Сходства и различия меди и железа: Чем отличаются медь и железо

alexxlab | 06.05.2023 | 0 | Разное

Содержание

Отличия чугуна от стали: определение металла визуально Статьи про металлолом

Главная \ Статьи \ Отличия чугуна от стали

18.01.2018 18:12

Сталь и чугун – это одни из наиболее популярных видов литейных материалов, применяющихся в промышленности. По своим свойствам они довольно схожи, понять, чем отличается сталь от чугуна, можно разными способами. Некоторые из методов можно использовать только в заводских условиях с помощью высокоточного оборудования, другие подходят для применения в быту.

Основное отличие чугуна от стали заключается в составе металлов. Сталь представляет собой сплав железа (45%) с углеродом (не более 2%) и легирующими примесями, в качестве которых могут выступать такие вещества, как никель, молибден либо другие. Этот металл отличается высокой прочностью, пластичностью, легкостью обработки. В состав чугуна также входит железо с углеродом, но последнего должно быть от 2% и больше. В качестве легирующих добавок обычно выступает кремний, фосфор, марганец или другие компоненты.

Различия физико-химических характеристик

Основная разница в качествах этих металлов заключается в следующем:

  • Твердость стали выше, чем у чугуна.
  • Масса стальных изделий меньше, при этом материал легче плавится.
  • Определенные виды обработки доступны только для стальных заготовок (ковка, сварка), в то время как чугунные изделия изготавливаются только литьевым методом.
  • Теплопроводность чугунных изделий ниже, чем у стальных аналогов.
  • Чугун не нуждается в обязательной закалке.

Можно ли отличить чугун от стали визуально?

Если речь идет о фрагментах или заготовках, обработка которых не нанесет вреда, можно посмотреть на визуальные отличия металлов. На сломе изделия из чугуна появляется темно-серый матовый оттенок, стальная поверхность более светлая, имеет глянцевую текстуру. Внешний вид зависит от содержания углеродистых компонентов, различить их можно по типу трещин: на высокоуглеродистых стальных поверхностях они похожи на дефект в виде раскола, на изделии из низкоуглеродистого сплава железа трещины выглядят как разрыв пластичного типа.

На вопрос о том, можно ли отличить готовые изделия по оттенку или текстуре, можно дать однозначный ответ: предметы из стали более светлые, практически всегда имеют глянцевый оттенок, изделия из чугуна – темные и матовые.

Как отличить чугун от стали?

Чтобы отличать эти металлы друг от друга, можно использовать следующие способы:

  • Сверление. Для этого понадобится взять насадку с маленьким диаметром и, выбрав на заготовке ровный участок, высверлить небольшое отверстие. Если при обработке материала образуется тонкая стружка, которая формируется в витую полоску длиной больше используемого сверла, имеет цвета побежалости по всей длине и достаточно хорошо гнется, заготовка сделана из стали. Чугунный сплав менее пластичен, он практически не образует вьюна, а стружка крошится от малейшего механического воздействия: ее легко растереть до состояния порошка, поскольку материал более хрупкий;
  • Шлифование. Для этого используется углошлифовальная машинка, для обработки выбирают участок, на который не воздействуют силы трения, контакт с другими металлическими поверхностями или деталями, в противном случае после шлифовки изделие может быть непригодным к дальнейшему использованию. В процессе обработки требуется следить за цветом искры и ее формой. Если сплав чугунный, искра будет короткой, звездочка будет иметь красноватый тон, а если деталь сделана из стали, искр вылетает больше, они имеют увеличенный размер и продолговатую форму. Сами искры имеют желтый или белый цвет. Исключением являются стальные сплавы с повышенным содержанием углерода, которые дают короткую багровую искру с укороченным треком и малой звездочкой.

Методы механического воздействия могут применяться в бытовых условиях, когда нужно определить, чугун или сталь перед вами, без применения специального оборудования. В лаборатории может использоваться современная техника, с помощью которой проводится спектральный или микроскопический анализ свойств металлов. Эти методы обеспечивают результат высокой точности, но используются преимущественно в промышленных целях, на производстве и в научно-технической отрасли ввиду сложности и дороговизны оборудования.

  • Цветные металлы
  • Медь
  • Латунь
  • Алюминий
  • Свинец
  • АКБ
  • Лом электродвигателей
  • Черные металлы
  • Нержавеющая сталь
  • Лом стали
  • Чугун
  • 3A габарит

Мы вывозим металлолом из любого района Санкт-Петербурга

  • Адмиралтейский
  • Горелово
  • Василеостровский
  • Девяткино
  • Выборгский
  • Кировский
  • Калининский
  • Красногвардейский
  • Колпино
  • Купчино
  • Невский
  • Московский
  • Мурино
  • Парголово
  • Парнас
  • Приморский
  • Ржевка
  • Рыбацкое
  • Софийская
  • Славянка, Шушары
  • Фрунзенский

Сплав железа и меди: область применения

  • Главная >
  • Блог >
  • Сплав железа и меди: область применения

15. 09.2022

Свойства металлов

Время чтения: 6 минут

Редакция сайта VT-Metall

Сохранить статью:

Из этого материала вы узнаете:

  • Сплав железа и меди в чистом виде – редкость
  • Классификация сплавов меди
  • Характеристики сплавов меди
  • Основные сферы применения сплавов меди
  • Самые распространенные сплавы меди

Сплав железа и меди как таковой не существует. Причины – разные температуры плавления и свойства растворимости. По сути, получается нечто вроде слоеного пирога. Однако и такой результат смешивания двух металлов с успехом используется в самых разных сферах.

Большее распространение получили сплавы меди с другими металлами: алюминием, оловом, свинцом, с добавлением никеля и др. О свойствах медных сплавов, а также интересные факты о сплаве железа и меди вы узнаете из нашего материала.

Сплав железа и меди в чистом виде – редкость

Существование сплава железа и меди вполне возможно. Фазовая диаграмма с этими двумя элементами имеет следующий вид:

На ней заметно, что фазовые поля «ααFe» и «Cu» значительно сужаются к краям диаграммы. Это значит, что в одном веществе нельзя растворить большое количество другого.

Растворимость железа в фазах меди и меди в фазах железа ограничена. Так, в фазе аустенита (гамма-Fe) можно растворить не более 18% меди. Для этого необходима высокая температура (около +1400 °С), которая резко должна смениться комнатной для предотвращения повторного разделения. Все, что получится в других условиях, – двухфазная смесь, которую нельзя назвать сплавом железа и меди.

Также по диаграмме заметно, что возникновение интерметаллических соединений невозможно. Если именно их вы подразумевали под сплавом, то ошибались.

Следовательно, сплав имеет эвтектоидную микроструктуру со сменяющими друг друга слоями материала, насыщенного железом и медью. Точная микроструктура и формула сплава железа и меди зависит от составных компонентов.

Лигатура медь-железо имеет формулу CuFe. Ее используют для алюминиевой бронзы и определенных латунных сплавов в роли рафинера. Также сфера применения лигатуры распространяется на повышение качества других сплавов, а именно улучшение коррозионной стойкости медно-никелевых сплавов и механических свойств низколегированных медных сплавов.

 

Есть несколько разновидностей сплавов железа и меди, в которых доля железа варьируется от 1% до 2,5%. Медные сплавы отличаются высокой прочностью, благодаря которой могут использоваться в трубках конденсаторов и электрических контактах с хорошей электропроводностью (около 65 % IAC).

Это сплавы вариации серии C19xxxx, например, C19200, C19500, C19600.

Классификация сплавов меди

Медь – это крайне значимый материал, который сопровождал человечество практически всю жизнь. Первобытные люди использовали в качестве орудий труда именно медные изделия. При этом способы обработки металла в разные времена отличались.

Раньше было принято обрабатывать медь холодным методом, о чем говорят археологические находки в пределах современной Северной Америки. Традиции по использованию меди сохранялись еще до приезда Христофора Колумба. Медную руду начали добывать около 7 тысяч лет назад, и благодаря податливости материала он быстро стал востребованным. Даже спустя столько лет медь не теряет своей актуальности.

Металл отличается красноватым цветом, который ему придает кислород. Если этот компонент полностью убрать, то оттенок станет желтым. Насыщенность цвета также зависит от валентности. Так, карбонаты меди имеют выраженный синий либо зеленый тон. Начищенная медь придаст металлу яркий блеск.

По электропроводимости медь занимает почетное второе место, уступая лишь серебру. Благодаря своим качествам ее используют в электронике. Однако важно помнить недостатки металла. Один из основных – плохое взаимодействие с кислородом. На свежем воздухе медь покрывается пленкой, связанной с процессом окисления.

Медный оксид можно получить прокаливанием гидрокарбоната меди либо нитрата на воздухе. Данное соединение способно окисляющим образом влиять на органические соединения.

Медный купорос дает растворение материала в серной кислоте. Сфера применения полученного вещества – химическая промышленность. Медный купорос используют и для профилактики вредителей на огороде.

Примеси способны по-разному воздействовать на характер медного сплава. По данному критерию выделяется три группы:

  • Первая группа включает в себя соединения, создающие твердые вещества. Среди них: сурьма, цинк, железо, олово, фосфор, сурьма, никель и др.
  • Во вторую группу входят соединения, имеющие низкую растворимость в меди. Из-за их наличия обработка давлением становится сложнее. Однако стоит отметить, что электропроводность остается практически неизменной. Пример таких соединений – свинец и висмут.
  • В третьей группе содержатся вещества, создающие вместе с медью хрупкие соединения (кислород, сера).

Характеристики сплавов меди

Сплав меди может иметь разные характеристики, которые зависят от примесей и их количества. Например, прочность, коррозионную стойкость, низкий коэффициент трения. На практике часто используются смеси меди с магнием, цинком, марганцем и алюминием. При этом в промышленности можно найти и другие варианты сплавов.

Чтобы определить состав по Межгосударственному стандарту, необходимо использовать классификацию из специальной таблицы. Там указана маркировка меди и перечислены ее главные характеристики:

  • Так, в марках М1 и М1р, М2 и М2р, М3 и М3р содержание меди одинаковое, а буква «р» означает наличие фосфора (до 0,04% от общего количества вещества) и меньшее количество кислорода (до 0,01%). В марках с обычным количеством кислорода его доля составляет от 0,05 до 0,08%.
  • В марках М00 и М1 содержится как минимум 99,9% меди.
  • Марка М0 состоит из меди на 99,95%.
  • Для М0б содержание металла – около 99,97%.
  • Вещество с обозначением М2 состоит из меди на 99,7%.
  • Для марки М3 характерна доля металла, составляющая 99,5%.
  • В марке М4 основное вещество занимает 99% от общего количества сплава.
  • Буква «б» в составе марки означает полное отсутствие кислорода. Так, в М0б его нет, а в М0 содержится около 0,02%.

Основные характеристики сплавов с содержанием меди:

  • Способность сопротивляться коррозии, которая особенно выражена у веществ с полированной поверхностью. Она проявляется при воздействии на сплав пресной воды. Кислотная среда ухудшает коррозионную стойкость. Например, мельхиор (сплав из железа, никеля и меди) в кислотной среде (при контакте с водой) обретает зеленоватый оттенок.
  • Прочность, что позволяет использовать материал в промышленных целях. Так, при высоких удельных и знакопеременных нагрузках часто применяют детали из сплава меди с железом и марганцем.
  • Антифрикционность, что дает сплаву устойчивость к трению. Так, например, бронза применяется в производстве подшипников даже без использования смазки. Это происходит именно благодаря идеально гладкой поверхности. Сплав железа с медью и серебром также обладает хорошими антифрикционными свойствами.
  • Теплопроводность и электропроводность. Эти свойства позволяют делать из медного сырья электропроводные кабели.

Медные сплавы могут использоваться в разных сферах деятельности: в самолето- и судостроении, ювелирном деле, при создании часовых механизмов и других приспособлений, в которых вероятно возникновение трения двух парных компонентов.

Если говорить о сплавах, в которых также есть железо, то на практике чаще всего применяют сплав из меди, железа и олова, сплав из меди, алюминия и железа, а также сплав из меди, цинка и железа.

Основные сферы применения сплавов меди

В производстве используется как медь в чистом виде (катодная медь), так и полуфабрикаты, сделанные на ее основе. Особенно это касается катанок, проката и других промышленных изделий. Характеристики и сфера применения зависят от доли примесей в общем продукте. В марке может содержаться от 10 до 50 добавок.

Чтобы сделать высокоточный и чистый металл, потребуется медь именно той марки, в которой нет кислорода. Для криогенной промышленности его отсутствие – важнейший критерий. В противном случае изделие не будет соответствовать условиям использования. Однако в других сферах применения подойдут и те виды, в которых есть кислород.

Рассмотрим их более подробно:

  • М00 и М0 могут использоваться для создания высокочастотных и электропроводниковых деталей. Полученные изделия обычно создаются на заказ и считаются дорогими.
  • М001ф и М001бб подойдут для изготовления электрических шин и медной проволоки с маленьким диаметром сечения.
  • М1 и марки с таким же содержанием меди (М1р, М1ф, М1ре) используются в качестве проводников электрического тока. Небольшое количество олова позволяет их задействовать в производстве высококачественной бронзы. Также их часто включают в состав прутьев для сварки чугуна и электродов.
  • М2, М2р и М2к – идеальный вариант для деталей, производимых в криогенной промышленности. Так как литой прокат подвергается обработке под давлением, для него тоже подойдут перечисленные марки.
  • Из М3, М3р и М3к создают плоский и прессованный прокат, а также проволоку для электромеханической сварки деталей из чугуна и меди.

Самые распространенные сплавы меди

В сплавах меди и железа последнее выступает легирующим компонентом. Также таковым может выступать золото, марганец или цинк. Их доля в общем количестве составляет менее 10 %. Единственное исключение из правил – латунь. Ее концентрация может быть больше заявленной, конкретное число будет зависеть от условий применения.

Среди основных видов медных сплавов следует выделить:

  • Смесь меди и железа. Для обоих металлов характерны похожие химические показатели. Основное отличие заключается в температуре плавления, поэтому сплав железа и меди имеет пористую структуру.
  • Смесь с оловом. Сплав меди и олова использовали еще в давние времена. Так, в Древней Греции из смеси создавали настоящие произведения искусства, которые сейчас являются огромной ценностью для людей. Разумеется, современные характеристики сплава значительно отличаются от тех, которые существовали тысячи лет назад. Во многом это связано с улучшенными методиками производства. Сейчас для создания сплава применяются дуговые электропечи, а защита от окисления обеспечивается вакуумом. Закаливание смеси позволяет достичь высокого уровня пластичности и прочности.

Рекомендуем статьи

  • Сплавы железа: известные и не очень разновидности
  • Сплав железа с никелем: его свойства и особенности
  • Углеродистые конструкционные стали: виды и преимущества
  • Алюминиевая бронза. Это смесь алюминия и меди, которая имеет коррозионную стойкость и способность к деформации. Ее используют в производстве деталей, которые планируется подвергать воздействию высокой температуры.
  • Смесь меди со свинцом. Для материала характерна антифрикционность и высокая прочность, по большей части обеспечиваемая свинцом.
  • Латунь. Сплав содержит два или три основных компонента.
  • Нейзильбер. Так называют сплав, где содержится медь, цинк и никель, доля которого составляет 6–34 %. Несмотря на то, что материал дешевле мельхиора, он имеет такие же качества и внешние признаки.

Сплавы из меди активно используются в автомобилестроении и производстве оборудования аграрного и химического назначения. Устойчивость к коррозии позволяет применять смеси в создании сверхпроводниковой техники.

Мягкая медь отлично подойдет для деталей, которые имеют трудновыполнимый узор. Она обладает всеми необходимыми свойствами, в первую очередь – вязкостью и пластичностью. Проволока из такого сплава будет отлично гнуться, а еще ее можно паять вместе с золотыми и серебряными поверхностями. Также смеси хорошо взаимодействуют с эмалью, при этом не расслаиваясь и не растрескиваясь.

Медь – металл, который действительно необходим в современных условиях. С ним получаются широко используемые сплавы железа и меди, алюминия и меди, олова и меди и не только. Антикоррозионные, антифрикционные и теплопроводные свойства позволяют применять смеси в производстве деталей.

Читайте также

20.04.2023

Электродуговая сварка: преимущества и недостатки, виды и особенности

Подробнее

17.04.2023

Шлифовка металла: методы, виды

Подробнее

13.04.2023

Структура стали после закалки: виды и технологии термообработки

Подробнее

10.04.2023

Сварочная ванна: советы по ее идеальной отработке

Подробнее

07.04.2023

Какие соединения относятся к резьбовым: разновидности и функции

Подробнее

04. 04.2023

Высокоуглеродистая сталь и ее особенности

Подробнее

31.03.2023

Температура закалки стали: какой должна быть

Подробнее

29.03.2023

Плазмотрон: устройство, виды, задачи

Подробнее

Медь и железо – в чем разница

Медь и железо – два древнейших известных металла. Оба использовались на протяжении всей истории для различных целей, от инструментов до украшений. Но как они сравниваются? В этой статье будут рассмотрены различия между медью и железом, включая их свойства, использование и преимущества.

Свойства меди по сравнению с железом

Медь — это мягкий металл, обладающий высокой ковкостью и пластичностью. Он обладает отличной электро- и теплопроводностью, что делает его идеальным материалом для проводки и электрических компонентов. Он также устойчив к коррозии в большинстве сред, что делает его идеальным для использования в сантехнике или элементах наружной отделки. Его красновато-оранжевый оттенок также придает ему эстетическую привлекательность.

Железо намного тверже меди и менее пластично. Он также имеет хорошую электропроводность, но лучше, чем теплопроводность меди: железо легко ржавеет при воздействии влаги, поэтому его необходимо покрывать или обрабатывать для предотвращения коррозии. Железо имеет серебристо-серый цвет, что придает ему гладкий вид при полировке или окраске.

Использование меди в сравнении с железом

Медь часто используется в электропроводке из-за ее высокой электропроводности и пластичности, что позволяет изгибать ее в различные формы без разрушения или растрескивания. Также он обладает отличной термостойкостью, поэтому его можно использовать в системах отопления и радиаторах без риска перегрева или расплавления материала. Его можно использовать в сантехнике из-за его коррозионной стойкости и в украшениях, таких как ювелирные изделия, из-за его привлекательной окраски.

Железо обычно используется в строительстве, потому что оно достаточно прочное, чтобы поддерживать большие конструкции, и в то же время недорогое по сравнению с другими материалами, такими как сталь или алюминий. Его прочность также делает его идеальным материалом для таких инструментов, как молотки или гаечные ключи, поскольку он не ломается легко под нагрузкой или напряжением, как это могут сделать более мягкие металлы, такие как медь. Кроме того, его способность удерживать край означает, что железные лезвия часто предпочтительнее лезвий из более мягких металлов, таких как бронза или латунь, для таких задач, как нарезка овощей или резьба по дереву.

Цена меди и железа

При выборе металла для строительства медь и железо являются двумя наиболее распространенными материалами. Хотя оба металла имеют множество применений, важным фактором, который следует учитывать, является стоимость. Медь, как правило, стоит дороже, чем железо, поэтому проекты, требующие больших порций металла, вероятно, будут дороже, если они будут выполнены с использованием меди. Тем не менее, некоторые предприятия по благоустройству дома и промышленные предприятия могут счесть более экономичным в долгосрочной перспективе использование меди вместо железа из-за ее превосходной долговечности и устойчивости к коррозии. Таким образом, стоимость должна быть тщательно сбалансирована с долгосрочными экономическими перспективами при выборе между этими двумя популярными металлами.

Проводимость меди и железа

Медь и железо — это два металла, которые, хотя и способны проводить электрический ток, сильно различаются по скорости и силе проводимости. Медь известна своей превосходной электропроводностью по сравнению с железом, что означает, что электрический ток проходит через нее с большей легкостью. По этой причине медь часто используется в производственных линиях, где требуется более высокая передача тока, например, в промышленных целях, таких как автомобильное производство и компьютерные схемы. Подтверждающие расчеты также показали, что медь имеет более стабильный отклик в диапазоне частот, чем железо. Тем не менее, доступность железа компенсирует его более низкую производительность в определенных ситуациях; Он гораздо более долговечен и устойчив к коррозии, чем медь, что делает его идеальным для электрической инфраструктуры, требующей более длительного срока службы, такой как электрические сети и силовые кабельные системы.

Вес меди и железа

Медь и железо являются двумя наиболее распространенными и универсальными металлами, используемыми в различных отраслях промышленности. Хотя оба металла имеют широкий спектр применения, есть одно существенное отличие, которое отличает их друг от друга — вес. Медь значительно легче железа, и с ней легче работать. Это делает его идеальным для использования в изделиях, которые должны быть легкими, но при этом сохранять прочность, например, трубы или провода. С другой стороны, железо имеет гораздо больший вес, поэтому оно отлично подходит для обеспечения надежной поддержки или устойчивости, например, в мостах или крупных строительных проектах. Независимо от того, ищете ли вы что-то, чтобы быстро выполнить работу, или вам нужно что-то, что может выдержать большую нагрузку, вес меди по сравнению с железом, безусловно, играет важную роль в принятии вашего решения.

Лучший проводник электричества

Одним из главных преимуществ меди перед железом является то, что она лучше проводит электричество. Это означает, что медь можно более эффективно использовать в электрических приложениях, таких как проводка и электрические компоненты. Кроме того, медь менее подвержена коррозии, чем железо, что делает ее более долговечной.

Более гибкий, чем железо

Еще одно преимущество меди перед железом заключается в том, что она более гибкая. Его можно использовать в приложениях, где важна гибкость, например, в сантехнике и трубопроводах. Кроме того, медь с меньшей вероятностью сломается или треснет, чем железо, что делает ее более долговечной.

Более низкая температура плавления, чем у железа

Медь также имеет более низкую температуру плавления, чем железо, что означает, что ее можно использовать там, где желательна более низкая температура плавления. Например, из меди можно производить полупроводники и другие электронные устройства. Кроме того, более низкая температура плавления меди облегчает работу с ней, чем с железом.

Более устойчивы к коррозии, чем железо

Медь также более устойчива к коррозии, чем железо, что означает, что она не так легко ржавеет или подвергается коррозии. Это делает его идеальным материалом для применений, где важна коррозионная стойкость, например, в морской среде. Кроме того, коррозионная стойкость меди облегчает ее переработку по сравнению с железом.

Более высокая теплопроводность, чем у железа

Наконец, медь имеет более высокую теплопроводность, чем железо, что означает, что ее можно более эффективно использовать в приложениях, где важна теплопередача. Например, медь можно использовать в теплообменниках и радиаторах.

Заключение:

При рассмотрении вопроса о том, следует ли использовать для вашего проекта медь или железо, необходимо учитывать несколько факторов: стоимость, прочность, твердость, ковкость и т. д. В конечном итоге оба материала имеют свои сильные и слабые стороны; то, что работает лучше всего, будет зависеть от приложения, для которого вы их используете! Например, если вам нужно что-то, что может выдерживать высокие температуры, то медь будет лучшим выбором, тогда как железо лучше подойдет для поставленной задачи, если важнее прочность. У каждого металла есть свой уникальный набор плюсов и минусов; понимание этого поможет вам сделать правильный выбор при выборе между медью и железом!

Абхишек Модак

Абхишек — опытный блоггер и отраслевой эксперт, который делится своими взглядами и знаниями по различным темам. Своими исследованиями Абхишек предлагает ценные идеи и советы профессионалам и энтузиастам. Подпишитесь на него, чтобы получить экспертные советы о последних тенденциях и разработках в металлургической промышленности.

Сравнение элементов периодической таблицы | Сравните железо и медь

Сравните железо и медь

Сравните железо и медь на основе их свойств, атрибутов и фактов периодической таблицы. Сравните элементы на более чем 90 свойств. Все элементы подобных категорий обнаруживают много сходств и различий в своих химических, атомных, физических свойствах и использовании. Эти сходства и различия следует знать, изучая элементы таблицы Менделеева. Вы можете изучить подробное сравнение между железом и медью с самой надежной информацией об их свойствах, атрибутах, фактах, использовании и т. д. Вы можете сравнить Fe и Cu по более чем 90 свойствам, таким как электроотрицательность, степень окисления, атомные оболочки, орбитальная структура, электросродство, физические состояния, электропроводность и многое другое.

26 Fe Железо

Замена меди на железо

Сравнение элементов периодической таблицы

29 Cu Медь

Факты

Имя 7

7 Фаза на STP 7 9 82 907 907 1d 1d 2 82 Точка кипения 0077 7 908 Элементы соседства из меди 0211
7 Железо 6 Медь
Атомный номер 26 29
Атомный символ Fe Cu
Атомный вес 55,845 63,546
Однотонный Однотонный
Цвет Серый Медь
Металлик Классификация Металл 900 Переходный металл
Группа Периодической таблицы Группа 8 Группа 11
Название группы семейство железа семейство меди
Период в периодической таблице период 4 период 4
Блок периодической таблицы d-блок d-блок
Электронная конфигурация [Ar] 3d6 4s2
Структура электронной оболочки (количество электронов на оболочку) 2, 8, 14, 2 2, 8, 18, 1
Точка плавления 1811 К 1357. 77 К
3134 К 3200 К
Номер CAS CAS7439-89-6 CAS7440-50-8
Элементы соседства Элементы соседства из железа

История

4 Атомный номер 5,7 0077 0, 7 29 0 7

7 Состояние окисления 7 82 2 изотопы и ядерные свойства

Железо имеет 4 стабильных природных изотопа, а медь — 2 стабильные природные изотопы.

История Элемент Железо был открыт Неизвестным за год до 5000 г. до н.э. Железо получило свое название от английского слова (ferrum на латыни). Элемент Медь был открыт Ближним Востоком в 9 году.-7 %)

7 00
Изобилие во Вселенной 1100000 / 20000 60 / 1
Изобилие на Солнце 0 700 / 10
Изобилие метеоритов 220000000 63000000 Изобилие в океанах 3 / 0,33 3 / 0,29
Содержание в организме человека 60000 / 6700 1000 / 99

3 Кристаллическая структура и структура 90

7 28076 108076 145 пм 68,25, 28,865 0,65 пм

5
Атомный объем 7,0923 см3/моль 7,124 см3 /моль
Атомный радиус 156 пм 145 пм
Ковалентный радиус 125 пм
Ван-дер-Ваальс Радиус 140 пм
Атомный спектр
Постоянная решетки 361,49, 361,49, 361,49 пм
Угол решетки π/2 , π/2, π/2 π/2, π/2, π/2
Имя пространственной группы Im_ 3m Fm_ 3m
Номер пространственной группы7 0077 225
Кристаллическая структура

Объемно-центрированный куб

Гранецентрированный куб

Атомные и орбитальные свойства

26 29
Число электронов (без заряд) 26 29
Количество протонов 26 29
Массовое число
63,546
Количество нейтронов 30 35
Структура оболочки (электронов на энергетический уровень) 2 0076 2, 8, 18, 1
Электронная конфигурация [Ar] 3d6 4s2 [Ar] 3d10 4s1
Валентные электроны 3d6 4s2 3d10 5 4s1
2, 3 1, 2
Символ атомного термина (квантовые числа) 5D4 2S1/2
Структура оболочки
известные изотопы 64Фе, 65Фе , 66Fe, 67Fe, 68Fe, 69Fe, 70Fe, 71Fe, 72Fe 52Cu, 53Cu, 54Cu, 55Cu, 56Cu, 57Cu, 58Cu, 59Cu, 60Cu, 61Cu, 62Cu, 63Cu, 64Cu, 65Cu, 66Cu, 77Cu, 60Cu, 60Cu 1Cu, 72Cu , 73Cu, 74Cu, 75Cu, 76Cu, 77Cu, 78Cu, 79Cu, 80Cu
Стабильные изотопы Природные стабильные изотопы: встречающиеся стабильные изотопы:

63Cu, 65Cu

Нейтронное сечение 2,56 3,78
Массовое поглощение нейтронов 0,0015 0,0021

Химические свойства: Энергия ионизации и сродство к электрону

Валентность 77

3 2
Электроотрицательность 1,83 Шкала Полинга 1,9 Шкала Полинга
Сродство к электрону 15,7 кДж/моль 118,4 кДж/моль
Энергия ионизации

1-й: 762,5 кДж/моль

2-й: 1561,9 кДж/моль

3-й: 2957 кДж/моль

4-й: 5290 кДж/моль

900 Дж/моль

2 5-й: 72 2 6-я: 9560 кДж/моль

7-я: 12060 кДж/моль

8-я: 14580 кДж/моль

9-я: 22540 кДж/моль

10-я: 25290 кДж/моль

11-я: 12000 кДж/моль 31920 кДж/моль

13-й : 34830 кДж/моль

14-я: 37840 кДж/моль

15-я: 44100 кДж/моль

16-я: 47206 кДж/моль

17-я: 122200 кДж/моль

18-я: 131000 кДж/моль

19-я: 140500 кДж/моль

20-я: 152600 кДж/моль

3 900 Дж/моль 30:0002 21-я 3

22-я: 173600 кДж/моль

23-я: 188100 кДж/моль

24-я: 195200 кДж/моль

25-я: 851800 кДж/моль

26-я: 895161 кДж/моль

9:0075 9:0004 1-я моль.

2-й: 1957,9 кДж/моль

3-я: 3555 кДж/моль

4-я: 5536 кДж/моль

5-я: 7700 кДж/моль

6-я: 9900 кДж/моль

7-я: 13400 кДж/моль

8-я: 16000 кДж/моль

9-я: 19200 кДж/моль

10-я: 22 100 кДж/моль 900 00 кДж/моль

12-й : 35600 кДж/моль

13-я: 38700 кДж/моль

14-я: 42000 кДж/моль

15-я: 46700 кДж/моль

16-я: 50200 кДж/моль

3

3 Дж/моль

18-й: 61100 кДж/моль

19-я: 64702 кДж/моль

20-я: 163700 кДж/моль

21-я: 174100 кДж/моль

22-й: 184900 кДж/моль

23-й: 198800 кДж/моль

24-й: 210500 кДж/моль

25-й: 222700 кДж/моль

3 9000Дж/моль

910:моль 26-й 3

27-й: 249660 кДж/моль

28-я: 1067358 кДж/моль

29-я: 1116105 кДж/моль

Физические свойства

7,0076 Плотность 9008 3 7 Твердость по шкале Мооса0077 -1867e

8,92 г/см3
Молярный объем 7,0923 см3/моль 7,124 см3/моль
Упругие свойства
Модуль Юнга 211 130
Модуль сдвига 48 ГПа
Объемный модуль упругости 170 ГПа 140 ГПа
Коэффициент Пуассона 0,29 0,34
Твердость – испытания для измерения твердости элемента
4 МПа 3 МПа
Твердость по Виккерсу 608 МПа 369 МПа
90 МПа 907 907 907 Твердость по Бринеллю 874 МПа
Электрические свойства
Электропроводность 10000000 См/м 5

00 См/м

Удельное сопротивление 9,7e-8 мОм 1,7e-75 мОм

7 Сверхпроводящая точка

Теплопроводность
Теплопроводность 80 Вт/(м·К) 7 Вт/90 7 Вт/90 400076 0082
Тепловое расширение 0,0000118 / K 0,0000165 /K
Магнитные свойства
Магнитный тип Ферромагнитный Диамагнитный
Диамагнитный Точка 1043 К
Массовая магнитная восприимчивость -1,08e-9 м3/кг
Молярная магнитная восприимчивость м3/моль
Объемная магнитная восприимчивость -0,00000963
Оптические свойства
Показатель преломления 075
Акустические свойства
Скорость звука 4910 м/с 3570 м/с

Тепловые свойства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *