Сплав латуни состав: Характеристики латуни, какой крепеж есть из латуни и где он применяется

alexxlab | 06.02.2023 | 0 | Разное

Содержание

Обозначение латуней (ГОСТ 15527-2004 и ГОСТ 17711-93)

Латунь двойной или многокомпонентный сплав на основе меди, где основным легирующим компонентом является цинк, иногда с добавлением олова (меньшим, чем цинка, иначе получится традиционная оловянная бронза), никеля, свинца, марганца, железа и других элементов. По металлургической классификации к бронзам не относится.

Латунь является одним из самых востребованных и широко применяемых материалов.

Сплав бывает разных оттенков – от темно-желтого до желто-красного, золотистого, белого, и даже зеленоватого. Какой цвет приобретет сплав зависит от процента добавок. Латунь характеризуется прочностью, пластичностью, хорошей жидкотекучестью, коррозийной стойкостью, незначительной усадкой, а также она хорошо поддается любым видам обработки.

Латунь — двойной или многокомпонентный сплав на основе меди легированный цинком

Латунь – коррозиестойкий сплав цинка и меди, сочетающий в себе высокую прочность с хорошей обрабатываемостью. Медь представляет собой основу латуни, определяющую базовые свойства. Цинк – легирующий компонент, процентное содержание которого может достигать 49%. В составе могут присутствовать и другие легирующие элементы, но их массовая доля обычно составляет не более 1,5%. Латунные сплавы имеют ярко желтый цвет, меняющийся в зависимости от процентного соотношения основных компонентов.
Удачное сочетание характеристик делает латунь оптимальным выбором для изготовления труб, профилей, водопроводной арматуры, деталей некоторых механизмов и других элементов, для которых важна хорошая коррозиестойкость в сочетании с прочностью. Характерной особенностью производственного процесса является то, что порядка половины всего используемого цинка поступает с утилизационных предприятий. Поверхность латунных изделий легко поддается полировке, но темнеет со временем под воздействием воздуха, поэтому часто покрывается лаком или подвергается никелированию.

Типы латуней

Принято выделять латуни однофазные или так называемые латуни альфа-типа, содержащие до 30-35% цинка, и двухфазные разновидности альфа-бета типа с большим (до 47-50 %), чем в однофазных, содержанием основного легирующего компонента. Однофазные латуни более пластичны, с увеличением же добавок возрастает прочность латуни, но существенно снижается ее пластичность.

Двухфазные латунные сплавы существенно менее пластичны, чем однофазные. Такое изменение свойств в связи с изменением состава объясняется тем, что при увеличении числа легирующих добавок неизменно меняется и структура сплава. При этом прочность двухфазных латунных разновидностей существенно выше, чем у однофазных. Двухфазные латунные сплавы могут содержать до 6% свинца в качестве дополнительной легирующей добавки.

Латунные сплавы с относительно невысоким содержанием цинка до 10% принято называть томпаками, при содержании цинка 10-20% – полутомпаками.

Химический состав латуни

Латунь по своему химическому составу близка к бронзе, и латунь, и бронза имеют в своей основе медь. Существенное отличие заключается в том, что основным легирующим компонентом в латунных сплавах является цинк, содержание которого может достигать 45%.

Рассмотрим подробнее свойства основных компонентов латуни.

Zn (цинк) элемент таблицы Менделеева, атомный номер 30. Элемент относится к побочной подгруппе 2 группы IV периода. Металл является переходным, для него характерно такое свойство, как проявление в атомах электронов на d- и f-орбиталях. Металл имеет светло-голубой оттенок, который на воздухе темнеет, покрываясь оксидной пленкой.

Cu – основной компонент сплава. Элемент относится к 11 группе IV периода периодической системы Менделеева и имеет атомный номер 29. Металл как и цинк является переходным. У металла красивый желтовато-золотистый цвет. При образовании оксидной пленки медь приобретает красноватый оттенок.

Как говорилось выше, латунь может иметь структуру, которая состоит из альфа-фазы или из альфа-бета фазы.

В качестве легирующих компонентов латунь может включать в себя:

  • Mn для повышения прочности сплавов, в том числе и антикоррозионной. Дополнительное введение помимо Mn еще Al, Sn, Fe усиливает прочностные и антикоррозионные характеристики металла.
  • Sn для повышения устойчивости к соленой воде. Такие латунные сплавы приобрели «негласное» название – морская латунь и широко применяются в местах контакта с морской водой.
  • Ni придает соединению высокие прочностные характеристики и также повышает антикоррозионные свойства.
  • Pb применяется в том случае, если латунная деталь будет подвергаться резке. Этот элемент делает металл более податливым при механической обработке. Латуни, легированные свинцом называют автоматными.
  • Si необходим для усиления антифрикционных характеристик сплава, что позволяет спокойно использовать его наряду с бронзой в некоторых технологических узлах, подшипниках и пр. Но, стоит отметить, что кремний существенно снижает твердость и прочность латунных изделий.

В таблице ниже приведены химические составы некоторых марок латунных сплавов. По таблице видно, что все марки имеют разный состав, содержание меди в некоторых марках может достигать 91%.

Свойства латуни в зависимости от процентного соотношения компонентов, температуры нагрева

При изменении процентного соотношения компонентов твердого раствора, введении дополнительных легирующих элементов меняются и свойства получаемого металла.

Попробуем проследить, как меняются свойства металла при изменении содержания Zn:

  • При содержании цинка менее или равном 30% увеличиваются твердость и эластичность металла.
  • При дальнейшем увеличении содержания цинка эластичность начинает снижаться в связи с уплотнением альфа-раствора. Твердость при этом увеличивается.
  • Но при достижении содержания цинка 45% твердость тоже падает.

За счет своей эластичности латуни хорошо обрабатываются давлением. Особенно это относится к однофазным сплавам. Температурный режим для изменения формы не должен попадать в диапазон 300-700°C, это «хрупкая зона» металла. Альфа-бета разновидности проявляют повышенную пластичность при увеличении температуры нагрева выше 700°C.

Таким образом, содержание химических элементов в металле напрямую влияет на его технологические параметры, свойства. Альфа-латунные сплавы отличаются повышенной пластичностью, альфа-бета разновидности – прочные и крепкие, но они не подходят для деформационной обработки. Латунный сплав обладает повышенной устойчивостью к коррозии и морской воде за счет добавления легирующих компонентов, что позволяет использовать его в участках постоянного воздействия агрессивных сред.

Зависимость характеристик от состава латуни

Свойства латуни напрямую определяются массовыми долями основных компонентов. При доле цинка до 35% латунь имеет однофазную структуру (альфа-фаза), для которой характерна высокая пластичность в широком температурном диапазоне. При большей доле цинка латунные сплавы приобретают двухфазную структуру и в естественных температурных условиях становятся достаточно хрупкими.

В продаже представлены двухкомпонентные марки, состоящие только из цинка и меди, и многокомпонентные – легированные дополнительными химическими элементами, модифицирующими их свойства. Дополнительные легирующие компоненты позволяют менять отдельные характеристики, такие как прочность, вязкость, пластичность и прочее.

  • Сетка латунная
  • Латунный квадрат
  • Латунные листы Л63
  • Латунные листы ЛС59-1
  • Латунные ленты
  • Латунные прутки Л63
  • Латунная проволока Л63
  • Латунные трубы Л63
  • Латунные шестигранные прутки ЛС59-1
  • Латунные шестигранные прутки Л63
  • Латунные круглые прутки ЛС59-1
  • Латунная проволока ЛС59-1
  • Латунные трубы Л68

Марки латуни

  • Л63 – плохо обрабатывается механическими методами, используется для изготовления гаек, болтов, деталей машин и элементов теплотехники;
  • ЛС59-1 – хорошо обрабатывается, применяется для изготовления гаек, болтов, зубчатых колес и втулок.

Первая марка представляет собой двухкомпонентный сплав с массовой долей цинка до 37%. Во втором содержание цинка достигает 40%, но, несмотря на это, он пластичнее и технологичнее благодаря дополнительному легированию свинцом.

Технологичность латуни

Металлы на основе меди и цинка хорошо поддаются механической обработке, благодаря чему из заготовок и предварительных отливок можно вытачивать любые детали. Кроме того, они хорошо поддаются пайке.

Основным недостатком можно назвать склонность к растрескиванию латуни с повышенным содержанием цинка (более 20%), особенно при использовании во влажной среде и при наличии паров аммиака. Первым признаком снижения прочности латунного металлопроката является потеря естественного цвета, постепенно ухудшаются и другие свойства.

Состав и классификация латуней

Классический состав предполагает наличие в сплаве меди и цинка в пропорции 2:1 соответственно. Такой латунь знали Древние римляне. Скептики вспомнят, что цинк в чистом виде открыли в XVI веке. Но в случае с Древним Римом речь идет о цинксодержащей породе, которую на тот момент уже перерабатывали.

В те времена было поверье, что именно наличие цинка определяет цвет, и только позже стало известно, что солнечный оттенок сплава латуни получается благодаря тому, что наличие цинка разбавляет медную красноту.

  • Латунь делят на двухкомпонентые (простые) и многокомпонентные (специальные).

Одна из маркировок изделий, материалом для которых служит латунь, означает процентное содержание компонентов. Так буква Л указывает на тип сплава — латунь. а рядом стоящий числовой индекс указывает на содержание меди в составе. Например, Л80» расшифровывается, как «латунь, состоящая из 80% меди и 20% цинка».

Две составляющие – не обязательное требование. Если их больше, то каждый вводимый в состав латуни компонент отображается в маркировке при помощи соответствующего буквенного символа, следующего за буквой Л. В качестве добавок может выступать олово, никель или свинец. При этом латунь меняет свои свойства.

Добавки вводятся в сплав для достижения определенных целей. Например, латунь в классической пропорции не может быть применена в судостроении. Все благодаря неустойчивости латуни к воздействию солевых растворов (морской воды). Добавки, введенные в состав сплава решает эту проблему, сохраняя основные характеристики.

  • По степени обработки сплавы бывают: деформируемые (латунная лента, проволока, труба, латунный лист) и литейные (арматура, подшипник, детали приборов).

Деформируемые двухкомпонентные латуни

Деформируемые многокомпонентные латуни

Литейные латуни

Способы улучшения характеристик латунных сплавов

Значительно снизить хрупкость сплава можно при помощи отжига, осуществляемого в температурном диапазоне 240-260 °C. В процессе термической обработки улучшаются прочностные показатели материала, и устраняется остаточное напряжение. Основным способом влияния на эксплуатационные характеристики (прочность, плотность, пластичность, цвет и прочие) является введение легирующих компонентов.

Чистый сплав цинка и меди называется двухкомпонентным, если в составе присутствуют легирующие элементы – многокомпонентным. Чаще всего в качестве легирующих добавок выступает свинец, кремний, никель, железо, олово и марганец. Их процентное содержание обычно невелико (до 1-1,5%), но характеристики меняются кардинально. Если превысить норму, то качество латунного металлопроката может значительно ухудшиться.

Введение кремния и свинца позволяет улучшить прочностные и антифрикционные характеристики латуни, благодаря чему значительно возрастает износостойкость изготовленных из него механических деталей. Если массовая доля кремния превысит технические нормативы, характеристики латуни могут резко ухудшиться. Также свинец и кремний при соблюдении пропорций позволяют улучшить эстетические свойства материала.

Олово, алюминий и марганец повышают приспособляемость к растяжению, а добавление железа с марганцем позволяет увеличить показатель относительного удлинения. Здесь важно отметить, что все остальные легирующие добавки действуют на показатель удлинения отрицательно.

Для повышения антикоррозионных свойств в латунные сплавы добавляют никель, олово, марганец и алюминий. Добавление никеля позволяет избавиться от растрескивания в условиях повышенной влажности. Дополнительный положительный эффект от легирования оловом заключается в повышении прочности, плотности и стойкости к морской воде, а также соляным туманам. Поэтому такие материалы используются в приборах, предназначенных для судоходства.

Легирование свинцом повышает пластичность и технологичность, благодаря чему латунь легче поддается механической резке. При обработке на токарном станке заготовки не растрескиваются. Стружка получается мелкой, а поверхность – практически идеально гладкой, благодаря чему готовая деталь не нуждается в финишной обработке.

Мышьяк в качестве легирующего компонента для сплавов цинка и меди применяется редко. Обычно легированные им детали применяются для работы в агрессивных химических средах. Если одновременно с мышьяком в сплав добавляется железо и никель, стойкость готового изделия значительно возрастает, и оно может работать в контакте со слабыми растворами щелочей и кислот.

Характеристики

Единых базовых параметров латунного сплава не существует. Однако материал без проблем обрабатывается прессованием и механическим воздействием, с хорошей сопротивляемостью коррозии.

Теплопроводность121 Вт/(м·K)
Плотность8921 кг/м³ и 7140 кг/м³
Температура плавления932 °C
Кристаллическая системакубическая сингония
Модуль Юнга115 ± 20 ГПа, 100 ГПа и 130 ГПа
Коэффициент Пуассона0,37
Модуль Юнга при сжатии50 ГПа

Особенности

Единого значения плотности, температуры плавления, порога тепло-, электропроводности латуни не существует. Параметры определяются количеством и долей элементов.

Чем «богаче» состав, тем больше вариаций:

  • По сравнению с бронзой, латуни быстрее истираются, менее прочны. Хуже пропускают ток и тепло.
  • Не так устойчивы к коррозии и агрессивным средам (морская вода, растворенные органические кислоты). Хотя по этому признаку превосходят чистую медь.
  • При взаимодействии с кислотой латунь бледнеет до обесцвечивания. В месте попадания капли агрессивного раствора пузырится.

По данному химическому свойству ее легко отличить от золота. С ним ничего не случается.

  • В диапазоне 212-624°С структура латуни разрушается: материал рассыпается.

Скорость коррозии растет с увеличением температуры. Этот феномен нейтрализуется финальным этапом обработки: изделия обжигаются при низких температурах.

Влияние лигатур на свойства сплава

Недостатки материала сглаживаются добавлением лигатур. Попутно легирующие элементы усиливают достоинства:

  • Олово, никель, марганец в разы повышают порог прочности и коррозионной сопротивляемости сплава.
  • Кремний прочность и твердость снижает. Однако сварщику работать с таким материалом легче.
  • Свинец также ухудшает утилитарные характеристики, но облегчает резку.
  • Алюминий создает на расплаве защитную пленку-оксид, тормозя «улетание» цинка во время плавки.

Влияние лигатур отражают неофициальные названия сплавов металла. Так, оловянные латуни именуют морскими. Свинцовые – автоматными, поскольку обработка ведется на станках-автоматах.

Свинцовые сплавы – самые востребованные среди латуней.

Кремниево-свинцовый материал малоистираем. Ценится как дублер дорогостоящих бронз.

Литейные сплавы латуни

Выделяют два основных вида латунных сплавов массового потребления: литейные и деформируемые (в отдельную группу выделяют также ювелирные). Характеристики и технологии обработки литейных латуней описываются в ГОСТ 17711. Для материалов данного типа характерна повышенная плотность, сниженное содержание газов и хорошая коррозионная стойкость. Благодаря частичному испарению цинка в процессе литья металл хорошо раскисляется, но этот процесс важно контролировать, чтобы характеристики готового изделия соответствовали расчетным значениям.

Для литейных латуней характерна пониженная ликвация (неоднородность, возникающая в процессе литья и кристаллизации), повышенная текучесть расплава и незначительный коэффициент усадки. По механическим характеристикам готовые детали из такого металла похожи на изделия из алюминиевых и оловянных бронз, при этом их себестоимость существенно ниже за счет более простой технологии получения.

Разумеется, литейные латунные сплавы имеют и определенные недостатки. Так при кристаллизации на поверхности изделий могут образовываться достаточно крупные раковины, приводящие к значительному проценту брака. Также важно учитывать, что из-за испарения цинка плавку необходимо осуществлять с применением специальных флюсов.

Применение латуни

Латунь является универсальным материалом, поэтому нашла широкое применение во многих сферах. Материал, который обладает высокой стойкостью к коррозии, активно используют в машиностроении и судостроении. Также она служит материалом для изготовления сосудов, застежек, наугольников для украшения книг, нательных крестиков и воинских знаков отличия: орденов и медалей. Латунь востребована в производстве труб, кранов, муфт, арматур, и прочих деталей, которые востребованы в сантехнике. Даже при создании ювелирных изделий используют латунь.

Деформируемые сплавы латуни

Данная категория сплавов цинка и меди обрабатывается давлением. Характеристики и технология работы с ними регламентируется стандартом ГОСТ 15527. Поставляются они в виде металлопроката и заготовок для последующей обработки и изготовления деталей необходимой формы. Дополнительно выделяют две категории медно-цинковых сплавов: двойные (двухкомпонентные) и специальные (многокомпонентные). К деформируемым сплавам относятся две наиболее популярные марки: Л63 (двухкомпонентная) и ЛС59-1 (многокомпонентная, легированная свинцом).

По структуре выделяют также однофазные и двухфазные сплавы. Однофазная латунь имеет однородный неизменяемый цвет и обладает хорошей технологичностью. У двухфазных повышена плотность, они становятся более хрупкими и хуже поддаются холодной обработке. Температура плавления для всех медьсодержащих сплавов находится примерно в одном диапазоне.

Какие виды проката производятся из латуней

Благодаря высокой пластичности деформируемых латуней, номенклатуры видов проката очень широка. Купить латунный прокат в METAL БЮРО можно по минимальным ценам в виде поковок, листов, лент, полос, профилей, труб и проволоки. Сортамент каждого из этих типов проката регламентируется своим стандартом. В частности, листы и полосы – ГОСТ 931-90, ленты – ГОСТ 2208-91, прутки – ГОСТ 2060-90, трубы ГОСТ 494-90, проволока – ГОСТ 1066-90. При этом химический состав всех обрабатываемых давлением латуней подчиняется ГОСТ 15527-2004.

Физико-химические свойства латунных сплавов

По внешнему виду латунь напоминают бронзу, из-за чего их путают или даже отождествляют. Но в бронзе основным легирующим компонентом является олово, а не цинк, поэтому это два совершенно разных медьсодержащих металла с существенно отличающимися физико-химическими свойствами.

Цинк (Zn, Zincum) находится на 30-й позиции в периодической таблице Менделеева. Он входит в побочную подгруппу второй группы четвертого периода. В нормальных условиях чистый цинк представляет собой хрупкий металл с характерным голубоватым оттенком. На воздухе он быстро окисляется, а если палочку из цинка согнуть, слышен характерный треск (этим цинк напоминает олово). В природе чистый цинк не встречается.

Медь (Cu, Cuprum) в периодической таблице расположилась прямо перед цинком – на 29-й позиции. Она относится к элементам одиннадцатой группы четвертого периода. В чистом виде представляет собой мягкий пластичный металл розово-золотого цвета. В естественных условиях поверхность очищенной меди быстро окисляется, вступая в соединение с кислородом воздуха. Несмотря на это, встречается в самородном виде, благодаря чему стала одним из первых металлов, известных человеку. Наиболее древние медные изделия, найденные при раскопках селения Чатал-Гююк (Турция), датируются 7500-м годом до нашей эры.

Влияние доли цинка на свойства латунного сплава

Основные свойства сочетания цинка и меди зависят от процентного содержания главных компонентов. Поскольку чистая медь пластична, сплавы с долей цинка менее 30 процентов также обладают данным свойством. Повышение доли цинка постепенно делает металл более хрупким, а при появлении β’-фазы хрупкость резко возрастает. При этом твердость растет вплоть до 45-процентного содержания цинка, после чего данный параметр резко снижается.

Поскольку одним из основных видов формовки латунных деталей является деформация под давлением, важно учитывать пластичность используемых сплавов. Однофазные составы сохраняют пластичность и могут проходить штамповку при обычной температуре, но в диапазоне 300-700 °C могут приобретать нежелательную хрупкость. Двухфазные сплавы приобретают необходимую для штамповки пластичность только при температурах, превышающих 700 °C.

Технология расплава латуни

Для получения расплава используется две основных технологии:

  • плавление в тиглях из огнеупорной глины нагревом в пламенной или шахтной печи;
  • плавление в отражательной печи без применения тиглей.

Расплавленный металл заливают в песчаные формы для получения заготовок и слитков. Важно учитывать, что часть цинка во время процесса испаряется, поэтому необходимо выбирать сплав, в котором его доля будет несколько выше. Поправка на испарение рассчитывается индивидуально для конкретной технологии так, чтобы доли металлов в готовом изделии максимально соответствовали проектным значениям.

Что представляет собой

Это один из самых узнаваемых материалов планеты. Как и бронза, латунь не металл, а сплав.

Бывает дву- либо поликомпонентным. Базовый компонент сплава – главный цветной металл планеты медь:

  • В первом случае ее дополняет цинк (до 44%). На эту пару приходится основная доля по массе в сплаве.
  • В многокомпонентных составах к цинку прибавляются олово, свинец, никель, железо, марганец, другие лигатуры.

Цинк улучшает потребительские свойства, попутно снижая цену конечного продукта.

Латунь не относится к металлам. Как и бронза, это конгломерат нескольких компонентов.

Маркировка латуни

Во избежание путаницы первая буква в маркировке медно-цинковых сплавов всегда «Л». Если сплав двухкомпонентный, то маркировка состоит только из данной буквы и двух цифр, показывающих процентное содержание меди. Так маркировка одного из наиболее распространенных сплавов Л63 подразумевает 63% меди и до 37% цинка (допустимые значения составляют 62-65% для меди и 34-37,5 для цинка, количество других примесей – не более 0,5%).

Добавление дополнительных легирующих компонентов в значимых количествах также отражается в обозначении марки сплава. Также в название добавляется название основного легирующего компонента. К примеру, популярная марка ЛС59-1 расшифровывается следующим образом:

  • Л – латунь;
  • С – свинцовая;
  • 59 – процентное содержание меди;
  • 1 – содержание свинца.

Расшифровка марок латуни с большим количеством компонентов производится аналогичным образом. Буквы после «Л» обозначают дополнительные легирующие примеси, а через дефис (или несколько дефисов) указываются их весовые доли в процентах. Например, маркировка ЛАЖМц70-5-3-1 подразумевает наличие в составе 5% алюминия, 3% железа и 1% марганца. Доля цинка составляет соответственно 20-21% (с учетом 0,5-0,75% примесей).

Литейные латуни для отливок | Агентство Литьё++

Литейные латуни (cast copper-zinc alloys brass) представляют собой медно-цинковые сплавы для производства отливок (с содержанием цинка до 45%), известны с древнейших времен и являются самыми распространенными сплавами на основе меди, чему способствует сочетание высоких механических и технологических свойств, в частности:

  • Незначительная склонность к газонасыщению: цинк, имея низкую температуру кипения и высокую упругость диссоциации паров, в процессе плавки испаряется и оказывает раскисляющее воздействие на латунь, что исключает образование газовой пористости и обеспечивает получение плотных отливок.
  • Малая склонность к ливации, что обусловлено близким расположением линии ликвидус и солидус на диаграмме состояния Cu-Zn.
  • Высокими механическиеми свойства, которыми обладают специальные латуни.
  • Высокая жидкотекучесть и небольшая рассеянная усадочная пористость, что обусловлено малой величиной интервала кристаллизации ( Δtкр не превышает 50-60°С).
  • Поверхность латунных отливок после механической обработки (шлифовки и полировки) приобретает красивый благородный цвет и блеск, легко покрывается защитными и декоративными покрытиями.
  • Ряд латуней обладает высокими антифрикционными свойствами.
Классификация
  • По способу обработки латуни классифицируются на деформируемые (поддающиеся обработке давлением) и литейные латуни (с хорошими литейными свойствами).
  • Латуни, состоящие только из меди и цинка, называют двойными или простыми латунями. Латуни, включающие в своем составе кроме меди и цинка другие легирующие элементы, называются многокомпонентными или специальными латунями.
  • Латуни легируют: Al, Si, Mn, Ni, Sn, Pb, Fe. В зависимости от легирующих компонентов, многокомпонентные латуни классифицируют по названию легирующих компонентов, к примеру, свинцовая латунь, латунь марганцово-свинцово-кремнистая и т.д. (см. табл. 1).
Свойства латуней

Рис. 1: Диаграмма состояния Cu-Zn

Структура и свойства латуней определяются диаграммой состояния Cu-Zn (см. рис. 1), которая отображает не характерную для сплавов зависимость растворимости цинка в меди при изменении температуры расплава — с уменьшением температуры растворимость  Zn возрастает (32,5% при 902°С, пик 39% при 454°С, снижение до 36% при комнатной температуре). Литейные латуни производят с содержанием Zn до 45%, таким образом, при кристаллизации их микроструктура может быть однофазной (α-фаза) или 2-х фазной (α+β-фазы).

α-латуни пластичны, отличаются высокой технологичностью, легко поддаются горячей и холодной обработке давлением. Пластичная при высоких температурах β-фаза, по мере охлаждения и кристаллицации латуни, преобразуется в хрупкую при комнатной температуре β’-фазу, потому промышленные сплавы из β-латуни используют очень редко.

В 2-х компонентных латунях, с увеличением массовой доли Zn в сплаве, возрастают механические свойства: предел прочности при растяжении и относительное удлинение, достигая максимальных значений при 30-32% Zn, после чего показатели резко снижаются в связи с зарождением β-фазы.

Для повышения механических и технологических свойств латуней их легируют (1-2%, реже до 4%) Al, Si, Mn, Ni, Sn, Pb, Fe, при этом:

  • Al — повышает жидкотекучесть, прочность и коррозионную стойкость;
  • Mn — также повышает прочность и коррозионную стойкость, однако, снижает коррозионную стойкость;
  • Fe — сильно измельчает структуру, тормозит рост зерна, в следствие чего значительно повышает механические свойства;
  • Si — повышает прочность, при сохранении хорошей пластичности, существенно улучшает литейные свойства;
  • Pb — улучшает антифрикционные свойства сплавов и их обрабатываемость.

Литейные латуни имеют ряд недостатков, в том числе:

  • Большой угар цинка в процессе плавки латуней, что вызвано его высокой летучестью и требует ведения плавки под защитными флюсами.
  • Высокая усадка в процеессе кристаллизации, требует использование крупных прибылей для ее компенсации.
  • Латуни, содержащие более 20% Zn, склонны к сезонному растрескиванию, для предупреждения которого изделия подвергают низкотемпературному отжигу при температуре 250-300°С.
  • Получение латуней прямым сплавлением меди и цинка затруднено, из-за большой разницы температуры плавления этих металлов, приходится использовать лигатуры.
Стандарты

Производство отливок из литейных латуней в Украине регламентируется ГОСТ 17711-93 «Сплавы медно-цинковые (латуни) литейные».

Маркировка

Литейные латуни маркируют буквой Л, за ней следуют начальные буквы легирующих элементов (в порядке убывания их массовой доли в составе сплава), которые сопровождаются цифрами, отображающими среднее содержание данного элемента в сплаве. К примеру, ЛЦ38Мц2С2 — означает марганцово-свинцовая латунь, содержащая в среднем 38% Zn, 2% Mn и 2% Pb.

Химический состав

Марки и химический состав медно-цинковых литейных сплавов (латуней) должены удовлетворять требованиям ГОСТ 17711-93, приведенным в табл. 1.

Таблица 1: Марки и химический состав медно-цинковых литейных сплавов для отливок

Наименование сплава Марка Массовая доля, %
Основных компонентов
Cu Al Fe Mn Si Sn Pb Zn
Латунь свинцовая ЛЦ40С 57,0
−61,0
  0,8
−2,0
О
с
т
а
л
ь
н
о
е
Латунь свинцовая ЛЦ40Сд 58,0
−61,0
 
0,8
−2,0
Латунь марганцовая ЛЦ40Мц1,5 57,0
−60,0
  1,0
−2,0
Латунь маргацово-железная ЛЦ40МцЗЖ 53,0
−58,0
0,5
−1,5
3,0
−4,0
Латунь марганцово-алюминиевая ЛЦ40МцЗА 55,0
−58,5
0,5
―1,5
  2,5
−3,5
Латунь марганцово-свинцовая ЛЦ38Мц2С2 57,0
―60,0
1,5
−2,5
1,5
−2,5
Латунь марганцово-свинцово-кремнистая ЛЦ37Мц2С2К 57
−60
  1,5
−2,5
0,5
−1,3
1,5
−3,0
Латунь алюминиевая ЛЦ30А3 66,0
−68,0
2,0
−3,0
 
Латунь оловянно-свинцовая ЛЦ25С2 70,0
−75,0
  0,5
−1,5
1,0
−3,0
Латунь алюминиево- железо-марганцовая ЛЦ23А6ЖЗМц2 64,0
−68,0
4,0
−7,0
2,0
−4,0
1,5
−3,0
Латунь кремнистая ЛЦ16К4 78,0
−81,0
  3,0
−4,5
Латунь кремнисто-свинцовая ЛЦ14КЗСЗ 77
−81
  2,5
―4,5
2,0
−4,0

Таблица 1: продолжение

Наименование сплава Марка Массовая доля, %
Примесей, не более
Pb Si Sn Sb Mn Fe Al P Ni Σ
Латунь свинцовая ЛЦ40С 0,3 0,5 0,05 0,5 0,8 0,5 1,0 2,0
Латунь свинцовая ЛЦ40Сд 0,2 0,3 0,05 0,2 0,5 0,2 1,0 1,5
Латунь марганцовая ЛЦ40Мц1,5 0,7 0,1 0,5 0,1 1,5 0,03 1,0 2,0
Латунь маргацово-железная ЛЦ40МцЗЖ 0,5 0,2 0,5 0,1 0,6 0,05 0,5 1,7
Латунь марганцово-алюминиеаая ЛЦ40МцЗА 0,2 0,2 0,5 0,05 1,0 0,03 1,0 1,5
Латунь марганцово-свинцовая ЛЦ38Мц2С2 0,4 0,5 0,1 0,8 0,8 0,05 1,0 2,2
Латунь марганцово-свинцово-кремнистая ЛЦ37Мц2С2К As
0,05
Bi
0,01
0,6 0,1 0,7 0,7 0,1 1,0 1,7
Латунь алюминиевая ЛЦ30А3 0,7 0,3 0,7 0,1 0,5 0,8 0,05 0,3 2,6
Латунь оловянно-свинцовая ЛЦ25С2 0,5 0,2 0,5 0,7 0,3 1,0 1,5
Латунь алюминиево- железо-марганцовая ЛЦ23А6ЖЗМц2 0,7 0,3 0,7 0,1
1,0 1,8
Латунь кремнистая ЛЦ16К4 0,5 0,3 0,1 0,8 0,6 0,04 0,1 0,2 2,5
Латунь кремнисто-свинцовая ЛЦ14КЗСЗ 0,3 0,1 1,0 0,6 0,3 0,2 2,3

Примечание:

  1. Массовая доля никеля в латунях допускается за счет меди и в сумму примесей не входит.
  2. По требованию потребителя массовая доля свинца в латуни марки ЛЦ40Сд допускается 1,2—2,0%
  3. В латуни марки ЛЦ16К4 по согласованию изготовителя с потребителем допускается массовая доля алюминия до 0,1% при изготовлении деталей, не требующих гидравлической плотности.
  4. В латуни марки ЛЦ40МцЗЖ, применяемой для отливки гребных винтов, массовая доля меди должна быть 55—58%, алюминий — не более 0,8%, свинца — не более 0,3%.
  5. Примеси, не указанные в табл. 1, учитываются в общей сумме примесей.
  6. По согласованию изготовителя с потребителем в латуни марки ЛЦ38Мц2С2 массовая доля свинца допускается 1,2—2,0%.
Механические свойства и область применения

Механические свойства медно-цинковых литейных сплавов (латуней) должены удовлетворять требованиям ГОСТ 17711-93, приведенным в табл. 2.

Таблица 2: Механические свойства медно-цинковых литейных сплавов по ГОСТ 17711-93

Марка Способ литья Временное сопротивление разрыву σВ Н/мм2, (кгс/мм2) Относительное удлинение δ, % Твердость по Бринеллю, НВ Примерное назначение литья
не менее
ЛЦ40С П
К, Ц
215 (22)
215 (22)
12
20
70
80
Для литья арматуры, втулок и сепараторов шариковых и роликовых подшипников
ЛЦ40Сд Д
К
196 (20)
264 (27)
6
18
70
100
Для литья под давлением арматуры (втулки, тройники, переходники), сепараторов подшипников, работающих в среде воздуха или пресной воды
ЛЦ40Мц1,5 П
К, Ц
372 (38)
392 (40)
20
20
100
110
Для изготовления деталей простой конфигурации, работающих при ударных нагрузках, а также деталей узлов трения, работающих в условиях спокойной нагрузки при температурах не выше 60°С
ЛЦ40МцЗЖ П
К
Д
441 (45)
490 (50)
392 (40)
18
10
90
100
Для изготовления несложных по конфигурации деталей ответственного назначения и арматуры морского судостроения, работающих при температуре до 300°С; массивных деталей, гребных винтов и их лопастей для тропиков
ЛЦ40МцЗА К, Ц 441 (45) 15 115 Для изготовления деталей несложной конфигурации
ЛЦ38Мц2С2 П
К
245 (25)
343 (35)
15
10
80
85
Для изготовления конструкционных деталей и аппаратуры для судов; антифрикционных деталей несложной конфигурации (втулки, вкладыши, ползуны, арматура вагонных подшипников)
ЛЦ37Мц2С2К К 343 (35) 2 110 Антифрикционные детали, арматура
ЛЦ30А3 П
К
294 (30)
392 (40)
12
15
80
90
Для изготовления коррозионно−стойких деталей, применяемых в судостроении и машиностроении
ЛЦ25С2 П 146 (15) 8 60 Для изготовления штуцеров гидросистем автомобилей
ЛЦ23А6ЖЗМц2 П
К, П
686 (70)
705 (72)
7
7
160
165
Для изготовления ответственных деталей, работающих при высоких удельных и знакопеременных нагрузках, при изгибе, а также антифрикционных деталей (нажимные винты, гайки нажимных винтов прокатных станов, венцы червячных колес, втулки и др. детали)
ЛЦ16К4 П
К
294 (30)
343 (35)
15
15
100
110
Для изготовления сложных по конфигурации деталей приборов и арматуры, работающих при температуре до 250°С и подвергающихся гидровоздушным испытаниям; деталей, работающих в среде морской воды, при условии обеспечения протекторной защиты (шестерни, детали узлов трения и др.)
ЛЦ14КЗСЗ К
П
294 (30)
245 (25)
15
7
100
90
Для изготовления подшипников, втулок

Примечание: Условные обозначения способов литья:

  • П — литье в песчаную литейную форму;
  • К — кокильное литье;
  • Д — литье под давлением;
  • Ц — центробежное литье.

 

Производители латунного литья

  • Украинские производители отливок из латуней

Литература

  1. Механические и технологические свойства металлов. Справочник. Бобылев А. В. М., «Металлургия», 1980. 296 с.
  2. Воздвиженский В.М. и др. Литейные сплавы и технология их плавки в машиностроении. — М.: Машиностроение, 1984. — 432 с., ил
  3. Могилев В.К., Лев О.И. Справочник литейщика. М. Машиностроение, 1988. — 272 с.: ил.
  4. Энциклопедия неорганических материалов. В двух томах. К.: Высшая школа, 1977.
  5. ГОСТ 17711-93 «Сплавы медно-цинковые (латуни) литейные».
  6. Колачев Б.Ф., Ливанов В.А., Елагин В.И. Металловедение и термическая обработка цветных металлов и сплавов Изд. 2-е, испр. и доп. М.: Металлургия, 1981. 416 с.

nglos324 – латунь

nglos324 – латунь
.
Латунь, Картридж Латунь, Muntz Metal
Латунь представляет собой серию бинарных сплавов между медью и цинком, с верхним содержанием цинка. содержание около 50 мас.%. Показана фазовая диаграмма и две латуни. идентифицировано. Патронная латунь имеет состав Cu-30 мас.% Zn (зеленая линия). и металл Манца Cu-40 мас.% Zn (красная линия). Картридж при комнатной температуре латунь представляет собой однофазный твердый раствор цинка замещения в ГЦК медная структура. Металл Мунца представляет собой двухфазный (а и г) материал при комнатной температуре, оба из которых представляют собой твердые растворы цинка из меди, но с другим составом. При нагреве выше 800 C, металл Мунца становится однофазным b-твердым решение. Наличие двух фаз при комнатной температуре делает Muntz Металл менее пластичен, чем патронная латунь, но с более высокой прочностью на растяжение. Горячая обработка материала в b-фазе использует более высокую пластичность этой единственной фазы.
 
От: Гай и Хрен, «Элементы физической металлургии», Аддисон Уэсли (1974)

Cuzn15 Латунь – C23000 – CW502L

Латунь Cu Zn 15 также называется Similor

CUZN15 латунь сплав медь и цинк , также известный как C23000 . Как следует из названия, он состоит из 85% меди и 15% цинка . Этот сплав имеет золотистый цвет благодаря своему составу и также называется Similor. CuZn15 устойчив и очень пластичен в холодном состоянии, поэтому подходит для всех деформационных работ (гибка, штамповка и другие виды холодной штамповки). Это один из самых коррозионно-стойких латунных типов . Также он очень легко полируется, никелируется или хромируется.

Cu Zn 15: международные стандарты

Стандарты этого сплава на международном уровне разные, он обозначается несколькими способами:

  • Франция (AFNOR): CuZn15
  • Германия (DIN): CUZN15
  • Европа (EN): CW502L
  • АСТМ: C23000

Применение и свойства C23000

Латунь C23000 обладает отличными свойствами холодной и горячей штамповки и идеально подходит для штамповки, штамповки или штамповки. Благодаря содержанию цинка 15% C23000 имеет очень хорошая стойкость к коррозионному растрескиванию . Он также имеет превосходную механическую прочность (выше, чем у чистой меди) и низкую электропроводность. Обладает хорошими свойствами сварки и пайки.

Он в основном используется в области ювелирных изделий и часов, а также в электронной и сантехнической промышленности. Благодаря своим свойствам он также известен как наружный металл и занимает важное место в современной архитектуре.

Горячая деформируемость Средний
Холодная деформируемость Отлично
Холодное восстановление перед отжигом 85% макс.

Обрабатываемость (Базовый номер: латунь из

прутковый токарный CuZn39Pb2=100)

25
Мягкая пайка Отлично
Твердая пайка Отлично
Дуговая сварка в газовой среде Хорошо
Дуговая сварка проволочным электродом с покрытием Не рекомендуется
Электросварка сопротивлением:
За точку Средний
Размещены встык Хорошо
Коррозионная стойкость:
Азотная кислота Плохой
Серная и уксусная кислоты Хорошо
Морская вода Хорошо
60% соляная и серная кислоты Средний
Морская атмосфера Хорошо

Химический состав в % Физические характеристики (при 20°C)
Zn Отдых Плотность (кг/дм3) 8,75
Cu 84,0 – 86,0 Электропроводность (%IACS) 37
Пб 0,05 макс. Удельное электрическое сопротивление (МС/м) 4,7
серийный номер 0,2 макс. Теплопроводность (Вт/м.К) 159
Аль 0,02 макс. Модуль упругости (КН/мм²) 124
Фе 0,05 макс. Коэф. теплового расширения (10-6/K) 18
Ni 0,3 макс. Температура плавления (°C) 1000 – 1025
Всего нечистых веществ 0,1 макс. Модуль сдвига (кН/мм²) 45,5

Поставщик латуни CuZn15 C23000

Metal Rolling Services, поставщик цветных металлов без ограничения минимального заказа, предлагает вам латунь C23000/CuZn15 . Заказывайте только в соответствии с вашими потребностями, чтобы не остаться с мертвым запасом латуни.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *