Степени окисления купрума – Степень окисления меди (Cu), формула и примеры

alexxlab | 09.02.2020 | 0 | Разное

Содержание

Медь – это… Что такое Медь?

Внешний вид простого вещества

Пластичный металл золотисто-розового цвета
Свойства атома
Имя, символ, номер

Медь/Cuprum (Cu), 29

Атомная масса
(молярная масса)

63,546 а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d10 4s1

Радиус атома

128 пм

Химические свойства
Ковалентный радиус

117 пм

Радиус иона

(+2e) 72 (+1e) 96 пм

Электроотрицательность

1,90 (шкала Полинга)

Электродный потенциал

+0,337 В/ +0,521 В

Степени окисления

3, 2, 1, 0

Энергия ионизации
(первый электрон)

745,0 (7,72) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

8,92 г/см³

Температура плавления

1356,55 (1 083,4 С)

Температура кипения

2840,15 K

Теплота плавления

13,01 кДж/моль

Теплота испарения

304,6 кДж/моль

Молярная теплоёмкость

24,44[1] Дж/(K·моль)

Молярный объём

7,1 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая гранецентрированая

Параметры решётки

3,615 Å

Температура Дебая

315 K

Прочие характеристики
Теплопроводность

(300 K) 401 Вт/(м·К)

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

История и происхождение названия

Медь — один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом — бронзы для изготовления оружия и т. п. (см бронзовый век).

Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.

У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков считают русское слово медь (польск. miedz, чешск. med) родственным древненемецкому smida (металл) и Schmied (кузнец, англ. Smith). От этого слова произошли и родственные названия — медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь «венера» (Venus). В более древние времена встречается название «марс» (Mars).

См. также: История меди и бронзы

Нахождение в природе

Самородная медь

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS

2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2CO3(OH)2. Иногда медь встречается в самородном виде, масса отдельных скоплений может достигать 400 тонн[2]. Сульфиды меди образуются в основном в среднетемпературных гидротермальных жилах. Также нередко встречаются месторождения меди в осадочных породах — медистые песчаники и сланцы. Наиболее известные из месторождений такого типа — Удокан в Забайкальском крае, Джезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси)[3].

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Физические свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь – один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвертой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло-[4] и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C 55,5-58 МСм/м

[5]. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Изотопы меди

Природная медь состоит из двух стабильных изотопов — 63Cu 65Cu с распространённостью 69 и 31 атомных процентов соответственно. Известны более двух деясятков нестабильных изотопов, самый долгоживущий из которых 67Cu с периодом полураспада 62 часа.

Химические свойства

Возможные степени окисления

В соединениях медь проявляет две степени окисления: +1 и +2. Первая из них склонна к диспропорционированию и устойчива только в нерастворимых соединениях (Cu2O, CuCl, CuI и т. п.) или комплексах (например [Cu(NH3)2]+. Её соединения бесцветны. Более устойчива степень окисления +2, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu(B

11H11)23−, полученных в 1994 году.

Простое вещество

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

На влажном воздухе медь окисляется, образуя основный карбонат меди(II):

Реагирует с концентрированной холодной серной кислотой:

С концентрированной горячей серной кислотой:

С безводной серной кислотой при 200 °C:

C разбавленной серной кислотой при нагревании в присутствии кислорода воздуха:

Реагирует с концентрированной азотной кислотой:

С разбавленной азотной кислотой:

С царской водкой:

C разбавленной хлороводородной кислотой в присутствии кислорода:

С газообразным хлороводородом при 500—600 °C:

С бромоводородом:

Также медь реагирует с концентрированной уксусной кислотой в присутствии кислорода:

Медь растворяется в концентрированном гидроксиде аммония, с образованием аммиакатов:

Окисляется до оксида меди(I) при недостатке кислорода и 200 °C и до оксида меди(II), при избытке кислорода и температурах порядка 400—500 °C:

Медный порошок реагирует с хлором, серой (в жидком сероуглероде) и бромом (в эфире), при комнатной температуре:

При 300—400 °C реагирует с серой и селеном:

C оксидами неметаллов:

Медь реагирует с цианидом калия с образованием дицианокупрата(I) калия, щелочи и водорода:

С концентрированной соляной кислотой и хлоратом калия:

Соединения меди(I)

Степени окисления +1 соответствует оксид Cu2O красно-оранжевого цвета. Соответствующий гидроксид CuOH (жёлтого цвета) быстро разлагается с образованием оксида. Гидроксид CuOH проявляет основные свойства.

Многие соединения меди +1 имеют белую окраску либо бесцветны. Это объясняется тем, что в ионе Сu+ все пять Зd-орбиталей заполнены парами электронов.

Ионы меди(I) в водном растворе неустойчивы и легко диспропорционируют:

В то же время медь(I) встречается в форме соединений, которые не растворяются в воде, либо в составе комплексов. Например, дихлорокупрат(I)-ион [CuCl

2] устойчив. Его можно получить, добавляя концентрированную соляную кислоту к хлориду меди(I):

Свойства соединений меди (I) похожи на свойства соединений серебра (I). В частности, CuCl, CuBr и CuI нерастворимы. Также существует нестабильный сульфат меди(I)

Соединения меди(II)

Степень окисления II — наиболее стабильная степень окисления меди. Ей соответсвует чёрный оксид CuO и голубой гидроксид Cu(OH)2, который при стоянии легко отщепляет воду и при этом чернеет:

Гидроксид меди (II) носит преимущественно основный характер и только в концентрированной щелочи частично растворяется с образованием синего гидроксокомплекса. Наибольшее значение имеет реакция гидроксида меди (II) с водным раствором аммиака, про которой образуется так называемый реактив Швейцера (растворитель целлюлозы):


Соли меди(II) образуются при растворении меди в кислотах-окислителях (азотной, концентрированной серной). Большинство солей в этой степени окисления имеют синюю или зелёную окраску.

Соединения меди(II) обладают слабыми окислительными свойствами, что используется в анализе (например, использование реактива Фелинга).

Карбонат меди(II) имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди и медных сплавов при взаимодействии оксидной плёнки с углекислым газом воздуха в присутствии воды. Сульфат меди(II) при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид.

Оксид меди (II) используются для получения оксида иттрия бария меди (YBa2Cu3O7-δ), который является основой для получения сверхпроводников.

Соединения меди(III) и меди(IV)

Степени окисления III и IV являются малоустойчивыми степенями окисления и представлены только соединениями с кислородом, фтором или в виде комплексов.

Аналитическая химия меди

Возбуждённые атомы меди окрашивают пламя в голубовато-зелёный цвет

Медь можно обнаружить в растворе по зелёно-голубой окраске пламени бунзеновской горелки, при внесении в него платиновой проволочки, смоченной исследуемым раствором.

  • Традиционно количественное определение меди в слабокислых растворах проводилось с помощью пропускания через него сероводорода, при этой сульфид меди выпадает в далее взвешиваемый осадок .
  • В растворах, при отсутствии мешающих ионов медь может быть определена комплексонометрически или потенциометрически, ионометрически.
  • Микроколичества меди в растворах определяют кинетическими и спектральными методами.

Применение

В электротехнике

Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C 0,01724-0,0180 мкОм·м[5]), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовых трансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %[6].

Теплообмен

Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.

Для производства труб

В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

В России производство водогазопроводных труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005[7], а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Сплавы

Сплавы на основе меди

В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. Большое количество латуни идёт на изготовление гильз артиллейрийских боеприпасов и оружейных гильз, благодаря технологичности и высокой пластичности.

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30—40 кгс/мм² у сплавов и 25-29 кгс/мм² у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не изменяют механических свойств при термической обработке, и их механические свойства и износостойкость определяются только химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900—12000 кгс/мм², ниже, чем у стали). Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред (медно-никелевые сплавы и алюминиевые бронзы) и хорошей электропроводностью. Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных. Медноникелевый сплав (мельхиор) используются для чеканки разменной монеты[8].

Медноникелевые сплавы, в том числе и так называемый «адмиралтейский» сплав, широко используются в судостроении (трубки конденсаторов отработавшего пара турбин, охлаждаемых забортной водой) и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за высокой коррозионной устойчивости.

Медь является важным компонентом твёрдых припоев — сплавов с температурой плавления 590—880 градусов Цельсия, обладающих хорошей адгезией к большинству металлов, и применяющихся для прочного соединения разнообразных металлических деталей, особенно, из разнородных металлов, от трубопроводной арматуры до жидкостных ракетных двигателей

Сплавы, в которых медь значима

Дюраль (дюралюминий) определяют, как сплав алюминия и меди (меди в дюрали 4,4 %).

Ювелирные сплавы

В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото — очень мягкий металл и нестойко к этим механическим воздействиям.

Соединения меди

Оксиды меди используются для получения оксида иттрия бария меди YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов и батарей.

Другие сферы применения

Медь — самый широко употребляемый катализатор полимеризации ацетилена. Из-за этого трубопроводы из меди для транспортировки ацетилена можно применять только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006[9].

Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Пары меди используются в качестве рабочего тела в лазерах на парах меди, на длинах волн генерации 511 и 578 нм.

Стоимость

На 2011 год стоимость меди составляет около $8900 за тонну[10].

Биологическая роль

Продукты, богатые медью.

Медь является необходимым элементом для всех высших растений и животных. В токе крови медь переносится главным образом белком церулоплазмином. После усваивания меди кишечником она транспортируется к печени с помощью альбумина.

Медь встречается в большом количестве ферментов, например, в цитохром-с-оксидазе, в содержащем медь и цинк ферменте супероксид дисмутазе, и в переносящем молекулярный кислород белке гемоцианине. В крови всех головоногих и большинства брюхоногих моллюсков и членистоногих медь входит в состав гемоцианина в виде имидазольного комплекса иона меди, роль, аналогичная роли порфиринового комплекса железа в молекуле белка гемоглобина в крови позвоночных животных.

Предполагается, что медь и цинк конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента. Здоровому взрослому человеку необходимо поступление меди в количестве 0,9 мг в день.

При недостатке меди в хондро- и остеобластах снижается активность ферментных систем и замедляется белковый обмен, в результате замедляется и нарушается рост костных тканей[11].

Токсичность

Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен. Всемирная Организация Здравоохранения (ВОЗ) сформулировала в 1998 году это правило так: «Риски для здоровья человека от недостатка меди в организме многократно выше, чем риски от её избытка».

В 2003 году в результате интенсивных исследований ВОЗ пересмотрела прежние оценки токсичности меди. Было признано, что медь не является причиной расстройств пищеварительного тракта[12].

Существовали опасения, что Гепатоцеребральная дистрофия (болезнь Вильсона — Коновалова) сопровождается накоплением меди в организме, так как она не выделяется печенью в желчь. Эта болезнь вызывает повреждение мозга и печени. Однако причинно-следственная связь между возникновением заболевания и приёмом меди внутрь подтверждения не нашла[12]. Установлена лишь повышенная чувствительность лиц, в отношении которых диагностировано это заболевание к повышенному содержанию меди в пище и воде.

Бактерицидность

Бактерицидные свойства меди и её сплавов были известны человеку давно. В 2008 году после длительных исследований Федеральное Агентство по Охране Окружающей Среды США (US EPA) официально присвоило меди и нескольким сплавам меди статус веществ с бактерицидной поверхностью[13] (агентство подчёркивает, что использование меди в качестве бактерицидного вещества может дополнять, но не должно заменять стандартную практику инфекционного контроля). Особенно выражено бактерицидное действие поверхностей из меди (и её сплавов) проявляется в отношении метициллин-устойчивого штамма стафилококка золотистого, известного как «супермикроб» MRSA[14]. Летом 2009 была установлена роль меди и сплавов меди в инактивировании вируса гриппа A/h2N1 (т. н. «свиной грипп»)[15].

Органолептические свойства

Ионы меди придают излишку меди в воде отчётливый «металлический вкус». У разных людей порог органолептического определения меди в воде составляет приблизительно 2—10 мг/л. Естественная способность к такому определению повышенного содержания меди в воде является природным механизмом защиты от приёма внутрь воды с излишним содержанием меди.

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т, a в 2004 году — около 14 млн т[16][17]. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т подтверждённые запасы[16], на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов[16]. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 881,2 тыс. тонн, потребление — 591,4 тыс. тонн[18]. Основными производителями меди в России являлись:

К указанным производителям меди в России в 2009 году присоединился Холдинг «Металлоинвест», выкупивший права на разработку нового месторождения меди «Удоканское»[19]. Мировое производство меди в 2007 году составляло[20] 15,4 млн т, а в 2008 году — 15,7 млн т Лидерами производства были:

  1.  Чили (5,560 млн т в 2007 г. и 5,600 млн т в 2008 г.),
  2.  США (1,170/1,310),
  3.  Перу (1,190/1,220),
  4.  КНР (0,946/1,000),
  5.  Австралия (0,870/0,850),
  6.  Россия (0,740/0,750),
  7.  Индонезия (0,797/0,650),
  8.  Канада (0,589/0,590),
  9.  Замбия (0,520/0,560),
  10.  Казахстан (0,407/0,460),
  11.  Польша (0,452/0,430),
  12.  Мексика (0,347/0,270).

Смотрим также более полный список стран по производству меди.

По объёму мирового производства и потребления медь занимает третье место после железа и алюминия.

Разведанные мировые запасы меди на конец 2008 года составляют 1 млрд т, из них подтверждённые — 550 млн т. Причём, оценочно, считается что глобальные мировые запасы на суше составляют 3 млрд т, а глубоководные ресурсы оцениваются в 700 млн т.

Способы добычи

Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, на Украине, в Сибири, на

dic.academic.ru

Глава 1. Медь – простое вещество

§1. Электронное строение. Степени окисления.

Медь — элемент первой группы побочной подгруппы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum).

Электронное строение атома: 1s22s22p63s23p63d104s1. Подобно атомам щелочных металлов, атомы меди имеют в наружном слое один электрон, но в отличие от атомов щелочных металлов, предпоследний электронный слой содержит восемнадцать электронов. Медь – предпоследний член первой декады d-элементов. Поэтому у меди наблюдается так называемый «провал электрона» – конфигурация наружного электронного слоя 3d104s1 устойчивее, чем 3d94s2.

Элемент

Радиус атома, нм

Энергия ионизации

Э0→Э +, эВ

Радиус иона Э+, нм

Стандартный электродный потенциал процесса

Э++e→Э0, эВ

K

0.236

4.18

0.149

-2.925

Cu

0.128

7.73

0.098

+0.52

Сравнивая медь с металлом главной подгруппы того же периода – калием, можно видеть, что радиус атома и иона меди почти в два раза меньше соответственно атома и иона калия. Это обуславливает значительно бóльшую плотность, высокие температуры плавления, так как меньшие по размеру атомы располагаются в кристаллической решетке более плотно, вследствие чего силы притяжения между ними велики.

Малый радиус объясняет так же более высокие значения энергии ионизации меди, чем калия. Это приводит к большим различиям в химических свойствах этих металлов одного периода и одной группы. Медь – малоактивный металл, в ряду напряжений стоит после водорода, в отличие от калия – одного из самых активных металлов. В то же время, восмнедцатиэлектронный наружный слой, устойчивый у других элементов, здесь еще не вполне стабилизируется, и способен к частичной потере электронов. Так, медь, наряду с однозарядными катионами образует и двухзарядные, которые для нее наиболее характерны. Так же известны соединения со степенью окисления +3 в составе анионов или в комплексных соединений.

§2. Нахождение в природе. Месторождения.

Металлы подгруппы меди обладают небольшой химической активностью, поэтому они находятся частично в виде химических соединений, а частично в свободном виде, особенно золото.

Медь в далекие геологические эпохи, очевидно, находилась только в виде сернистых соединений – халькопирита (или) и халькозина. Объясняется это тем, что медь обладает довольно большим химическим сродством к сере, в настоящее время сульфиды – наиболее распространенные минералы меди. При высоких температурах, например, в районах вулканической деятельности, под действием избытка кислорода происходило превращение сульфидов меди в окислы, например:

При температуре ниже 10000C происходило образование окиси меди, которая в небольших количествах встречается в природе:

.

Самородная (металлическая) медь, очевидно, возникла в природе при сильном нагревании частично окисленных сернистых руд. Можно представить, что после землетрясений, грандиозных извержений окисленные минералы меди были погребены под толстым слоем горных пород и нагревались за счет земного тепла. При этом происходило взаимодействие окислов с сульфидами:

.

Подобные процессы протекают при выплавке меди на металлургических заводах. Такие природные “металлургические заводы” выплавляют громадные количества меди: самый крупный из найденных самородков весил 420 т. По-видимому, в меньших масштабах взаимодействие окислов некоторых металлов с сульфидами идет и в настоящее время, например, в районе некоторых Курильских островов.

Некоторые другие минералы меди получились из окисных руд. Например, под действием влаги и двуокиси углерода происходила гидратация окиси меди и образование основных карбонатов:

.

В лаборатории мы эти процессы не наблюдаем, так как они идут медленно. В “лаборатории” природы сроки в несколько тысяч лет совершенно незначительны. В дальнейшем под влиянием давления вышележащих горных пород и некоторого нагревания происходило уплотнение основного карбоната меди, и он превратился в изумительный по красоте минерал – малахит. Особенно красив полированный малахит. Он бывает окрашен от светло-зеленого до темно-зеленого цвета. Переходы оттенков причудливы и создают фантастический рисунок на поверхности камня.

Переход нерастворимых сульфидных соединений меди в раствор мог осуществляться за счет взаимодействия растворов сульфата железа (III):

.

Растворы сульфата железа, как указано выше, получаются в природе при действии воды, насыщенной кислородом, на пирит. Эти процессы медленно идут в природе и в настоящее время. [1, с.8-10]

Медь входит более чем в 198 минералов, из которых для промышленности важны лишь 17. Для производства меди наибольшее значение имеют халькопирит (он же – медный колчедан) CuFeS2, халькозин (медный блеск) Cu2S, ковеллин CuS, борнит (пестрая медная руда) Cu5FeS4. Иногда встречается и самородная медь. Распространение меди в земной коре –4,7*103% по массе (1015 – 1016 тонн). [3]

Соединения меди распределены в земной коре неравномерно, что объясняется различием в геологических условиях, сложившихся в различных местах земного шара. Богатейшие месторождения меди имеются в Конго (Катангский пояс). Материалы, собранные археологами о древнейших месторождениях датируются тысячелетиями до новой эры. Древнейшие выработки меди на территории нашей страны найдены в Закавказье, на побережье Балхаша, в многочисленных пунктах Сибири.

Планомерные поиски месторождений меди начинаются при Иване III, Иване Грозном и особенно при Петре I. При Иване Грозном в Олонецкий уезд был послан новгородский гость (купец) Семен Гаврилов “для сыску медные руды”, где она и была найдена. В 1652 г. Казанский воевода сообщил царю: “Медные руды… сыскано много и заводы к медному делу заводим”. [2, с.26] Из документов следует, что с 1562 по 1664 г. было послано из “Казани к Москве чистыя меди 4641 пуд. 6 гривенков”. В 1702 г. стала выходить первая русская газета “Ведомости”, которую, очевидно, редактировал Петр I. 2 января 1703 г. в ней писали: “Из Казани пишут. На реке Соку нашли много нефти и медной руды, из той руды меди выплавили изрядно, отчего чают не малую прибыль Московскому государству”. [2, с.27]

В начале этого столетия главнейшими месторождениями, которые разрабатывались, были: в районе Северного Урала – Богословский завод, в районе Нижнего Тагила – Выйский завод, а на Кавказе – Калакентский и Кедабекский заводы.

В наше время известны месторождения меди на восточном склоне Урала, Средней Азии, Закавказье и т.д.

Большое количество меди и других ископаемых находится на дне океанов, которое покрыто так называемыми конкрециями – скоплениями в виде камней округлой неправильной формы. Они содержат в среднем 0,5% меди. По подсчетам ученых запасы этой ценной и своеобразной руды составляют 5 млрд. тонн. [1, с.16-18]

studfiles.net

CuSO4, степень окисления меди и др элементов

Общие сведения о сульфате меди (II) и степени окисления в CuSO4

Брутто-формула – CuSO4. Молярная масса равна 159,61 г/моль.

Рис. 1. Медный купорос. Внешний вид.

Образует кристаллогидрат состава CuSO4×5H2O (халькантит, медный купорос), имеющий строение [Cu(H2O)4]SO4×H2O (рис.1). Хорошо растворяется в воде (гидролизуется по катиону).

CuSO4, степени окисления элементов в нем

Чтобы определить степени окисления элементов, входящих в состав сульфата меди (II), сначала необходимо разобраться с тем, для каких элементов эта величина точно известна.

Сульфат-ион – это кислотный остаток серной кислоты, формула которой H2SO4. В её составе имеется два атома водорода, следовательно, степень окисления сульфат-иона равна (-2). Для нахождения степени окисления серы примем её значение за «х» и определим его при помощи уравнения электронейтральности:

x + 4× (-2) = -2;

x — 8 = -2;

x = +6.

Степень окисления серы в сульфат-ионе равна (+6).

Для нахождения степени окисления меди будем использовать аналогичный подход:

y+ (+6) + 4×(-2) = 0;

y+ 6 — 8 = 0;

y- 2 = 0;

y= +2.

Значит степень окисления меди в сульфате меди (II) равна (+2):

Cu+2S+6O-24.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Таблица степеней окисления химических элементов. Максимальная и минимальная степень окисления. Возможные степени окисления химических элементов.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Химический справочник / / Таблица Менделеева. Названия. Электронные формулы. Структурные формулы. Таблицы степеней окисления и валентности. Изотопы.  / / Таблица степеней окисления химических элементов. Максимальная и минимальная степень окисления. Возможные степени окисления химических элементов.

Таблица степеней окисления химических элементов. Возможные степени окисления химических элементов. Стандартные, высшие, низшие, редкие степени окисления, исключения. Максимальная степень окисления и минимальная степень окисления.

Степень окисления – это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе – заряду иона.
  1. Степени окисления металлов в соединениях всегда положительные.
  2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru.
  3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:
    • если с атомом металла, то степень окисления отрицательная;
    • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
  4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
  5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.
  6. В неорганической химии обычно применяется понятие степень окисления, а в органической химии — валентность, так как многие из неорганических веществ имеют немолекулярное строение, а органических — молекулярное.
Таблица: Элементы с неизменными степенями окисления.
Элемент Характерная степень окисления Исключения

H

+1

Гидриды металлов: LIH-1

F

-1

O

-2

F2O+2; пероксиды, надпероксиды, озониды

Li, Na, K, Rb, Cs, Fr

Be, Mg, Ca, Sr, Ba, Ra

Al

Справочно: как читать римские цифры и числа.
Таблица. Степени окисления химических элементов по алфавиту.

dpva.ru

Медь и ее свойства

Медь

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое веществомедь (CAS-номер: 7440-50-8) — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

Физические  свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой тепло-[4] и электропроводностью (занимает второе место по электропроводности после серебра, удельная проводимость при 20 °C 55,5-58 МСм/м[5]). Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Возможные степени  окисления

Диаграмма Пурбе для меди

В соединениях медь проявляет  две степени окисления: +1 и +2. Первая из них склонна к диспропорционированию и устойчива только в нерастворимых соединениях (Cu2O, CuCl, CuI и т. п.) или комплексах (например [Cu(NH3)2]+. Её соединения бесцветны. Более устойчива степень окисления +2, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu(B11H11)23−, полученных в 1994 году.

[править]Простое вещество

Не изменяется на воздухе  в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода,цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами,халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Соединения меди(I)

Степени окисления +1 соответствует  оксид Cu2O красно-оранжевого цвета. Соответсвующий гидроксид не получен, так как немедленно дегидратируется с образованием оксида. Гидроксид носит основный характер. Многие соединения меди +1 имеют белую окраску либо бесцветны. Это объясняется тем, что в ионе Сuвсе пять Зd-орбиталей заполнены парами электронов. Ионы меди(I) в водном растворе неустойчивы и легко диспропорционируют:

2Cu+(водн.) → Cu2+(водн.) + Cu(тв.)

В то же время медь(I) встречается  в форме соединений, которые не растворяются в воде, либо в составе  комплексов. Например, дихлорокупрат(I)-ион [CuCl2]− устойчив. Его можно получить, добавляя концентрированную соляную кислоту к хлориду меди(I):

CuCl(тв.) + Cl(водн.) → [CuCl2]− (водн.)

Свойства соединений меди (I) похожи на свойства соединений серебра (I). В частности, CuCl, CuBr и CuI нерастворимы. 
Также существует нестабильный сульфат меди(I)

Соединения меди(II)

Степень окисления II — наиболее стабильная степень окисления меди. Ей соответсвует чёрный оксид CuO и голубой гидроксид Cu(OH)2, который при стоянии легко отщепляет воду и при этом чернеет:

Cu(OH)= CuO + H2O

Гидроксид меди (II) носит  преимущественно основный характер и только в концентрированной  щелочи частично растворяется с образованием синего гидроксокомплекса:

Соли меди(II) образуются при  растворении меди в кислотах-окислителях (азотной, конц. серной). Большинство солей в этой степени окисления имеют синюю или зелёную окраску.

Медный купорос

Соединения меди(II) обладают слабыми окислительными свойствами, что используется в анализе (напр., использование реактива Фелинга).

Карбонат  меди(II) имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди. Сульфат меди(II) при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид. Оксид меди (II) используются для получения оксида иттрия бария меди (YBa2Cu3O7-δ), который является основой для получения сверхпроводников.

Соединения меди(III) и меди(IV)

Степени окисления III и IV являются малоустойчивыми степенями окисления  и представлены только соединениями с кислородом, фтором или в виде комплексов.

Аналитическая химия меди

Ионы меди окрашивают пламя в зелёный цвет

Медь можно обнаружить в растворе по зелёно-голубой окраске  пламени.

      • Традиционно количественное выделение меди из слабокислых растворов проводилось с помощью сероводорода.
      • В растворах, при отсутствии мешающих ионов медь может быть определена комплексонометрически или потенциометрически, ионометрически.
      • Микроколичества меди в растворах определяют кинетическими методами.

]Применение


В электротехнике

Из-за низкого удельного сопротивления (уступает лишь серебру, удельное сопротивление при 20 °C 0,01724-0,0180 мкОм·м[5]), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов (быт: электродвигателях) и силовыхтрансформаторов. Для этих целей металл должен быть очень чистый: примеси резко снижают электрическую проводимость. Например, присутствие в меди 0,02 % алюминия снижает её электрическую проводимость почти на 10 %[6].

Теплообмен

Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.

Для производства труб

В связи с высокой механической прочностью, но одновременно пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах. В ряде стран трубы из меди являются основным материалом, применяемым для этих целей: во Франции, Великобритании и Австралии для газоснабжения зданий, в Великобритании, США, Швеции и Гонконге для водоснабжения, в Великобритании и Швеции для отопления.

В России производство водогазопроводных труб из меди нормируется национальным стандартом ГОСТ Р 52318-2005[7], а применение в этом качестве федеральным Сводом Правил СП 40-108-2004. Кроме того, трубопроводы из меди и сплавов меди широко используются в судостроении и энергетике для транспортировки жидкостей и пара.

Сплавы

Сплавы на основе меди

В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся вышебронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другиеметаллы. Например, в состав так называемого пушечного металла, который в XVI—XVIII вв. действительно использовался для изготовления артиллерийских орудий, входят все три основных металла — медь, олово, цинк; рецептура менялась от времени и места изготовления орудия. В наше время находит применение в военном деле в кумулятивных боеприпасах благодаря высокой пластичности, большое количество латуни идёт на изготовление оружейных гильз.

Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30—40 кгс/мм² у сплавов и 25-29 кгс/мм² у технически чистой меди. Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900—12000 кгс/мм² ниже, чем у стали). Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью. Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных. Медноникелевые сплавы используются для чеканки разменной монеты[источник не указан 338 дней].

Медноникелевые сплавы, в том числе и так называемый «адмиралтейский» сплав, широко используются в судостроении и областях применения, связанных с возможностью агрессивного воздействия морской воды из-за образцовой коррозионной устойчивости.

Медь является важным компонентом  твёрдых припоев — сплавов с температурой плавления 590—880 градусов Цельсия, обладающих хорошей адгезией к большинству металлов, и применяющихся для прочного соединения разнообразных металлических деталей, особенно, из разнородных металлов, от трубопроводной арматуры до жидкостных ракетных двигателей

Сплавы, в которых  медь значима

Дюраль (дюралюминий) определяют, как сплав алюминия и меди (меди в дюрали 4,4 %).

Ювелирные сплавы

В ювелирном деле часто  используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото — очень мягкий металл и нестойко к этим механическим воздействиям.

Соединения меди

Оксиды меди используются для получения оксида иттрия бария меди YBa2Cu3O7-δ, который является основой для получения высокотемпературных сверхпроводников. Медь применяется для производства медно-окисных гальванических элементов и батарей.

Другие сферы  применения

Медь — самый широко употребляемый катализатор полимеризации ацетилена. Из-за этого трубопроводы из меди для транспортировки ацетилена можно применять только при содержании меди в сплаве материала труб не более 64 %.

Широко применяется медь в архитектуре. Кровли и фасады из тонкой листовой меди из-за автозатухания процесса коррозии медного листа служат безаварийно по 100—150 лет. В России использование медного листа для кровель и фасадов нормируется федеральным Сводом Правил СП 31-116-2006[8].

Прогнозируемым новым  массовым применением меди обещает  стать её применение в качестве бактерицидных  поверхностей в лечебных учреждениях  для снижения внутрибольничного  бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.

Стоимость

На 2011 год стоимость меди составляет около $8900 за тонну[9].

Способы добычи

Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

2CO + (CuOH)2CO 3CO+ 2Cu + H2O.

Добычу меди называют[кто?прабабушкой металлургии. Её добыча и выплавка были налажены ещё в Древнем Египте, во времена фараона Рамзеса II (1300—1200 гг. до н. э.). Древние египтяне нагнетали воздух в плавильные печи с помощью мехов, а древесный уголь получали из акации и финиковой пальмы. Они выплавили около 100 т чистой меди.

На территории России и  сопредельных стран медные рудники  появились за два тысячелетия  до н. э. Остатки их находят на Урале (наиболее известное месторождение —Каргалы), в Закавказье, на Украине, в Сибири, на Алтае.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров.

Сейчас известно более 170 минералов, содержащих медь, но из них  только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно медные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика. Эскондида — самый большой в мире карьер, в котором добывают медную руду. Расположен в Чили.

stud24.ru

Какая степень окисления у меди?

Медь может существовать в виде простого вещества – металла, а степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.
В своих соединениях медь может проявлять степени окисления (+1) (, , , и т.д.), (+2) (, , ) и (+3) () (ответ на вопрос «какая степень окисления у меди»).
В первой реакции происходит изменение степеней окисления у элементов медь и сера, причем первый из них окисляется, а второй – восстанавливается. Схемы электронного баланса имеют следующий вид:
 

   

   

 
Во второй реакции происходит изменение степеней окисления у элементов медь и йод, причем первый из них восстанавливается, а второй –окисляется. Схемы электронного баланса имеют следующий вид:
 

   

   

ru.solverbook.com

Таблица. Степени окисления химических элементов.

Таблица. Степени окисления химических элементов.

Степень окисления – это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе – заряду иона.
  1. Степени окисления металлов в соединениях всегда положительные.
  2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru.
  3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:
    • если с атомом металла, то степень окисления отрицательная;
    • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
  4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
  5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.
Таблица: Элементы с неизменными степенями окисления.
Элемент Характерная степень окисления Исключения

H

+1

Гидриды металлов: LIH-1

F

-1

O

-2

F2O+2; пероксиды, надпероксиды, озониды

Li, Na, K, Rb, Cs, Fr

Be, Mg, Ca, Sr, Ba, Ra

Al

Таблица. Степени окисления химических элементов по алфавиту.

Элемент Название Степень окисления
7N

Азот

-III, 0, +I, II, III, IV, V
89Ас

Актиний

0, + III

13Al

Алюминий

0, +III

95Am

Америций

0, + II , III, IV

18Ar

Аргон

0

85At

Астат

-I, 0, +I, V
56Ba

Барий

0, +II

4Be

Бериллий

0,+ IV

97Bk

Берклий

0, +III, IV

5B

Бор

-III, 0, +III
107Bh

Борий

0, +VII

35Br

Бром

-I, 0, +I, V, VII
23V

Ванадий

0, + II , III, IV, V

83Bi

Висмут

0, +III, V

1H

Водород

-I, 0, +I
74W

Вольфрам

0, +IV, VI

64Gd

Гадолиний

0, +III

31Ga

Галлий

0, +III

72Hf

Гафний

0,+IV

2He

Гелий

0

32Ge

Германий

0, +II, IV

67Ho

Гольмий

0, + III

66Dy

Диспрозий

0, + III

105Db

Дубний

0, +V

63Еu

Европий

0, +II, III

26Fe

Железо

0, +II, III, VI

79Au

Золото

0, + I , III

49In

Индий

0 , + III

77Ir

Иридий

0, +III, IV

39Y

Иттрий

0, +III

70Yb

Иттербий

0, + II , III

53I

Йод

-I, 0, +I, V, VII
48Cd

Кадмий

0, + II

19К

Калий

0, +I

98Cf

Калифорний

0, +Ш, IV

20Ca

Кальций

0, + II

54Xe

Ксенон

0, + II , IV, VI, VIII

8O

Кислород

-II, I, 0, +II
27Co

Кобальт

0, +II, III

36Кr

Криптон

0, + II

14Si

Кремний

-IV, 0, +11, IV
96Cm

Кюрий

0, +III, IV

57La

Лантан

0, +III

3Li

Литий

0, +I

103Lr

Лоуренсий

0, +III

71Lu

Лютеций

0, +III

12Mg

Магний

0, + II

25Mn

Марганец

0, +II, IV, VI, VIII

29Cu

Медь

0, +I, -II

109Mt

Мейтнерий

0, +IV?

101Md

Менделевий

0, +II, III

42Mo

Молибден

0 , +IV, VI

33As

Мышьяк

– III , 0 , +III, V
11Na

Натрий

0, +I

60Nd

Неодим

0, +III

10Ne

Неон

0

93Np

Нептуний

0, +III, IV, VI, VII

28Ni

Никель

0, +II, III

41Nb

Ниобий

0, +IV, V

102No

Нобелий

0, +II, III

50Sn

Олово

0, + II , IV

76Os

Осмий

0, +IV, VI, VIII

46Pd

Палладий

0, +II, IV

91Pa.

Протактиний

0, +IV, V

61Pm

Прометий

0, + III

84Рo

Полоний

0, +II, IV

59Рг

Празеодим

0, +III, IV

78Pt

Платина

0, +II, IV

94PU

Плутоний

0, +III, IV, V, VI

88Ra

Радий

0, + II

37Rb

Рубидий

0, +I

75Re

Рений

0, +IV, VII

104Rf

Резерфордий

0, +IV

45Rh

Родий

0, +III, IV

86Rn

Радон

0, + II , IV, VI, VIII

44Ru

Рутений

0, +II, IV, VI, VIII

80Hg

Ртуть

0 , +I, II, IV

16S

Сера

-II, 0, +IV, VI
47Ag

Серебро

0, +I

51Sb

Сурьма

0, +III, V

21Sc

Скандий

0, +III

34Se

Селен

-II, 0,+IV, VI
106Sg

Сиборгий

0, +VI

62Sm

Самарий

0, + II , III

38Sr

Стронций

0, + II

82РЬ

Свинец

0, +II, IV

81Тl

Таллий

0, + I , II

73Ta

Тантал

0, +IV, V

52Te

Теллур

-II, 0, +IV, VI
65Tb

Тербий

0, +III, IV

43Tc

Технеций

0, +IV, VII

22Ti

Титан

0, + II , III, IV

90Th

Торий

0, +IV

69Tm

Тулий

0 , +III

6C

Углерод

-IV, I, 0, +II, IV
92U

Уран

0, +III, IV, VI

100Fm

Фермий

0, +II, III

15P

Фосфор

-III, 0, +I, III, V
87Fr

Франций

0, +I

9F

Фтор

-I, 0
108Hs

Хассий

0, +VIII

17Cl

Хлор

-I, 0, +I, III, IV, V, VI, VII
24Cr

Хром

0, + II , III , VI

55Cs

Цезий

0, +I

58Ce

Церий

0, + III , IV

30Zn

Цинк

0, + II

40Zr

Цирконий

0, +IV

99ES

Эйнштейний

0, +II, III

68Еr

Эрбий

0, +III

Таблица. Степени окисления химических элементов по номеру.

Элемент Название Степень окисления
1H

Водород

-I, 0, +I
2He

Гелий

0

3Li

Литий

0, +I

4Be

Бериллий

0,+ IV

5B

Бор

-III, 0, +III
6C

Углерод

-IV, I, 0, +II, IV
7N

Азот

-III, 0, +I, II, III, IV, V
8O

Кислород

-II, I, 0, +II
9F

Фтор

-I, 0
10Ne

Неон

0

11Na

Натрий

0, +I

12Mg

Магний

0, + II

13Al

Алюминий

0, +III

14Si

Кремний

-IV, 0, +11, IV
15P

Фосфор

-III, 0, +I, III, V
16S

Сера

-II, 0, +IV, VI
17Cl

Хлор

-I, 0, +I, III, IV, V, VI, VII
18Ar

Аргон

0

19К

Калий

0, +I

20Ca

Кальций

0, + II

21Sc

Скандий

0, +III

22Ti

Титан

0, + II , III, IV

23V

Ванадий

0, + II , III, IV, V

24Cr

Хром

0, + II , III , VI

25Mn

Марганец

0, +II, IV, VI, VIII

26Fe

Железо

0, +II, III, VI

27Co

Кобальт

0, +II, III

28Ni

Никель

0, +II, III

29Cu

Медь

0, +I, -II

30Zn

Цинк

0, + II

31Ga

Галлий

0, +III

32Ge

Германий

0, +II, IV

33As

Мышьяк

– III , 0 , +III, V
34Se

Селен

-II, 0,+IV, VI
35Br

Бром

-I, 0, +I, V, VII
36Кr

Криптон

0, + II

37Rb

Рубидий

0, +I

38Sr

Стронций

0, + II

39Y

Иттрий

0, +III

40Zr

Цирконий

0, +IV

41Nb

Ниобий

0, +IV, V

42Mo

Молибден

0 , +IV, VI

43Tc

Технеций

0, +IV, VII

44Ru

Рутений

0, +II, IV, VI, VIII

45Rh

Родий

0, +III, IV

46Pd

Палладий

0, +II, IV

47Ag

Серебро

0, +I

48Cd

Кадмий

0, + II

49In

Индий

0 , + III

50Sn

Олово

0, + II , IV

51Sb

Сурьма

0, +III, V

52Te

Теллур

-II, 0, +IV, VI
53I

Йод

-I, 0, +I, V, VII
54Xe

Ксенон

0, + II , IV, VI, VIII

55Cs

Цезий

0, +I

56Ba

Барий

0, +II

57La

Лантан

0, +III

58Ce

Церий

0, + III , IV

59Рг

Празеодим

0, +III, IV

60Nd

Неодим

0, +III

61Pm

Прометий

0, + III

62Sm

Самарий

0, + II , III

63Еu

Европий

0, +II, III

64Gd

Гадолиний

0, +III

65Tb

Тербий

0, +III, IV

66Dy

Диспрозий

0, + III

67Ho

Гольмий

0, + III

68Еr

Эрбий

0, +III

69Tm

Тулий

0 , +III

70Yb

Иттербий

0, + II , III

71Lu

Лютеций

0, +III

72Hf

Гафний

0,+IV

73Ta

Тантал

0, +IV, V

74W

Вольфрам

0, +IV, VI

75Re

Рений

0, +IV, VII

76Os

Осмий

0, +IV, VI, VIII

77Ir

Иридий

0, +III, IV

78Pt

Платина

0, +II, IV

79Au

Золото

0, + I , III

80Hg

Ртуть

0 , +I, II, IV

81Тl

Таллий

0, + I , II

82РЬ

Свинец

0, +II, IV

83Bi

Висмут

0, +III, V

84Рo

Полоний

0, +II, IV

85At

Астат

-I, 0, +I, V
86Rn

Радон

0, + II , IV, VI, VIII

87Fr

Франций

0, +I

88Ra

Радий

0, + II

89Ас

Актиний

0, + III

90Th

Торий

0, +IV

91Pa.

Протактиний

0, +IV, V

92U

Уран

0, +III, IV, VI

93Np

Нептуний

0, +III, IV, VI, VII

94PU

Плутоний

0, +III, IV, V, VI

95Am

Америций

0, + II , III, IV

96Cm

Кюрий

0, +III, IV

97Bk

Берклий

0, +III, IV

98Cf

Калифорний

0, +Ш, IV

99ES

Эйнштейний

0, +II, III

100Fm

Фермий

0, +II, III

101Md

Менделевий

0, +II, III

102No

Нобелий

0, +II, III

103Lr

Лоуренсий

0, +III

104Rf

Резерфордий

0, +IV

105Db

Дубний

0, +V

106Sg

Сиборгий

0, +VI

107Bh

Борий

0, +VII

108Hs

Хассий

0, +VIII

109Mt

Мейтнерий

0, +IV?

tehtab.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *