечника с большими значениями индукции насыщения. Схема позволяет без увеличения напряжения на транзисторах и при приемлемом значении потребляемого из сети тока за счет увеличения коэффициента трансформации получить требуемое значение выходного тока. Схема проста в управлении, не требовательна к жесткому симметрированию плеч, исключает возможность возникновения «сквозного тока», обеспечивает высокий КПД за счет рекуперации энергии.
Поэтому она нашла широкое применение в сварочных инверторах. Проектирование сварочных инверторов имеет ряд особенностей. Одна из них заключается в необходимости надежного возбуждения электрической дуги. Известно, что при ручной сварке в воздушной среде на постоянном токе или на токе промышленной частоты напряжение холостого хода должно быть порядка 60-90В. В сварочных аппаратах максимальное значение напряжения холостого хода и номинальное значение сварочного тока связаны между собой и обусловлены свойствами силового контура инвертора. Учитывая, что при питании инвертора от бестранформаторного выпрямителя входное напряжение не может быть больше 310В, при Uхх порядка 70В – 80В коэффициент трансформации по напряжению (и по току) не может быть больше 4,5. При таком коэффициенте трансформации и сварочном токе 150-160А потребляемый из сети ток будет порядка 40А, что при использовании бытовой сети недопустимо. Поэтому разработчики сварочных аппаратов ищут различные способы стимулирования зажигания дуги при высоком значении коэффициента трансформации сварочного трансформатора. Для зажигания дуги необходимо осуществить ионизацию разрядного промежутка.
Сделать это можно повышением напряжения холостого хода, стимулированием промежутка высоковольтными импульсами от отдельного генератора, воздействием маломощного лазерного луча, применением вольтодобавочных схем и др. Так, предложено ввести в схему полумостового инвертора дополнительную ёмкость С4 и диод VD1 (рис. 3). При работе инвертора на холостом ходу за счёт добротности первичного контура трансформатора ёмкость С4 заряжается до напряжения, превышающего выходное напряжение сетевого выпрямителя. При зажигании дуги добротность силового контура падает, подзаряд ёмкости С4 прекращается, и напряжение на ней определяется только выходным напряжением выпрямителя. Авторы изобретения утверждают, что такое решение позволяет при питании от однофазной цепи получать токи сварки для использования электродов с диаметром до 4 мм при напряжении холостого хода 70-75 В.
Рис.3 Сварочный источник питания по патенту № 2053069 Интересное решение для стимулирования зажигания дуги путем ионизации разрядного промежутка предложено в [2]. Сварочный ток здесь представляет собой последовательность однополярных прямоугольных импульсов следующих с частотой ультразвукового частотного диапазона. На переднем и заднем фронтах этих импульсов за счет имеющих место в сварочном трансформаторе паразитных резонансных контуров формируются высокочастотные затухающие колебания достаточно большой амплитуды (рис. 4).
Рис. 4. Эпюры напряжения и тока в схеме по патенту № 2253551 [2].
а – напряжение на первичной обмотке трансформатора инвертора
б –форма сварочного тока
Авторы утверждают, что за счет такой формы сварочного тока обеспечивается непрерывная ионизация газового промежутка между электродами, поэтому достигается «чрезвычайно высокая стабильность горения дуги». Такой процесс сварки авторы назвали электро-импульсным. При всей заманчивости этого способа, на наш взгляд, он имеет ряд недостатков. Во-первых, из-за большой частоты следования импульсов (50-70кГц) сварка фактически осуществляется на квазипостоянном токе со всеми присущими ему недостатками. Во-вторых значительная амплитуда напряжения ударного возбуждения создает опасность повреждения ключевых транзисторов, которые и так работают в предельных режимах по току и напряжению. Поэтому к такому способу возбуждения дуги следует относится с осторожностью.
В сварочных инверторах ключевые элементы работают в импульсном режиме с ШИМ регулированием. Спектр тока такой последовательности импульсов весьма широк и достигает по разным оценкам 20 МГц. А поскольку токи в сварочном источнике и сварочных кабелях значительны, амплитуда высокочастотных так же может быть значительной, что создает опасность передачи радиопомех в питающую сеть и окружающую среду. Поэтому в большинстве импульсных источников на входе устанавливаются сетевые фильтры, задача которых – предотвращение попадания помех в питающую сеть. Менее проработаны вопросы снижения радиоизлучения сварочных кабелей. Почему-то считается, что если на выходе импульсного источника стоит диодный выпрямитель, то никаких высокочастотных составляющих в сварочном токе быть не должно. Однако у диодов существует время обратного восстановления, поэтому утверждение, что сварочные кабели (до и сама дуга) не являются источниками высокочастотных помех, преждевременно.
Кроме того, в моменты зажигания дуги, изменении её длины и обрыве, нагрузка на инверторный преобразователь изменяется в широких пределах. Поэтому режим работы сварочного инвертора является в принципе нестационарным, что создает опасность перегрузки и повреждения транзисторов. Классический прием снижения уровня перенапряжений на транзисторах путем подключения различных демпфирующих цепей далеко не всегда дает нужный эффект. Значительным разнообразием отличаются схемы управления сварочными инверторами.
К основным их функциям следует отнести:
• формирование импульсов, обеспечивающих надежное отпирание и запирание ключевых транзисторов;
• обеспечение возможности регулирования длительности импульсов (ШИМ) при заданной частоте их следования;
• возможность задания требуемой величины сварочного тока и его поддержание на заданном уровне в процессе сварки;
• защита аппарата от перегрева, перегрузки по току, «залипания» электрода;
• исключение токовой перегрузки питающей сети переменного тока при запуске сварочного аппарата.
С учетом всех этих требований типовую структурную схему инверторного сварочного аппарата можно представить в виде рис. 5. Сетевой фильтр (1) служит для исключения прохождения помех, возникающих в процессе работы сварочного инвертора, в питающую сеть. Входной выпрямитель с емкостным накопителем (2) необходим для питания инверторного модуля и исключения импульсной нагрузки на питающую сеть. Поскольку емкость накопителя достаточно велика (до 1500 мкФ), чтобы исключить появление пика зарядного тока, первичный заряд осуществляют через управляемый токовый ограничитель, который в процессе нормальной работы аппарата отключается блоком управления зарядом (БУЗ). Инвертор (3) преобразует энергию постоянного напряжения накопителя в энергию импульсов килогерцового диапазона путём использования широтно-импульсной модуляции (ШИМ). Формирование отпирающих импульсов для транзисторов инвертора осуществляется в системе управления состоящей из тактового генератора (10), ШИМ – котроллера (11) и драйвера (12). Требуемая величина сварочного тока задается в блоке задания режима (13) путем установления определенной ширины отпирающих импульсов. Поддержание заданной величины сварочного тока осуществляется по сигналу датчика тока (9). В ряде схем сварочных аппаратов путем задания соответствующего алгоритма управления обеспечивается стабилизация режима сварки за счет поддержания определенного соотношения между сварочным током и напряжением на дуге. Для этого кроме датчика тока вводится еще и датчик напряжения (8). Температурный режим внутри аппарата или его наиболее загруженных узлов контролируется с помощью датчика перегрева (7).
Рис. 5. Типовая структурная схема инверторного сварочного аппарата Путём соответствующего программирования микроконтроллера ряд фирм обеспечивает реализацию дополнительных результатов: форсирование тока при пуске, предотвращение «залипания» сварочных электродов и ряд других функций. Таким образом, повышение уровня «интеллектуальности» схемотехнических решений позволяет создавать сварочную технику с широкими функциональными возможностями.

Автор: Борисов Д.А., ГОУВПО «Мордовский государственный университет им. Н. П. Огарева», г. Саранск

Кроме статьи "Электрическая схема сварочного инвертора" смотрите также:

Схема сварочного инвертора, описание работы на примере сварочного аппарата РЕСАНТА САИ 140

СХЕМА СВАРОЧНОГО ИНВЕРТОРА И ОПИСАНИЕ ПРИНЦИПА РАБОТЫ

НА ПРИМЕРЕ СВАРОЧНОГО АППАРАТА РЕСАНТА САИ 140

    Основных схем сварочного инвертора Ресанта САИ 140 удалось найти две. Управление у них очень похоже, а вот технологически они отличаются довольно сильно.

 

НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ

    Первый вариант принципиальной схемы сварочного инвертора Ресанта 140 выполнен с использованием управляющего трансформатора, а второй - с использованием оптодрайверов для силовых транзисторов. Есть отличия и в питании управления. Первый с самозапитом, а второй использует отдельный источник питания. Поскольку первый похож на то, что есть у меня, т.е. используется управляющий трансформатор, то с него и начнем.

ДВА ВАРИАНТА ПРИНЦИПИАЛЬНОЙ СХЕМЫ СВАРОЧНОГО ИНВЕРТОРА РЕСАНТА САИ 140

НАЖМИТЕ НА РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ

    Итак, подаем питание и смотрим что будет происходить.
    Напряжение 220 вольт проходит фильтр на С3 и L… Пардон, на схеме почему то ЭТО обозначено трансформатором Т1 и доходит конденсаторов С1 и С2. Емкость этих конденсаторов для частоты 50 Гц слишком мала, но вот статику они на корпус спускают отлично и именно по этой причине крайне желательно для трансформатора использовать с заземление, только с реальным, а не иметь розетку в которой есть ни куда не подключенная клемма заземления.

    Вверху есть точка №1, как раз на левом выводе термистора РТС, а на правом выводе резистора R2 есть точка №2. Эти нумерные точки идут на контакты реле RL1, которое сейчас не включено – мы только что подали напряжение питания  и пока что заряжаются конденсаторы С4 и С5 через термистор и R2, разумеется пройдя диодный мост.

    По мере зарядки конденсаторов напряжение +300VDC начинает увеличиваться и начинает протекать ток через резистор R21 заряжая С18 и С19.
    Тут следует обратить внимание на используемый операционный усилитель LM324 который уже начинает работать при напряжении питания +3 вольта, т.е. при достижении напряжения на верхнем выводе С19 трех вольт операционный усилитель уже начинает выполнять свои функции.
    Теперь смотрим очень внимательно не забыв перевести мозг в состояние ВКЛ.

    Сопротивление R21 меньше суммы сопротивлений R22 и R23 в 20 раз, а емкость С19 больше емкости С20 в 4700 раз, следовательно напряжение на верхнем выводе С20 будет больше напряжения на верхнем выводе на 0,6 вольта – напряжение падения на диоде D24. Это в свою очередь однозначно переведет компаратор на U2A в состояние, когда на его выходе будет напряжение близкое к напряжению питания, следовательно LED2 будет светится, а транзистор Q8 будет открыт и пока он открыт на выходе U2D будет напряжение близкое к нулю. Это в свою очередь имитирует превышение порога срабатывания компаратора контроллера U1A и если бы он работал, то на выходе у него был бы ноль. Но он не работает, поскольку подающий на него питание транзистор Q7 еще закрыт.
    Тем временем конденсатор С19 продолжает заряжаться и напряжение на нем увеличивается. Как только оно превысит 5 вольт в дело вступает формирователь опорного напряжения на D25 – он не дает напряжению на выводе 2 U2A и выводе 5 U2B стать выше 4,7 вольта.
    На выводе 3 U2A напряжение по прежнему больше, чем на выводе 2 и напряжение на выходе компаратора продолжает удерживаться близким к напряжению питания.
    Напряжение на выводе 6 продолжает увеличиваться, поскольку этот вывод подключен к делителю напряжения на резисторах R49 и R50. И пока напряжение на 6-м выводе меньше опорного 4,7 вольта компаратор U2B держит на своем выходе напряжение близкое к напряжению питания, а это удерживает транзистор Q7 в закрытом состоянии.

    Как только напряжение на верхнем выводе С19 станет равным 12 вольтам на делителе сформируется напряжение равное 4,9 вольта, а это больше опорного напряжения 4,7 вольта и компаратор U2B сформирует на своем выходе напряжение близкое к нулю, транзистор Q7 открывается и подает питание на контроллер UC3845.
    Контроллер начинает выдавать управляющие импульсы и силовые транзисторы начинают открываться. Но делают они это на очень короткий промежуток времени, поскольку на контроллере формируется имитация превышения выходного тока все еще открытым транзистором Q8.
    На обмотке питания управления появляется напряжение и теперь все управление может потреблять гораздо больший ток. Это напряжение стабилизируется импульсным стабилизатором U1 и тут становится наглядной одна проблема – если первоначально напряжение с левого вывода R21 будет идти сразу на всю схему, то запуска у нас не произойдет никогда – вентилятор потребляет слишком много и напряжение не будет увеличиваться на верхнем выводе С19. Автор схемы учел этот момент и сделал на схеме поправку – только после начала работы стабилизатора напряжения для управления питание подается и на вентилятор и на реле софтстарта и на верхний вывод трансформатора управления. Что до отметки на подсветку LED1, то это исключено – напряжение там не появится пока не запуститься UC3845, а он не запустится, поскольку не будет на него питания.
    Тем временем конденсатор С13 заряжается до напряжения, превышающее 5 вольт и стабилитрон D19 пропускает ток на базу Q6, тот открывается и включает реле RL1, которое своими контактами шунтирует токоограничивающий термистор и резистор R2.

    Тем временем на выходе инвертора появляется напряжение и оно пройдя ограничитель тока засвечивает светодиод ISO1. Транзистор оптрона открывается и резко уменьшает напряжение на выводе 3 компаратора U2A. Поскольку напряжение на инвертирующем входе теперь больше, чем на не инвертирующем компаратор перекидывается в состояние когда на выходе у него ноль. Светодиод LED2 гаснет, а транзистор Q8 закрывается разблокируя усилитель регулирующего напряжения для контроллера UC3845 и контроллер уже формирует импульсы максимальной длительности, поскольку нагрузки еще нет и ток ограничивать не нужно.
    При работе, т.е. при сварке регулировка тока производится путем сравнения напряжения с трансформатора тока с напряжением управления, которое формируется усилителем U2D. Подробно о принципе работы UC3845 есть отдельное видео и статья, ссылки в описании.

 

НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ

    Поэтому рассмотрим лишь оставшиеся узлы.
    Управление силовыми транзисторами происходит с помощью управляющего трансформатора, вторичные обмотки которого через диоды Шотки идут на затворы силовых транзисторов при наличии управляющего импульса. Как только импульс управления прекращается остаточная магнитная энергия сбрасывается D15…D17, а силовые транзисторы закрываются с помощью транзисторов Q3 и Q5, причем происходит это через конденсаторы С 9 и С 10. Эти конденсаторы позволяют получить больше энергии для закрытия транзисторов и это происходит именно в момент окончания управляющего импульса.
    При наличии управляющего импульса оба транзистора сварочного инвертора открываются и через первичную обмотку протекает ток, который создает магнитное поле наводящее напряжение на вторичной обмотке. При исчезновении управляющего импульса транзисторы закрываются, а не израсходованная магнитная энергия сбрасывается на шины первичного питания через диоды D2 и D3, тем самым полностью размагничивая магнитопровод трансформатора и подготавливая его с следующему циклу передачи энергии во вторичную обмотку.

 

НАЖМИТЕ РИСУНОК ДЛЯ ПРОСМОТРА В ПОЛНОМ РАЗМЕРЕ

    К сервису данного сварочного инвертора можно отнести защиту от перегрева и залипания электрода, выполненных на одном управляющем элементе – оптроне ISO1.
    Пока светодиод данного оптрона светится открытый транзистор оптрона формирует почти ноль на выводе 3 U2A. Как только электрод касается свариваемой заготовки напряжение на светодиод еще какое то время поступает за счет накопленной в конденсаторе С34 энергии. Это время и есть время поджига дуги и если дуга не загорелась, т.е. электрод залип, то светодиод оптрона тухнет, тем самым закрывая транзистор оптрона. На выводе 3 компаратора U2A появляется практически напряжение питания и компаратор зажигает LED2 и открывает транзистор Q3, который душит на землю управляющее напряжение и контроллер выдает только очень короткие импульсы управления, которые не позволяют перегрузить силовой каскад – работа то идет практически на короткое замыкание и единственным сопротивление вторичного напряжения является реактивное сопротивление L1 индуктивность которого и выбрана таким образом, чтобы она оказывала влияние только на самые короткие импульсы.
    Как только электрод отодрали от заготовки напряжение на выходе инвертора снова появляется и снова загорается светодиод оптрона. Компаратор U2A гасит светодиод LED2 и закрывает транзистор Q8, тем самым переводя контроллер UC3845 в штатный режим работы.
    Если же происходит перегрев, то срабатывает самовосстанавливающийся термопредохранитель КТ, который разрывает цепь питания оптрона и светодиод гаснет и процессы повторяются – горит светодиод LED2, а на выходе сварочного инвертора очень короткие импульсы, не позволяющие производить сварочные работы и это состояние удерживается пока радиатор не остынет и термопредохранитель не включится.

    Второй вариант принципиальной схемы все того же инвертора Ресанта 140 отличается не большими изменениями в самом управляющем блоке, ну например транзистор подающий питание на UC3845 открывается через стабилитрон. Питание управление организовано от отдельно блока питания, который выдает 4 напряжения:

    15 вольт для питания управления, которые стабилизируются дополнительной КРЕНкой, вольт 12 для вентилятора и два напряжения для оптодрайверов силовых транзисторов. Величина должна быть порядка 25 вольт.

    Оптодрайверы управляют силовыми транзисторами через дополнительный формирователь отрицательного напряжения, выполненный на R6-D5 и R9-D6. Подача отрицательного напряжения на затворы силовых транзисторов значительно уменьшает время их закрытия, следовательно уменьшается нагрев транзисторов.
    Софтстарт второго варианта сварочного инвертора тоже организован несколько иначе – пока горит светодиод оптрона транзистор Q3 будет закрыт, но нагреваясь термистор RV2, имеющий отрицательную зависимость сопротивления от температуру увеличивает свое сопротивление и светодиод тухнет, тем самым разблокируя базу Q3 и реле софтстарта включается.
    Откровенно говоря и в первом варианте схемы инвертора и во втором включение реле происходит довольно медленно и не зависит от состояния схемы управления, что может приводить к подгоранию контактов реле.
    На последок остается добавить, что я собираю информацию по используемым в сварочных инверторах компонентам и результаты поисков свожу в таблицу с краткими характеристиками. ПОСМОТРЕТЬ МОЖНО ЗДЕСЬ.

   


Осциллограмма выходного напряжения без нагрузки.


Осциллограмма выходного напряжения инвертора при нагрузке 60 А.


Осциллограмма выходного напряжения инвертора Ресанта при сработанной защите.

   

   

    Небольшая подборка принципиальных схем сварочных инверторов РЕСАНТА сложены в АРХИВ. Кроме принципиальных схем сварочных аппаратов приведены несколько пособий по ремонту, несколько фотографий внутренностей инверторов, несколько паспортов.

 

 

 

 


Адрес администрации сайта: [email protected]
   

 

Принцип работы сварочного инвертора с пояснениями на схеме преобразователя

Сварочные инверторы всё более уверенно занимают нишу производственного сварочного оборудования, приходя на смену традиционной трансформаторной технике. В том, что этот тренд носит глобальный характер, сомневаться не приходится.

Инверторное оборудование объективно успешней справляется со стоящими перед ним задачами.

Преимущества инверторной техники

Превосходство сварочных инверторов над классическими преобразователями трансформаторного типа просматривается как в технологическом, так и в экономическом аспекте.

Если вкратце перечислить преимущества, приобретаемые при внедрении инвертора, получится примерно следующее:

  • более высокий коэффициент полезного действия, превышающий 90%, что предопределяет само устройство сварочного инвертора, характеризуемое отсутствием магнитных потерь в стальном сердечнике трансформатора, присущим «классике»;
  • способность работать в условиях изменения уровня питающего напряжения в широких пределах, не снижая при этом технологических параметров;
  • возможность очень точной установки тока сварки с цифровой индикацией его величины и жёстким поддержанием уровня в процессе сварки;
  • кардинально сниженные габаритные размеры и вес конструкции;
  • целый ряд совершенно новых возможностей, присущих только инверторным аппаратам, вот только некоторые из них.

К новым возможностям относится наличие специфических функций, среди которых hot start, anti sticking, arc force, и других, делающих процесс сварки доступным даже новичку. Есть возможность использования электродов, предназначенных для сварки, как переменным, так и постоянным током.

Что касается обычно называемых недостатков, присущих данному виду оборудования, то в первую очередь, речь идёт о сравнительно высокой цене этих приборов.

По этому поводу можно сказать следующее. Вспомните, как изменялись цены компьютерных и мобильных новинок буквально в течение нескольких лет. Дальнейшее совершенствование технологии и увеличение массовости производства неизбежно приведут к значительному снижению цен на сварочные инверторы.

Пояснения на схеме

Принцип работы сварочного аппарата, построенного на основе инвертора, иллюстрирует схема.

Структурная схема инвертора для сварки начинается с обозначения входящего тока и выпрямителя. Сетевое напряжение выпрямляется мостом из мощных диодов, установленных на радиаторы для рассеивания выделяющегося тепла.

Форма выпрямленного напряжения, имеющая ярко выраженные пульсации, схематически изображена в квадрате схемы, соответствующем выпрямителю.

Перед входом в инвертор, в общем-то, представляющем собой преобразователь напряжения, пульсации фильтруются с помощью конденсаторов большой ёмкости (на структурной схеме не показаны).

В инверторе, поступающее постоянное напряжение преобразуется в переменное, имеющее высокую частоту. Преобразование осуществляется за счёт переключения с большой частотой мощных ключевых полевых транзисторов, созданных по IGBT технологии.

При работе транзисторов выделяется большая мощность, поэтому их монтируют на массивных алюминиевых радиаторах. В свою очередь, работой транзисторов управляет высокочастотный генератор, основу которого составляет микросхема контроллера, работающего по принципу широтно-импульсного модулирования.

В этой части, принципиальная схема сварочного инвертора повторяет схемы импульсных блоков питания, используемых в радиоэлектронной аппаратуре с прошлого века.

Полученные в результате инвертирования высокочастотные импульсы поступают на трансформатор, где происходит снижение их амплитуды до уровня, на котором будет осуществляться сварка.

Далее, трансформированное высокочастотное напряжение окончательно фильтруется конденсаторами и поступает на выходные клеммы сварочного инвертора.

Частота генерируемого при работе инвертора тока достигает значения нескольких десятков килогерц. Именно высокая частота лежит в основе принципа работы аппарата инверторной сварки.

Благодаря принципу высокочастотного преобразования удалось добиться снижения веса и уменьшения размеров сварочных аппаратов в несколько раз.

В основном это обусловлено очень малой массой и габаритами высокочастотных трансформаторов, конденсаторов и дросселей.

Управление током

Регулирование сварочного тока инвертора производится посредством электронного регулятора с обратной связью, изображённого на схеме. С помощью потенциометра, расположенного на лицевой панели сварочного инвертора, выбирается требуемая величина тока сварки.

При вращении ручки потенциометра, устанавливается некий уровень опорного напряжения на входе логических элементов, построенных на операционных усилителях.

Сигнал, поступающий по линии обратной связи с датчика тока, расположенного на выходе аппарата, сравнивается компаратором с уровнем заданного регулирующим потенциометром напряжения.

При несовпадении уровней напряжения задающей цепи и сигнала датчика тока, происходит изменение амплитуды управляющего импульса, поступающего на контроллер.

При этом происходит изменение скважности импульсов, генерируемых контроллером, что вызывает изменение режима переключения транзисторов и в конечном итоге, величины тока сварки.

То есть, принцип регулирования заключается в том, что схема всегда стремится поддерживать соответствие между значениями заданного и фактического тока, что обеспечивает его стабильность.

В качестве контроллера, формирующего регулируемые сигналы широтно-импульсной модуляции, обычно применяется микросхема TL494, производимая американской фирмой Texas Instruments, либо её аналоги.

Приведённая структурная схема показывает только принцип работы и взаимодействия отдельных функциональных блоков. Детализованная электросхема каждого типа инверторов может иметь индивидуальные особенности.

Автоматические функции сварочного оборудования

Чтобы понять, как работают инверторные сварочные аппараты в различных ситуациях, следует ознакомиться с принципом работы некоторых их функций.

ARC FORCE

Эта функция призвана осуществлять форсирование дуги. В процессе работы сварщика иногда капля расплавленного электрода, не оторвавшись вовремя и не попав в сварочную ванну, зависает, уменьшая зазор.

Это может грозить прилипанием электрода к детали. Принцип работы arc force заключается в кратковременном увеличении тока, который «сдувает» каплю металла.

ANTI STICK

В начале работы, в процессе розжига дуги, электрод может прилипнуть к заготовке. Принцип функции anti stick состоит в том, что в этот момент происходит резкое снижение сварочного тока. После отрыва электрода режим работы аппарата возвращается к норме.

HOT START

Работа этой опции помогает легко зажечь электрическую дугу. Принцип данной автоматической функции прост. При разжигании дуги, в момент отрыва электрода от заготовки, происходит кратковременное увеличение значения сварочного тока, что способствует более надёжному розжигу дуги.

Все функции способствуют более быстрой и надежной работе инвертора, что в итоге приводит к высокому качеству сварного шва.

Описание схемы сварочного инвертора для самостоятельного изготовления аппарата

Инверторная сварка широко распространена благодаря тому, что аппарат имеет небольшой вес и габариты. Работа инверторного механизма основана на использовании силовых переключателей и полевых транзисторов. Столь полезный аппарат продается в специализированных магазинах. Но деньги можно и не тратить, а взять схему инверторного сварочного аппарата и изготовить его самостоятельно. Здесь как раз и поговорим о том, как сделать сварку своими руками в домашних условиях и что понадобится для этого. Сведения пригодятся и в случае с покупным устройством, ведь благодаря информации, которую дает статья, для ремонта его не понадобится приглашать специалиста.

Особенности работы инвертора

Сварочный инверторный аппарат — это блок питания, который применяется сейчас в компьютерах. Электрическая энергия преобразовывается в инверторе следующим образом:

  • Напряжение переменное преобразуется в постоянное.
  • Ток постоянной синусоиды преобразовывается в переменный с высокой частотой.
  • Снижается значения напряжения.
  • Ток выпрямляется с сохранением требуемой частоты.

Данная схема сварочного инвертора позволяет снизить его массу и уменьшить габариты. Известно, что старые сварочные аппараты работают по принципу снижения величины напряжения и увеличения силы тока на вторичной обмотке трансформатора. Благодаря большой силе тока есть возможность сваривать металлы дуговым способом. Для увеличения силы тока и снижения напряжения на вторичной обмотке уменьшают число витков и при этом увеличивают сечение проводника. В итоге сварочный аппарат трансформаторного типа весит немало и имеет значительные размеры.

Для решения данной проблемы предложили схему сварочного инвертора. Принцип основывается на повышении частоты тока до 60 или всех 80 кГц. За счет этого снижается вес и уменьшаются габариты устройства. Для реализации задуманного потребовалось увеличение частоты в тысячи раз, что стало возможным благодаря полевым транзисторам. Между собой транзисторы обеспечивают сообщение с частотой примерно 60−80 кГц. На схему их питания идет постоянный ток, что обеспечивается выпрямителем, в качестве которого используют диодный мост. Выравнивание значения напряжения обеспечивается конденсаторами.

Переменный ток передается на понижающий трансформатор после прохождения через транзисторы. В качестве трансформатора при этом используется катушка, уменьшенная в сотни раз. Катушка используется, потому что частота тока, подающегося на трансформатор, уже увеличена в тысячу раз полевыми транзисторами. В итоге получаются аналогичные данные, как при работе трансформаторной сварки, но с большой разницей в габаритах и массе.

Сборка инвертора

Для самостоятельной сборки инверторной сварки требуется знать, что схема рассчитана первым делом на потребляющее напряжение в 220 В и тока 32 А. После преобразования энергии ток на выходе увеличится почти в восемь раз и будет достигать 250 А. Такого значения достаточно для создания прочного шва электродом на расстоянии до сантиметра. Для изготовления инверторного блока питания потребуются:

  • Трансформатор с ферритным сердечником.
  • Первичная обмотка трансформатора с сотней витков провода Ø0,3 мм.
  • Три вторичных обмотки: внутренняя с 15 витками и проводом Ø1 мм; средняя с 15 витками и проводом Ø0,2 мм; наружная с 20 оборотами и проводом Ø0,35 мм.

Также для сборки трансформатора нужны такие элементы:

  • стеклоткань;
  • медные провода;
  • хлопчатобумажный материал;
  • электротехническая сталь;
  • текстолит.

Схема инверторной сварки

Плата, где расположен блок питания, от силовой части монтируется отдельно. Разделителем между блоком питания и силовой частью выступает металлический лист, который электрически подсоединен к корпусу агрегата. Управление затворками осуществляется с помощью проводников, которые припаиваются поблизости транзисторов. Проводники между собой соединяются парно, а размер их сечения особой роли не играет. Однако важно, чтобы длина проводников не превышала 15 см.

Если навыков работы с электроникой нет, лучше обратиться к мастеру. В противном случае разобраться в схеме сварочного аппарата будет трудно.

Поэтапное описание сборки

Выполняется следующее:

Сборка блока питания. В качестве основы трансформатора рекомендуется брать феррит 7×7 или 8×8. Устройство первичной обмотки осуществляется намоткой проволоки по ширине сердечника. Это улучшает работу устройства при перепадах напряжения. Используются медные провода (проволока) ПЭВ-2, а при отсутствии шины провода соединяют в пучок. Первичная обмотка изолируется стеклотканью. После слоя стеклоткани сверху наматываются витки экранирующих проводов.

Корпус. Этим важным элементом может служить старый системный блок компьютера, в котором есть достаточно необходимых отверстий для вентиляции. Использоваться может старая 10-литровая канистра, в которой можно проделать отверстия и разместить кулеры. Для повышения прочности конструкции из корпуса размещают металлические уголки, закрепляющиеся болтовыми соединениями.

Силовая часть. Роль силового блока играет понижающий трансформатор. Его сердечники могут быть двух видов: Ш 20×208 2000 нм. Между обоими элементами должен быть зазор, что обеспечивается с помощью газетной бумаги. При устройстве вторичной обмотки витки наматываются в несколько слоев. На вторичную обмотку укладывается три слоя проводов, и между ними помещается прокладка из фторопласта. Между обмотками располагают усиленный слой изоляции, позволяющий избежать пробоя напряжения на вторичную обмотку. Конденсатор должен быть напряжением не менее 1000 В.

Для обеспечения циркуляции воздуха между обмотками оставляется воздушный зазор. На ферритовом сердечнике собирают трансформатор тока, включающийся в цепь к плюсовой линии. Сердечник обматывается термобумагой, в качестве которой лучше использовать кассовую ленту. Выпрямительные диоды крепят к алюминиевой пластине радиатора. Выходы диодов соединяют неизолированными проводами, сечение которых равно 4 мм.

Инверторный блок. Основным предназначением инверторной системы является преобразование постоянного тока в переменный с большой частотой. Для ее увеличения используются полевые транзисторы, работающие на закрытие и открытие с высокой частотой. Использовать рекомендуется не один мощный транзистор, а реализовать схему на основании двух менее мощных. Нужно это для стабилизации частоты тока. В схеме должны присутствовать конденсаторы, соединяющиеся последовательно.

Система охлаждения. На стенке корпуса устанавливаются вентиляторы охлаждения, для чего могут быть использованы компьютерные кулеры. Они необходимы для охлаждения рабочих элементов. Чем больше их используется, тем лучше. Обязательно устанавливается два вентилятора для обдувки вторичного трансформатора. Один кулер обдувает радиатор, благодаря чему предотвращается перегрев рабочих элементов — выпрямительных диодов.

Стоит воспользоваться вспомогательным элементом — термодатчиком, который рекомендуется устанавливать на нагревающемся элементе. Датчик срабатывает при достижении критической температуры нагрева какого-либо элемента. После его срабатывания питание устройства отключается.

В процессе работы инверторная сварка быстро нагревается, поэтому обязательно должно быть два мощных кулера. Эти кулеры или вентиляторы помещаются на корпус устройства, чтобы работали на вытяжку воздуха. Свежий воздух поступает в систему через отверстия в корпусе. В системном блоке данные отверстия уже имеются, а при использовании любого другого материала не забудьте об обеспечении притока свежего воздуха.

Пайка платы. Ключевой фактор, ведь схема основана на плате. Транзисторы и диоды на ней важно смонтировать встречно друг к другу. Монтируется плата между радиаторами охлаждения, при помощи чего и соединяется цепь электроприборов. Рассчитывается питающая цепь на 300 В напряжения. Дополнительное расположение конденсаторов 0,15 мкФ позволяет сбрасывать избыток мощности обратно в цепь. На выходе трансформатора помещаются конденсаторы и снабберы, при помощи которых гасится перенапряжение на выходе вторичной обмотки.

Настройка, отладка работы. После сборки инверторной сварки требуется еще ряд процедур, в частности, настройка функционирования. Для этого к ШИМ (широтно-импульсному модулятору) надо подключить 15 В напряжения и запитать кулер. Дополнительно в цепь включают реле через резистор R11. Реле в цепь включается во избежание скачков напряжения в сети 220 В. Важно проконтролировать включение реле, а затем подать питание на ШИМ. В итоге должна получиться картина, когда прямоугольные участки на диаграмме ШИМ должны исчезнуть.

О правильности соединения можно судить, если при настройке реле выдает 150 мА. Если сигнал слабый, значит, платы соединены неправильно. Возможно, пробита одна из обмоток. Для устранения помех укорачиваются все питающие электропроводы.

Проверка работоспособности

После сборочных и отладочных работ проверяется работоспособность сварочного аппарата. Для этого устройство надо запитать от электросети 220 В, далее задать высокие показатели силы тока и сверить показатели по осциллографу. В нижней петле напряжение должно быть в пределах 500 В и не более 550 В. Если все правильно и электроника подобрана строго, показатель напряжения не превысит величины 350 В.

Потом сварка проверяется в действии. С этой целью используются необходимые электроды, и шов раскраивается до полного выгорания электрода. Затем важно проконтролировать температуру трансформатора. Если он попросту закипает, значит, в схеме есть недочеты и работу лучше не продолжать.

После раскраивания двух-трех швов радиаторы нагреются до большой температуры, и важно дать им остыть. Для этого хватит двух-трехминутной паузы, в итоге температура выровняется до оптимальной.

Как пользоваться аппаратом

После включения самодельного аппарата в цепь контроллер автоматически задает определенную силу тока. Если напряжение провода меньше 100 В, значит, устройство неисправно. Придется аппарат разобрать и повторно проверить правильность сборки. При помощи такого вида сварочных аппаратов осуществляется спайка и черных, и цветных металлов. Для сборки сварочного аппарата потребуется владение основами электротехники и, конечно, свободное время для его изготовления.

Инверторная сварка незаменима в гараже. Если не обзавелись еще этим инструментом, сделайте его самостоятельно и пользуйтесь в свое удовольствие!

Принцип работы сварочного аппарата. Принцип работы сварочного инвертора.

Инверторные преобразователи напряжения

на широкий диапазон мощностей, от единиц ватт до десятков киловатт, скрыты. Принцип работы позволяет разобраться в его устройстве и других важных моментах, в связи с чем мы считаем необходимым подробно рассмотреть это устройство.

Ближе к точке

Особенность сварочного инвертора заключается в возможности его работы от статической нагрузки.За последние несколько десятилетий инверторные преобразователи тока стали применяться в конструкции электросварочных аппаратов, конструкция которых имеет нагрузку в виде электрической дуги. Но обо всем по порядку.

Принцип работы (рис.1)

Принцип работы любого сварочного аппарата основан на преобразовании переменного тока напряжением 220 В или 380 В частотой 50 Гц в постоянный рабочий параметр с соответствующими характеристиками по напряжению холостого хода, рабочему параметру, а также вольт-амперная характеристика питания.

Однако принцип работы рассматриваемого сварочного инвертора отличается от сварочных выпрямителей, в основе которых лежат диодные мостовые схемы сварочных выпрямителей. В том случае, если однократное выпрямление переменного рабочего параметра после понижающего трансформатора выполняется на обычных выпрямителях, то в случае использования сварочного инвертора применяется многократное преобразование по напряжению, частоте, а также выпрямление. Само собой разумеется, что качественные технические параметры выпрямленного тока получаются выше.

Принцип работы рассматриваемого сварочного аппарата в разобранном виде основан на работе последовательного инвертора. На рисунке представлена ​​блок-схема. Глядя на изображение схемы, можно понять, что сопротивления нагрузки, а также коммутирующие элементы (емкостные, индуктивные) включены в последовательную цепь. Модуль управления основан на работе 2-х тиристоров.

Выпрямитель первичной сети выполняет преобразование тока, после чего D.C. переходит на фильтр, при этом индикатор напряжения остается неизменным. Постоянный рабочий параметр сглаживается сетевым фильтром, после чего подается на преобразователь частоты для последующего преобразования в переменный высокочастотный параметр.

Частота сварочного тока может достигать 50-100 кГц. Высокочастотный параметр подается на импульсный трансформатор, после чего сварочный трансформатор понижает высокочастотный рабочий параметр до предела напряжения сварочного тока без нагрузки.Исправление рабочего параметра высокочастотной сварки осуществляется на выходе рассматриваемого устройства в блоке вторичного выпрямления.

Блок силового выпрямителя имеет сглаживающие емкостные фильтры для последующего улучшения качественных показателей выпрямителей тока. В свою очередь, модуль управления контролирует, а также изменяет характеристики работы рассматриваемого инверторного аппарата.

Принцип работы практически любого сварочного инвертора, в том числе и преобразователя, заключается в области применения импульсного резонанса.Это новое направление в области электротехники, с появлением которого стало возможным уменьшить габариты громоздких сварочных аппаратов, принцип работы которых основан на классической электротехнике.

Следует отметить, что любое оборудование, основанное на фундаментальных инверторных преобразованиях рабочего параметра, остается на порядок дороже выпрямителей, а также силовых трансформаторов. Сложные схемы управления и преобразования снижают их надежность, а все другие преимущества могут конкурировать с работой по объединению во многих отраслях промышленности.

Структурная схема

Чертеж состоит из трех основных блоков:

  1. На входе схемы стоит выпрямитель с конденсатором, включенным параллельно. Что касается роли конденсаторов схемы, то они служат накопителями, с помощью которых становится возможным поднять напряжение постоянного тока до 300 В;
  2. Модуль рассматриваемого аппарата, с помощью которого постоянный ток преобразуется в высокочастотный переменный ток;
  3. Блок выходного выпрямителя, который преобразует переменный ток после устройства в постоянный рабочий параметр.

Различные решения модульного блока, в которых есть принципиальные схемы инвертора, становятся понятными при просмотре представленных схем.

Модуль двухконтактный (мостовая схема - рис.2)


Биполярные импульсы в мостовом типе образуются за счет парной работы ключевых транзисторов (VT1-VT3; VT2-VT4), через которые проходит половина тока от моста. Конечно, индикатор напряжения будет вдвое меньше емкости «С».

Модуль двухконтактный (полумостовая схема - рис.3)


В данном случае полумостовой модуль снабжен емкостным делителем на транзисторах, причем в первичной обмотке он будет составлять 0,5 от значения на входе устройства. В результате при питании от выпрямителя на входе установки напряжение составит 150В. На рисунке этой схемы со значительными рабочими токами используются мощные транзисторы. Потребление рабочих параметров сети увеличено по сравнению с полным мостом.

Инверторный модуль (полумост наклонный - 4 шт.)

На изображении этой схемы ключевые транзисторы VT1-VT2 работают одновременно на отпирание и запирание. Показатель напряжения в транзисторах не достигает 0,5 напряжения на входе. Когда транзисторы закрыты, энергия поглощается конденсатором «С», расположенным на входе через диоды VD1-VD2. Однако среди недостатков «наклонного полумоста» стоит особо выделить намагничивание стержня трансформатора за счет использования на выходе составляющей постоянной рабочего параметра.Принципиальные схемы устройства и работы устройства инверторного типа позволяют максимально качественно понять, как функционируют эти полезные установки.

  • Преимущества и недостатки сварочных инверторов

Для удачной покупки инверторной продукции необходимо знать устройство сварочного инвертора и принципы его работы, чтобы в случае поломки его можно было отремонтировать, так как сегодня сварочные аппараты инверторного типа находятся в отличном состоянии. востребованы и доступны по стоимости.Вы можете купить их в магазине или сделать самостоятельно.

Принцип работы сварочного инвертора

Сварочный инвертор сам по себе является своего рода блоком питания с большой мощностью. Принцип работы аналогичен импульсным источникам питания. Сходство заключается в особенностях преобразования энергии, а именно в следующих этапах.

Этапы преобразования энергии в сварочном аппарате:

  • выпрямление переменного тока 220 вольт;
  • преобразование постоянного тока в высокочастотный переменный ток;
  • понижение высокочастотного напряжения;
  • Выход выпрямления по минимальному току.

Раньше в основе сварочного аппарата был трансформатор большой мощности. За счет уменьшения переменного тока в сети это позволило получить высокие токи, необходимые для сварки, благодаря вторичной обмотке. Трансформаторы, работающие при стандартной частоте сети переменного тока 50 Гц, очень громоздки и весят.

Поэтому, чтобы избавиться от этого недостатка, был изобретен сварочный инвертор. Его размер был уменьшен за счет увеличения частоты его работы до 80 и более кГц.Чем выше рабочая частота, тем меньше габариты устройства. Масса соответственно тоже меньше. А это экономия на материалах для его изготовления.

Где взять эти частоты при 50 Гц в сети? Для этих целей была изобретена схема инвертора, состоящая из мощных транзисторов, переключаемых с частотой от 60 до 80 кГц. Но для того, чтобы они функционировали, их нужно запитать постоянным током. Его можно получить с помощью выпрямителя, состоящего из диодного моста и сглаживающих фильтров.Конечный результат - постоянный ток 220 вольт. Транзисторы инвертора подключены к понижающему трансформатору.

Поскольку переключение транзисторов происходит на высокой частоте, то и трансформатор работает на той же частоте. Для работы на токах высокой частоты нужны трансформаторы меньшей емкости. Оказывается, габариты инвертора небольшие, а рабочая мощность не меньше, чем у его громоздкого предшественника, работающего на частоте 50 Гц.

В связи с необходимостью трансформации устройства появился ряд дополнительных деталей для его бесперебойной работы.Давайте узнаем их получше.

Вернуться к содержанию

Особенности устройства сварочного инвертора

Для уменьшения габаритов и веса сварочные аппараты собираются по инверторной схеме.

Базовая монтажная схема:

  • выпрямитель низкой частоты;
  • Инвертор
  • ;
  • Трансформатор
  • ;
  • Выпрямитель высокой частоты
  • ;
  • рабочий шунт;
  • электронный блок управления.

Каждая модель инвертора имеет свои особенности, но все они основаны на использовании высокочастотных импульсных преобразователей.Как упоминалось ранее, переменный ток 220 В выпрямляется и сглаживается конденсаторами с помощью мощного диодного моста.

На фильтрующих конденсаторах ток будет в 1,41 раза больше, чем на выходе из выпрямительных диодов. То есть при напряжении 220 вольт на диодном мосту на конденсаторах получаем 310 вольт постоянного тока. В сети сила тока может варьироваться, поэтому конденсаторы рассчитаны на рабочую зону с запасом (400 вольт). Обычно используются диоды Д161 или В200.Диодная сборка GBPC3508 работает при прямом токе 35 А. Высокое напряжение проходит через диоды и они нагреваются. Поэтому для охлаждения они устанавливаются на радиатор. В качестве защитного элемента к радиатору прикреплен температурный предохранитель. Открывается при повышении температуры до + 90 ° C.

Конденсаторы устанавливаются разного размера, в зависимости от модификации устройства. Их емкость может достигать 680 мкФ.

На инвертор подается постоянный ток от выпрямителя и фильтра.Он собран по схеме «косой мост» и состоит из двух ключевых мощных транзисторов. В сварочном аппарате основными транзисторами могут быть IGBT или полевые МОП-транзисторы высокого напряжения. Эти компоненты прикреплены к радиатору для отвода избыточного тепла.

Сварочный аппарат также должен иметь качественный высокочастотный трансформатор, который является источником понижения напряжения. В инверторе он весит в несколько раз меньше, чем силовой трансформатор в сварочном аппарате. Первичная обмотка состоит из 100 витков ПЭВ толщиной 0.3 мм. Вторичные обмотки: 15 витков медного провода 1 мм, 2 обмотки по 20 витков сечением 0,35 мм. Обмотки первичной и вторичной обмоток должны совпадать. Все обмотки следует изолировать лаковой тканью или фторопластовой лентой для улучшения проводимости. Выходы всех обмоток защищены и загерметизированы в месте соединения.

Помимо основных компонентов инвертора, есть еще режим налипания электрода, плавная регулировка сварочного тока и система защиты от перегрузки.

Специалист легко настроит необходимый сварочный ток и откорректирует его во время сварки. Диапазон тока достаточно широк - 30-200 А.

Выходной выпрямитель состоит из мощных сдвоенных диодов и одного общего катода. Их особенность - высокая скорость действий. Поскольку их задача - выпрямлять высокочастотный переменный ток, простые диоды с этим не справятся. Их скорость закрытия и открытия слишком низкая, что может привести к перегреву и быстрому выходу из строя.В случае пробоя выходных диодов их необходимо заменить на быстродействующие. Они, как и обычные, монтируются на радиатор.

При включении сварочного инвертора электролитические конденсаторы заряжаются. Сила этого тока поначалу очень велика и может спровоцировать перегрев и выход из строя диодов выпрямителя. Чтобы этого не произошло, используется схема «плавного пуска». Его основной компонент - резистор на 8 Вт. Именно он является ограничителем тока при запуске устройства.

После окончания заряда конденсатора и начала нормальной работы прибора контакты электромагнитного поля замыкаются. Далее резистор в работе не участвует, ток проходит через реле.

Трудно недооценить потребность в сварочных аппаратах в домашнем хозяйстве или на дачном участке. Простота конструкции устройства позволяет собрать их самостоятельно.

Однако качество выполняемой работы зависит не только от навыков, но и от внутренней структуры продукта.Эта статья посвящена устройству и принципам работы этих устройств.

Запись

Сварочный аппарат относится к классу электрических устройств, предназначенных для формирования напряжения питания сварочной дуги. Принцип работы сварочного аппарата основан на преобразовании сетевого напряжения в сварочную дугу. Поскольку в дуге есть большие токи (до 250 А), для их получения используется подход понижения напряжения питания дуги. Основная задача конструкции - обеспечить стабильную дугу, температура горения которой может достигать нескольких тысяч градусов.

Типы сварочных аппаратов

Существует большое количество классификационных признаков, но конструктивно электросварочные аппараты делятся на:

Трансформатор
  • ;
  • выпрямительный;
  • Инвертор
  • .

Устройство и принцип работы инверторной сварочной

Устройство и принцип работы сварочного аппарата трансформаторного типа предполагают, что поддержание стабильности дуги при сварке происходит за счет изменения индуктивного сопротивления вторичной (нагрузочной) обмотки.Это достигается за счет введения реактивной катушки, а в мощных версиях - специальных магнитных шунтов.

Популярным решением является расширение катушек, что, в свою очередь, изменяет магнитный поток, регулируя ток. Схема выпрямителя самая простая. Регулирование выходного тока организовано с помощью тиристоров. Наилучшими нагрузочными характеристиками обладает трехфазная выпрямительная схема.

Именно эту операцию выполняет инвертор. С помощью широтно-импульсной модуляции (ШИМ) выходной ток регулируется.Этот принцип регулирования основан на изменении длительности выходных импульсов.

  • Работа платы управления
  • Особенности инверторов

Традиционный сварочный аппарат с обязательным громоздким трансформатором в последнее время активно заменяется инверторами. Чтобы понять, как работает сварочный инвертор, необходимо разобраться в его конструкции, принципе работы, особенностях эксплуатации, что определяет достоинства и выявляет недостатки этого устройства.

Инверторный сварочный аппарат предназначен для сварки различных металлических деталей.

Общие принципы работы инвертора

В отличие от более привычных сварочных трансформаторов, в этом устройстве преобразование электрического напряжения в сварочный ток происходит в несколько этапов: с помощью маломощного трансформатора, по размеру почти соизмеримого с пачкой сигарет, и электронной схемы. Также в инверторном устройстве есть система управления (блок), которая значительно облегчает процесс сварки и позволяет формировать качественный шов.Как работает инверторный сварочный аппарат?

Сначала входной ток 220 В частотой 50 А проходит через выпрямитель сварочного аппарата, преобразуется в постоянный и попутно сглаживается фильтрами (обычно в виде электролитических конденсаторов). Результирующее постоянное напряжение снова преобразуется в переменное с помощью модулятора, смонтированного на полупроводниках, но с более высокой частотой (до 100 кГц). Далее напряжение выпрямляется, и напряжение снижается до значения, необходимого для сварки металла.

Применение высокочастотного преобразователя позволило использовать относительно небольшой трансформатор, в результате чего размеры и вес инверторного аппарата были значительно уменьшены. Например, чтобы получить в инверторе сварочный ток 160 ампер, вам понадобится трансформатор весом около 0,25 кг: для достижения того же результата на традиционном сварочном аппарате вам придется использовать трансформатор весом не менее 18 кг. При работе инверторного сварочного аппарата важную роль играет электроника: она реализует обратную связь с электрической дугой, что позволяет жестко регулировать и поддерживать на нужном уровне ее параметры.Малейшее их отклонение немедленно «подавляется» микропроцессорами. Все эти «дополнения» гарантируют стабильную дугу, что гарантирует высокое качество работы при использовании сварочного аппарата инверторного типа.

Вернуться к содержанию

Как работает основная электронная схема?

В сетевом выпрямителе электрический ток (220 В) выпрямляется с помощью мощного диодного моста (обычно диодной сборки), пульсации переменного тока сглаживаются электролитическими конденсаторами.Поскольку диодный мост во время работы сильно нагревается, то его устанавливают на радиаторы охлаждения. Плюс есть термопредохранитель, который срабатывает при нагреве диодов выше + 90 ° C и защищает дорогостоящую диодную сборку. Рядом с выпрямительным мостом выделяются своими размерами электролитические конденсаторы (круглые «бочки»), емкость которых колеблется в пределах 140-800 мкФ. Дополнительно в сварочном аппарате установлен фильтр, предотвращающий радиопомехи.

В схему самого инвертора входят 2 мощных транзистора (обычно MOSFET или IGBT), также установленных на радиаторах.Эти полупроводники переключают ток, проходящий через импульсный трансформатор: частота переключения достигает десятков кГц. В результате образуется переменный ток высокой частоты. Для защиты дорогих транзисторов от скачков напряжения используются схемы защиты, включающие резисторы и малогабаритные конденсаторы. После того, как транзисторы «отработали», с вторичной обмотки понижающего трансформатора снимается более низкое напряжение (до 70 В), но ток может быть равен 130–140 и более ампер.

Для получения постоянного напряжения на выходе используется надежный выходной выпрямитель. Обычно это устройство собирается на основе сдвоенных диодов с общим катодом. Эти устройства отличаются максимальной производительностью, то есть быстро открываются и закрываются, а время восстановления составляет менее 50 наносекунд. Последнее качество очень важно, потому что эти диоды выпрямляют ток очень высокой частоты: обычные полупроводники с такой задачей не справились бы, не успели бы переключиться.Поэтому при ремонте важно заменить эти диоды на такие же высокочастотные (наиболее распространены устройства типа VS 60CPH03, STTH6003CW, FFh40US30DN), которые должны быть рассчитаны на обратное напряжение 300 В и ток 30 А.

Вернуться к содержанию

Работа платы управления

Для питания элементов платы используется стабилизатор напряжения 15 В, установленный на радиаторе. Напряжение питания поступает от главного выпрямителя.Одна из функций стабилизатора питания - подача напряжения на реле, что обеспечивает «мягкий запуск» устройства. При подаче напряжения конденсаторы начинают заряжаться: это увеличивает напряжение, и для защиты диодной сборки применяется схема ограничения, которая включает в себя мощный (8 Вт) резистор. Как только конденсаторы будут заряжены, инвертор заработает, реле замкнет свои контакты, а резистор в дальнейшей работе участвовать не будет.

Помимо регулятора напряжения, в электронной схеме инвертора есть много других систем, обеспечивающих высокую производительность устройства.Основными из этих электронных блоков являются:

  1. Система управления и драйверы: здесь основным элементом является микросхема ШИМ-контроллера, которая «занимается» работой мощных транзисторов;
  2. Цепи регулирования и управления: основным элементом является трансформатор тока, задачей которого является регулирование силы тока выходного трансформатора;
  3. Система контроля напряжения питания и выходного тока: состоит из операционного усилителя (операционного усилителя), собранного на микросхеме (например, LM324).Назначение системы - включить аварийную защиту, при необходимости контролировать работу и исправность основных элементов электронного блока.

Технологии постоянно развиваются, и сварочное оборудование не исключение. В последнее время на рынке появляется все больше аппаратов инверторного типа, которые практически заменили сварочные трансформаторы во всех сегментах. Конкуренция все еще может сохраняться только на простейшем уровне, который необходим для использования ручной дуговой сварки, поскольку более сложные технические процедуры, требующие специальных функций, теперь выполняются в основном инверторами.Многие специалисты уже смогли на практике оценить все преимущества этих продуктов, не говоря уже о том, что в частном секторе они стали практически незаменимыми. Это простые в использовании и многофункциональные устройства. Устройство и принцип работы сварочного инвертора обеспечивает надежное горение дуги, а также формирование качественных и надежных швов.

В последние годы появляется все больше и больше различных моделей, от довольно миниатюрных аппаратов, которые можно использовать для переносной сварки и питаться от автономных источников, до больших многофункциональных устройств, используемых в частном секторе.Большое количество производителей также способствует увеличению количества моделей. Компоновка сварочного полуавтомата, простого аппарата и других разновидностей может отличаться в зависимости от конкретной модели, но основные принципы остаются прежними, изменения сильно влияют на дополнительные функции, так как для них создаются отдельные блоки. Все это в совокупности предоставляет прекрасные возможности для удобного выполнения сложных операций, благодаря чему оборудование заслужило высокую популярность среди современных специалистов.Но здесь есть не только постоянные достоинства, но и недостатки.

Преимущества сварочного инвертора

  • Устройство сварочного полуавтомата инверторного типа, как и обычного аппарата, позволяет уменьшить габариты корпуса оборудования, так как все компоненты более компактны;
  • За счет уменьшения габаритов корпуса уменьшается и общий вес, который в современных моделях может достигать всего 3-4 кг;
  • Оборудование не очень чувствительно к скачкам напряжения, так как встроенная электроника помогает поддерживать стабильность горения дуги и адаптироваться к скачкам напряжения в сети;
  • Устойчивое горение дуги не позволяет металлу слишком сильно разбрызгиваться;
  • Устройство сварочного инвертора позволяет дополнить технику дополнительными функциями, которых не было и которые помогают улучшить качество сварки;
  • Оборудование может работать от обычной бытовой сети, поэтому нет необходимости подключаться к трехфазной сети;
  • Расход электроэнергии на работу инвертора намного меньше, чем при работе с трансформатором.

Недостатки сварочного инвертора

  • Стоимость оборудования заметно выше, чем у предыдущего поколения, особенно это становится заметно при увеличении мощности и количества функций;
  • Устройство инверторного сварочного аппарата оказывается очень чувствительным к перегреву, поэтому не рекомендуется использовать его для длительной и непрерывной работы;
  • Устройство может создавать вокруг себя высокий уровень электромагнитных помех, которые могут повлиять на другое оборудование поблизости;
  • Также имеется большая чувствительность к вибрациям, ударам и так далее, поскольку внутри находится электроника, которая может выйти из строя.

Принцип работы сварочного инвертора

Основная функция этой техники - преобразование тока из сети в те параметры, которые необходимы для сварки металла. Для этого ток проходит через сложную систему преобразований. Эта диаграмма выглядит так:

  • В первую очередь все идет на инверторный выпрямитель. Переменный ток из обычной розетки поступает в выпрямитель и становится постоянным на выходе.
  • Потом происходит падение напряжения. В сети он поставляется с параметрами 220 В, а специальный инверторный блок понижает его до необходимого значения, заданного настройками. Здесь постоянный ток снова переходит в переменный, но на этот раз специальный блок увеличивает его частоту.
  • После этого все идет к трансформатору. Здесь напряжение снова снижается до необходимого значения. Из-за уменьшения силы высокочастотного напряжения сила высокочастотного тока начинает увеличиваться.
  • На последней стадии преобразованный высокочастотный ток течет во вторичный выпрямитель, где снова становится постоянным. Здесь происходит окончательная настройка его параметров, которые будут соответствовать заявленным на датчиках характеристикам.


Таким образом, принцип работы сварочного инвертора позволяет точно контролировать его параметры и увеличивать частоту тока и напряжения. Это улучшает возможность работы с тугоплавкими и трудносвариваемыми металлами.Сюда входят алюминий и другие разновидности.

Инверторная схема


Устройство

Устройство каждой модели может иметь ряд особенностей, но в целом многие технические единицы повторяются. В основном плата оборудования состоит из следующих частей:

  • Радиатор выходного выпрямителя - одна из самых объемных деталей, которая служит для вторичного выпрямителя сварочного тока;
  • Транзисторные радиаторы - несколько радиаторов, которые в своем объеме занимают около четверти платы;
  • Охладитель - это охлаждающее устройство, обязательное для инверторов, так как имеет большую чувствительность к перегреву;
  • Сетевой выпрямитель - первичное устройство для выпрямления тока, подаваемого из сети, перед его последующим преобразованием;
  • Датчик тока - датчик, показывающий параметры принимаемого тока;
  • Реле плавного пуска - устройство, обеспечивающее легкий пуск в процессе сварки;
  • Интегральный стабилизатор - дополнительный блок, помогающий стабилизировать параметры электричества даже при скачках напряжения в сети;
  • Интерференционный фильтр;
  • Конденсаторы шумового фильтра.


Режимы

Принцип работы инверторного сварочного аппарата позволяет ввести несколько дополнительных функций, чтобы облегчить работу.

  • Горячий старт. Эта функция помогает увеличить сварочный ток в момент, когда электрод касается заготовки. После этого сила тока возвращается к тем параметрам, которые указаны на датчике. Количество добавленных ампер зависит от исходной силы тока, поскольку она отображается в относительном соотношении от 5 до 100%.Некоторые модели имеют только фиксированное количество присадки. Эта функция облегчает зажигание неисправных электродов.
  • Arc форсаж. Эта функция становится незаменимой при сварке тонких листов металла во время формирования и продвижения сварочной ванны, она защищает электрод от прилипания и от пригорания. Здесь количество тока постоянно добавляется и уменьшается, чтобы дуга горела стабильно. Принцип работы очень похож на «Горячий старт», но при этом идет корректировка.Также может быть фиксированное значение или регулируемое значение.
  • Антипригарное покрытие. Эта функция не обеспечивает постоянной дуги, как это было в предыдущих случаях. Это одна из самых ранних и простых инноваций, реализованных в инверторах. В момент прилипания электрода образуется короткое замыкание, нагревая устройство и влияя на него другими отрицательными свойствами. Чтобы этого избежать, при включенной функции защиты от прилипания технический специалист просто отключит питание. Таким образом, вреда ему не нанесут и можно смело продолжать сварку.При желании его можно отключить или отрегулировать.

Сварочный процесс MIG-MAG | Oerlikon

Перенос короткой дуги
Короткая дуга имеет низкий уровень разбрызгивания и хорошее смачивание и подходит для сварки тонких стальных листов, работы в положении и проплавленных проходов. Этот режим характеризуется чередованием коротких замыканий и легкой дуги.

Перенос Speed ​​Short-Arc ™
Перенос Speed ​​Short Arc ™ - эксклюзивное право компании Oerlikon.Этот режим переноса дуги обеспечивает высокую скорость движения за счет жесткой дуги и холодного режима. Он очень эффективен для сварки тонких стальных листов, работы в положении и под закрытым углом, а также для заполнения фасок. SSA ™ используется для сварки коротким замыканием в нормальном глобулярном режиме скорости движения.

• Увеличение скорости движения
• Меньшая деформация (тонкие стальные листы)
• Подходит для сварки в положении
• Допуск и удобство использования

Шаровидный перенос
Металл переносится по дуге в виде крупных капель с трудноосвоенными траекториями.Это режим передачи, дающий результаты низкого качества.

Перенос распылением-дугой
Металл переносится в дуге в виде мелких капель. Режим очень обычный, но требует высоких параметров сварки и поэтому применим только для толщины более 5 мм.

Импульсный перенос
Этот импульсный ток, называемый «стандартным», представляет собой очень эффективный режим дуги; он позволяет сваривать тонкий листовой металл толщиной от 1 мм. Используется для всех металлов (сталь, нержавеющая сталь, алюминий) с твердой проволокой, а также с некоторыми порошковыми проволоками.Практически полное устранение брызг и отделки.

• Превосходный внешний вид сварного шва
• Снижение выбросов дыма
• Все позиционные

Перенос Spray Modal ™
Перенос Spary Modal ™ является эксклюзивным правом компании Oerlikon. Этот процесс, особенно для легких сплавов, значительно снижает микропористость и увеличивает проплавление. Его можно использовать в любом положении и особенно эффективно для алюминиевых листов толщиной более 3 мм. Spray-MODAL ™ использует ток с низкочастотной модуляцией, который позволяет удалить большинство пузырьков водорода из сварочной ванны до затвердевания.

• Уменьшает пористость
• Увеличивает проплавление
• Сварка во всех положениях
• Повышенная скорость перемещения

Сварка: TIG - Forsyth Tech

Сварка: TIG

Это курс продолжительностью один семестр, предназначенный для обучения студентов основным принципам сварки TIG. Студенты будут работать на сварочных аппаратах трансформаторного типа AC-DC. Исследования будут включать диапазоны нагрева, полярность, а также использование проволочных электродов и защитных газов.Сварка будет выполняться на низкоуглеродистой стали и алюминии l в плоском, горизонтальном и вертикальном положениях. При использовании инструментов и оборудования на протяжении всего курса особое внимание уделяется безопасности. Требуются защитные очки.

Свяжитесь с Майклом Глонцем по телефону 336-757-3701 или [email protected] , чтобы узнать, соответствуете ли вы требованиям, и запланировать ориентацию на стипендию. Или заполните и отправьте форму ниже.

Описание занятия

Ожидается, что сварщик произведет следующие ремонтные работы:

  1. Ремонт и установка трубопроводных систем
  2. Ремонт механических систем
  3. Ремонт и строительство различных металлоконструкций

Дополнительная информация

Экономическое развитие трудовых ресурсов: технические стандарты сварки

Вакансии

Сварщики нанимают сварочные подрядчики, ремонтные предприятия, больницы, фабрики и другие сервисные компании.

Профессиональный прогноз

Задачи обучения

Основные темы:

  • Принципы сварки TIG
  • Аппарат для сварки трансформаторов постоянного и переменного тока
  • Диапазон нагрева и полярность, необходимые для сварки различных металлов
  • Типы сварочных электродов, используемых для каждого свариваемого материала
  • Сварочные позиции; потолочные, горизонтальные, вертикальные
  • Безопасность магазина

Посредством лекций в аудитории и практических занятий в лаборатории студент узнает о безопасном и практическом применении сварки TIG.Учебные занятия проводятся в лаборатории / классе по сварке технических навыков. Лаборатория оснащена необходимыми принадлежностями и инструментами для преподавания этого курса и ознакомления студентов с принципами сварки TIG.

Рекомендуемые курсы и навыки

Предварительное условие: должен пройти дуговую сварку или сварку MIG.

Полезные личные качества

Должен уметь работать в команде, быть организованным, ориентированным на детали и решать проблемы.

Расписание курсов

Даты дней раз Местоположение Стоимость Единицы Код курса
11.01.2022 - 03.05.2022
Вт, Вт
18:00 - 21:00
GWIL Goodwill Industries 011
230 долларов.00 9,90 148855
Для получения дополнительной информации звоните по телефону 336.734.7023.

Welding - SteelConstruction.info

Сварка - это основной вид деятельности на заводе-изготовителе, которым занимаются квалифицированные специалисты, работающие в системе управления качеством сварки под контролем ответственного координатора сварки.Он используется для подготовки стыков к подключению в магазине и на месте, а также для крепления других приспособлений и фурнитуры. На заводе-изготовителе для различных видов деятельности используются разные методы сварки.

По сути, в процессе сварки используется электрическая дуга для выработки тепла для плавления основного материала в соединении. Отдельный присадочный материал, поставляемый в качестве расходуемого электрода, также плавится и соединяется с основным материалом, образуя расплавленную сварочную ванну. По мере продвижения сварки вдоль стыка сварочная ванна затвердевает, сплавляя основной металл и металл сварного шва.Для заполнения стыка или нарастания сварного шва до проектного размера может потребоваться несколько проходов или проходов.

 

Сварка
(Изображение любезно предоставлено William Haley Engineering Ltd.)

[вверх] Принципы дуговой сварки металлом

 

Терминология области сварного шва

Сварка - это сложное взаимодействие физических и химических наук.Правильное определение металлургических требований и разумное практическое применение являются предпосылкой для успешной сварки плавлением.

В процессе дуговой сварки металлическим электродом используется электрическая дуга для выработки тепла для плавления основного материала в соединении. Отдельный присадочный материал, поставляемый в качестве расходуемого электрода, также плавится и соединяется с основным материалом, образуя расплавленную сварочную ванну. Сварочная ванна подвержена атмосферному загрязнению и, следовательно, нуждается в защите во время критической фазы замерзания жидкости и твердого тела.Защита достигается либо за счет использования защитного газа, за счет покрытия бассейна инертным шлаком, либо за счет комбинации обоих действий.

В процессах с защитным газом от удаленного источника поступает газ, который подается на сварочную дугу через горелку или горелку. Газ окружает дугу и эффективно исключает атмосферу. Точный контроль необходим для поддержания подачи газа с соответствующей скоростью потока, так как слишком большое количество может вызвать турбулентность и засасывать воздух, а также может быть настолько же вредным, насколько и слишком маленьким.

В некоторых процессах используется флюс, который плавится в дуге для образования шлакового покрытия, которое, в свою очередь, покрывает сварочную ванну и защищает ее во время замерзания. Шлак также затвердевает и самораспускается или легко удаляется легким скалыванием. Действие плавления флюса также создает газовый экран для защиты.

По мере выполнения сварки вдоль стыка сварочная ванна затвердевает, сплавляя основной металл и металл сварного шва. Для заполнения стыка или нарастания сварного шва до проектного размера может потребоваться несколько проходов или проходов.

Тепло от сварки вызывает металлургические изменения в основном материале, непосредственно примыкающем к границе или линии плавления. Эта область изменения известна как зона термического влияния (HAZ). Общая терминология, используемая в области сварного шва, проиллюстрирована справа вверху.

Сварочные операции требуют надлежащего технологического контроля со стороны компетентных сварщиков, чтобы гарантировать достижение проектных характеристик, минимизировать риск дефектных соединений, вызванных низким качеством сварки, и предотвратить образование склонных к образованию трещин микроструктур в ЗТВ.

[вверх] Типы сварных соединений

Большинство конструкционных сварных соединений выполняется на заводе-изготовителе и описывается как стыковые или угловые швы. Сварка на месте также возможна, и руководство по вопросам сварки на месте доступно в GN 7.01.

[вверх] Стыковые швы

 

Макрос клиновидного стыкового шва
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Стыковые сварные швы обычно представляют собой стыковые соединения в катаных профилях или стыковые соединения листов на стенках и фланцах, чтобы приспособиться к изменению толщины или восполнить доступный материал по длине.Положения этих стыковых швов допускаются при проектировании, хотя ограничения доступности материалов или схема монтажа могут потребовать согласования различных или дополнительных сварных швов. Тройники, приваренные встык, могут потребоваться, если при поперечных соединениях возникают значительные нагрузки или усталость.

Стыковые швы - это сварные швы с полным или частичным проплавлением, выполняемые между материалами со скошенными или скошенными кромками. Стыковые швы с полным проплавлением предназначены для передачи всей прочности сечения.Как правило, эти соединения можно сваривать с одной стороны, но по мере увеличения толщины материала желательна сварка с обеих сторон, чтобы уравновесить эффекты деформации, с операцией обратной строжки и / или обратной шлифовки в процессе для обеспечения целостности корень шва. Односторонние стыковые сварные швы с подкладными полосами из керамики или прочной стали обычно используются для соединения больших площадей пластин (например, стальных пластин настила) и там, где есть закрытые коробчатые секции, трубы или элементы жесткости, к которым можно получить доступ для сварки только с одного боковая сторона.Расчетная толщина горловины определяет глубину проплавления, необходимую для швов с частичным проплавлением. Обратите внимание, что соображения усталости могут ограничивать использование сварных швов с частичным проплавлением, особенно на мостах. Руководство по подготовке к сварке доступно в GN 5.01.

Следует приложить все усилия, чтобы избежать стыковой сварки приспособлений из-за затрат, связанных с подготовкой, временем сварки, более высоким уровнем квалификации сварщика и более строгими и трудоемкими требованиями к испытаниям. Кроме того, стыковые швы имеют тенденцию иметь большие объемы наплавленного металла шва; это увеличивает эффект усадки сварного шва и приводит к более высокому уровню остаточных напряжений в соединении.Чтобы уравновесить усадку и распределить остаточное напряжение, минимизируя таким образом деформацию, необходима тщательная последовательность сварочных операций.

Иногда бывает необходимо обработать стыковые сварные швы заподлицо по причинам усталости, или для улучшения дренажа стальных балок, устойчивых к атмосферным воздействиям, или для улучшения режима испытаний. Следует избегать зачистки заподлицо только по эстетическим соображениям, потому что трудно обработать поверхность так, чтобы она соответствовала смежной поверхности после прокатки, и результат часто более визуально заметен, чем исходный сварной шов.Кроме того, шлифование представляет собой дополнительную опасность для здоровья и безопасности, которую лучше избегать по мере возможности. Правка стыковых швов до гладкой поверхности обычно не требуется для строительных стальных конструкций, поскольку обычно они не подвержены усталости.

  • Пример обработанного стыкового шва с гладкой поверхностью и сливными пластинами
  • (изображения любезно предоставлены Mabey Bridge Ltd.)

[вверх] Угловые швы

 

Макрос однопроходного углового сварного шва
(Изображение любезно предоставлено Mabey Bridge Ltd.)

В большинстве сварных соединений в зданиях и мостах используются угловые швы, обычно в форме тройника. Обычно они включают в себя концевую пластину, ребро жесткости, подшипники и соединения распорок с прокатными секциями или плоскими балками, а также соединения стенки с фланцами на самих пластинчатых балках. Их относительно просто подготовить, сварить и испытать в обычных конфигурациях, при этом главным соображением является сборка стыков.

В S275 полная прочность сталей также развивается в угловых сварных швах и сварных швах с частичным проплавлением с вышележащими угловыми швами при условии, что такие сварные швы симметричны, выполнены с использованием правильных расходных материалов и сумма сварных швов равна толщине элемента, который сварные швы стыкуются.

Размеры сварных швов должны быть указаны на чертежах проекта вместе с любыми специальными требованиями по классификации усталости. BS EN ISO 22553 [1] предписывает правила использования символов для детализации сварных соединений на чертежах.

Обращается внимание на тот факт, что в традиционной британской практике для определения размера углового сварного шва обычно используется длина ветви, но это не универсально: в европейской практике используется толщина горловины, а в стандарте BS EN 1993-1-8 [2] дает требования относительно размера горла, а не длины ноги.Проектировщик должен быть осторожен, чтобы убедиться, что ясно, какой размер указан, и что все стороны должны знать, что было указано.

[вверх] Процессы

Важными факторами, которые подрядчик по изготовлению металлоконструкций следует учитывать при выборе процесса сварки, являются способность выполнять проектные требования и, с точки зрения производительности, скорость наплавки, которая может быть достигнута, а также рабочий цикл или эффективность процесса. (Эффективность - это отношение фактического времени сварки или дуги к общему времени, в течение которого сварщик или оператор занят выполнением сварочной задачи.Общее время включает настройку оборудования, очистку и проверку выполненного шва.)

Ниже описаны четыре основных процесса сварки, которые регулярно используются при производстве стальных конструкций в Великобритании. Номера процессов определены в BS EN ISO 4063 [3] . Различные варианты этих процессов были разработаны для соответствия методикам и возможностям отдельных производителей, и другие процессы также имеют место для конкретных приложений, но выходят за рамки данной статьи.

[вверх] Металлоактивная газовая сварка (MAG), процесс 135

 

Сварка MAG
(Изображение любезно предоставлено Kiernan Structural Steel Ltd.)

MAG-сварка сплошным проволочным электродом - это наиболее широко используемый процесс с ручным управлением для заводских производственных работ; иногда это называют полуавтоматической сваркой или сваркой CO 2 . Сплошной проволочный электрод из сплошной проволоки пропускается через устройство подачи проволоки к «пистолету», который обычно удерживает и управляет оператором. Питание подается от источника выпрямителя или инвертора по соединительным кабелям к устройству подачи проволоки и кабелю горелки; электрическое подключение к проводу осуществляется через контактный наконечник на конце пистолета.Дуга защищена защитным газом, который направляется в зону сварки через кожух или сопло, окружающее контактный наконечник. Защитные газы обычно представляют собой смесь аргона, диоксида углерода и, возможно, кислорода или гелия.

Хорошая производительность наплавки и рабочий цикл можно ожидать от процесса, который также можно механизировать с помощью простых моторизованных кареток. Газовая защита может быть сдувана сквозняками, что может вызвать пористость и возможные вредные металлургические изменения в металле сварного шва.Таким образом, этот процесс лучше подходит для заводского производства, хотя он используется на месте, где могут быть предусмотрены эффективные укрытия. Он также более эффективен в плоском и горизонтальном положениях; Сварные швы в других положениях наплавляются с более низкими параметрами напряжения и силы тока и более подвержены дефектам плавления.

 

Металлоактивная газовая сварка (МАГ), процесс 135

Металлоактивная газовая сварка (MAG), процесс 135

MAG-сварка электродом с флюсовой сердцевиной, процесс 136 представляет собой разновидность, в которой используется то же оборудование, что и MAG-сварка, за исключением того, что плавящийся проволочный электрод имеет форму трубки малого диаметра, заполненной флюсом.Преимущество использования этих проволок состоит в том, что можно использовать более высокие скорости наплавки, особенно при сварке в вертикальном положении (между двумя вертикальными поверхностями) или в верхнем положении. Наличие тонкого шлака помогает преодолевать силу тяжести и позволяет наносить сварные швы в местах с относительно высокими током и напряжением, тем самым уменьшая возможность дефектов плавления. Добавки флюса также влияют на химию сварного шва и, таким образом, улучшают механические свойства соединения.

[вверху] Ручная дуговая сварка металлом (MMA), процесс 111

Этот процесс остается наиболее универсальным из всех сварочных процессов, но его использование в современной мастерской ограничено.Трансформаторы переменного тока, выпрямители постоянного тока или инверторы подают электроэнергию по кабелю на электрододержатель или клещи. Проволочный электрод с флюсовым покрытием (или «стержень») вставляется в держатель, и сварочная дуга возникает на кончике электрода, когда он ударяется о заготовку. На острие электрода плавится, образуя ванну расплава, которая сливается с основным материалом, образуя сварной шов. Флюс также плавится, образуя защитный шлак и создавая газовый экран, предотвращающий загрязнение сварочной ванны по мере ее затвердевания.Добавки флюса и сердечник электрода используются для влияния на химический состав и механические свойства сварного шва.

Обычно используются электроды с основным покрытием, контролируемым водородом. Эти электроды необходимо хранить и обращаться с ними в соответствии с рекомендациями производителя расходных материалов, чтобы сохранить их низкие водородные характеристики. Это достигается либо путем использования сушильных шкафов и подогреваемых колчанов для хранения и обработки продукта, либо путем приобретения электродов в герметичных упаковках, специально разработанных для поддержания низкого уровня водорода.

Недостатками процесса являются относительно низкая скорость осаждения и высокий уровень отходов, связанных с непригодными для использования концевыми штырями электродов. Тем не менее, он остается основным процессом для сварки на стройплощадке и для труднодоступных мест, где громоздкое оборудование не подходит.

 

Ручная дуговая сварка металлом (MMA), процесс 111

Ручная дуговая сварка металлом (MMA), процесс 111

[вверх] Дуговая сварка под флюсом (SAW), процесс 121

 

Оперативная сварка под флюсом
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Это, вероятно, наиболее широко используемый процесс для сварки угловых швов перемычки между стенкой и фланцем и стыковых сварных швов на линии толстой пластины для получения отрезков фланца и стенки. В процессе процесса непрерывный провод подается через контактный наконечник, где он обеспечивает электрический контакт с мощностью от выпрямителя, в зону сварки, где он изгибается и образует ванну расплава. Сварочная ванна заполняется флюсом, подаваемым из бункера. Флюс, непосредственно покрывающий расплавленную сварочную ванну, плавится, образуя шлак и защищая сварной шов во время затвердевания; излишки флюса собираются и повторно используются.По мере остывания шва шлак замерзает и отслаивается, оставляя высококачественные профильные швы.

Этот процесс по своей природе более безопасен, чем другие процессы, так как дуга полностью покрывается во время сварки, отсюда и термин дуга под флюсом. Это также означает, что требования к личной защите меньше. Высокая производительность наплавки - особенность процесса, поскольку он обычно механизируется на портальных установках, тракторах или другом специализированном оборудовании. Это позволяет контролировать параметры и дает рекомендации по точному размещению сварных швов.

 

Сварка под флюсом (SAW), процесс 121

Сварка под флюсом (SAW), процесс 121

[вверху] Приварка шпилек методом вытяжной дуги 783

Композитные мосты требуют приваривания соединителей со срезной шпилькой к верхнему фланцу пластинчатых или коробчатых балок и в других местах, где требуется композитное воздействие стали на бетон, например.грамм. на интегральных абатментах. В зданиях композитные балки требуют приваривания соединителей срезных шпилек к элементам либо непосредственно к верхнему фланцу, либо чаще через постоянный настил из оцинкованной стали на композитных полах, где верхний фланец балки остается неокрашенным.

  • Приварка шпильки к балке моста
    (Изображение любезно предоставлено Mabey Bridge Ltd.)

  • Сварка сквозных шпилек
    (Изображение любезно предоставлено Structural Metal Decks Ltd.)


Метод приварки шпилек известен как процесс с натянутой дугой, и требуется специальное оборудование в виде мощного выпрямителя и специального пистолета. Шпильки загружаются в пистолет, и при электрическом контакте с изделием концы с наконечниками изгибаются и плавятся. Продолжительность дуги рассчитана так, чтобы между концом стержня и основным материалом установилось расплавленное состояние. В нужный момент пистолет погружает шпильку в сварочную ванну.Керамическая манжета окружает шпильку для защиты и поддержки сварочной ванны, стабилизации дуги и формовки смещенной сварочной ванны для формирования сварной манжеты. Когда сварной шов затвердевает, обойма отслаивается. У удовлетворительных сварных швов обычно есть ровная, яркая и чистая буртика, полностью охватывающая шпильку.

 

Приварка шпилек методом вытяжной дуги 783

[вверху] Спецификации процедуры сварки

Чертежи детализируют конструктивную форму, выбор материала и указывают сварные соединения.Подрядчик по изготовлению металлоконструкций выбирает методы сварки каждой конфигурации стыка, обеспечивающие требуемые характеристики. Прочность, вязкость разрушения, пластичность и усталость являются важными металлургическими и механическими свойствами, которые необходимо учитывать. Тип соединения, положение сварки, производительность и требования к ресурсам влияют на выбор подходящего процесса сварки.

Выбранный метод представлен в спецификации процедуры сварки (WPS), в которой подробно описывается информация, необходимая для инструктирования и руководства сварщиками, чтобы обеспечить повторяемость характеристик для каждой конфигурации соединения.Пример формата WPS показан в Приложении A стандарта BS EN ISO 15609-1 [4] . Подрядчики по изготовлению металлоконструкций могут иметь свой собственный корпоративный шаблон, но все они включают важную информацию, позволяющую передать сварщику надлежащие инструкции.

Необходимо подкрепить WPS свидетельством удовлетворительных испытаний процедуры в виде протокола аттестации процедуры сварки (WPQR), подготовленного в соответствии с BS EN ISO 15614-1 [5] . Введение этого стандарта гласит, что испытания процедуры сварки, проведенные в соответствии с прежними национальными стандартами и спецификациями, не аннулируются при условии их технической эквивалентности; Для этого могут потребоваться дополнительные тесты.Крупные британские подрядчики по изготовлению стальных конструкций имеют предварительную квалификацию сварочных процедур, позволяющих производить удовлетворительные сварные швы в большинстве конфигураций стыков, которые могут встретиться в производстве стальных конструкций и мостов.

В случаях, когда данные предыдущих испытаний не актуальны, необходимо провести испытание процедуры сварки, чтобы установить и подтвердить пригодность предлагаемого WPS.

Руководство по стандартным спецификациям процедуры сварки для стальных конструкций доступно в публикации BCSA No.58/18.

[вверх] Процедура испытаний

BS EN ISO 15614-1 [5] описывает условия для проведения испытаний процедуры сварки и пределы действия в пределах квалификационных диапазонов, указанных в стандарте. Координатор сварки подготавливает предварительную спецификацию процедуры сварки (pWPS), которая является первоначальным предложением для проведения испытания процедуры. Для каждой конфигурации стыка, будь то стыковой или угловой шов, учитывается марка и толщина материала, а также ожидаемые допуски посадки, которые могут быть достигнуты на практике.Выбор процесса определяется методом сборки, положением сварки и тем, является ли механизация жизнеспособным предложением для повышения производительности и обеспечения постоянного качества сварки. Размеры подготовки швов зависят от выбора процесса, любых ограничений доступа и толщины материала.

Расходные материалы выбираются из соображений совместимости с марками материалов и достижения указанных механических свойств, в первую очередь с точки зрения прочности и ударной вязкости. Для сталей марки S355 и выше используются продукты с водородным контролем.

Риск водородного растрескивания, пластинчатого разрыва, растрескивания при затвердевании или любой другой потенциальной проблемы оценивается не только с целью проведения испытания, но и для предполагаемого применения процедуры сварки в проекте. Соответствующие меры, такие как предварительный или последующий нагрев, включены в pWPS.

Контроль искажений обеспечивается правильной последовательностью сварки. При необходимости вводятся обратная строжка и / или обратное шлифование для достижения целостности корневого шва.

Приведены диапазоны сварочного напряжения, тока и скорости для определения оптимальных условий сварки.

Допустимые диапазоны групп материалов, толщины и типа соединения в пределах спецификации тщательно рассматриваются, чтобы максимально использовать pWPS. Подготавливают испытательные пластины достаточного размера для извлечения образцов для механических испытаний, включая образцы для любых дополнительных испытаний, указанных или необходимых для повышения применимости процедуры.

Пластины и pWPS предъявляются сварщику; испытание проводится в присутствии экзаменатора (обычно из независимого экзаменационного органа), и ведется запись фактических параметров сварки вместе с любыми необходимыми изменениями процедуры.

Завершенные испытания передаются независимому эксперту для визуального осмотра и неразрушающего контроля в соответствии с таблицей 1 Стандарта. Удовлетворительные испытательные пластины затем отправляются на разрушающий контроль, опять же в соответствии с таблицей 1. Неразрушающие методы контроля обычно включают ультразвуковой контроль для объемного контроля и контроль магнитных частиц для выявления дефектов поверхности.

 

Пример испытательного образца процедуры сварки
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Существует ряд дополнительных стандартов, детализирующих подготовку, обработку и испытания всех типов образцов для разрушающих испытаний. Обычно специализированные лаборатории организуют подготовку образцов для испытаний и проводят фактические механические испытания и составление отчетов. Типичные образцы для стыкового сварного шва пластины включают испытания на поперечное растяжение, испытания на поперечный изгиб, испытания на удар и образец для макроэкспертизы, на котором проводится испытание на твердость.Для испытаний на удар минимальные требования к поглощению энергии и температура испытания обычно такие же, как и для основного материала в соединении. Целесообразно испытать все сварочные процедуры до предела возможного применения, чтобы избежать повторения подобных испытаний в будущем.

Завершенные результаты испытаний заносятся в протокол аттестации процедуры сварки (WPQR), утверждаемый экспертом. Типичный формат показан в Приложении B стандарта BS EN ISO 15614-1 [5] .

Существует дополнительное общее требование, касающееся испытаний процедуры сварки, согласно которому, если грунтовки для краски должны быть нанесены на работу до изготовления, они должны наноситься на образец материала, используемого для испытаний. На практике требуется тщательный контроль толщины краски, чтобы избежать дефектов сварки.

BS EN ISO 14555 [6] описывает метод процедуры испытания соединителей шпилек, приваренных дуговой сваркой. Стандарт включает требования к испытаниям, необходимым для подтверждения целостности сварных швов шпилек, а также устанавливает требования к производственным испытаниям для контроля приваривания шпилек в процессе.Допускается также квалификация, основанная на предыдущем опыте, и большинство подрядчиков по изготовлению стальных конструкций могут предоставить доказательства, подтверждающие это.

Дополнительное руководство по испытаниям процедуры сварки доступно в GN 4.02.

[вверх] Водородный крекинг

Растрескивание может привести к хрупкому разрушению соединения с потенциально катастрофическими последствиями. Водородное (или холодное) растрескивание может происходить в области основного металла, прилегающей к границе плавления сварного шва, известной как зона термического влияния (HAZ).Разрушение металла сварного шва также может быть вызвано определенными условиями. Механизмы, вызывающие отказ, сложны и подробно описаны в специальных текстах.

Рекомендуемые методы предотвращения растрескивания водородом / HAZ описаны в BS EN 1011-2 [7] , приложение C. Эти методы определяют уровень предварительного нагрева для изменения скорости охлаждения, что дает время водороду для миграции на поверхность. и ускользнуть (особенно если поддерживается в виде пост-нагревания после завершения соединения) вместо того, чтобы застревать в жестких, напряженных зонах.Предварительный нагрев не препятствует образованию микроструктур, подверженных образованию трещин; он просто снижает один из факторов, водород, так что растрескивания не происходит. Предварительный нагрев также снижает термический шок.

 

Подставки для предварительного нагрева
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Одним из параметров, необходимых для расчета предварительного нагрева, является погонная энергия. Заметным изменением в стандарте является отказ от термина «энергия дуги» в пользу тепловложения для описания энергии, вводимой в сварной шов на единицу длины прогона.Расчет подводимого тепла основан на сварочном напряжении, токе и скорости движения и включает коэффициент теплового КПД; формула подробно описана в BS EN 1011-1 [8] .

Высокая ограниченность и повышенные значения углеродного эквивалента, связанные с более толстыми листами и более высокими марками стали, могут потребовать более строгого контроля за процедурами. Опытные подрядчики по изготовлению металлоконструкций могут выполнить эту дополнительную операцию и соответственно учесть ее.

BS EN 1011-2 [7] подтверждает, что наиболее эффективной гарантией предотвращения водородного растрескивания является снижение поступления водорода в металл шва из сварочных материалов.Процессы с изначально низким водородным потенциалом эффективны как часть стратегии, так же как и принятие строгих процедур хранения и обращения с электродами с водородным контролем. Данные и рекомендации поставщиков расходных материалов служат руководством для обеспечения минимально возможных уровней водорода для типа продукта, выбранного в процедуре.

Дополнительные информативные приложения к BS EN 1011-2 [7] описывают влияние условий сварки на ударную вязкость и твердость в зоне термического влияния и дают полезные советы по предотвращению растрескивания при затвердевании и разрыва пластин.

Дополнительное руководство по крекингу водородом / HAZ доступно в GN 6.04.

[вверх] Квалификация сварщика

 

Квалифицированный сварщик
(Изображение предоставлено Mabey Bridge Ltd.)

BS EN 1090-2 [9] требует, чтобы сварщики имели квалификацию в соответствии с BS EN ISO 9606-1 [10] . Этот стандарт предписывает испытания для аттестации сварщиков в зависимости от процесса, расходных материалов, типа соединения, положения сварки и материала.Сварщики, прошедшие успешные испытания процедуры, автоматически получают одобрение в пределах квалификационных диапазонов, указанных в стандарте. Сварщики должны быть аттестованы в соответствии с BS EN ISO 14732 [11] , когда сварка полностью механизирована или автоматизирована. В этом стандарте особое внимание уделяется проверке способности оператора настраивать и регулировать оборудование до и во время сварки.

Квалификация сварщика ограничена по времени и требует подтверждения действительности в зависимости от продолжительности работы, участия в работе соответствующего технического характера и удовлетворительной работы.Продление квалификации сварщика зависит от зарегистрированных подтверждающих свидетельств, демонстрирующих продолжающуюся удовлетворительную работу в пределах исходного диапазона испытаний, и доказательства должны включать либо объемные разрушающие испытания, либо разрушающие испытания. Успех всех сварочных операций зависит от персонала, имеющего соответствующую подготовку и регулярного контроля компетентности посредством инспекций и испытаний.

[вверх] Инспекция и испытания

BS EN 1090-2 [9] устанавливает объем проверки до, во время и после сварки и дает критерии приемки, связанные с классом исполнения.Большинство испытаний являются неразрушающими; Разрушающие испытания проводятся только на отводных плитах.

[вверх] Неразрушающий контроль

 

Контроль сварных швов с помощью магнитных частиц (MPI)
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Неразрушающий контроль проводится в соответствии с принципами BS EN ISO 17635 [12] . Для стальных конструкций основными методами являются визуальный осмотр после сварки (см. GN 6.06), магнитопорошковый контроль (обычно сокращенно MPI или MT) для поверхностного контроля сварных швов (см. GN 6.02) и ультразвуковой контроль (UT) для подповерхностного контроля сварных швов (см. GN 6.03). Радиографические испытания также упоминаются в BS EN 1090-2 [9] . Радиография требует строгого контроля за здоровьем и безопасностью; это относительно медленно и требует специального оборудования. Использование этого метода в стальных конструкциях снизилось по сравнению с более безопасным и портативным оборудованием, связанным с UT.Безопасные запретные зоны необходимы как на производстве, так и на месте во время проведения рентгенографии. Однако рентгенографию можно использовать для уточнения природы, размеров или степени множественных внутренних дефектов, обнаруженных ультразвуком.

Технические специалисты с признанной подготовкой и квалификацией в соответствии с BS EN ISO 9712 [13] требуются для всех методов неразрушающего контроля.

BS EN 1090-2 [9] требует, чтобы все сварные швы подвергались визуальному контролю по всей их длине.С практической точки зрения сварные швы следует визуально осматривать сразу после сварки, чтобы гарантировать своевременное устранение очевидных дефектов поверхности.

Дальнейшие требования к неразрушающему контролю основаны на эксплуатационных методах и требуют более строгого исследования первых пяти соединений новых технических требований к процедуре сварки, чтобы установить, что процедура способна производить сварные швы соответствующего качества при внедрении в производство. Затем указываются дополнительные неразрушающие испытания, основанные на типах соединений, а не на конкретных критических соединениях.Цель состоит в том, чтобы опробовать различные сварные швы в зависимости от типа соединения, марки материала, сварочного оборудования и работы сварщиков и, таким образом, поддерживать общий мониторинг производительности.

Если указано частичное или процентное обследование, руководство по выбору продолжительности испытания дано в BS EN ISO 17635 [12] ; при обнаружении недопустимых разрывов площадь исследования соответственно увеличивается.

BS EN 1090-2 [9] также включает в таблицу минимальное время выдержки перед дополнительным неразрушающим контролем в зависимости от размера сварного шва, подводимой теплоты и марки материала.

Признавая, что там, где требования к усталостной прочности более обременительны и требуется более строгая проверка, BS EN 1090-2 [9] действительно предусматривает спецификацию выполнения проекта для определения конкретных соединений для более высокого уровня проверки вместе с объемом и метод тестирования.

Для класса EXC3 критерием приемлемости дефектов сварного шва является уровень качества B стандарта BS EN ISO 5817 [14] . Там, где необходимо достичь повышенного уровня качества для удовлетворения конкретных требований к усталостной прочности, BS EN 1090-2 [9] дает дополнительные критерии приемлемости с точки зрения категории деталей в BS EN 1993-1-9 [15] для расположения сварного шва.

Как правило, дополнительные критерии приемки практически не достижимы при обычном производстве. Стандартные испытания процедуры сварки и квалификационные испытания сварщика не оцениваются по требованиям этого уровня. Там, где необходимо достичь такого уровня качества, требования должны быть сосредоточены на соответствующих деталях соединения, чтобы подрядчик имел возможность подготовить спецификации процедуры сварки, квалифицировать сварщиков и разработать соответствующие методы контроля и испытаний.

Неразрушающий контроль

[вверх] Разрушающее испытание

В стандарте BS EN 1090-2 [9] нет требований о проведении разрушающих испытаний поперечных соединений на растянутых фланцах. Тем не менее, объем для определения конкретных соединений для проверки позволит в спецификации проекта испытать, например, образцы от «стекающих» пластин, прикрепленных к встроенным стыковым сварным швам. Дополнительно производственные испытания могут быть указаны для: марок стали выше S460; угловые швы, в которых используются характеристики глубокого проплавления сварочного процесса; для мостовидных ортотропных настилов, где требуется макросъемка для проверки проплавления сварного шва; и на соединениях ребер жесткости с соединительными пластинами.

[вверх] Производственные испытания приварки шпилек

 

Испытание на изгиб приварной шпильки
(Изображение любезно предоставлено Mabey Bridge Ltd.)

Сварные шпильки для соединителей, работающих на сдвиг, исследуются и испытываются в соответствии с BS EN ISO 14555 [6] . В стандарте подчеркивается необходимость контроля процесса до, во время и после сварки. Предпроизводственные испытания используются для подтверждения процедуры сварки и, в зависимости от области применения, включают испытания на изгиб, испытания на растяжение, испытания на крутящий момент, макросъемку и радиографическое обследование.

Производственные испытания сварных швов также требуются для приварки шпилек с дугой протяжки. Они должны выполняться производителем до начала сварочных работ на конструкции или группе аналогичных конструкций и / или после определенного количества сварных швов. Каждое испытание должно состоять как минимум из 10 сварных шпилек и быть испытано / оценено в соответствии с требованиями BS EN ISO 14555 [6] . Количество необходимых тестов должно быть указано в спецификации контракта.

[вверх] Качество сварки

Влияние дефектов на характеристики сварных соединений зависит от приложенной нагрузки и свойств материала.Эффект также может зависеть от точного расположения и ориентации дефекта, а также от таких факторов, как рабочая среда и температура. Основное влияние дефектов сварного шва на эксплуатационные характеристики стальных конструкций заключается в повышении риска разрушения из-за усталости или хрупкого разрушения.

Типы дефектов сварки можно разделить на одну из нескольких общих рубрик:

  • Трещины.
  • Плоские дефекты, кроме трещин, например непробиваемость, отсутствие плавления.
  • Включения шлака.
  • Пористость, поры.
  • Поднутрения или дефекты профиля.


Трещины или плоские дефекты, проникающие через поверхность, потенциально являются наиболее серьезными. Включения вкрапленного шлака и пористость вряд ли станут причиной разрушения, если только они не будут чрезмерными. Подрезание обычно не является серьезной проблемой, если не существует значительных растягивающих напряжений поперек стыка.

Путем выбора класса исполнения в BS EN 1090-2 [9] устанавливаются критерии приемки, при превышении которых дефект считается дефектом.

Если дефекты обнаружены в результате осмотра и испытаний во время производства, вероятно, потребуется обработка после сварки (см. GN 5.02) или другие меры по исправлению положения, хотя во многих случаях конкретный дефект может быть оценен по концепции « пригодность для цели ». Такое принятие зависит от фактических уровней напряжения и значимости усталости на месте. Это вопрос быстрой консультации между подрядчиком по изготовлению металлоконструкций и проектировщиком, поскольку, если это приемлемо, можно избежать дорогостоящего ремонта (и возможности появления дополнительных дефектов или деформации).

Руководство по контролю качества сварных швов и контролю сварных швов доступно в BCSA № 54/12 и GN 6.01.

[вверх] Список каталогов

  1. ↑ BS EN ISO 22553: 2019, Сварка и родственные процессы. Символическое изображение на чертежах. Сварные соединения. BSI.
  2. ↑ BS EN 1993-1-8: 2005, Еврокод 3. Проектирование стальных конструкций. Дизайн стыков, BSI
  3. ↑ BS EN ISO 4063: 2010, Сварка и родственные процессы. Номенклатура процессов и ссылочные номера, BSI
  4. ↑ BS EN ISO 15609-1: 2019, Технические требования и квалификация процедур сварки металлических материалов.Спецификация процедуры сварки. Дуговая сварка, BSI
  5. 5,0 5,1 5,2 BS EN ISO 15614-1: 2017 + A1: 2019, Технические требования и аттестация процедур сварки металлических материалов. Испытание процедуры сварки. Дуговая и газовая сварка сталей и дуговая сварка никеля и никелевых сплавов, BSI
  6. 6,0 6,1 6,2 BS EN ISO 14555: 2017, Сварка. Дуговая сварка металлических материалов, BSI
  7. 7.0 7,1 7,2 BS EN 1011-2: 2001, Сварка. Рекомендации по сварке металлических материалов. Дуговая сварка ферритных сталей, BSI
  8. ↑ BS EN 1011-1: 2009, Сварка. Рекомендации по сварке металлических материалов. Общее руководство по дуговой сварке, BSI
  9. 9,0 9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 BS EN 1090-2: 2018, Изготовление металлоконструкций и алюминиевых конструкций.Технические требования к стальным конструкциям, BSI
  10. ↑ BS EN ISO 9606-1: 2017 Квалификационные испытания сварщиков. Сварка плавлением. Стали, BSI
  11. ↑ BS EN ISO 14732: 2013. Сварочный персонал. Квалификационные испытания сварщиков и наладчиков для механизированной и автоматической сварки металлических материалов BSI
  12. 12,0 12,1 BS EN ISO 17635: 2016, Неразрушающий контроль сварных швов. Общие правила для металлических материалов, BSI
  13. ↑ BS EN ISO 9712: 2012.Неразрушающий контроль. Квалификация и аттестация персонала по неразрушающему контролю, BSI
  14. ↑ BS EN ISO 5817: 2014, Сварка. Соединения, сваренные плавлением из стали, никеля, титана и их сплавов (за исключением лучевой сварки). Уровни качества для выявления недостатков, BSI
  15. ↑ BS EN 1993-1-9: 2005, Еврокод 3. Проектирование стальных конструкций. Усталость, BSI

[вверх] Ресурсы

  • Стальные здания, 2003 г. (Публикация № 35/03), BCSA
  • Стальные мосты: практический подход к проектированию для эффективного изготовления и строительства, 2010 г. (Публикация №51/10), BCSA
  • Национальные технические условия на стальные конструкции (7-е издание), 2020 г. (Публикация № 62/20), BCSA
  • Спецификации типовых процедур сварки металлоконструкций - Второе издание, 2018 г. (Публикация № 58/18), BCSA
  • Высокопрочные стали для применения в конструкциях: Руководство по изготовлению и сварке, 2020 г. (Публикация № 62/20), BCSA
  • Руководство по контролю сварных швов для металлоконструкций, 2012 г. (Публикация № 54/12), BCSA
  • Хенди, К.Р.; Ильес, округ Колумбия (2015) Steel Bridge Group: Рекомендации по передовой практике в строительстве стальных мостов (6-й выпуск). (P185). SCI

[наверх] Дополнительная литература

  • Руководство проектировщика стальных конструкций (7-е издание), 2011 г., глава 26 - Сварные швы и проектирование для сварки, Институт стальных конструкций.

[вверху] См. Также

Как работают сварочные аппараты: полное руководство

Сварочные аппараты могут показаться сложными, но их достаточно легко понять, как только вы начнете с ними работать.

Как работают сварочные аппараты?

Короткий ответ прост. Приложив немного науки и немного практики, любой может осуществить отличный сварочный проект. Длинный ответ заключается в том, что существует несколько типов сварочных и сварочных аппаратов, и вы должны быть знакомы со многими из них.

Если вы готовы приступить к своему сварочному проекту и начать создавать свои собственные практические или художественные творения, возьмите ручку и сделайте несколько заметок.

К концу этой статьи вы будете знать все, что вам нужно знать о сварке.

Основы сварочного аппарата

Прежде чем мы углубимся в технические подробности, вы должны знать несколько основ, например, о двух типах сварки.

Двумя основными типами сварки являются дуговая сварка и сварка горелкой.

Сегодня мы познакомимся с основами обоих типов сварки: как они работают, какое оборудование для каждого из них требуется и многое другое.

Дуговая сварка

Дуговая сварка - это процесс использования электрической дуги для плавления материалов, с которыми вы работаете, а также присадочных материалов.

Этот пруток иногда называют сварочным прутком, и этот процесс используется для сваривания соединений.

Хотя это описание звучит довольно просто, дуговая сварка - сложный процесс. Для дуговой сварки необходимо прикрепить к сварочному материалу заземляющий провод.

Обратите внимание, что сварочный материал - это не тот материал, который вы будете сваривать.

Другая проволока, называемая электродным выводом, помещается в материал, который вы планируете сваривать.Когда вы оттягиваете вывод электрода от материала, вы создаете электричество.

Электричество, которое вы создаете при протягивании вывода электрода, создает электрическую дугу, в честь которой назван весь процесс.

При возникновении дуги материал, который вы свариваете, плавится, и - если вы их использовали - присадочные материалы помогут деталям сплавиться в одну сплошную деталь.

Виды дуговой сварки

Итак, какие бывают виды дуговой сварки?

Мы обсудим три различных типа дуговой сварки, которые перечислены ниже:

  • Экранированная металлическая дуга Сварка
  • Газовая дуговая сварка металлическим электродом
  • Газовая вольфрамовая дуга сварка
Дуговая сварка защищенного металла (SMAW)

Дуговая сварка защищенным металлом, также известная как SMAW, относится к типу дуговой сварки, в которой используется вывод электрода, покрытый флюсом.

Flux - чистящее или очищающее средство. В основном, когда возникает электрическая дуга и формируется соединение, флюс распадается.

Когда флюс распадается, он дает от паров, которые будут защищать место сварки от всего, что в воздухе может заразить его.

Поскольку этот вид сварки относительно прост и может использоваться для множества различных сварочных работ, это один из наиболее популярных методов сварки, используемых во многих отраслях промышленности.

Обратите внимание, что SMAW также может называться ручной дуговой сваркой металла (MMAW) или дуговой сваркой в ​​среде защитного флюса.

Хотя все эти названия звучат по-разному, все они относятся к типу дуговой сварки, в которой используется защитный флюс.

Газовая дуговая сварка металлов (GMAW)

Газовая дуговая сварка металлическим электродом, или GMAW, также имеет несколько разных названий .

Ее также называют сваркой в ​​среде инертного газа (MIG) или сваркой в ​​среде активного газа (MAG).

Обратите внимание, что сварка MIG и MAG относятся к категориям дуговой сварки металлическим электродом в газе.

GMAW работает, когда электрическая дуга возникает между металлической проволокой в ​​инертном газе и свариваемыми материалами.

Процесс заставляет материалы нагреваться, плавиться и, в конечном итоге, сплавляться.

Основное различие между SMAW и GMAW - это электрод: в GMAW используется металлический инертный газ, а в SMAW - свинцовый электрод.

Вспомните, как SMAW использовал флюс для защиты площадь? GMAW также имеет защитное средство, хотя его называют защитным газом.

Газовая дуговая сварка вольфрамом (GTAW)

Последняя подкатегория дуговой сварки, которая мы будем говорить о газовой вольфрамовой дуговой сварке или GTAW.

Этот тип сварки также известен как сварка вольфрамовым электродом в среде инертного газа (TIG). В процессе GTAW используется вольфрамовый электрод.

Это тот же процесс, что и раньше, но с другим материалом электрода. То же самое, но немного измененное, используемое защитное средство.

GTAW использует инертный защитный газ для защиты зоны сварки от загрязнений.

Обратите внимание, что в GTAW также используется присадочный материал, хотя он требуется не для всех сварочных процессов с использованием этого метода.

Горелка для сварки

Сварка горелкой немного проще понять, хотя бы потому, что в ней нет подкатегорий, за которыми следовало бы угнаться.

Для сварки горелкой используется горелка для плавления рабочего материала и сварочного стержня.

Сварщик получает полный контроль в этом процессе, потому что ему приходится одновременно обращаться со стержнем и горелкой.

Этот вид сварки широко распространен, хотя его популярность снижается из-за практического применения. Однако он до сих пор используется во многих отраслях промышленности.

Другие виды сварки

Существуют и другие виды сварки, кроме дуговой сварки и сварки горелкой.

Однако вы должны пытаться выполнять эти виды сварки на свой страх и риск.

К другим видам сварки относятся электродуговая дуга, сварка взрывом, сварка лазерным лучом и ультразвуковая сварка.

Эти виды сварки намного сложнее. Если вы новичок, продолжайте дуговую сварку и сварку горелкой, пока не приобретете некоторую практику.

Для чего используются сварочные аппараты?

Сварка - это многовековая практика, которая, как говорят, берет свое начало с сэра Хамфри Дэви примерно в 1836 году.

Примерно в это же время Дэви создал первую электрическую дугу с двумя электродами. Однако сварка была усовершенствована лишь несколькими десятилетиями позже, в 1881 году.

Это было тогда, когда Август де Меритен использовал электрическую дугу, чтобы сплавить две свинцовые пластины вместе. Позже его ученик Николай Бернадос запатентовал вид электродуговой сварки.

Благодаря этим изменениям были созданы и в конечном итоге усовершенствованы различные виды сварки. Хотя сама эта практика довольно старая, современная сварка все еще похожа на своих старых предшественников.

Сегодня сварка стала быстрее, эффективнее и точнее, чем раньше. Однако конечная цель осталась прежней.

Проще говоря, сварочные аппараты используются чтобы соединить вещи вместе.

Вот несколько важных терминов для сварки:

  • Сварочный материал: материалов, которые вы свариваются
  • Наполнитель: пластик или металл, который вы используете как своего рода клей, чтобы скрепить сварочные материалы. Иногда сварщики используют наполнитель, чтобы скрепить сварочные материалы, чтобы такое слияние материалов может иметь место.
  • Энергия: источник, который вы используете для сварки материалов. вместе (газ, электричество, лазер и т. д.)

По определению, сварка - это процесс соединения двух материалов, таких как алюминий, латунь, пластик или полимер, путем их сплавления посредством какой-то реакции.

Эта реакция обычно вызывается сильное тепло от любого источника энергии, который вы решите использовать.

Сварка часто используется в производстве, включая все виды от архитектурной и горнодобывающей до сельскохозяйственной и строительной.

Сварщики также работают в авиакосмических и судостроительных компаниях, а также в ремонтных отраслях.

Поскольку сварка - это очень разнообразная отрасль, вы можете догадаться, почему существует такой рынок сварочных аппаратов.

Люди хотят уметь сваривать и выполнять разнообразные домашние и бизнес-проекты своими руками.

Теперь, когда интернет-магазины сделали эти машины доступными, неудивительно, что они стали популярными.

Как выбрать идеальный сварочный аппарат

Ключом к выбору идеального сварочного аппарата является выбор наиболее подходящего для ваших конкретных сварочных нужд.

Есть несколько вопросов, которые вы должны задать себе, прежде чем принять решение и начать свое исследование.

Вопросы, которые нужно задать:

  • Сколько можно позволить себе потратить на это?
  • Какой процесс мне хотите использовать?
  • Что за проекты, которые я хочу иметь?

Независимо от того, какой тип сварки вы выберете, сварка стоит дорого.

Вы должны купить аппарат, а также приобрести подходящие сварочные материалы, защитное средство и, возможно, наполнитель.

Вам следует подумать обо всех расходах на владение и использование сварочного аппарата, прежде чем решать, какой сварочный аппарат вам подходит.

Обратите внимание, что аппараты для дуговой сварки как правило, дешевле, а сварочные аппараты - дороже. Считать о вашем бюджете, прежде чем вы будете слишком привязаны к одному типу.

Последний вопрос, пожалуй, самый важный. Неважно, купите ли вы лучший сварочный аппарат на рынке, если вы купите тот, который не работает или не подходит для нужного вам продукта.

После того, как вы зададите себе все эти вопросы, вы сможете лучше понять, какой вид сварочного аппарата лучше всего подходит для вас.

Нужен ли мне сварочный аппарат?

Нужен ли вам сварочный аппарат? ваше собственное зависит от нескольких факторов, и вам нужно будет принять решение позвоните себе.

Спросите себя:

  • Что мой бюджет?
  • Почему я хочу сам делать сварку?
  • Мог сварочный цех это делают?
  • Сделать Мне нужно быстро сделать проект?
  • Am Я завершаю один проект или много?
  • Am Я посвятил себя практике?

Это все важные вопросы, потому что они указывают на долгосрочную выгоду от покупки собственного сварочного аппарата. машина.

Если текущий проект можно сделать лучше и быстрее в магазине, почему вы хотите сделать это самостоятельно? Вы просто хотите получить удовольствие от возможности сварить самостоятельно? Хотите воплотить в жизнь собственное видение?

На самом деле то, что магазин может выполнить ваш сварочный проект за вас, не означает, что он лучший вариант.

Иногда можно подумать, что никто не может как можно лучше реализовать свое видение или потребность - и это отличный повод приобретите себе сварочный аппарат.

Также подумайте о том, для скольких проектов вы будете использовать машину. Если это одноразовая вещь, подумайте дважды.

Сварочные аппараты и материалы стоят денег, а техническое обслуживание аппарата требует времени и энергии.

В таком случае вы можете рассмотреть возможность использования магазина вместо вашего собственного станка. Сварка также требует много терпения и времени.

Если вы только начинаете, вам нужно много попрактиковаться, прежде чем вы добьетесь наилучших результатов сварки.

Типы сварочных аппаратов

Мы поговорим о двух основных типах сварочных аппаратов. Вы можете догадаться, какие они?

Вы правы!

Мы займемся аппаратами для дуговой сварки (с разбивкой по категориям) и аппаратами для плазменной сварки.

Вы уже знаете основы, так чем же отличаются сами машины?

Когда дело доходит до вопроса о том, сколько существует различных типов сварочных аппаратов, ответ - много.

Вместо того, чтобы бросать вам все сразу, я составил список аппаратов для дуговой сварки.

Популярные аппараты для дуговой сварки

The C.M.T. Сверхпортативный 100-амперный электродуговый сварочный аппарат Pitbull - 110V от CMT - отличный недорогой вариант для дуговой сварки, особенно для тех, кто думает о небольших домашних проектах, а не о больших и сложных.

Точнее, дешевле 100 долларов на Amazon - это не лучший сварщик на рынке. Однако это отличный выбор для новичков.

Как вы можете понять из названия сварочного аппарата DEKOPRO 110/220 В MMA, это сварочный аппарат MMAW, который является просто еще одним названием сварочного аппарата SMA.

Это означает, что вы будете работать со свинцовым электродом и защитным флюсом. Это не так дешево, как наш первый вариант, но все же неплохо для новичка.

ARC Welder HITBOX относится к подкатегории аппаратов для сварки GTA - вольфрамовый инертный газ (TIG).

Если вы помните, это означает, что вы будете использовать инертный защитный газ и вольфрамовый электрод.

Горелочные сварочные аппараты

Первый сварочный аппарат в списке - Lotos LTPDC2000D от Lotos Technology.

Одна большая разница, которую я заметил между аппаратами для плазменной сварки и аппаратами для дуговой сварки, заключается в том, насколько дороже были аппараты для плазменной сварки.

В то время как машины для дуговой сварки стоят менее 100 долларов, этот аппарат стоит около 500 долларов.

Если вы пытаетесь приобрести лучший сварочный аппарат для себя, подумайте о своем бюджете, прежде чем переходить на один вид сварки - это избавит вас от стресса и денег.

MTS-205 205 от Amico - еще один отличный вариант сварочного аппарата с горелкой.

Эта машина стоит около 600 долларов. Тем не менее, он оснащен функцией горелки TIG и передовыми технологиями, которые могут быть полезны более опытным сварщикам, желающим вложить деньги.

Поскольку вы решили, что хотите сделать это вложение, есть еще пара вещей, которые вы должны знать, прежде чем окончательно совершить покупку - вы должны быть уверены, что знаете, как ухаживать за своей машиной.

Как обслуживать сварочный аппарат

Так как же обслуживать сварочный аппарат?

Вы потратили много времени на поиск машины, так что давайте узнаем немного о ее содержании.

Содержать в чистоте

Это, наверное, самый простой совет, который вы получили по поводу сварочного аппарата, но, пожалуй, один из самых важных.

Сварка может быть сложным процессом, и материалы могут плавиться на вашем аппарате и вокруг него и создавать беспорядок.

Хотя может возникнуть соблазн оставить беспорядок, поскольку вы, вероятно, не будете использовать эту машину очень часто, важно убирать за собой, чтобы ваша машина не забивалась расплавленными материалами и могла продолжать работать в полную силу. емкость.

В конце концов, сварочные аппараты стоят денег, и вам не захочется заменять их слишком рано.

Держать сухим

Это может стать сюрпризом для вас, как и для меня.

Однако каждые несколько месяцев вы сушите машину изнутри.

Необходимо использовать чистый сухой воздух, чтобы удалить влагу изнутри машины.

Это особенно важно, когда речь идет об источниках питания, которые могут отрицательно отреагировать, если их слишком долго оставить во влажных условиях.

Читать направления

Это, вероятно, звучит как легкая задача, но вы будете удивлены тем, сколько неисправностей машины можно исправить - или вообще предотвратить - просто прочитав все предоставленные инструкции.

Прежде чем вы начнете использовать машину, я рекомендую прочитать все руководство по эксплуатации, которое должно прилагаться к ней.

Обратите особое внимание на разделы о техническом обслуживании, чтобы вы знали, чего ожидать в конце вашего проекта, еще до того, как вы начнете.

Это также поможет вам избежать непреднамеренного повреждения аппарата, если в процессе сварки что-то нарушит его функциональность.

Есть расписание

Одна вещь, которая предотвратит уход за вашей машиной на второй план, - это соблюдение графика технического обслуживания машины.

Хотя техническое обслуживание может потребоваться не так часто, как в сварочном цехе, у вас должен быть примерный график выполнения работ, необходимых для технического обслуживания машины.

Например, вы должны знать, когда вы будете работать над проектами (чтобы иметь надлежащие чистящие средства), и делать записи каждые шесть месяцев, чтобы вы могли высушить внутреннюю часть машины.

Вам даже следует делать заметки несколько раз в год, когда вы будете проверять свою машину на предмет необходимости замены каких-либо частей.

Выполнив всего несколько простых шагов, вы можете убедиться, что ваш сварочный аппарат прослужит долго и будет продолжать выпускать отличный продукт.

В конце концов, вы приложили много усилий, чтобы выбрать машину своей мечты - не хотите терять ее слишком рано.

Сварочные курсы

Степень

Сварочная техника

Сертификаты

Сварка 108
Ацетилено-дуговая сварка

Ранее: Сварка 008, Ацетилено-дуговая сварка

Единица (и) : 3.0

Часы занятий: 16 лекций, 96 лабораторий, всего

Технические знания и базовые навыки, необходимые для профессиональных процессов и применений кислородно-ацетиленовой и дуговой сварки. Студенты должны предоставить средства защиты. (То же, что и Automotive Technology 108 и Diesel 108). CSU

Сварка 125A
Промежуточная дуговая сварка, уровень I

Ранее: Сварка 025A, промежуточная дуговая сварка, уровень I

Единица (и) : 3.0

Часы занятий: 16 лекций, 96 лабораторий всего.

Предварительное условие : Сварка 108 с минимальной оценкой C.

Этот курс разработан для улучшения ранее приобретенных студентами навыков дуговой сварки и подготовки студента к сдаче сертификационного экзамена по сварке. Особое внимание уделяется сварке в вертикальном и потолочном положениях и подготовке испытательных пластин (сталь 1 дюйм) с использованием процесса дуговой сварки защищенным металлом E-7018 (SMAW).CSU


Сварка 125B
Промежуточная дуговая сварка Уровень II

Ранее: Сварка 025B, промежуточная дуговая сварка, уровень II

Шт. : 3,0

Часы занятий : 16 лекций, 96 лабораторных всего.

Пререквизиты: Сварка 108 и Сварка 125A с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по навыкам дуговой сварки, проводимого инструктором по сварке SAC.

Этот курс разработан для улучшения ранее полученных студентом навыков дуговой сварки и подготовки студента к сдаче сертификационного экзамена по сварке. Студент знакомится с приготовлением 1-дюймовой пластины. Этот курс познакомит студентов с классом лицензирования D1.1. правила и положения Департамента строительства и безопасности города Лос-Анджелеса. Особое внимание уделяется сварке в вертикальном и потолочном положениях и подготовке испытательных пластин (сталь 1 дюйм) с использованием процесса дуговой сварки защищенным металлом E-7018 (SMAW).


Сварка 129A
Продвинутая дуговая сварка, уровень I

Ранее: Welding 029A, Advanced Arc Welding Level I

Шт. : 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 108 с минимальной оценкой C или удовлетворительное завершение квалификационного экзамена по дуговой сварке

Этот курс разработан, чтобы помочь студентам улучшить ранее приобретенные навыки дуговой сварки и подготовить их к сдаче сертификационного экзамена по сварке.Обеспечивает передовые навыки манипуляции и технические знания, необходимые для прохождения испытания на изгиб пластин с направляющими диаметром 1 дюйм, необходимого для сертификации конструкционной стали. CSU


Сварка 129B
Продвинутый уровень дуговой сварки II

Ранее: Welding 029B, Advanced Arc Welding Level II

Шт. : 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 129A с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по дуговой сварке, проводимого инструктором по сварке SAC.

Этот курс разработан для развития ранее приобретенных студентами навыков дуговой сварки и подготовки студента к сдаче сертификационного экзамена по сварке. Особое внимание уделяется сварке в вертикальном и верхнем положениях и подготовке испытательных пластин (сталь 1 дюйм) с использованием процесса дуговой сварки защищенным металлом (SMAW) E-7018 в соответствии с правилами и положениями D1 Американского общества сварки.1 Кодовая книга. CSU

Сварка 129C
Продвинутый уровень дуговой сварки III

Ранее: Welding 029C, Advanced Arc Welding Level III

Шт. : 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 129B с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по дуговой сварке, проводимого инструктором по сварке SAC.Этот курс предназначен для улучшения и овладения ранее приобретенными студентами навыков дуговой сварки до продвинутого уровня и подготовки студента к сдаче сертификационного экзамена по сварке. Особое внимание уделяется сварке в вертикальном и верхнем положении, а также подготовке испытательных пластин (сталь 1 дюйм) с использованием процесса дуговой сварки экранированным металлом E-7018 в соответствии с правилами и положениями Американского общества сварки. Учащиеся сдают сертификационный тест D1.1 на этом уровне. CSU


Сварка 129D
Продвинутый уровень дуговой сварки IV

Ранее: Welding 029D, Advanced Arc Welding Level IV

Единица (и) : 3.0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 129C с минимальной оценкой C или удовлетворительное завершение квалификационного экзамена по навыкам дуговой сварки, проводимого инструктором по сварке SAC.

Этот курс предоставляет инструкции первого уровня по принципам, оборудованию, методам сварки, режиму работы и безопасности дуговой сварки порошковой проволокой (FCAW), используемой для конструкционной стали. Он также предназначен для улучшения ранее приобретенных студентом навыков дуговой сварки и подготовки студента к сдаче сертификационного экзамена по сварке D1.1. Особое внимание уделяется сварке в вертикальном и верхнем положении и подготовке испытательных пластин (сталь 1 дюйм) с использованием проволоки FCAW 2/32 (дуговая сварка под флюсом). CSU


Сварка 139A
Сварка в среде инертного газа, уровень I

Ранее: Сварка 039A, Сварка в инертном газе, уровень I

Шт. : 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Предварительные требования : Сварка 108 с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по дуговой сварке.

Этот курс познакомит студентов с дуговой сваркой вольфрамовым электродом (GTAW) и сваркой в ​​среде защитного газа (MIG) алюминия, мягкой и нержавеющей стали. CSU


Сварка 139B
Сварка в среде инертного газа, уровень II

Ранее: Сварка 039B, Сварка в инертном газе, уровень II

Единица (и) : 3.0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 139A с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по сварке в инертном газе, проводимого инструктором по сварке SAC. Этот курс предназначен для развития у студентов навыков дуговой сварки вольфрамовым электродом (GTAW) и сварки в среде инертного газа (MIG). Особое внимание уделяется горизонтальному положению алюминия, низкоуглеродистой и нержавеющей стали.CSU


Сварка 139C
Сварка в среде инертного газа, уровень III

Ранее: Сварка 039C, Сварка в инертном газе, уровень III

Шт. : 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 139B с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по сварке в инертном газе, проводимого инструктором по сварке SAC.

Это продвинутый курс по сварке с использованием процесса дуговой сварки вольфрамовым электродом (GTAW). Этот курс предназначен для того, чтобы дать студентам навыки, необходимые для прохождения сертификационного экзамена по сварочным процессам GTAW и MIG. Студент должен освоить горизонтальное и вертикальное положение при сварке вверх. CSU


Сварка 140A
Сварка Сертификация Уровень подготовки I

Ранее: Сварка 040A, уровень подготовки I для сертификации по сварке

Единица (и) : 3.0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 108 с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по дуговой сварке.

Это продвинутый курс, в рамках которого будут проводиться лекции и практические занятия по сварке в различных областях сертификации с использованием дуговой сварки в защитном металлическом корпусе (SMAW), а также дуговой сварки под флюсом

(FCAW).Студент сосредоточится на сварке в вертикальном положении и над головой, а также на подготовке испытательных пластин. CSU


Сварка 140B
Сертификация сварщика, уровень II

Ранее: Сварка 040B, Сертификация по сварке, уровень II

Шт. : 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 140A с минимальной оценкой C или удовлетворительное завершение квалификационного экзамена по дуговой сварке, проводимого инструктором по сварке SAC.

Это продвинутый курс, в рамках которого будут проводиться лекции и практические занятия по сварке в различных областях сертификации с использованием дуговой сварки в экранированном металле

(SMAW), а также дуговой сварки под давлением (FCAW) в вертикальном и потолочном положениях.Студент сосредоточится на сварке с использованием SMAW, FCAW и сварки труб в положениях 1G и 2G с использованием электрода E6010. CSU


Сварка 140C
Сварка Сертификация, уровень III

Ранее: Сварка 040C, Сертификация сварщика, уровень III

Единица (и) : 3.0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 140B с минимальной оценкой C или удовлетворительное завершение квалификационного экзамена по дуговой сварке, проводимого инструктором по сварке SAC.

Это продвинутый курс, в рамках которого будут проводиться лекции и практические занятия по сварке в различных областях сертификации с использованием дуговой сварки в экранированном металле

(SMAW), а также дуговой сварки под давлением (FCAW) в вертикальном и потолочном положениях.Студент сосредоточится на сварке с использованием SMAW, FCAW и сварки труб в положениях 5G и 6G с использованием электрода E6010. CSU


Сварка 141A
Сертификационный экзамен по сварке Уровень подготовки I

Ранее: Сварка 041A, подготовка к экзамену по сварке, уровень I

Единица (и) : 3.0

Часы занятий: 48 Всего лекций.

Пререквизиты: Сварка 108 с минимальной оценкой C или удовлетворительное завершение квалификационного экзамена по навыкам дуговой сварки, проводимого инструктором по сварке SAC.

Этот практический курс предназначен для продвинутых студентов-сварщиков. Инструкция будет охватывать дизайн, предварительно прошедшую квалификацию основу / материал наполнителя, процедуры / квалификацию сварщика, основы изготовления и испытания, как указано Американским сварочным обществом (AWS) D1.1. Спецификации структурного кодекса, ведущие к получению сертификатов сварочных работ в Лос-Анджелесе или AWS. CSU


Сварка 141B
Сертификационный экзамен по сварке Уровень подготовки II

Ранее: Сварка 041B, Подготовка к экзамену по сварке, уровень II Единица (и): 3,0

Часы занятий: 48 Всего лекций.

Пререквизиты: Сварка 141A с минимальной оценкой C.

Этот курс предназначен для продвинутых студентов, изучающих сварку. Инструктор расскажет о предварительно прошедших квалификацию материалах основы / наполнителя, процедуре / квалификации сварщика и испытаниях в соответствии с требованиями Американского общества сварщиков (AWS). Спецификации структурного кодекса D1.1 приводят к получению сертификатов сварочных работ в Лос-Анджелесе или AWS. CSU


Welding 153A
Math / Blue Print Reading для сварщиков

Ранее: Welding 053, Math / Blue Print Reading for Welders

Единица (и) : 3.0

Часы занятий: Всего лекций 48.

Этот класс разработан, чтобы познакомить студентов-сварщиков с математикой и чертежами, а также их приложениями для сварщиков, связанных со сварочной отраслью. Упор будет сделан на практические проблемы математических (для сварщиков) измерений, приборов, площади, объема, дробей, десятичных знаков и метрической системы. Этот курс позволит студентам читать и интерпретировать заводские и полевые чертежи и печатные издания, относящиеся к сварочной промышленности.CSU


Сварка 153B
Математические / аналитические материалы для сварщиков

Шт. : 3,0

Часы занятий: Всего лекций 48.

Это продвинутый курс, разработанный, чтобы позволить студентам работать на более высоком уровне математики, чтения чертежей и их приложений для сварщиков, связанных со сварочной отраслью.Акцент будет сделан на обыкновенные дроби, десятичные дроби, периметр квадратов, площади

треугольника, объемы, окружности окружностей и периметр. Студент сможет читать и интерпретировать заводские и полевые чертежи, а также печатные издания, относящиеся к сварочной промышленности. CSU


Сварка 154A
Начало работы с трубами Основы

Ранее : Сварка 054A, основы трубопровода

Единица (и) : 3.0

Часы занятий: 16 лекций, 96 лабораторий всего.

Необходимое условие: Сварка 125A с минимальным классом прочности C.

В отрасли сварки труб требуется сварщик с более высокой квалификацией. Этот курс состоит из 112 часов обучения технике безопасности, подготовке, сварке, терминологии, чертежам и кодам. Особое внимание будет уделяться сварным швам с открытыми корневыми канавками на листе с использованием процесса дуговой сварки экранированного металла с использованием электродов E6010 и E7018.Студенты изучат терминологию трубок и надлежащие практики, используемые в различных отраслях промышленности. CSU

Сварка 154B
Сварка промежуточных труб

Ранее: Сварка 054B, Сварка промежуточных труб

Единицы: 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Необходимое условие: Сварка 154A с минимальным классом прочности C.

В отрасли сварки труб требуется высококвалифицированный сварщик. Этот курс состоит из 112 часов обучения технике безопасности, подготовке, сварке, терминологии, чертежам и кодам. Особое внимание будет уделяться сварным швам с открытыми корневыми канавками на трубе с использованием процесса дуговой сварки экранированного металла с использованием электродов E6010 и E7018. Студенты изучат терминологию трубок и надлежащие практики, используемые в различных отраслях промышленности.Студенты познакомятся с технологией орбитальной сварки. CSU


Сварка 154C
Продвинутая сварка труб

Ранее: Welding 054C, Advanced Pipe Welding

Единицы: 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Необходимое условие: Сварка 154B с минимальным классом прочности C.

В отрасли сварки труб требуется высококвалифицированный сварщик. Этот курс состоит из 112 часов обучения технике безопасности, подготовке, сварке, терминологии, чертежам и кодам. Особое внимание будет уделяться сварным швам с открытыми корневыми канавками на трубе с использованием процесса дуговой сварки экранированного металла с использованием электродов E6010 и E7018. Студенты изучат терминологию трубок и надлежащие практики, используемые в различных отраслях промышленности.Студенты установят и будут использовать аппарат орбитальной сварки. CSU


Сварка 155A
Начало изготовления металла

Шт. : 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 125A с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по дуговой сварке. Изготовителю в сварочной отрасли требуется высококвалифицированный сварщик / слесарь.

Этот курс состоит из 112 часов обучения технике безопасности, подготовке, сварке, терминологии, чертежам и кодам. Особое внимание будет уделяться правильной эксплуатации торгового оборудования, сварке, подгонке, металлическим профилям и различным методам строительства и сборки.CSU


Сварка 155B
Производство промежуточных металлов

Единицы: 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 155A с минимальной оценкой C или удовлетворительным завершением квалификационного экзамена по дуговой сварке.

Этот курс состоит из 112 часов обучения технике безопасности, подготовке, сварке, терминологии, чертежам и кодам. Особое внимание будет уделяться правильной эксплуатации торгового оборудования, сварке, подгонке, металлическим профилям и различным методам строительства и сборки. Например, аэрокосмический, военный или специальный инструмент, который может помочь в соблюдении жестких допусков, требуемых инженером. Студенты изучат терминологию изготовления и надлежащие методы, используемые в различных отраслях промышленности. Этот курс разработан для адаптации и повышения квалификации в соответствии с отраслевыми стандартами, а также для развития производственных навыков в дополнение к навыкам сварки.CSU


Сварка 156A
Начало роботизированной сварки

Ранее: Welding 056A, Beginning Robotic Welding

Единица (и) : 3.0

C lass Часы: 32 Лекционных, 48 Лабораторных всего.

Предварительные требования: Сварка 108 с минимальной оценкой C. Одновременное зачисление на Сварку 157A. Этот курс представляет собой базовый курс программирования, который учит студентов, как безопасно управлять роботом с помощью правильного использования контроллера робота и обучающей подвески. Этот курс также знакомит студентов с процессом дуговой сварки металлов и порошковой проволоки.Особое внимание уделяется безопасным методам эксплуатации, обращению со сжатыми газами и их хранению, принципам процесса, идентификации компонентов, различным методам сварки, а также идентификации основного и наполняющего металла. Этот курс представляет собой введение в робототехнику / лазерную технику для начинающих. (То же, что и Engineering 156A). CSU


Сварка 156B
Роботизированная сварка промежуточного уровня

Ранее: Welding 056B, Intermediate Robotic Welding

Единицы: 3.0

Часы занятий: Всего 32 лекций, 48 лабораторий.

Предварительные требования: Сварка 156A и Сварка 157A с минимальной оценкой C. Одновременное зачисление на Сварку 157B. Курс роботизированной сварки учит студентов, как безопасно манипулировать роботом с помощью правильного использования роботизированного контроллера и обучающего пульта. Особое внимание уделяется безопасным методам эксплуатации, обращению со сжатыми газами и их хранению, принципам процесса, идентификации компонентов и процедурам сварки.Студенты смогут вводить процедуры сварки, поворотные рамки, круговые перемещения, ткачество, команды копирования-удаления, шеститочечный инструментальный центр и другие действия, связанные с процессом роботизированной сварки. (То же, что и Engineering 156B). CSU


Сварка 156C
Продвинутая роботизированная сварка

Ранее: Welding 056C, Advanced Robotic Welding

Единицы: 3.0

Часы занятий: Всего 32 лекций, 48 лабораторий.

Предварительные требования: Сварка 156B с минимальной оценкой C. Одновременное зачисление на курс Сварка 157C. Продвинутый курс роботизированной сварки учит студентов, как безопасно манипулировать роботом с помощью правильного использования контроллера робота и обучающей подвески. Особое внимание уделяется безопасным методам эксплуатации, обращению со сжатыми газами и их хранению, принципам процесса, идентификации компонентов и процедурам сварки.Студенты смогут создавать программы по безопасности роботизированной сварки, управлению TPP, кадрам USER, скоординированному движению, TAST, TAST-RPM, регистрам положения и смещениям, касанию и считыванию, а также действиям, связанным с процессом роботизированной сварки. (То же, что и Engineering 15). CSU


Сварка 157A
Базовое программирование роботов

Единицы: 3.0

Часы занятий: 16 лекций, 96 лабораторий всего.

Необходимое условие: Сварка 108 с минимальным баллом C. Параллельная запись на курс Сварка 156A.

Это базовый курс программирования, который учит студентов, как безопасно манипулировать промышленным роботом с помощью правильного использования контроллера.Темы включают безопасные методы эксплуатации, линейные перемещения, системы координат, обучение программированию с помощью подвесного пульта и интеграцию программного и аппаратного обеспечения. (То же, что и Engineering 157A). CSU


Сварка 157B

Промежуточное программирование роботов

Единицы: 3.0

Часы занятий: 16 лекций, 96 лабораторий всего.

Пререквизиты: Сварка 156A и Сварка 157A с минимальной оценкой C. Одновременное зачисление на курс Сварка 156B. Этот курс представляет собой курс программирования, который учит студентов, как безопасно управлять промышленным роботом с помощью правильного использования контроллера. Темы включают безопасные методы работы, круговые движения, настройку робота, расширенное программирование и функции Teach Pendant, а также вспомогательное оборудование.(То же, что и Engineering 157B). CSU


Сварка 157C
Расширенное программирование роботов Сварка

Единицы: 3,0

Часы занятий: 16 лекций, 96 лабораторий всего.

Предварительные требования: Сварка 156B и Сварка 157B с минимальной оценкой C. Одновременное зачисление на Сварку 156C.

Это продвинутый курс программирования, который учит студентов, как безопасно управлять промышленным роботом при правильном использовании контроллера. Темы включают безопасные методы работы, логические команды и системы координат, расширенное программирование Teach Pendant, сетевая интеграция, моделирование и интеграция программного и аппаратного обеспечения.(То же, что и Engineering 157C). CSU



Сварка 160
Введение в валидацию и проверку процесса лазерной сварки: уровень 1

Штатная (ые): 3.0
Часы работы: 18 Лекций, 108 Всего лабораторий.
Этот курс предназначен для ознакомления студентов с валидацией лазерной сварки и развитием производственных возможностей с использованием оборудования для волоконной лазерной сварки. CSU

Сварка 161
Планирование валидации и проверки процесса лазерной сварки: уровень 2

Единицы: 3.0

Часы работы: 18 Лекций, 108 Всего лабораторий. Пререквизиты: Сварка 160 с минимальной оценкой C
Этот курс предназначен для ознакомления студентов с процессом лазерной сварки, ориентированным на три основных вида деятельности: план квалификации установки (IQ), план эксплуатационной квалификации (OQ) и план квалификации производительности (PQ). ) согласно MVP.ЧСУ

Сварка 162
Проведение валидации и верификации процесса лазерной сварки: уровень 3

Единицы: 3,0
Часы занятий: 18 Лекций, 108 Всего лабораторий. Предварительные требования: Сварка 161 с минимальной оценкой C
Этот курс предназначен для выполнения действий по валидации процессов лазерной сварки, сосредоточенных на трех основных направлениях: отчет о квалификации установки (IQ), отчет о квалификации эксплуатации (OQ) и отчет о квалификации производительности ( PQ) на MVP.CSU


Глава 13: Горячие работы - Сварка и резка


ПРИМЕЧАНИЕ. ДЛЯ ВСЕХ РАЗРЕШЕНИЙ НА ГОРЯЧИЕ РАБОТЫ ТРЕБУЕТСЯ УВЕДОМЛЕНИЕ ОТ OEMS ПО ЭЛЕКТРОННОЙ ПОЧТЕ НА БЕЗОПАСНОСТЬ@UMW.EDU ИЛИ 540-654-2108.

ОБЩЕЕ

При выполнении операций по резке и сварке (и связанных с ними задач, таких как пайка и пайка) может существовать потенциальная опасность для здоровья и безопасности.Сварочная дуга достаточно горячая, чтобы расплавить сталь, а излучаемый ею свет может ослепить. Основными опасностями являются такие опасности, как пожар, ожоги, травмы зрения и респираторные последствия от паров, газов, искр, горячего металла и лучистой энергии. Некоторое оборудование для проведения горячих работ производит высокое напряжение или может использовать сжатые газы, которые сами по себе могут представлять опасность. Опасности, связанные с огневыми работами, можно значительно снизить за счет внедрения эффективных программ контроля. Эти операции обычно выполняются при работе с объектами, но могут также присутствовать в функциях научных исследований или отделах искусств.OSHA требует наличия соответствующих средств контроля и процедур для выполнения огневых работ. (29 Свода федеральных правил 1910.252-255)

ОСОБЫЕ ВИДЫ ОПАСНОСТИ ПРИ СВАРКЕ

Существует 3 основных типа сварочных работ:

  • Сварка кислородно-топливным газом: Сварка кислородно-топливным газом соединяет металл путем выделения чрезвычайно высокого тепла во время горения.
  • Сварка сопротивлением: Сварка сопротивлением - это соединение или резка металлов путем выделения тепла за счет сопротивления, создаваемого прохождением электрического тока.
  • Дуговая сварка: Дуговая сварка - это соединение или резка металлов путем генерирования тепла от электрической дуги, которая проходит между сварочным электродом и электродом, установленным на свариваемом оборудовании.

ПРОЦЕДУРЫ БЕЗОПАСНОСТИ ПРИ СВАРКЕ

Свяжитесь с OEMS для получения разрешения на проведение огневых работ и отключения противопожарной системы.

  1. Зоны горячих работ: Зоны горячих работ должны быть должным образом обозначены и подготовлены. Эта зона не должна представлять опасности для других людей, находящихся поблизости. Если возможно, такая работа должна проводиться в правильно спроектированных производственных помещениях, оборудованных необходимыми средствами управления и надлежащей вентиляцией.
  2. Горючие и легковоспламеняющиеся материалы: Горючие и легковоспламеняющиеся материалы должны быть размещены на расстоянии не менее 3 футов от рабочего места, но если это невозможно, следует использовать металлические ограждения или огнестойкие занавески или другие подходящие покрытия для создания барьера и защиты их. .
  3. Операторы сварочного аппарата: число сотрудников, эксплуатирующих сварочное оборудование, должно быть ограничено уполномоченными и должным образом обученными сотрудниками.
  4. Напольные покрытия: Напольные покрытия в пределах 35 футов от рабочей зоны должны быть достаточными для предотвращения попадания искр под пол или на более низкий уровень.
  5. PPE: Средства индивидуальной защиты, такие как тонированные экраны, должны использоваться для защиты операторов от ожогов и воздействия ультрафиолетового излучения. Могут потребоваться и другие СИЗ, в зависимости от конкретного характера работы. Они могут включать фартуки, леггинсы, защитную обувь, защитный шлем, средства защиты органов слуха, средства защиты глаз и респираторной защиты. При работе над землей используйте платформу с подножками и стандартными перилами или ремнями безопасности и страховочным тросом.
  6. Каменные и цементные поверхности: Никогда не направляйте сварочную горелку на цементную или каменную поверхность.Влага в материале может привести к его взрыву при достижении определенной температуры.
  7. Осмотрите оборудование перед использованием: Оборудование с неизолированными проводниками или поврежденными регуляторами, резаки, держатели электродов или другие дефектные компоненты использовать нельзя.
  8. Предупреждения: По окончании сварки или резки предупредите других рабочих о горячем металле, сделав отметку или повесив четко видимый знак.
  9. Отводы электродов и стержней: их нельзя оставлять на полу, их следует утилизировать надлежащим образом.
  10. Инструменты: Инструменты должны храниться в безопасном месте после завершения работы.

ПОЖАРНАЯ ЗАЩИТА

Лицо, не являющееся оператором, должно нести дежурство о пожаре и оставаться на рабочем месте не менее 60 минут после окончания огневых работ. Огнетушитель номиналом не менее 2-A: 20-B: C (10-фунтовый огнетушитель ABC) должен присутствовать во время ВСЕХ операций сварки, пайки и резки. Если здание оборудовано спринклерной системой, она должна быть в рабочем состоянии на момент проведения огневых работ.

СЖАТЫЕ ГАЗЫ

Сжатый газ бывает двух основных видов - горючий и негорючий.

  • Воспламеняющийся сжатый газ: Горючие сжатые газы помимо высокого давления представляют опасность. Эти газы могут легко загореться и быстро загореться. К ним относятся ацетилен, водород, природный газ и пропан.
  • Невоспламеняющийся сжатый газ: эти типы газов нелегко воспламеняются или быстро горят, но в конечном итоге они могут гореть и несут в себе другие опасности.

Этикетка баллона и паспорт безопасности материала будут описывать токсические свойства и физические опасности, создаваемые определенными негорючими сжатыми газами. К ним относятся

  • Аммиак
  • Аргон
  • Двуокись углерода
  • Азот
  • Кислород
  • Хлор
  • Закись азота

Вообще говоря, при определенных обстоятельствах они могут вызвать головокружение, потерю сознания или удушье. Они также могут причинить вред при вдыхании и могут вызвать раздражение глаз, носа, горла и легких.

ОБРАЩЕНИЕ И ХРАНЕНИЕ ЦИЛИНДРОВ СЖАТОГО ГАЗА

Основная опасность при сварке кислородно-топливным газом связана со сваркой баллонами со сжатым газом (CGC), содержащими кислород и ацетилен. Если CGC повреждены, газ может выйти с огромной силой, а само судно может взорваться, что приведет к серьезным травмам. Одно особенно смертельное состояние называется «ракета». Ракетирование происходит, когда CGC разрывается и движется с такой силой, что может пробить бетонную стену.

ПРОЦЕДУРЫ ПРОВЕРКИ, ОБРАЩЕНИЯ И ХРАНЕНИЯ

  • Цилиндры должны быть зафиксированы в вертикальном положении, чтобы предотвратить опрокидывание.
  • Регуляторы должны быть совместимы с баллоном и его содержимым. Многие регуляторы похожи по конструкции и конструкции, поэтому необходимо проверить номер модели регулятора и сравнить его с требованиями к баллону, чтобы убедиться в совместимости.
  • Тележки с баллонами, оборудованные ограничителями баллонов, такими как цепь или ремень, должны использоваться для транспортировки CGC.Никогда не роняйте баллоны и не позволяйте предметам падать на них.
  • Не принимайте поставки ацетиленовых CGC, которые прибывают в горизонтальном положении. Такая транспортировка делает их более взрывоопасными.
  • CGC
  • следует проверять перед использованием на предмет утечек, коррозии, трещин, следов ожогов, загрязненных клапанов, изношенных шлангов и неисправных соединителей или сломанных датчиков. Если обнаружено какое-либо неисправное состояние, CGC не следует использовать.
  • Никогда не открывайте клапаны до тех пор, пока из регуляторов не будет выпущен газ и не будут разблокированы устройства регулирования давления.Открывая CGC, направьте выпускные отверстия подальше от людей и источников возгорания. Медленно открывайте клапаны. На клапанах без ручек используйте только ключи, рекомендованные поставщиком. На клапанах с колесами ручки никогда не используйте гаечные ключи. Никогда не открывайте или не закрывайте ручку колеса молотком.
  • Пустые баллоны: когда баллоны пусты, закройте и верните их. Пустые CGC должны быть помечены как «MT» или «Empty».
  • Защитные колпачки клапана: Защитные колпачки для икр должны быть на месте на CGC, когда он помещается на хранение.Это снизит вероятность того, что удар по клапану приведет к утечке.
  • Барьеры: при хранении CGC должны храниться на расстоянии не менее 20 футов друг от друга, и они также должны быть разделены негорючей стеной высотой не менее 5 футов.
  • First In - First Out: при хранении CGC должны быть расположены таким образом, чтобы старые запасы использовались раньше, чем новые.

ВЕНТИЛЯЦИЯ

Способы вентиляции для сварочных аппаратов различаются в зависимости от размера и типа.Для основных операций должно хватить настенных вентиляторов. Однако имейте в виду, что на вентиляцию нельзя полагаться как на единственный способ защиты сотрудников, когда загрязнители воздуха токсичны. При плохой вентиляции следует оценить использование респиратора перед тем, как приступить к занятиям.

ТРЕБОВАНИЯ К ОБУЧЕНИЮ

Все лица, выполняющие огневые работы, должны быть обучены правильной эксплуатации оборудования, обращению со сварочными материалами и их хранению, безопасности сжатого газа и химическим опасностям. Может потребоваться дополнительное обучение по правильному выбору и использованию средств индивидуальной защиты, а также обучение входу в замкнутое пространство, где это необходимо.(В некоторых случаях требуется подтверждение сертификации, например, ремонт сосудов высокого давления)

ПРОГРАММА РАЗРЕШЕНИЯ НА ГОРЯЧУЮ РАБОТУ

UMW требует разрешения на проведение горячих работ для всех работ с открытым пламенем, выполняемых на объектах UMW. Разрешения на горячие работы выдаются в компании OEMS, расположенной в Hamlet House. OEMS проверит территорию на предмет опасностей и выдаст разрешение. Разрешения выдаются только на ежедневные операции. Все легковоспламеняющиеся материалы должны быть удалены или покрыты негорючей защитой. Для выполнения всех работ по огневым работам должны быть предусмотрены пожарные дежурные, и они должны быть обучены правильному использованию огнетушителей.Пожарный дозор должен оставаться на месте в течение 60 минут после завершения работы. Все подрядчики и сотрудники UMW обязаны получить разрешения на проведение огневых работ. Альтернативная выдача разрешений на горячие работы разрешена, а список персонала, уполномоченного на выдачу, доступен в UMW OEMS. Все выданные разрешения должны быть утверждены UMW OEMS по телефону или электронным способом.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *