Сталь плавится – Выплавка стали: технология, способы, сырье

alexxlab | 13.03.2020 | 0 | Разное

Содержание

Выплавка стали: технология, способы, сырье

Железную руду получают привычным способом: открытой или подземной добычей и последующей транспортировкой для первоначальной подготовки, где материал измельчается, промывается и перерабатывается.

Руду засыпают в доменную печь и подвергают струйной обработке горячим воздухом и теплом, который превращает ее в расплавленное железо. Далее оно извлекается из нижней части печи в формы, известные как свиньи, где происходит остывание для получения чугуна. Он превращается в кованое железо или перерабатывается в сталь несколькими способами.

Что такое сталь?

Вначале было железо. Оно является одним из наиболее распространенных металлов в земной коре. Его можно встретить почти везде, в сочетании со многими другими элементами, в виде руды. В Европе начало работы с железом датируется 1700 г. до н.э.

В 1786 году французские ученые Бертолле, Мондж и Вандермонде точно определили, что разница между железом, чугуном и сталью обусловлена различным содержанием углерода. Тем не менее сталь, изготовленная из железа, быстро стала самым важным металлом промышленной революции. В начале XX века мировое производство стали составило 28 миллионов тонн – это в шесть раз больше, чем в 1880 году. К началу Первой мировой войны ее производство составляло 85 миллионов тонн. В течение нескольких десятилетий она практически заменила железо.

Содержание углерода влияет на характеристики металла. Существует два основных вида стали: легированная и нелегированная. Сплав стали относится к химическим элементам, отличным от углерода, добавленного к железу. Таким образом, для создания нержавеющей стали используется сплав 17 % хрома и 8 % никеля.

В настоящее время существует более 3000 каталогизированных марок (химических составов), не считая тех, которые созданы для удовлетворения индивидуальных потребностей. Все они способствуют превращению стали в наиболее подходящий материал для решения задач будущего.

Сырье для выплавки стали: первичное и вторичное

Выплавка данного металла с использованием многих компонентов – самый распространенный способ добычи. Шихтовые материалы могут быть как первично используемые, так и вторично. Основной состав шихты, как правило, составляет 55 % чугуна и 45 % оставшегося металлолома. Ферросплавы, переделанный чугун и технически чистые металлы используются как основной элемент сплава, ко вторичным, как правило, относят все виды черного металла.

Железная руда является самым важным и основным сырьем в черной металлургии. Для производства тонны чугуна требуется около 1,5 тонны этого материала. Для производства одной тонны чугуна используется около 450 тонн кокса. Многие металлургические заводы применяют даже древесный уголь.

Вода – важное сырье для черной металлургии. Она в основном используется для закалки кокса, охлаждения доменных печей, производства пара в дверях угольной печи, работы гидравлического оборудования и удаления сточных вод. Для производства тонны стали требуется около 4 тонн воздуха. Флюс используется в доменной печи для извлечения загрязнений из плавильной руды. Известняк и доломит объединяются с экстрагированными примесями с образованием шлака.

Как дутьевые, так и стальные печи, облицованы огнеупорами. Они используются для облицовочных печей, предназначенных для плавки железной руды. Диоксид кремния или песок используется для формования. Для производства стали различных марок применяют цветные металлы: алюминий, хром, кобальт, медь, свинец, марганец, молибден, никель, олово, вольфрам, цинк, ванадий и др. Среди всех этих ферросплавов марганец широко используется в выплавке стали.

Железные отходы, полученные из демонтированных конструкций заводов, механизмов, старых транспортных средств и т. д., перерабатываются и широко используются в этой отрасли.

Чугун для стали

Выплавку стали с использованием чугуна производят гораздо чаще, чем с другими материалами. Чугун – это термин, который обычно относится к серому железу, однако он также идентифицирован с большой группой ферросплавов. Углерод составляет примерно от 2,1 до 4 мас.%, тогда как кремний составляет обычно от 1 до 3 мас.% в сплаве.

Выплавка чугуна и стали проходит при температуре плавления между 1150 и 1200 градусов, что примерно на 300 градусов ниже, чем температура плавления чистого железа. Чугун также демонстрирует хорошую текучесть, отличную обрабатываемость, устойчивость к деформации, окислению и отливке.

Сталь также является сплавом железа с переменным содержанием углерода. Содержание углерода в стали составляет от 0,2 до 2,1 мас.%, И это наиболее экономичный легирующий материал для железа. Выплавка стали из чугуна полезна для различных инженерных и конструкционных целей.

Железная руда для стали

Процесс выплавки стали начинается с переработки железной руды. Породу, содержащую железную руду, измельчают. Руду добывают с использованием магнитных роликов. Мелкозернистая железная руда перерабатывается в крупнозернистые комки для использования в доменной печи. Уголь очищается от примесей в коксовой печи, что дает почти чистую форму углерода. Затем смесь железной руды и угля нагревают для получения расплавленного железа или чугуна, из которого производится сталь.

В основной кислородной печи расплавленная железная руда является основным сырьем и смешивается с различными количествами стального лома и сплавов для производства различных марок стали. В электродуговой печи переработанный стальной лом расплавляется непосредственно в новую сталь. Около 12% стали изготовлено из переработанного материала.

Технология выплавки

Плавление – процесс, посредством которого металл получают либо в виде элемента, либо как простое соединение из его руды путем нагревания выше температуры плавления обычно в присутствии окислителей, таких как воздух, или восстановителей, таких как кокс.

В технологии выплавки стали металл, который сочетается с кислородом, например оксидом железа, нагревается до высокой температуры, и оксид образуется в сочетании с углеродом в топливе, выходящим как монооксид углерода или диоксид углерода.
Другие примеси, все вместе называемые жилами, удаляются добавлением потока, с которым они объединяются, образуя шлак.

В современных плавках стали используется отражательная печь. Концентрированная руда и поток (обычно известняк) загружаются в верхнюю часть, а расплавленный штейн (соединение меди, железа, серы и шлака) вытягивается снизу. Вторая термообработка в конвертерной печи необходима для удаления железа из матовой поверхности.

Кислородно-конвекторный способ

Кислородно-конвертерный процесс является ведущим процессом сталеплавильного производства в мире. Мировое производство конвертерной стали в 2003 году составило 964,8 млн тонн или 63,3 % от общего производства. Производство конвертера является источником загрязнения окружающей природной среды. Основными проблемами этого являются снижение выбросов, сбросов и уменьшение отходов. Суть их заключается в использовании вторичных энергетических и материальных ресурсов.

Экзотермическое тепло генерируется реакциями окисления во время продувки.

Основной процесс выплавки стали с использованием собственных запасов:

  • Расплавленный чугун (иногда называемый горячим металлом) из доменной печи выливается в большой огнеупорный футерованный контейнер, называемый ковшом.
  • Металл в ковше направляется непосредственно для основного производства стали или стадии предварительной обработки.
  • Высокочистый кислород под давлением 700-1000 килопаскалей вводится со сверхзвуковой скоростью на поверхность ванны железа через охлаждаемую водой фурму, которая подвешена в сосуде и удерживается в нескольких футах над ванной.

Решение о предварительной обработке зависит от качества горячего металла и требуемого конечного качества стали. Самые первые конвертеры со съемным дном, которые могут быть отсоединены и отремонтированы, все еще используются. Были изменены копья, используемые для дутья. Для предотвращения заклинивания фурмы во время продувки применялись щелевые манжеты с длинным сужающимся медным наконечником. Кончики наконечника после сгорания сжигают CO, образующийся при выдувании в CO2, и обеспечивают дополнительное тепло. Для отвода шлака используются дротики, огнеупорные шарики и шлаковые детекторы.

Кислородно-конвекторный способ: достоинства и недостатки

Не требует затрат на оборудование по очищению от газа, так как пылеобразование, т. е. испарение железа, снижено в 3 раза. За счет снижения выхода железа наблюдается рост выхода жидкой стали в 1,5 – 2,5 %. Преимуществом стало и то, что интенсивность продувки в таком способе увеличивается, что дает возможность повысить производительности конвертера на 18 %. Качество стали выше, потому что температура в зоне продувки снижена, что приводит к уменьшению образования азота.

Недостатки данного способа выплавки стали привели к снижению спроса на потребление, так как повышается уровень потребления кислорода на 7 % из-за большого расхода на сжигание топлива. Наблюдается повышенное содержание водорода в переработанном металле, из-за чего приходится некоторое время после окончания процесса вести продувку при помощи кислорода. Среди всех способов кислородно-конвертерный обладает самым повышенным шлакообразованием, причиной является невозможность следить за процессом окисления внутри оборудования.

Мартеновский способ

Мартеновский способ на протяжении большей части 20-го века составлял основную часть обработки всей стали, изготовленной в мире. Уильям Сименс в 1860-х годах искал средства повышения температуры в металлургической печи, воскресив старое предложение об использовании отработанного тепла, выделяемого печью. Он нагревал кирпич до высокой температуры, затем использовал тот же путь для ввода воздуха в печь. Предварительно нагретый воздух значительно увеличивал температуру пламени.

Природный газ или распыленные тяжелые масла используются в качестве топлива; воздух и топливо нагреваются до сгорания. Печь загружается жидким доменным чугуном и стальным ломом вместе с железной рудой, известняком, доломитом и флюсами.

Сама печь изготовлена из высокоогнеупорных материалов, таких как магнезитовый кирпич для очагов. Вес мартеновских печей достигает 600 тонн, и их обычно устанавливают группами, так что массивное вспомогательное оборудование, необходимое для зарядки печей и обработки жидкой стали, может быть эффективно использовано.

Хотя мартеновский процесс практически полностью заменен в большинстве промышленно развитых стран основным кислородным процессом и электродуговой печью, им изготавливают около 1/6 всей стали, произведенной во всем мире.

Достоинства и недостатки данного способа

К преимуществам относят простоту использования и легкость в получении легированной стали с примесью различных добавок, которые придают материалу различные специализированные свойства. Необходимые добавки и сплавы добавляют непосредственно перед окончанием выплавки.

К недостаткам можно отнести сниженную экономичность, по сравнению с кислородно-конверторным способом. Также качество стали более низкое, по сравнению с остальными методами выплавки металла.

Электросталеплавильный способ

Современный способ выплавки стали с использованием собственных запасов представляет собой печь, которая нагревает заряженный материал с помощью электрической дуги. Промышленные дуговые печи имеют размеры от небольших единиц грузоподъемностью около одной тонны (используются в литейных цехах для производства чугунных изделий) до 400 тонн единиц, применяемых для вторичной металлургии.

Дуговые печи, используемые в исследовательских лабораториях, могут иметь емкость всего несколько десятков граммов. Промышленные температуры электрической дуговой печи могут составлять до 1800 °C (3,272 °F), в то время как лабораторные установки могут превышать 3000 °C (5432 °F).

Дуговые печи отличаются от индукционных тем, что зарядный материал непосредственно подвергается воздействию электрической дуги, а ток в выводах проходит через заряженный материал. Электрическая дуговая печь используется для производства стали, состоит из огнеупорной футеровки, обычно водоохлаждаемой, больших размеров, покрыта раздвижной крышей.

Печь в основном разделена на три секции:

  • Оболочка, состоящая из боковых стенок и нижней стальной чаши.
  • Очаг состоит из огнеупора, который вытягивает нижнюю чашу.
  • Крыша с огнеупорной футеровкой или водяным охлаждением может быть выполнена в виде секции шара или в виде усеченного конуса (коническая секция).

Достоинства и недостатки способа

Данный способ занимает лидирующие позиции в области производства стали. Метод выплавки стали применяется для создания высококачественного металла, который либо совсем лишен, либо содержит незначительное количество нежелательных примесей, таких как сера, фосфор и кислород.

Главным плюсом метода является использование электроэнергии для нагревания, благодаря чему можно легко контролировать температуру плавления и достичь невероятной скорости нагревания металла. Автоматизированная работа станет приятным дополнением к прекрасной возможности качественной переработки различного металлического лома.

К недостаткам можно отнести большое энергопотребление.

fb.ru

Как плавить сталь 🚩 печь для плавки стали своими руками 🚩 Разное

Автор КакПросто!

Все чаще мужчины задумываются о том, как можно плавить сталь в домашних условиях. Это вполне возможно, если хорошо все обдумать и создать своими руками специальную печь не для легкоплавких материалов, а именно для стали.

Статьи по теме:

Инструкция

Приобретите нагревательные элементы, попробуйте создать печь самостоятельно. Это существенно сэкономит ваш бюджет и принесет удовлетворение от проделанной работы. Единственная проблема, с которой вы можете столкнуться, это регулирование температуры, но и без него вполне можно обойтись, если полностью контролировать процесс плавления.

Отведите для плавления стали специальное место, которое не принесет никому вреда. Это может быть гараж, если в нем достаточно места для размещения вашего оборудования. При использовании самодельных горнов на угле и солярке не забудьте организовать теплоизоляцию и поддув воздуха. Для теплоизоляции прекрасно подойдет шамот.

Для простого времяпрепровождения, без серьезных намерений, попробуйте создать небольшую печь для варки, а не для полноценного плавления. Как правило, это занимает много времени и сил.

Помните, в зависимости от состава стали зависит и температура плавления. Для начинающих это может оказаться проблематично, но со временем, с накоплением опыта, вы научитесь правильно выдерживать время и определять готовность стали к дальнейшей работе над ней. Из школьного курса физики вы должны знать, что примерная температура плавления стали составляет 1300-1400 градусов, что характеризует сталь как тугоплавкий материал.

При нагреве сталь становится мягкой и теряет прочность. Поэтому процесс плавления характеризует качество данной стали. Для нагрева стали до необходимой температуры необходимо в печь ввести дополнительное тепло с помощью регенераторов. При электроплавильном способе используют электроэнергию.

В индукционных тигельных печах используйте любой скрап. Добавляйте шлаки, они улучшают активность плавления. Обязательно следите за показаниями прибором, при необходимости режим плавления изменяйте на более щадящий.

Для выплавки металлов в условиях домашней мастерской требуются не только минимальные теоретические знания по металловедению, но и соответствующее оборудование. Постройка плавильной печи – дело хоть и непростое, но вполне реальное. Желательно производить эту работу под руководством опытного мастера-литейщика, но, обладая необходимыми навыками и материалами, можно изготовить печь и самостоятельно.

Вам понадобится

  • – огнеупорная труба;
  • – шамотный кирпич;
  • – шамотная глина;
  • – жидкое стекло;
  • – нихромовая проволока;
  • – хромелевая и алюмелевая проволока;
  • – жидкое стекло;
  • – кварцевое стекло;
  • – асбест;
  • – милливольтметр.

Инструкция

Приготовьте основу для высокотемпературной плавильной печи. Для этого вам понадобится огнеупорная труба, которая обычно входит в комплект стандартной шамотной кладки. Оптимальная длина трубы составляет 250-350 мм. С двух ее концов высверлите по паре замковых отверстий, необходимых для крепления нагревательного элемента, роль которого будет выполнять нихромовая нить. Рассчитайте длину нити из нихрома по формуле: L = S x R / 1,2, где L – длина нихромовой нити; R – сопротивление нити; S – сечение проволоки; 1,2 – удельное сопротивление нихрома; х – знак умножения; / – знак деления.

Требуемый отрезок нихромового провода укрепите в нижнем замке трубы. После этого приготовьте шнур диаметром 2 мм; он будет служить для предохранения нихромовых витков от замыкания между собой. Плотно намотайте шнур и нихромовую нить на трубу в виде спирали.

Второй конец проволоки закрепите на верхнем замке трубы, поставленной вертикально. Готовую комбинированную спираль промажьте жидким стеклом, то есть обычным канцелярским клеем. После его высыхания удалите шнур, чтобы на трубе осталась лишь нихромовая спираль, зафиксированная клеевым составом. Окончательно доведите изделие до готовности, обмазав трубу несколькими слоями асбеста.

Изготовьте температурный датчик. Можно, разумеется, использовать и готовый, но он может быть весьма дорогим. Для самодельной термопары понадобится алюмелевая и хромелевая проволоки. Такой датчик обеспечит температурный порог в пределах тысячи градусов, что вполне достаточно для плавки серебра и золота.

Скрутите друг с другом два куска алюмелевой и хромелевой проволоки так, чтобы общая длина скрутки составила 10 мм. Соедините оба куска между собой пайкой. Готовую термопару вмонтируйте в крышку печи и присоедините к милливольтметру. Отградуируйте шкалу прибора заново, используя в качестве контрольных точек температуру плавления нескольких чистых металлов. Такую операцию можно будет провести уже в готовой к эксплуатации печи.

Сделайте из шамотной глины верхнюю крышку плавильной печи и дно (под). Для изготовления пода желательно использовать шамотный кирпич. При желании можно оборудовать готовую печь смотровым окном, сделав его из кварцевого стекла. Внутреннюю поверхность печи промажьте графитовой пастой, замешав ее на жидком стекле. Этой смазки достаточно, чтобы обеспечить 4-5 рабочих плавок.

Видео по теме

www.kakprosto.ru

Как плавят металл — The Village

Новолипецкий комбинат производит 17% всей российской стали. Его строительство началось в 1931 году, а 7 ноября 1934 года доменная печь дала первую партию чугуна. В годы войны производство эвакуировали в Челябинск, после её окончания завод вернулся обратно и в советские годы активно рос: число доменных печей увеличилось до шести, а в 1986-м заработал крупнейший на тот момент в Европе цех прокатки динамной стали. В ходе приватизации завод перешёл в частную собственность — сейчас группой НЛМК, в которую также входит несколько угольных месторождений в России и заводы за рубежом, владеют структуры Владимира Лисина. В прошлом году на липецкой площадке было произведено 12,4 млн тонн металла. Завод выпускает горячий, холодный и горячеоцинкованный прокат, прокат с полимерным покрытием, чугун, слябы и электротехническую сталь.

 

Новолипецкий металлургический комбинат (НЛМК)

 

 

рАСПОЛОЖЕНИЕ

г. Липецк

дАТА ОТКРЫТИЯ

1934 год

сОТРУДНИКИ

29 000 человек

выручка в 2013 г.

$10,9 млрд (по группе)

Площадь предприятия — 28 кв. км. В 2011 году на комбинате открылась новая доменная печь «Россиянка». Всего на предприятии их семь. Доменная печь состоит из пяти элементов: колошника для загрузки сырья, высокой шахты для нагрева материалов и восстановления железа, цилиндрического распара для плавки металла, заплечиков, где образуется восстановительный газ, и горна. Домна работает непрерывно — остановка производства даже на короткое время потребует длительного восстановления.

Шихтовые материалы, заполняющие всю печь, непрерывно опускаются вниз под действием силы тяжести, а снизу вверх поднимается горячий газ, который нагревает шихту и участвует в восстановительных процессах металла. В горне  при температуре 1 800–2 000 °С сгорает кокс. Он соединяется с кислородом в воздухе и образует углекислый газ. Под влиянием высокой температуры газ превращается в оксид углерода, который отнимает у железорудных материалов кислород, восстанавливая железо. Так, стекая вниз через слой раскалённого кокса, железо насыщается углеродом и превращается в чугун.

Чугун скапливается в нижней части печи — горне. На его поверхности собирается шлак — более легкий слой пустой породы. Потом расплавленный металл выпускают через лётки. Чугун разливают в ковши и везут в конвертерный цех, шлак попадает в чаши, которые идут в цех переработки. Потом он может использоваться в строительстве.

Для выплавки стали на комбинате используют конвертеры — ёмкости грушевидной формы, обложенные изнутри огнеупорным кирпичом.

При производстве стали из чугуна путём окисления удаляются примеси. Через вертикальную водоохлаждаемую фурму вдувается технически чистый кислород, который окисляет примеси (углерод, кремний, марганец, фосфор и серу), переводя их в шлак или газовую фазу. После этого металл поступает в цех горячей прокатки.

Она начинается с предварительного разогрева металлических слитков (слябов) до температуры 1 150–1 250 °С в печах прокатного стана. Затем слябы выдаются на рольганг, который перевозит их к черновой группе из пяти клетей.

Гидросбивы струёй воды под давлением 12,0–16,0 МПа очищают поверхность металла.

Из черновой группы клетей прокат везут к чистовой группе клетей — здесь заготовка приобретает свою конечную толщину.

Затем полоса поступает на одну из трёх моталок, где металл сматывают в рулон (температура смотки — около 650 градусов). На выходе получается горячекатаный прокат.

Этот металл используется в строительстве, производстве оборудования, энергетическом и сельскохозяйственном машиностроении, производстве труб, автомобилей и бытовой техники.

Фотографии: Иван Гущин

www.the-village.ru

плавка белого, серого сортов металла

В промышленности, быту широкого используются изделия из чугуна. Металл представляет собой железо, в молекулярную структуру которого интегрировано 2 процента углерода. Сегодня получают большое величество марок металла, имеющего различные характеристики излома. Около ста видов.

Производство требует огромного количества тепловой энергии, поскольку температура плавления чугуна составляет свыше одной тысячи градусов по Цельсию. Плавка происходит при температуре 1150 — 1200 C° .

Помимо углерода, для получения необходимой марки, в замесы добавляют кремний, серу, марганец, фосфор. Повышения прочности добиваются вкраплением в замесы легирующих добавок.

Отличия от стали

По технологическому процессу чугун является первичным продуктом, получаемый путём литья, а сталь конечным. Молекулярное построение стали содержит углерод в ничтожном объёме. Материал пластичный, хорошо поддаётся механической обработке. Изготовление продукции осуществляется ковкой, сваркой, прокаткой на станах. Имеет высокую температуру плавления. По технологии сталь подлежит закалке. Качество зависит от приготовленной смеси и от того, какая температура плавления сталей задана.

Скорость превращение стали в жидкое состояние находится в зависимости от различных добавок. Конкретно ответить на вопрос, при какой температуре плавится сталь, можно условно, указав лишь диапазон нагрева. Переход из твёрдого вещества в жидкую консистенцию происходит при температуре 1450—1600 C° .Приведённый цифровой параметр указывает на отличие стали от чугуна. Это различные температуры плавления.

Чугун не так прочен, как сталь. Отлитые заготовки содержат поры, придающие им хрупкость. Именно в процессе литья получают изделия из чугуна. Наличие микроскопических пустот снижает теплопроводные характеристики металла. Важно задать тепловой режим, зафиксировать, при какой температуре плавится чугун .

Чёрная металлургия производит несколько разновидность первичного продукта. Рассмотрим некоторые из них.

Сероватый чугун

Сплавы, образованные компонентами железа и углерода, изменяют структуру при интеграции хлопьевидного, пластинчатого, волокнистого графита. Производители получают чугун повышенной прочности, добавляя графит глобулярный. Присутствие в замесе Mg, Ce (магний, церий) мотивируют его модификацию. От того, как быстро расплавленный чугун остывает, он приобретает новые потребительские характеристики. Получают изделия нужного качества от умелого сочетания конкретных свойств.

Для облегченного поиска нужного материала в каталогах, изделия маркируются аббревиатурой С. Ч. Цифры , следующие после букв, указывают на предел силовой нагрузки в килограммах/на миллиметр квадратный. Металл повышенной прочности имеет буквенное обозначение В. Ч. Цифры , показывают величину прочности, а также через дефис — увеличения длины в процентном отношении. Например, ВЧ60−1

Чугун серый обладает отличными технологическими показателями в процессе его производства:

  1. Кристаллизация не требует запредельных температур, что положительно сказывается на экономии электрической, других видов энергии.
  2. Показывает уникальную жидкостную текучесть.
  3. При разливе демонстрирует оптимальную усадку.

Металл благодаря уникальным свойствам является базовым материалом для производства изделий.

Имеет недостатки в применении. Изготавливают узлы, детали, работающие только на сжатие. Отливают станины для станков, цилиндры, различные поршни и так далее. Критичные показатели по хрупкости не позволяют использовать для производства изделий, работающих в условиях силовых воздействий на изгиб. Температура плавления 1150 — 1260 C°

Цвета отбеленного полотна

Белый чугун содержит железоуглеродистое соединение, называемое цементитом. Обладает колоссальной твёрдостью, исключающую пластичность. Если произвести разлом металла, то цвет виден на изломе. Чугун тверже камня и хрупок, как яичная скорлупа. Подвергают обработке с целью получить ковкое разнообразие. Температура плавления происходит в диапазоне 1150 — 1350 C °. Уместно заметить, что термин ковкий используется условно, поскольку металл не поддаётся пластической обработке. Ковкий чугун получают в результате термического обжига.

Нагрев материала свыше 900 градусов по Цельсию влияет на его свойства. К такому результату приводит и быстрота остывания графита. Несоблюдение технологических параметров ведёт к усложнению производства сварочных работ, обработке заготовок.

Чугун высокой прочности

В чёрной металлургии высокопрочным материалом называют чугун, имеющий в молекулярной структуре графитные вкрапления, форма которых сфероидальная. Уникальное отношение поверхности шаровидного графита к объёму обеспечивает формирование металлической основы, то есть влияет на прочность. Плавление металла с интеграцией шаровидного графита не допускает трещин. Образуются новые свойства металла: становится прочным при силовом воздействии на изгиб. Кроме этого, демонстрирует:

  • вязкость при мгновенных ударах;
  • повышение коэффициента текучести;
  • небольшое удлинение, которое можно назвать относительным явлением.
  • уникальную сопротивляемость при сжатии;
  • износостойкость.

Этот вид поддаётся сварке. Соединение металла осуществляется с помощью флюсов, применяемых в виде пастообразных консистенций.

Сверхпрочный чугунный материал обладает отличными свойствами литья. Прекрасная текучесть в жидком состоянии обеспечивает образцовое наполнение форм. По некоторым технологическим параметрам материал можно сравнивать со сталью.

Учитывая отличные конструктивные свойства, на заводах производят детали для узлов и систем, если они не испытывают при эксплуатации машин и механизмов силовых нагрузок на растяжение.

Изменения решётки

При увеличении тепла (чугун плавится при температуре 1200 градусов по Цельсию), происходит переход кристаллической решётки в текущее жидкое состояние. Именно в этот момент растёт внутренняя энергия металла. Достигнув нагрева свыше одной тысячи градусов, кристаллическая решётка разрушается. В это время, поступающая тепловая энергия продолжает ослаблять молекулярные связи. Наблюдается увеличение запасов энергии внутри металла. Она выше той, что содержит кристаллизованный материал, в несколько раз.

Прекращение нагревания является началом охлаждения металла. Происходит обратный процесс кристаллизации, развивающийся по дендритному алгоритму. То есть из точек, мотивирующих такое развитие. Они (дендриты) выступают в роли априорных стадий процесса. Кристалл вырастает как бы из центра явления. В жидком, но уже в остывающем чугуне, кристаллизация происходит по принципу строения дерева. В процессе участвуют дендриты цементита, аустенита и графита. Зафиксировано термодинамическим способом, что именно графит шаровидной формы представлен дендритом, имеющим секторальную слоистую конструкцию.

chebo.pro

Температура плавления металлов. Самый тугоплавкий и легкоплавкий металл :: SYL.ru

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым – меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

Самые низкие и высокие температуры плавления металлов представлены в таблице:

Тугоплавкие

Легкоплавкие

Вольфрам

3422 °C

Ртуть

-38,87 °C

Рений

3186 °C

Галлий

26,79 °C

Тантал

3017 °C

Франций

27 °C

Осмий

3033 °C

Цезий

28,5 °C

Молибден

2623 °C

Рубидий

39,31 °C

Ниобий

2477 ​​°C

Калий

63,5 °C

Иридий

2466 °C

Натрий

97,8 °C

Вольфрам

Самая высокая температура плавления – у металла вольфрама. Выше него по этому показателю стоит только неметалл углерод. Вольфрам представляет собой светло-серое блестящее вещество, очень плотное и тяжелое. Он кипит при 5555 °C, что почти приравнивается к температуре фотосферы Солнца.

При комнатных условиях он слабо реагирует с кислородом и не подвергается коррозии. Несмотря на свою тугоплавкость, он довольно пластичен и поддается ковке уже при нагревании до 1600 °C. Эти свойства вольфрама используют для нитей накаливания в лампах и кинескопах электродов для сварки. Большую часть добытого металла сплавляют со сталью, чтобы повысить ее прочность и твердость.

Широкое применение вольфрам имеет в военной сфере и технике. Он незаменим для изготовления боеприпасов, брони, двигателей и наиболее важных частей военного транспорта и самолетов. Из него также делают хирургические инструменты, ящики для хранения радиоактивных веществ.

Ртуть

Ртуть – единственный металл, температура плавления которого имеет минусовое значение. К тому же это один из двух химических элементов, простые вещества которых при нормальных условиях, существуют в виде жидкостей. Интересно, что кипит металл при нагревании до 356,73 °C, а это намного выше температуры его плавления.

Имеет серебристо-белый цвет и ярко выраженный блеск. Она испаряется уже при комнатных условиях, конденсируясь в небольшие шарики. Металл очень токсичен. Он способен накапливается во внутренних органах человека, вызывая болезни головного мозга, селезенки, почек и печени.

Ртуть – один из семи первых металлов, о которых узнал человек. В Средние века она считалась главным алхимическим элементом. Несмотря на ядовитость, когда-то ее применяли в медицине в составе зубных пломб, а также как лекарство от сифилиса. Сейчас ртуть почти полностью исключили из медицинских препаратов, но широко используют ее в измерительных приборах (барометрах, манометрах), для изготовления ламп, переключателей, дверных звонков.

Сплавы

Чтобы изменить свойства того или иного металла, его сплавляют с другими веществами. Так, он может не только приобрести большую плотность, прочность, но и снизить или повысить температуру плавления.

Сплав может состоять из двух или больше химических элементов, но хотя бы один из них должен быть металлом. Такие «смеси» очень часто используют в промышленности, ведь они позволяют получить именно те качества материалов, которые необходимы.

Температура плавления металлов и сплавов зависит от чистоты первых, а также от пропорций и состава вторых. Для получения легкоплавких сплавов чаще всего используют свинец, ртуть, таллий, олово, кадмий, индий. Те, в составе которых находится ртуть, называются амальгамами. Соединение натрия, калия и цезия в соотношении 12%/47%/41% становится жидкостью уже при минус 78 °C , амальгама ртути и таллия – при минус 61°C. Самым тугоплавким материалом является сплав тантала и карбидов гафния в пропорциях 1:1 с температурой плавления 4115 °C.

www.syl.ru

При какой температуре плавится сталь — studvesna73.ru

Температура — плавление — сталь

Температура плавления сталей — 1300 — 1400 С, температура плавления медноникелевого сплава ( Си — 90 %, Ni — 10 %) — 1150 С. Увеличение никеля в сплаве более 10 % делает затруднительным проведение спекания и пропитку твердого сплава в стальной заготовке.  [1]

Температура плавления стали в зависимости от химического состава колеблется в пределах 1420 — 1525 С; температура разливки стали в литейные формы должна быть выше на 100 град для толстостенных отливок и на 150 град для тонкостенных отливок.  [2]

Температура плавления стали и чугуна зависит от содержания углерода.  [3]

Температура плавления стали в зависимости от химического состава колеблется в пределах 1420 — 1525 С; температура разливки стали в литейные формы должна быть выше на 100 град для толстостенных отливок и на 150 град для тонкостенных отливок.  [4]

С повышением содержания углерода температура плавления стали понижается; при содержании углерода 0 7 % и выше кислородная резка стали затрудняется. Кроме того, при содержании углерода свыше 0 3 % обработанная поверхность заметно увеличивает свою твердость по сравнению с первоначальной. Это явление поверхностной закалки выражается тем резче, чем выше содержание углерода и скорость охлаждения изделия после резки. При содержании углерода свыше 0 7 % в случае резки без предварительного подогрева изделия необходимо более мощное подогревающее пламя для нагрева стали до температуры, при которой она может гореть в кислороде.  [5]

С повышением содержания углерода температура плавления стали понижается; при содержании углерода 0 7 % и выше кислородная резка стали затрудняется. Кроме того, при содержании углерода свыше 0 3 % обработанная поверхность заметно увеличивает свою твердость по сравнению с первоначальной. Это явление поверхностной закалки выражается тем резче, чем выше содержание углерода и скорость охлаждения изделия после резки. При содержании углерода свыше 0 7 % в случае резки без предварительного подогрева изделия необходимо более мощцое подогревающее пламя для нагрева стали до температуры, при которой она может гореть в кислороде.  [6]

С повышением содержа

studvesna73.ru

Плавка стали | Литейное производство

Плавка стали происходит при высоких температурах (1500—1600°С) и сопровождается сложными физико-химическими процессами взаимодействия расплава, флюса, шлака, образующегося при плавке, печных газов и футеровки печи.

Применяемые методы плавки стали разнообразны. Выбор метода плавки, а также типа плавильной печи связаны с составом и свойствами выплавляемой стали, масштабами производства, массой изготовляемых отливок и требованиями к их качеству. В литейных цехах обычно плавку ведут в электрических дуговых, индукционных тигельных и мартеновских печах, реже в конверторах и дуплекс-процессом (вагранка—конвертор).

Последние годы характерны внедрением в сталеплавильное производство специальных электрометаллургических процессов вакуумной плавки в индукционных, плазменных и электронно-лучевых печах. Наиболее высокое качество выплавляемой стали обеспечивается благодаря глубокому физико-химическому воздействию на расплав при электрошлаковом методе получения отливок.

При выплавке стали обычно решается задача снижения содержания в расплаве кислорода, серы и фосфора, образующих оксидные, сульфидные и фосфидные включения, резко снижающие качество стали. Это обеспечивается проведением сложных металлургических окислительных и восстановительных процессов. Производят также доводку расплава по химическому составу с введением необходимых легирующих элементов.

Однако в ряде случаев, преимущественно при изготовлении мелких отливок ответственного назначения (например, по выплавляемым моделям), расплав готовят из высококачественной шихты, соответствующей по химическому составу выплавляемой марке стали. В этих случаях плавка сводится к расплавлению шихты, введению в расплав добавок, компенсирующих угар элементов, и раскислению его перед выдачей в разливочные ковши.

Обычно технологический процесс плавки стали состоит из следующих этапов: подготовки плавильной печи и шихтовых материалов; загрузки шихты, нагрева и расплавления шихты, в процессе которого уже начинается окисление компонентов шихты (стального лома, чугуна и др.) содержащимися в печной атмосфере кислородом, углекислым газом и парами воды; образование над поверхностью расплава шлака, в результате взаимодействия которого с металлом продолжается процесс окисления железа, кремния, марганца и некоторых других элементов; удаления окислительного и наведения восстановительного шлака с высоким содержанием СаО, способствующего удалению такой вредной примеси, как сера; доводки стали по химическому составу с учетом результатов экспресс-анализа ее проб; окончательного раскисления расплава марганцем или кремнием (в виде ферросплавов) или же металлическим алюминием перед выпуском, а при необходимости обеспечения повышенных механических свойств стали — их дополнительной обработки в жидком состоянии, например модифицированием редкоземельными элементами.

Для повышения качества стали расплав подвергают дополнительной обработке и после слива из печи, в ковше, используя как модифицирование, так и рафинирование (очищение от газов и неметаллических включений), например продувкой аргоном. О других методах внепечной обработки стали сказано в § 7.6.

По своей физико-химической сущности процессы плавки подразделяют на кислые и основные. Независимо от вида плавильного агрегата для каждого из них имеются общие закономерности, обусловленные составами шлака и футеровки печи. Кислые процессы осуществляют в печах с футеровкой, в огнеупорном материале которой преобладает кислотный окисел SiO2, исключающий возможность удаления из стального расплава вредных примесей серы и фосфора. По этой причине при ведении кислого процесса должны применяться шихтовые материалы с низким содержанием серы и фосфора.

Основные процессы плавки ведутся в печах с футеровкой из магнезита или хромомагнезита, позволяющих применять при плавке основные шлаки с высоким содержанием СаО, что обеспечивает возможность проведения процессов десульфурации и дефосфорации— перевода из металла в шлак серы и фосфора.

Для придания стали специальных свойств (жаропрочности, коррозионной стойкости и др.) отмеченные выше этапы плавки углеродистых сталей дополняют операцией легирования — cведения в стальной расплав специальных элементов (хрома, никеля и др.). Порядок введения легирующих элементов определяется их физико-химическими свойствами (сродством к кислороду). С шихтой вводят наиболее тугоплавкие элементы (вольфрам, молибден), а хром и ванадий — после расплавления шихты и раскисления. Так как большинство легирующих элементов имеют высокую температуру плавления (хром и ванадий — около 1900°С, молибден— 2620 °С), их вводят в виде ферросплавов. Температура плавления ферросплавов (феррохрома, ферровольфрама и др.) значительно ниже, чем у входящих в их состав легирующих элементов, что улучшает усвоение последних стальным расплавом.

www.stroitelstvo-new.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *