Степень окисления купрума – Степень окисления меди (Cu), формула и примеры
alexxlab | 27.02.2020 | 0 | Разное
Золото степени окисления - Справочник химика 21
В соответствии со сказанным элементы подгруппы меди проявляют не только степень окисления -Ы, но и -Ь2 и +3. Для меди наиболее характерна степень окисления -f2, для золота +3, а для серебра + 1. Особая устойчивость степени окисления +1 у серебра объясняется относительно большей прочностью конфигурации так как эта конфигурация образуется уже у палладия, предшествующего серебру в периодической системе.
Как уже указывалось, степень окисления +1 —наиболее характерная степень окисления серебра. У меди и в особенности у золота эта степень окисления проявляется реже. В водных растворах она в основном стабилизируется в присутствии лигандов п-акцеп-торного типа. Так, в растворах равновесия [c.624]
Соединения Си (III), Ag (III), Аи (III). Степень окисления + 3 наиболее характерна для золота. Диамагнетизм соединений золота [c.629]
Вычислить степени окисления платины, кобальта, олова, золота и никеля в комплексных ионах, заряды которых указаны [c.178]
По сравнению с хлором фтор F гораздо более активен. Он реагирует почти со всеми химическими элементами, со щелочными и щелочноземельными металлами даже на холоде. Некоторые металлы (Mg, Al, Zn, Fe, Си, Ni) на холоде устойчивы к действию фтора из-за образования пленки фторидов. Фтор — самый сильный окислитель из всех известных элементов. Он единственный из галогенов не способен проявлять положительные степени окисления. При нагревании фтор реагирует со всеми металлами, в том числе с золотом и платиной. Он образует ряд соединений с кислородом, причем это единственные соединения, в которых кислород электроположителен (например, дифторид кислорода OFa). В отличие от оксидов эти соединения называют фторидами кислорода.
Степень окисления +3 наиболее характерна для золота. Диамагнетизм соединений золота (III) согласуется с участием в образовании связей 5 6 6р -орбиталей иона Au +(d ) [c.607]
Здесь кислород выступает как окислитель, который переводит золото в ионы со степенью окисления +1. Причиной значительного смещения потенциала пары Ли/Ли+ является существенное уменьщение концентрации ионов Аи+ за счет комплексообразования. Константа устойчивости комплекса равна [c.424]
Для серебра наиболее типичны степени окисления +1 (4 ), для меди +2 (Зс ) и для золота +3 5d ). Медь и золото образуют также соединения в степени окисления -1-1, которая соответствует номеру группы. В то же время медь и серебро могут иметь и более высокие степени окисления, например [c.646]
Для химии этих элементов характерны их способность к изменению степени окисления и возможность образования ряда труднорастворимых солей. Особое значение для химического поведения этих элементов имеет комплексообразование. В противоположность элементам побочной подгруппы второй группы (разд. 36.17.2) медь, серебро и золото могут кроме электронов -уровня (где п = 4, 5 или 6) отдавать дин или два электрона (я—1) -уровня. В последнем случае образуются соединения этих элементов в степени окисления -ЬЗ, которая не известна для цинка, кадмия и ртути.
Золото В степенях окисления -fl и 4-3 дает ряд устойчивых комплексов, что в значительной степени определяет все химическое поведение этого элемента [c.648]
Отдача этого электрона, в химических реакциях обусловливает степень окисления Э, равную номеру группы в периодической системе Менделеева. Кроме того, они могут проя]влять степень окисления +2 ъ -Ь 3. Это обусловлено нестабильностью предпоследнего 18-электрон-ного слоя у атомов меди, серебра и золота. За счет отдачи -электронов предпоследнего уровня и образуются соединения со степенью окисления -1-2 и 4-3. [c.103]
Как уже отмечалось, степень окисления +1 наиболее характерна для серебра. Поскольку у меди и золота более устойчивая степень окисления выше, большинство соединений одновалентных меди и золота во влажном воздухе неустойчиво они легко окисляются, переходя в устойчивые соединения Си" и Аи + . Соли Си+ постепенно окисляются кислородом воздуха, I апример
В образовании химических связей могут принимать участие также электроны с (/-оболочки, поэтому медь проявляет устойчивую степень окисления +2, а золото +3. [c.553]
Замечено, что только элементы этой группы проявляют степень окисления выше, чем номер группы. Медь, серебро и золото проявляют степени окисления + 1, +11 и +111 (за исключением +11 для золота), хотя устойчивость этих степеней окисления неодинакова. Предполагают, что причиной является небольшое различие между энергией связи последнего -электрона на уровнях М, 4(1 и 5с( и внешних 4з-, бх- и бх-электронов. Сравнивая первые и вторые ионизационные потенциалы металлов подгруппы 1 Б (табл. 4-7), легко заметить некоторую непоследовательность в их изменении. Ниже приведены величины А1 == [ — г. [c.127]
НОГО элемента. В качестве примера такого расчета можно рассмотреть диспропорционирование золота со степенью окисления +1
Это дает для общей реакции в ячейке положительную э. д. с., равную 0,27 в, и поэтому можно ожидать, что золото со степенью окисления +1 будет диспропорционировать на золото со степенью окисления О и на золото со степенью окисления +111, если активность всех компонентов равна единице. [c.321]
Следует отметить, что в каждом из до сих пор написанных уравнений реакций и тех, которые еще будут приведены, все ионные компоненты обозначены так, как если бы в реакциях принимали участие простые ионы. Это, конечно, не соответствует действительности, так как все ионы в водном растворе в определенной степени гидратированы. Поэтому каждый ион можно рассматривать как окруженный определенным числом молекул воды, определяющимся силой связи и кратчайшим расстоянием, которое зависит от размера, заря
www.chem21.info
Степень окисления в химии
Понятие «степень окисления»
Для характеристики состояния элементов в соединениях введено понятие степени окисления.
Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N2, H2, Cl2).
Степень окисления металлов
Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.
В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na+1I-1, Mg+2Cl-12, Al+3F-13, Zr+4Br-14.
При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.
Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).
Для кислорода, также имеющего высокое значение электроотрицательности, характерна отрицательная степень окисления обычно (-2), в пероксидах (-1). Исключение составляет соединение состава OF2, в котором степень окисления кислорода равна (+2).
Степень окисления щелочных и щелочноземельных элементов
Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно (+1) и (+2).
Постоянную степень окисления (+1) в большинстве соединений проявляет водород, например H+1Cl-1, H+12O-2, P-3H+13. Однако в гидридах степень окисления водорода – (-1), например Li+1H-1, Ca+2H-12.
Понятие степени окисления для большинства соединений имеет условных характер, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.
Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральных молекулах равна нулю, а в сложных ионах – заряду этих ионов. В качестве примера рассчитаем степень окисления азота в соединениях состава KNO
KNO2 1+ x +2×(-2) = 0, x=+3.
HNO3 1+x+ x +3×(-2) = 0, x=+5.
Аналогичным образом можно определить степень окисления элементов в любых соединениях. Для примера приведем соединения азота с разными степенями окисления: N-3H+13, N-22H+12, N-1H+12O-2H+1, No2, N+12O-2, N+2O-2, Na+1N+3O-22, N+4O-22, K+N+5O-2
Примеры решения задач
ru.solverbook.com
Электронные структуры и степени окисления меди, серебра и золота
Атомы Си, А и Аи во внешнем электронном слое (как и атомы щелочных металлов) имеют по одному -электрону. В отличие от атомов щелочных металлов, имеющих в предпоследнем слое 8 электронов (у лития 2), у элементов подгруппы меди он состоит из 18 электронов с полностью заполненным -подуровнем (s t7 d ). Особенностью структуры атомов объясняется резкое отличие свойств Си, Ag и Аи от свойств щелочных металлов. 18-электронный слой у них не вполне устойчив и способен к частичной отдаче электронов. В связи с этим они проявляют степень окисления от +1 до +3. Наиболее устойчивые соединения меди с катионом Си серебра — Ag , золота — Аи . [c.109]
VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов.
В IB подгруппе находятся Си, Ag, Au с электронной структурой (л - 1) d °ns . Поэтому предпочтительная степень окисления +1, хотя для меди и золота еще более характерна степень +2 и +3 соответственно. Серебро удается окислить до степени окисления +2 (AgO) только сильными окислителями или электролизом получены также хлорид золота (III) Au lg и комплексные [c.174]
www.chem21.info