Сверлильный прецизионный станок: Высокоточные настольные сверлильные станки – купить в Москве по цене от 9443 рублей, подбор по характеристикам и отзывам – интернет-магазин Рустан.ру

alexxlab | 20.04.1995 | 0 | Разное

Содержание

Станок сверлильный прецизионный Proxxon TBH, цена 16000 грн

укр

рус

😍 Специально для вас

Помощь

Характеристики и описание

    Прецизионный сверлильный станок Proxxon TBH незаменим для выполнения  сверлильных операций с повышенной точностью.

Потребляемая мощность двигателя, Вт300
Номинальное напряжение питания, В/Гц230/50
Частота вращения шпинделя, об/мин1080÷2400÷4500
Диаметр зажима сверла, мм1-10
Макс.толщина сверления по стали, мм10
Макс. расстояние до сверлильного патрона, мм230
Дополнительная регулировка по высоте, мм70
Ход шпинделя, мм63
Вылет, мм140
Размер рабочего стола, мм200х200
Стойка, мм45×500
Масса, кг10

 

    Особенности цангового сверлильного станка Proxxon TBH:

-Двигатель на постоянных магнитах.

-На станок возможно установить цанговый патрон PROXXON 28200( Цанги диаметром 2,35 – 3 – 3,2 – 4 – 5 – 6 мм)

-Для крепления патрона и цангового зажима используется резьба шпинделя 1/2″.

-Proxxon TBH оборудован регулятором глубины сверления со стопором.

-Станка Proxxon TBH оснащён ремнём передачи крутящего момента. Ремень установлен на 3х ступенчатых шкивах (изменение скорости сверления/фрезерования).

-Механизм подачи шпинделя, установленного на трех прецизионных шарикоподшипниках.

Отзывы о продавце

Был online: Вчера

Продавец Интернет-магазин “COOL-TOOL”

11 лет на Prom.ua

1000+ заказов

  • Каталог продавца
  • Отзывы

    384

Продавец Интернет-магазин “COOL-TOOL”

Был online: Вчера

Код: 28124

Доставка по Украине

16 000  грн

  • Тут принимают

  • Тут доставляют

Доставка

Оплата и гарантии

Популярные производители в категории Сверлильные станки

Optimum

HolzMann

Einhell

Optimum Maschinen

FDB Maschinen

Procraft

Scheppach

VULKAN

Vorskla

Cormak

У нас покупают

Деревообрабатывающие станки

Отрезные, зачистные, шлифовальные, пильные круги

Металлообрабатывающие станки

Сверла, буры

Оборудование для производства мебели

Малярно-штукатурный инструмент

Инструмент для скашивания травы

Запчасти и оснастка для станков

Отвертки

Горбыльные станки

Сверлильные коронки, кольцевые пилы

Садовый инвентарь и освещение

Кузнечно-прессовое оборудование

Оборудование для полива

Шлифовальные шкурки, ленты

Фрезерные и фрезерно-гравировальные станки

Ткани для домашнего текстиля и horeca

Ленточнопильные станки по металлу и комплектующие к ним

Гибочные станки

ТОП теги

Установка алмазного бурения титан пдакб2 300

Бетономешалка ДНІПРО М SX 125

Opti bf20l

Профессиональный магнитный станок

Станки wintech новый

Плиткорез уралмаш

Краскопульт kraissmann fsp 1000

  • Перейти в кабинет компании
  • Перейти в личный кабинет

Покупателям

Продавцам

Партнеры

  • EVO. business
  • Kabanchik.ua
  • Вчасно
  • Crafta.ua
  • Zakupki.prom.ua
  • Shafa
  • IZI.ua
  • Туры на Rozetka Travel
  • Bigl.ua
  • Официальные дилеры prom.ua


Бета-тест

© prom.ua, 2008-2022

Насколько вам
удобно на проме?

Прецизионное оборудование, прецизионные станки

Главная Статьи Прецизионное оборудование

Металлорежущий станок – это станок для высокоточной (прецизионной) обработки деталей. Cовременный металлорежущий станок можно рассматривать как некую систему из трех составляющих: измерительной, вычислительной, исполнительной. Ни одна из них несовершенна, каждая вносит погрешности в точность изготовления.
Точность измерительной части зависит от показаний применяемых датчиков. Точность измерения повышается с применением более совершенных датчиков — измерительных устройств, сегодня подобные устройства способны отслеживать размеры до нескольких нанометров.
Прецизионные станки с ЧПУ содержат вычислительные процессоры с высоким быстродействием и решающие многие задачи с заданной точностью. В режиме реального времени просчитываются огромные массивы данных с любой разрядностью чисел. Благодаря достижениям электроники, вычислительная система обладает наибольшей точностью. 

Исполнительная точность непосредственно зависит от узлов и агрегатов станка. Чем выше будут параметры составляющих оборудования, тем меньшая сложится окончательная погрешность.

Обработка металла с высокой (прецизионной) точностью требует особого подхода для изготовления станочного оборудования. 
Все прецизионные станки делятся на классы по степени предельной точности, с которой они способны обрабатывать детали:

  • Станки класса А (особо высокая точность).
  • Класс B (оборудование высокой точности).
  • Класс C (станки особой точности).
  • Станки класс П (повышенная точность обработки).

Прецизионное оборудование обеспечивает обработку деталей идеальной геометрической формы, особо точным пространственным расположением осей вращения.

Станки позволяют получить шероховатость поверхности до одиннадцатого класса чистоты. Параметры изготовления, при определенных условиях, достигают значений характерных для первого класса чистоты.

Для достижения таких показателей необходимо применение станочных узлов и агрегатов, изготовленных по соответствующим стандартам, имеющих минимальные погрешности при их производстве. Особое значение придается используемым подшипникам. На прецизионных станках по металлу используются гидродинамические и аэростатические подшипники высокого класса изготовления. При работе металлообрабатывающего оборудования происходит большое выделение тепла, воздействующее как на узлы станка, так и на заготовки. При этом и те, и другие испытывают механические деформации, приводящие к снижению точности изготовления. В высокоточных станках реализована функция активного отвода тепла, препятствующая геометрическим отклонениям элементов станка и деталей. Понижение уровня нежелательных вибраций также способствует точности изготовления.

Двигатели, редукторы содержат подвижные части, имеющие люфты, поверхности скольжения со временем претерпевают износ — все это непосредственно влияет на качество обработки. Такое понятие, как точность позиционирования системы «станок — деталь», напрямую зависит от исполнительной точности. Стоимость оборудования значительно выше по сравнению с обычными станками. Это является следствием применения новейших наукоемких технологий при изготовлении станков. В качестве примера можно указать использование аэростатических направляющих, где суппорт с рабочим инструментом скользит на расстоянии в несколько микрон от поверхности. То есть фактически находится в «воздухе».

Некоторые модели прецизионных токарных станков способны обрабатывать детали с точностью до 0,0002 мм, при частоте вращения шпинделя 15000 об/мин.

Современный прецизионный шлифовальный станок — это автоматизированный комплекс, позволяющий обрабатывать детали с точностью до 0,01 мм. Прецизионные шлифовальные станки способны обрабатывать внутренние и внешние поверхности детали за одну установку.

Прецизионный сверлильный станок обладает жесткой конструкцией, оборудован цифровой индикацией, отображающей параметры сверления.

Общим для всех типов прецизионных станков является использование в приводах фрикционных передач. При этом повышается качество изготовления, упрощаются кинематические цепи. Более высокий КПД снижает себестоимость работ.

Компания «Мир ISO» предлагает купить качественное и высокоточное прецизионное оборудование от ведущих  производителей по выгодной цене. Чтобы купить инструмент в интернет магазине “Мир ISO” – достаточно выбрать необходимый товар в каталоге http://www.miriso.ru/katalog.html и отправить онлайн-заявку http://www.miriso.ru/sdelat_zakaz.html  или позвонить по телефону +7 (8482) 999-111. 

Чем занимаются мастерские по прецизионному станкостроению: Сверление

Сверление является одним из наиболее распространенных методов, используемых в производстве для создания отверстий. В отличие от других методов изготовления отверстий, таких как растачивание, развертывание и нарезание резьбы, сверление чаще всего используется для создания отверстий в сплошных поверхностях. При прецизионной обработке с ЧПУ объем сверления может варьироваться от простого чернового сверления до сложного многофункционального сверления отверстий.

Инструменты для сверления

Во многих домах есть обычная ручная дрель, используемая для проделывания отверстий в стенах или деревянных поверхностях. Хотя этот инструмент прост в использовании и очень портативен, он не идеален для создания точных повторяемых отверстий в металлических поверхностях. Шаг в правильном направлении – сверлильный станок . Также характерной чертой столярных мастерских является то, что сверлильный станок имеет стол, который устойчиво удерживает заготовку, и головку, которая поднимает или опускает и удерживает вращающееся сверло .

Сверлильные станки с ЧПУ могут добавлять различные уровни сложности к базовой конфигурации сверлильного станка, но большинство из них работают по одним и тем же принципам.

Почти каждый сверлильный станок с ЧПУ состоит из следующих компонентов:

  • Головка: отвечает за удержание шпинделя и инструмента, а также за подъем и опускание сверла при формировании отверстия.
  • Шпиндель: вращающийся вал, соединяющий патрон и головку.
  • Патрон: компонент, удерживающий сверло во время его вращения.
  • Платформа: , хотя ее иногда заменяют другим компонентом — например, в горизонтально-сверлильных станках — платформа отвечает за устойчивое удержание заготовки, когда сверло создает отверстия.
  • Сверло: Наконец, фактическим инструментом для резки является сверло. Этот компонент может иметь самые разные формы в зависимости от размера, текстуры и других характеристик просверливаемого отверстия.

Само сверло может сильно повлиять на сложность просверливаемых отверстий. Например, ступенчатых отверстий или отверстий с несколькими диаметрами можно сделать двумя способами. Используя простые сверла, оператор может начать с большего сверла и просверлить до нужной глубины для этого диаметра, затем использовать меньшее сверло и просверлить отверстие меньшего диаметра глубже в заготовке. Другой способ просверлить ступенчатое отверстие — использовать ступенчатое сверло со встроенными режущими поверхностями, соответствующими нескольким диаметрам. Подобные сложные сверла также могут быть использованы для создания фаска, или наклонная поверхность в верхней части отверстия.

При использовании сверления в станках с ЧПУ

Обрабатывающие станки с ЧПУ имеют несколько вариантов выполнения отверстий в заготовках, включая растачивание , зенкерование , нарезание резьбы и

10 развертывание 90. Сверление используется в определенных ситуациях: когда это либо лучший процесс для работы, либо самый экономичный. Поскольку для сверления можно использовать более простые и менее дорогие инструменты, этот процесс часто применяется на этапах черновой обработки.

То есть начальное отверстие создается путем сверления, и это отверстие будет отрегулировано с меньшими допусками позже с помощью другого процесса.

Сверление также идеально подходит для глубоких отверстий. По словам Эрика Фазакерли, инженера-технолога Eagle CNC, глубокие отверстия становятся все более распространенными, поскольку клиентам требуются эти характеристики для поддержки сложных механических операций. «Когда я только начинал, все, что связано со сверлением, было всего в 3–5 раз больше диаметра отверстия, — говорит Фазакерли. «Больше ничего не возили. Теперь регулярно бурим скважины глубиной до 30 раз больше их диаметра».

Процессы сверления с ЧПУ

Процесс сверления не всегда включает вращающееся сверло и головку станка, которая перемещается вверх и вниз вдоль оси отверстия. Для определенных типов материалов и определенных размеров отверстий необходимо изменить основной процесс сверления.

  • Точечное сверление: сверление неглубоких отверстий для удержания более длинных сверл или расточных инструментов во время будущих операций сверления.
  • Сверление с просверливанием: многократное погружение сверла в отверстие и удаление его вместе с металлическими лентами, называемыми стружкой , образующейся в процессе сверления. Часто используется в относительно глубоких отверстиях, где скопление стружки затруднено.
  • Орбитальное бурение: некоторые буровые долота предназначены для орбитального бурения, при котором создаваемое отверстие имеет больший диаметр, чем долото. Чтобы создать отверстие с помощью этого метода, сверло «вращается» вокруг центра отверстия. Этот процесс похож на расточку.

На изображении ниже показано ступенчатое отверстие . Как описано выше, это отверстие было просверлено с различными диаметрами.

Еще из серии “Что делают мастерские прецизионного машиностроения”

  • Введение
  • Фрезерование
  • Токарная обработка
  • Сверление
  • Сверление
  • Пиление
  • Протяжка

Узнайте больше об оборудовании и методах ЧПУ из нашей бесплатной электронной книги Руководство по обработке с ЧПУ путешествие деталей, которые они проектируют, от определения чертежа до производства, и осмотр. Одной из наиболее распространенных особенностей конструкции машин является отверстие. Независимо от того, принимает ли он болт или прецизионный подшипник, он должен быть правильным. размера и в правильном месте для правильной работы машины. В этом видео, мы изложим соображения по проектированию отверстий и точности отверстий, дать вам несколько советов по их надежной и экономичной обработке, а также сравнить различные способы их проверки.

Разделы видео

00:00 – Введение
00:47 – Прецизионные отверстия в конструкции машин
02:36 – Пределы размеров отверстий
03:03 – Элементы управления положением GD&T
03:55 – Элементы управления формы GD&T
04: 43 – GD&T Orientation Controls
05:31 – Отделка поверхности
06:26 – Просверленные отверстия
07:33 – Советы по использованию сверл
08:23 – Центровочные сверла
09:44 – Развертки
11:26 – Растачивание
12: 27 – Круговое фрезерование
13:07 – Регулируемая компенсация (G41/G42)
14:28 – Точность процессов обработки
16:21 – Проверка прецизионных отверстий
17:03 – Калибр-пробки (проходные/непроходные штифты)
17:54 – Штангенциркули для внутренних измерений
18:26 – Телескопические нутромеры
19:00 – Микрометр с внутренним диаметром трубы
19:36 – Нутромер со шкалой
20:19 – Трехточечный микрометр
21:45 – Как убедиться, что отверстие соответствует техническим условиям
23:10 – Правило 1, принцип конверта
24:01 — ISO и ASME для элементов размера
25:31 — Заключение

Дополнительные ресурсы

  • Mitutoyo, Краткое руководство по прецизионным измерительным приборам
    • Содержит обширную информацию о том, как выбирать и использовать различные типы ручных и цифровых измерительных приборов и учитывать связанные с ними ошибки.
  • ВВС США, Стандарт авиационного проектирования AND10387
    • Перечень общепринятых допусков на размер просверленных отверстий.
  • Точность кромки, компенсация на режущий инструмент небольшое пояснение
    • Одно из лучших доступных объяснений того, как настроить компенсацию G41/G42 в режиме управления для фрезерной обработки с ЧПУ.

Стенограмма видео

Прецизионные сверления и отверстия являются фундаментальной особенностью почти каждой машины. Если вы когда-либо проектировали что-либо со штифтом, подшипником или уплотнением, вам, несомненно, приходилось указывать точное отверстие.

Тщательная спецификация и контроль отверстий необходимы для правильного функционирования почти каждой машины.

В этом видео мы познакомим вас с основными методами изготовления отверстий, используемыми в промышленности, и покажем вам некоторые передовые методы проектирования, чтобы вы не увеличивали ненужные затраты на свои детали и не создавали проблем во время производства. Мы также дадим вам несколько советов по получению отличных результатов при обработке с помощью обычных инструментов и оборудования. А поскольку основой прецизионной обработки являются прецизионные измерения, мы обсудим некоторые аспекты метрологии, чтобы вы могли каждый раз измерять свои детали быстро и точно.

Во-первых, давайте поговорим о некоторых примерах проектирования станков, где вам нужно будет указать прецизионное отверстие. Этот шарикоподшипник установлен в алюминиевом корпусе. Отверстие, в которое он подходит, должно быть очень точно выполнено, чтобы подшипник функционировал должным образом. Если посадка между подшипником и корпусом слишком плотная, подшипник может заблокироваться после установки или преждевременно выйти из строя. Если посадка слишком свободная, подшипник может сместиться во время работы, что приведет к вибрации или другим проблемам в машине.

Для достижения номинальных характеристик шарикоподшипникам требуется тщательно обработанный корпус и вал.

Для этого подшипника разница между «слишком герметичным» и «слишком свободным» отверстием составляет всего около пяти десятитысячных дюйма, или 12 микрон. Это очень жесткий допуск, и для правильной обработки и проверки требуется определенная осторожность.

Другим примером прецизионного отверстия является отверстие под уплотнение. Как мы обсуждали в нашем видеоролике об уплотнительных кольцах, уплотнения зависят от тщательно контролируемого взаимодействия с отверстием. Если посадка слишком тугая, поршень может заклинить. Слишком слабое, и уплотнение может протекать или выдавливаться в зазор между поршнем и отверстием.

Установочные штифты можно использовать для выравнивания двух компонентов. Тщательный контроль местоположения требуется, если детали должны легко собираться.

Наконец, конструкторы часто выравнивают компоненты или передают усилие с помощью штифтов. Одна из распространенных схем состоит в том, чтобы спроектировать соединение таким образом, чтобы штифты вдавливались в одну часть, а другая часть свободно скользила по ним. Достижение этих посадок требует не только точного размера отверстий, но и того, чтобы они были просверлены в правильных местах.

Имея в виду эти области применения, давайте более внимательно подумаем об особых качествах отверстия, влияющих на его характеристики, и обсудим, как мы можем контролировать эти качества на инженерном чертеже. Самая очевидная характеристика, которая приходит на ум, — размер. Если отверстие слишком маленькое, ответная часть не подойдет. И если он слишком большой, он может не обеспечить требуемой точности выравнивания. Конструктор использует допуск, чтобы указать диапазон размеров, приемлемый для готового элемента. Ранее мы показывали вам, как систематически устанавливать этот допуск на основе желаемого соответствия между компонентами.

Если отверстия в шаблоне расположены неаккуратно, детали не соберутся.

Но размер отверстия — не единственная характеристика, о которой нам нужно беспокоиться. Если вы когда-либо пытались выровнять две детали с помощью набора винтов или штифтов, вы, возможно, лично столкнулись с важностью расположения отверстий. В этом случае, даже если размеры всех задействованных отверстий находятся в пределах допуска, вы можете обнаружить, что детали все равно не подходят друг к другу. Это связано с тем, что отверстия также должны находиться в правильном месте, чтобы соединение функционировало должным образом. В то время как допуск местоположения можно контролировать с помощью обычных линейных размеров, геометрических размеров и допусков, или GD&T, позволяет проектировщику гораздо более точно контролировать допуски положения элементов, а также увеличивает величину допустимого допуска без влияния на функциональность.

Форма отверстия, особенно отверстия под подшипник, может иметь существенное влияние на посадку и функционирование сопрягаемой детали.

Но допусков на размер и расположение по-прежнему недостаточно для полного определения размерных характеристик отверстия. Отверстие, даже очень точно обработанное, никогда не бывает идеальным цилиндром. Всегда есть крошечные вариации, высокие и низкие точки, которые отклоняются от идеального цилиндра. Величина допустимого отклонения от идеально круглого прямого цилиндра контролируется допуском формы. Для цилиндров допуски GD&T на прямолинейность, округлость и цилиндричность являются основными способами, с помощью которых проектировщик определяет требования к форме. Если вы работаете в соответствии со стандартами черчения ASME, существует также неявный контроль формы, о котором мы поговорим чуть позже.

Существует еще одно размерное свойство, называемое ориентацией, которое также может иметь большое влияние на производительность машины. Ориентация используется для описания того, насколько параллельно или перпендикулярно должно быть отверстие по отношению к другому элементу. Например, когда отверстия подшипников имеют чрезмерное угловое смещение, вал может заклинить во время установки или вызвать нежелательные силы и моменты во время работы, что приведет к преждевременному выходу из строя.

Существует множество нюансов в допусках расположения, ориентации и формы, и мы пока просто хотим познакомить вас с этими понятиями на высоком уровне. В следующих видеороликах мы больше сосредоточимся на особенностях этих элементов управления, особенно в том, что касается GD&T.

Чистота поверхности особенно важна для гидравлических систем, где чрезмерная шероховатость поверхности может привести к утечкам или износу уплотнений.

Последней характеристикой отверстия является качество обработки его поверхности. Обработка поверхности особенно важна при работе с гидравлическими или пневматическими уплотнениями, поскольку слишком грубая обработка увеличивает вероятность утечек или приводит к преждевременному износу уплотнительных элементов.

Прецизионные отверстия могут быть изготовлены различными методами, и оператор должен найти компромисс между каждым из них, чтобы выбрать наиболее экономичный процесс, отвечающий требованиям чертежа. Четыре основных процесса формирования и обработки отверстий — это сверление, развертывание, растачивание и круговая интерполяция с помощью концевой фрезы. Есть много других процессов, но эти четыре широко доступны почти в каждом механическом цехе. Давайте поговорим о каждом из них немного подробнее.

Сверление, пожалуй, самый известный процесс механической обработки. Сверла, используемые в металлообработке, имеют две угловые режущие кромки, которые сходятся в центральной точке. В отличие от концевой фрезы, канавки спирального сверла не являются режущими поверхностями. Их единственная функция состоит в том, чтобы работать как шнек, перемещая стружку вверх и из отверстия.

Глубокие отверстия могут значительно увеличить стоимость производства, особенно когда требуются специальные инструменты.

Для проектировщика важным фактором при высверливании отверстия является соотношение между его глубиной и диаметром. Например, если диаметр отверстия составляет полдюйма, а его глубина — два дюйма, мы бы сказали, что отношение его глубины к диаметру равно четырем. Отверстия с отношением глубины к диаметру пять и выше обычно считаются «глубокими» и могут потребовать специальных циклов сверления и инструментов, которые увеличивают стоимость детали.

Дизайнер также должен знать, что отверстия можно сверлить только перпендикулярно поверхности. Если вам нужно отверстие на изогнутой или наклонной грани, вы должны указать точечную грань, которая создает плоское дно для работы.

Использование правильных подач и скоростей значительно снижает проблемы с эвакуацией стружки, но для более глубоких отверстий часто требуются специальные инструменты или циклы сверления.

Для станочника основной задачей при сверлении является удаление стружки. В более глубоких отверстиях, особенно в алюминии, стружка имеет тенденцию застревать в канавках сверла, что резко увеличивает тепловыделение при резании.

На сегодняшний день лучший способ решить эту проблему — подача СОЖ через шпиндель. Эта система подает охлаждающую жидкость под высоким давлением прямо к режущей кромке сверла. Когда охлаждающая жидкость вытекает из просверливаемого отверстия, она уносит с собой стружку. Если подача СОЖ через шпиндель недоступна, могут помочь циклы сверления, а также существуют сверла с параболической канавкой, предназначенные для более эффективного удаления стружки из отверстия. Снижение скорости вращения шпинделя при сохранении той же подачи на оборот также может помочь за счет снижения тепловыделения, что снижает вероятность слипания стружки.

Правильный выбор центровочного сверла является ключом к точному расположению просверленных отверстий.

Если вы хотите просверлить отверстие так, чтобы сверло не блуждало по заготовке, обязательно начните с хорошего центрирующего сверла. Точечные сверла намного короче обычных спиральных сверл, а также имеют очень короткие канавки. Это делает их намного более жесткими, чем обычные сверла, обеспечивая точный начальный конус, который помогает направлять последующие операции сверления.

Как правило, угол точечного сверления выбирается таким, чтобы он был равен или превышал угол вершины сверла. Идея состоит в том, что вы хотите, чтобы центр сверла соприкоснулся и начал резать раньше, чем внешние края. Диаметр конуса, оставляемого на заготовке центральным сверлом, должен составлять около 75% от диаметра сверла, которое вы планируете использовать.

Даже при тщательном точечном сверлении и оптимизированном процессе сверление не считается особо точным методом. В этой таблице показаны обычно ожидаемые допуски на размер просверленного отверстия для различных размеров. При сверлении на станке допуск на предполагаемое положение должен быть не более восьми тысяч или 0,2 мм в диаметре.

Хотя сверление само по себе не является особо точным процессом, просверленные отверстия часто уточняются последующими операциями для повышения их точности. Когда размер отверстия требует более жестких допусков, чем позволяет только сверление, отверстие может быть закончено путем развертывания.

Развертки — это эффективный и экономичный способ обработки отверстий очень точного размера.

Развертка представляет собой рифленый режущий инструмент, который удаляет тонкий слой материала, увеличивая отверстие примерно на десять-пятнадцать тысячных, или от 0,25 до 0,5 мм. Традиционные патронные развертки имеют небольшую фаску на носу, которая выполняет большую часть резки. Там, где при сверлении можно получить допуски на размер порядка плюс-минус пять тысяч или сто микрон, развертывание может надежно удерживать допуски в пределах тысячных, или 25 микрон.

Грубо говоря, вы должны запускать развертку на половине скорости и удвоенной скорости подачи на оборот по сравнению с только что использованным сверлом. Вы также должны срезать любой излом кромки или снять фаску перед развертыванием. Этот ввод поможет центрировать развертку, а также позволит удалить небольшой заусенец, оставшийся после операции снятия фаски.

Иногда можно «отрегулировать» размер разреза развертки на несколько десятых, просто изменив смазочно-охлаждающую жидкость или подачу и скорость. Вообще говоря, более густая, более смазывающая смазочно-охлаждающая жидкость, более низкая скорость и более высокая подача позволяют получить отверстие немного меньшего размера для данного материала.

Развертка не может исправить проблемы с расположением или формой просверленных отверстий. Развертки на самом деле спроектированы так, чтобы быть очень гибкими, самоцентрирующимися на пилотном отверстии и повторяющими его профиль. Если просверленное отверстие находится в неправильном месте или неровно, его расширение не сильно улучшит ситуацию.

В отличие от разверток, расточные головки могут исправить проблемы с расположением.

Когда вам нужно сделать очень прямые круглые отверстия в очень точных местах, расточка является золотым стандартом. Расточные головки имеют эксцентриковую фрезу, часто токарную расточной оправку, которая медленно подается в отверстие. В отличие от развертки, которая может прорезать отверстие только одного размера, расточная головка регулируется, что позволяет обрабатывать широкий диапазон диаметров с помощью одного инструмента.

Настройка расточных головок — довольно медленный процесс, но как только они настроены, они могут надежно выдерживать допуски на размер и расположение в несколько десятых долей или около 5 микрон, в зависимости от биения шпинделя и точности стола станка.

До того, как станки с ЧПУ стали широко доступны, расточка была гораздо более распространена, чем сейчас, особенно в качестве черновой обработки. С широким распространением обрабатывающих центров с ЧПУ расточка стала более высокоточной чистовой обработкой. Одна из причин, по которой расточные головки потеряли популярность, заключается в том, что станки с ЧПУ могут одновременно перемещать несколько осей, что позволяет фрезеровать круги и сложные профили.

Хотя фрезерование с ЧПУ очень универсально, оно обычно не так точно, как некоторые из процессов, которые мы рассмотрели, особенно когда речь идет о допуске на размер. Многие причины сводятся к программам CAM, предполагающим идеальный номинальный диаметр концевой фрезы. В действительности, большинство концевых фрез после окончательной шлифовки имеют размер на одну или две тысячи, или от 25 до 50 микрон, меньше своего номинального размера.

Если на вашем станке имеется измерительная система, вы можете значительно повысить точность фрезерованных элементов, включив «контролируемую компенсацию» для чистового прохода. Когда программа обработки детали вызывает управляемую компенсацию, обычно с блоком G41 или G42, контроллер станка вычисляет смещение центральной линии инструмента, используя измеренный диаметр конкретного инструмента, загруженного в шпиндель, в отличие от общего номинального инструмента. диаметр хранится в библиотеке инструментов программного обеспечения CAM. Эта компенсация, если она доступна, может увеличить точность фрезерования в пределах одной или двух тысяч, или между 25 и 50 микронами.

Блок G41/G42 указывает контроллеру станка рассчитать смещение центральной линии инструмента на основе диаметра инструмента. Если станок имеет точный диаметр инструмента, хранящийся в его таблице смещения, это может значительно повысить точность фрезерованных элементов.

Однако управляемая компенсация не может учитывать отклонение инструмента, которое часто приводит к изменению размера диаметра отверстия по его длине. А без регулярной калибровки люфта часто используемые фрезерные станки с ЧПУ имеют тенденцию вырезать искривленные круги по мере износа шарико-винтовых пар со временем. Хотя универсальность фрезерования с ЧПУ делает его привлекательным вариантом, важно подчеркнуть, что сверление, развертывание и растачивание по-прежнему имеют место, особенно когда требуются жесткие допуски.

Если мы хотим сравнить технологические возможности четырех методов, которые мы рассмотрели, лучше всего подумать о размере и точности местоположения независимо друг от друга. Если требуется еще большая точность, можно рассмотреть хонингование, шлифование, координатное растачивание или полировку роликами. Однако это специализированные процессы, которые могут значительно увеличить стоимость готовой детали. Часто лучший подход включает в себя объединение нескольких процессов с использованием сильных сторон каждого из них.

В приведенной выше таблице сравниваются обычно достижимые допуски на размер и расположение для различных комбинаций инструментов и станков.

Это функциональный датчик, который мы обработали для предстоящего видео о допуске положения GD&T. Подобные датчики можно использовать для быстрого подтверждения того, что шаблоны элементов соответствуют требованиям допусков положения GD&T. Если деталь может полностью сесть на калибр, то она соответствует техническим требованиям.

Этот манометр имеет стальную основу с четырьмя запрессованными штифтами. Прессовая посадка между штифтами и основанием требует очень точного размера приемных отверстий в основании. А так как смысл этой детали в том, чтобы быть точным измерителем положения, штифты также должны находиться в очень точных местах. При диаметре в четверть дюйма эти отверстия были слишком малы для сверления, по крайней мере, с помощью инструментов, которые у нас были под рукой.

Функциональные калибры, подобные этому, позволяют быстро контролировать контроль качества шаблонов отверстий, контролируемых с помощью допуска положения GD&T.

Мы решили сначала просверлить отверстия меньшего размера, чтобы удалить большую часть материала. В этот момент отверстия не имели точного размера и точного расположения. Затем мы использовали концевую фрезу и сняли еще немного материала со сторон отверстий. Это улучшило их расположение, что позволило нам рассверлить их до окончательного размера для идеальной прессовой посадки.

Когда мы проверили калибр, отклонение положения и ориентации штифтов составило менее двух десятых, или пять микрон, что находится в пределах нашего допуска для этого калибра.

Существует множество различных контрольных инструментов для проверки отверстий и отверстий. Правильный выбор в данной ситуации зависит от измеряемой характеристики и плана контроля качества детали.

В точных работах контроль и метрология имеют решающее значение. Если вы не можете контролировать с жестким допуском, вы не можете обрабатывать с жестким допуском. Это так просто.

Когда дело доходит до измерения отверстий и отверстий, существует множество различных инструментов и методов, но правильный выбор в данной ситуации зависит от нескольких факторов. Во-первых, вы должны спросить себя, действительно ли мне нужно измерять диаметр отверстия или мне просто нужно подтвердить, что оно соответствует техническим требованиям? Ответ на этот вопрос может зависеть от плана контроля качества заказчика, но часто нам не нужно измерять отверстие напрямую. Калибр-пробки

— это самый быстрый способ убедиться, что отверстие имеет правильный размер, если не требуется проверка формы и ориентации.

Вместо этого мы можем использовать «проходной» и «непроходной» калибр-пробки для нижнего и верхнего пределов допуска соответственно, чтобы подтвердить, что деталь соответствует техническим требованиям. Этот подход на сегодняшний день является наиболее эффективным, и по этой причине он является распространенным методом контроля качества в крупносерийном производстве.

Однако калибр-пробки становятся проблематичными, когда допуски очень жесткие, например менее двух тысяч или 50 микрон. При таких допусках может быть трудно повторно различить разницу между «годен» и «не годен». Калибры также не могут определить, действительно ли отверстие круглое, а заусенцы на краю отверстия могут привести к ложному результату. Наконец, вам часто потребуется фактическое численное измерение функции, а не просто оценка «соответствует спецификации» или «не соответствует спецификации».

У большинства инженеров есть набор штангенциркулей, и, хотя может возникнуть соблазн использовать их внутренние губки для проверки отверстия, вы должны знать, что результат измерения может отличаться до 0,002 дюйма (0,05 мм).

В таких ситуациях у вас может возникнуть соблазн достать штангенциркули и использовать их внутренние измерительные губки для проверки диаметра.

Не надо.

Внешние губки обычных штангенциркулей имеют точность только плюс-минус одна тысяча, или 20 микрон, а из-за того, что называется погрешностью смещения шкалы, внутренние губки имеют дополнительное отклонение плюс-минус одна тысяча, или тридцать микрон, это означает, что ваши измерения могут отличаться до двух тысячных дюйма или пятидесяти микрон. Есть несколько лучших вариантов для рассмотрения.

Требуется некоторая практика, чтобы научиться пользоваться телескопическими нутромерами, но как только вы освоите их, они могут стать экономичным способом проверки умеренно жестких допусков.

Чуть лучше штангенциркуля являются телескопические нутромеры. Эти инструменты помогают «перенести» внутреннее измерение на инструмент внешнего измерения, такой как микрометры. Телескопические датчики сложны в использовании, но если вы будете осторожны, вы можете получить измерение, которое повторяется в пределах одной тысячи или 25 микрон. Самым большим преимуществом телескопических нутромеров является их дешевизна. Компромисс заключается в том, что они очень чувствительны к технике оператора и даже в идеальных условиях недостаточно точны для очень жестких допусков.

Микрометры с трубчатым внутренним диаметром отлично подходят для точного контроля больших диаметров.

Для более точных измерений можно использовать трубчатые микрометры с внутренним диаметром. Обычно они продаются в наборах, включающих микрометрическую головку и несколько сменных пяток. Большим преимуществом трубчатых ID-микрофонов является то, что один комплект может охватывать широкий диапазон диаметров. Этот набор, например, может иметь размеры от 1,5 до 12 дюймов или от 40 до 300 мм, но доступны и другие наборы размером до 60 дюймов или 1500 мм. Микрофоны Tubular ID имеют точность около одной тысячи или 25 микрон.

Циферблатные нутромеры позволяют инспектору точно проверить размер отверстий, а также оценить округлость.

Для еще более точных измерений вам может понадобиться нутромером со шкалой. Они могут считывать данные с точностью до одной десятой или двух с половиной микрон. Циферблатные нутромеры также можно использовать для быстрого выполнения нескольких измерений под разными углами и на разных глубинах в отверстии, что позволяет оператору оценить форму.

Если вы внимательно посмотрите на шкалу нутромера с часовым механизмом, то увидите, что на самом деле он не считывает диаметр элемента, который вы измеряете напрямую. Вместо этого он сообщает только об отклонении от нуля. Следовательно, манометр должен быть установлен перед использованием. Предпочтительным подходом является использование кольцевого калибра для измеряемого диаметра, но вы также можете установить их между губками микрометра.

Трехточечные микрометры быстрее в использовании, чем нутромеры со шкалой, но они очень дороги.

Разновидностью нутромера со шкалой является трехточечный микрометр. Трехточечные микрофоны предлагают два больших улучшения по сравнению с циферблатными калибрами. Во-первых, имеется три измерительных поверхности вместо двух, которые самоцентрируют датчик в отверстии, устраняя необходимость в колебательном движении. Это делает их более быстрыми и удобными в использовании. Во-вторых, трехточечные микрофоны обычно имеют прямую индикацию, а это означает, что они отображают фактический диаметр, а не просто отклонение, как это делает нутромером со шкалой. Это означает, что их не нужно устанавливать с помощью калибра-кольца, если только вы не меняете измерительную головку.

За эти преимущества приходится платить: трехточечные микрофоны значительно дороже нутромеров со шкалой, и они являются одними из самых дорогих среди всех ручных измерительных инструментов. Диапазон измерения каждой головки также довольно ограничен, поэтому вам нужно иметь довольно большой их запас, чтобы иметь возможность проверить каждое отверстие с их помощью.

Координатно-измерительная машина также может использоваться для проверки отверстий, но ручной инструмент может быть более эффективным.

Также стоит отметить, что вы также можете измерять отверстия с помощью координатно-измерительной машины или КИМ. Хотя КИМ, как правило, очень точны, ими легко злоупотребить. Очень незначительные проблемы с настройкой, программированием или отчетностью могут привести к значительным ошибкам в окончательных данных. Даже при наличии КИМ есть большая вероятность, что ручной инструмент обеспечит более точное измерение быстрее.

Мы дали вам несколько способов измерения элемента, но определить, действительно ли он соответствует требованиям чертежа, не так просто, как просто записать число, отображаемое на датчике. Ранее в видео мы упоминали, что отверстие может иметь небольшие вариации формы, что является еще одним способом сказать, что оно может быть не круглым или прямым, и мы должны учитывать эту возможность при проверке деталей.

Предположим, вы измеряете скважину в нескольких разных местах, возможно, на разных глубинах и под разными углами. Вы, вероятно, получите немного другой диаметр для каждого измерения. Итак, каков истинный диаметр отверстия? И что, если одно или два измерения фактически выходят за пределы допуска? Часть бракованная?

Здесь все становится сложнее.

ASME Y14.5 требует «идеальной формы в MMC». Чтобы оценить это условие, калибр-пробка на пределе MMC должен пройти через элемент.

С точки зрения контроля, оценка соответствия цилиндрического отверстия системе ASME Y14.5 фактически требует двух шагов. Во-первых, необходимо использовать двухточечный измерительный инструмент для измерения диаметра на различных глубинах и углах. Каждое выполненное измерение должно находиться в пределах установленных допусков. Если какое-либо измерение, которое вы выполняете, выходит за пределы допуска, функция не соответствует техническим требованиям. Далее, должен полностью пройти калибровочный штифт по минимальному пределу диаметра.

В учебниках и курсах GD&T этот второй шаг иногда называют «правилом 1» или принципом конверта. Хотя этот двухэтапный подход добавляет много сложностей, для этого есть веская причина. Без принципа конверта не гарантируется, что отверстия, размеры которых соответствуют спецификации, свободно соединятся с сопрягаемой деталью. Если отверстие близко к минимальному пределу диаметра, а также имеет проблемы с прямолинейностью, вы можете увидеть, как сопрягаемый штифт будет иметь тенденцию к заеданию в том, что должно быть рабочей посадкой.

Если отверстие имеет проблемы с прямолинейностью и его размер очень близок к пределу MMC, сопрягаемая деталь может не подойти. По этой причине ASME создала двухэтапную систему проверки соответствия цилиндрических элементов.

До сих пор мы обсуждали эту концепцию исключительно в контексте отверстий, но тот же принцип применим и к внешним диаметрам. Каждое двухточечное измерение, выполненное с помощью микрометров наружного диаметра, должно находиться в пределах допуска, а калибр-кольцо на максимальном пределе диаметра также должен проходить через элемент.

Если вы раньше работали с GD&T, вы, вероятно, слышали, как кто-то загадочно заявляет, что существуют различия между системами ASME и ISO GD&T. Ну, самая большая разница связана с принципом конверта. Он применяется по умолчанию к чертежам, подготовленным в соответствии с ASME Y14.5, но не к ISO. Чертежи ISO по умолчанию полагаются только на двухточечную схему измерения. Другими словами, единственным требованием системы ISO является то, что каждое двухточечное измерение, выполненное под разными углами и на разных глубинах, должно находиться в пределах установленного диапазона допусков.

Это означает, что допуск на размер не обеспечивает контроля прямолинейности. Другими словами, в системе ISO возможно, что элемент может соответствовать спецификации на основе допуска на размер, но все же не соответствовать сопрягаемой части.

Модификатор конверта можно добавить к размерам на чертежах ISO (которые не требуют принципа конверта по умолчанию), чтобы обеспечить посадку между компонентами.

Не будем спорить о том, какая система лучше. У каждого есть свои преимущества и недостатки, но важно то, что вы понимаете различия. Если вам нужен принцип конверта при использовании системы ISO, вы можете добавить модификатор конверта после допуска, что делает интерпретацию эквивалентной системе ASME.

Аналогичным образом, если у вас есть чертеж ASME и вам нужно отказаться от требований принципа конверта, вы можете добавить модификатор независимости, который требует, чтобы диаметр рассматривался так, как это было бы в системе ISO.

Надеюсь, это видео дало вам несколько советов по проектированию и изготовлению точных деталей. Как всегда, у нас есть сопутствующий пост в блоге с дополнительными ресурсами и ссылками, если вам нужна дополнительная информация. И если вы найдете наш контент полезным, рассмотрите возможность подписки на наш канал, а также на нашу рассылку новостей, чтобы не пропустить ни одного будущего видео.

Наша 6-дюймовая стальная линейка имеет как британские, так и метрические единицы измерения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *