Свинец хром никель цинк это металлы – – , , , .

alexxlab | 08.10.2019 | 0 | Разное

Содержание

Цветные металлы

К цветным металлам относят металлы, в число которых не входит железо или его сплавы, представлены следующими элементами: алюминий, медь, олово, цинк, хром, никель, серебро. Отличительной особенностью цветных металлов является образование окислительной пленки на поверхности металла, такая особенность не допускает проникновение коррозии вглубь металла.

Медь (Сu) классифицируется в зависимости от процентного содержания чистой меди отМ00 до М4 (варьируется содержание меди в интервале 99,99% - 99,0% от общего веса соответственно). Марки МФ1, МФ2, МФ3 содержат фосфор, такая медь обладает улучшенными свойствами текучести (когда материал расплавлен) и упругости.

Серебро (Аg) относят к благородным металлам. Серебро обладает самой высокой среди всех металлов теплопроводностью. Плавится серебро при температуре 960°С. Серебро не окисляется ни во влажной среде, ни на воздухе. Серебро активно используют при изготовлении различный украшений (серьги, браслеты, перстни) и различных бытовых изделий (ложек, вилок). Серебро также используют как элемент, обеззараживающий воду, которая долгое время не портится и влияет на организм человека положительно.

Никель (Ni) – это металл серебристо – белого цвета желтоватого оттенка. Плавится никель при температуре 1455°С. Никель можно приблизить по свойствам к благородным металлам из-за его свойства отсутствия окисления во влажной среде или на воздухе. Использование никеля – это покрытие металлов (то есть никелирование) в целях их защиты от внешней среды или декорации изделий, а также изготовление нержавеющей стали.

Хром (Сr) – это блестящий металл, имеющий синеватый оттенок. По своим свойствам хром хрупкий, но при этом очень твердый. Температура плавления хрома достигает 1910°С. Хром также обладает стойкостью к окислению во влажной среде и на воздухе. В промышленности часто используют хромирование, то есть наносят на поверхность изделия слой хрома, такие изделия получаются очень эффектными для декорации интерьера купить цветные металлы, а также защищены от коррозии.

Сурьма (Sb) – серебристо-белый металл, имеющий голубоватый оттенок. Температура плавления его составляет 630°С, этот цветной металл довольно хрупкий. Используют сурьму как элемент сплава для снижения его температуры плавления, а также в мягких сплавах для повышения их твердости.

Висмут (Вi) – это металл серебристо-белого цвета, имеющий красноватый оттенок. Также как и сурьма, висмут в сплавах снижает их температуру плавления.

Кадмий (Сd) – цветной металл, который очень похож на олово по своим механическим свойствам, но в отличие от олова является более мягким цветным металлом. Кадмий используется в основном в сплавах для снижения температуры плавления, как припой. В чистом виде практически не используется (прием цветного металла).

Свинец (Pb) – блестящий цветной металл, имеющий синевато-серый цвет, мягкий, при этом тяжелый. Температура плавления его достигает 327,4°С. Свинец используют в основном в агрессивных средах для защиты различных кабелей (в толще земли), с помощью свинца уплотняют соединения труб из чугуна. Свинец стоек к воздействию серной и соляной кислоты.

Олово (Sn) – цветной металл, имеющий серебристый цвет, тяжелый и мягкий по своим механическим показателям. Температура плавления олова составляет 232°С. В чистом виде используется олово для приготовления различных припоев или для паяния. Олово используют также при обработке крыльев и днища автомобиля с последующей обработкой мастикой во избежание разрушения слоя от механических повреждений.

Титан (Те) намного легче стали, но по прочности почти не уступает ей, к тому же у титана выше температура плавления и низкая теплопроводность. Титан не окисляется при высоких температурах, достигающих 500°С, или образует на своей поверхности защитную пленку. Распространение титан получил при изготовлении обшивки самолетов (сверхзвуковых), реактивных двигателей, дисков турбин и других изделий. Листовой титан идет на изготовление нержавеющих и не прогорающих глушителей для машин, легких по своему весу.

www.vtorchermet.biz

Свинец хром никель цинк это металлы. Цинковые сплавы: описание, структура и свойства


Никель серебро, свинец, медь и цинк

    Галоидные, цианистые и роданистые комплексные соединения. Сурьма, мышьяк, кадмий, кобальт, медь, железо, свинец, ртуть, никель, серебро, олово и цинк образуют комплексы с некоторыми или со всеми вышеупомянутыми ионами. Если ион металла обладает переменной валентностью, то комплексы могут образоваться в обеих формах. Различные комплексные соединения этого типа даны в таблице (стр. 28). [c.27]

    Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]

    Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк,, серебро, нейзильбер [c.111]

    В таблице представлены различные группы веществ легкие и тяжелые металлы (к последним экологи ОТНОСЯТ многие металлы, например алюминий, титан, хром, железо, никель, медь, цинк, кадмий, свинец, ртуть и др.), неорганические и органические соединения. В настоящей таблице данные обобщены и наиболее соответствуют российскому и европейскому стандартам. В нормативах США и ВОЗ органические вещества расписаны подробнее. Так, в стандарте США перечислено около тридцати видов опасной органики. Самыми детальными являются рекомендации ВОЗ, в которых есть следующие отдельные списки неорганические вещества (в основном тяжелые металлы, нитраты и нитриты) органические вещества (около тридцати), пестициды (более сорока) вещества, применяемые для дезинфекции воды (в основном различные соединения брома и хлора — более двадцати) вещества, влияющие на вкус, цвет и запах воды. Также перечислены вещества, которые не влияют отрицательно на здоровье при предельно допустимых концентрациях в воде — к ним, в частности, относятся серебро и олово. [c.74]

    В промышленности различают черные металлы железо и его сплавы, чугун и различные виды сталей и цветные металлы алюминий, кальций, свинец, медь, золото, кадмий, никель, кобальт, серебро, все остальные металлы и их сплавы. Цветные металлы в соответствии с их свойствами делят на л е г к и е (щелочные и щелочноземельные металлы, магний, алюминий, титан), тяжелые (медь, свинец, никель, золото, цинк, марганец, кобальт), редкие, в том числе благородные и радиоактивные металлы (золото, серебро, селен, теллур, германий, металлы платиновой группы платина, палладий, родий, осмий, рутений, иридий радиоактивные металлы уран, то-266 [c.266]

    Металлы можно расположить в следующий ряд в порядке уменьшения их активности алюминий, марганец, цинк, хром, железо, никель, олово, свинец, медь, серебро. [c.243]

    Приводим перечень некоторых ядов (металлы и (или) соедипения), предложенных для деактивации никеля и металлов платиновой группы, с целью сделать их более пригодными для избирательной гидрогенизации углеводородов, особенно ацетиленов серебро, медь, цинк, кадмий, ртуть, алюминий, таллий, олово, свинец, торий, мышьяк, сурьма, висмут, сера, селен, теллур и железо [68, 116]. [c.268]

    Металлические покрытия делят на две группы коррозионностойкие и протекторные. Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электроположительны по отношению к железу, т. е. в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. По отношению к железу они более электроотрицательны, т. е. в ряду напряжений находятся левее железа. [c.144]

    Электролиз водных растворов используется для получения таких металлов, как медь, цинк, никель, кобальт, олово, свинец, сурьма, марганец, хром, железо, кадмий, золото, серебро. Электрический метод используют для получения металлических порошков. [c.5]

    Плавиковая кислота растворяет некоторые металлы с образованием фторидов. Практически нерастворимы в воде фториды кальция, бария, стронция, РЗЭ труднорастворимы фториды меди, никеля, кадмия и хрома (111), все остальные фториды, в том числе AgF легкорастворимы. Кислота применяется для разрушения силикатных горных пород, растворения металлов (тантала, циркония, ниобия и др.). Плавиковая кислота растворяет цинк и железо очень медленно свинец, медь и серебро не реагирует с золотом и платиной. [c.300]

    Уэллс [203] исследовал осаждение ряда солей металлов прп силикатном отношении 3,2, применяя недостаточное количество силиката, с тем чтобы вызвать лишь реакцию с ионами металла. Он обнаружил, что при применении двух солей металлов сразу можно было наблюдать относительно легкое образование осадка. Уэллс расположил металлы в следующий ряд по их способности к осаждению в сульфатных растворах медь, цинк, марганец, кадмий, свинец, никель, серебро, магний н [c.225]

    На рис. 16 приведены схематические кривые титрования раствором феррицианида различных ионов, образующих с феррицианидом малорастворимые осадки и потому титрующихся нормально медь (И), серебро, кадмий, железо (II) —кривые 1 ш 2 ионов, образующих с феррицианидом относительно растворимые осадки и потому дающих размытые кривые титрования цинк, кобальт (II) и ртуть (II) — кривая 3 ионов, образующих малорастворимые осадки не с ферри-, а с ферроцианидом никель и свинец — кривые 4 и 5-, ионов, не образующих осадков с феррицианидом хром (III), сурьма (III), железо (III) —кривая 6. [c.58]

    Металлы и амальгамы металлов. Наиболее универсальным методом восстановления вещества до определенной степени окисления является, по-видимому, обработка раствора пробы металлом. В качестве восстановителей используют цинк, алюминий, кадмий, серебро, ртуть, медь, никель, висмут, свинец, олово и железо. [c.317]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, ник

www.consei.ru

Сплавы цветных металлов — меди, алюминия, цинка, магния

Цветная металлургия занимается добычей руд цветных металлов, а также обогащением и выплавкой чистых металлов и их сплавов. Цветные металлы имеют множество ценных свойств: малую плотность (магний, алюминий), высокую теплопроводность (медь), устойчивость к коррозии (титан) и др. Условно они делятся на тяжелые, легкие, благородные и редкие.

Группы металлов

К тяжелым металлам относятся вещества, которые отличаются высокой плотностью. Это кобальт, хром, медь, свинец и др. Некоторые из них (свинец, цинк, медь) применяют в чистом меде, но обычно используют в качестве легирующих элементов.

Плотность легких металлов — менее 5 г/см3. В этой группе относятся алюминий, натрий, калий, литий и др. Их используют как раскислители при изготовлении чистых металлов и сплавов, а также применяют в пиротехнике, медицине, фототехнике и других областях.

Благородные металлы отличаются высокой устойчивостью к коррозии. В данную группу входят платина, золото, серебро, осмий, палладий, родий, иридий и рутений. Они применяются в медицине, электротехнике, приборостроении, ювелирном деле.

Редкие металлы объединены в отдельную группу, так как имеют особые свойства, не характерные для других металлов. Это уран, вольфрам, селен, молибден и др.

Также выделяется группа широко применяемых металлов. В нее входят титан, алюминий, медь, олово, магний и свинец.

Сплавы на основе цветных металлов бывают литейные и деформируемые. Они различаются технологией создания заготовок: из литейных производят детали с помощью литья в металлические или песчаные формы, а из деформируемых делают листы, фасонные профили, проволоку и другие элементы. В этом случае используются методы прессования, ковки и штамповки. Литейные сплавы относятся к металлургии тяжелых металлов, деформируемые — к металлургии легких металлов.

Алюминий и его сплавы


Алюминий — цветной металл, который имеет серебристо-белый оттенок и плавится при температуре 650°С. В периодической системе ему соответствует символ Al. Этот элемент занимает третье место по распространенности среди всех пород в земной коре (на первом месте — кислород, на втором — кремний). В атмосферных условиях на поверхности алюминия образуется оксидная пленка, препятствующая появлению коррозии.

Важные свойства алюминия:

  • Низкая плотность — всего 2,7г/см3 (например, у меди — 8,94г/см3).
  • Высокая электрическая проводимость (37*106 См/м) и теплопроводность (203,5 Вт/(м·К)).
  • Низкая прочность в чистом виде — 50 МПа.
  • Структура кристаллической решетки — кубическая гранецентрированая.

Металл легко обрабатывается давлением. Находит широкое применение в электропромышленности: из алюминия изготавливают проводники электрического тока. При производстве стали его используют для раскисления. Из алюминия также делают посуду, однако она не подходит для приготовления солений и хранения кисломолочных продуктов — элемент неустойчив в щелочной и кислой среде. Некоторые стальные детали покрывают алюминием (процесс алитирования), чтобы повысить их жаростойкость. Из-за невысокой прочности алюминий практически не применяется в чистом виде.

При маркировке алюминия используется буква А в сочетании с числом, которое указывает на содержание металла. Например, марка A99 содержит 99,95% алюминия, а марка А99 — 99,99%. Существует также марка особой чистоты — А999, в которой 99,999% алюминия.

Деформируемые сплавы алюминия

Деформируемые алюминиевые сплавы делятся на упрочняемые и неупрочняемые.

Упрочняемые деформируемые сплавы алюминия — это дуралюмины (система А-Сu-Mg) и высокопрочные сплавы (Аl-Сu-Mg-Zn). Высокие механические свойства и небольшой удельный вес позволяют широко применять эти сплавы в области машиностроения, особенно — в изготовлении деталей для самолетов.

Основными легирующими элементами для дуралюминов служат магний и медь. Эти сплавы маркируются буквой Д с числом. Из Д1 делают лопасти винтов, Д16 используется для лонжеронов, шпангоутов, обшивки самолетов, а Д 17 — для крепежных заклепок.

Высокопрочные сплавы, помимо алюминия, меди и магния, содержат цинк. Обозначаются буквой В и числом, применяются для изготовления деталей сложной конфигурации, лопастей вертолетов, высоконагруженных конструкций.

Неупрочняемые деформируемые алюминиевые сплавы — это сплавы алюминия с марганцем (маркировка — АМц1) и с магнием (AМг2 и АМг3). Они хорошо обрабатываются сваркой, вытяжкой, прокаткой, горячей и холодной штамповкой. Отличаются высокой пластичностью, но при этом не очень прочные. Они выпускаются преимущественно в виде листов, которые применяются для изготовления изделий сложной формы (заклепки, рамы и др.).

Литейные сплавы на основе алюминия

Наиболее широкое применение получили литейные сплавы алюминия и кремния, которые называются силуминами. Они содержат более 4,5% кремния и обозначаются буквами АК с номером марки. Силумины сочетают малый удельный вес с высокими механическими и литейными свойствами. Они применяются для сложного литья авто-, мото- и авиадеталей, а также для производства некоторых видов бытовой техники — мясорубок, теплообменников, санитарно-технических арматур и др.

Сплавы на основе меди


Медь — цветной металл, который на поверхности имеет красный оттенок, а в изломе — розовый. В периодической системе Д.И. Менделеева обозначается символом Cu. В чистом виде металл имеет высокую степень пластичности, электро- и теплопроводности, а также характеризуется устойчивостью к коррозии. Это позволяет использовать медь и ее сплавы для кровель ответственных зданий.

Важные свойства металла:

  • Температура плавления — 1083°С.
  • Структура кристаллической решетки — кубическая гранецентрированая.
  • Плотность — 8,94 г/см3.

Благодаря пластичности медь легко поддается обработке давлением, но плохо режется. Из-за большой усадки металл обладает низкими литейными свойствами. Любые примеси, за исключением серебра, оказывают большое влияние на вещество и снижают его электрическую проводимость.

При маркировке меди используется буква М с числом, которое обозначает марку. Чем меньше номер марки, тем больше в ней чистого вещества. Например, М00 содержит 99,99 % меди, а М4 — 99 %.

Наиболее широкое применение в технике находят две группы медных сплавов — бронзы и латуни.

Бронзы

Бронзы — сплавы на основе меди, в которых легирующим элементом является любой металл, кроме цинка. Наиболее часто применяются сплавы меди со свинцом, оловом, алюминием, кремнием и сурьмой.

Все бронзы по химическому составу делятся на оловянные и специальные, или безоловянные, то есть не содержащие в своем составе олова.

Оловянные бронзы отличаются наиболее высокими литейными, механическими и антифрикционными свойствами, а также имеют повышенную устойчивость к коррозии. Из-за высокой стоимости олова эти сплавы применяют ограниченно.

Специальные бронзы часто используют в качестве заменителей оловянных, и некоторые имеют лучшие технологические свойства. Выделяются следующие виды специальных бронз:

  • Алюминиевые. Они содержат от 5% до 11% алюминия, а также марганец, никель, железо и другие металлы. Эти сплавы обладают более высокими механическими свойствами, чем оловянные бронзы, однако их литейные свойства ниже. Алюминиевые бронзы служат для изготовления мелких ответственных деталей.
  • Свинцовистые. В их состав входит около 30% свинца. Эти сплавы имеют высокие антифрикционные свойства, поэтому широко применяются в производстве подшипников.
  • Кремнистые. Эти бронзы содержат примерно 4% кремния, легируются никелем и марганцем. По своим механическим свойствам почти соответствуют сталям. Применяются, в основном, для изготовления пружинистых элементов в судостроении и авиации.
  • Бериллиевые. Содержат до 2,3% бериллия, характеризуются высокой упругостью, твердостью и износостойкостью. Эти бронзы используются для пружин, которые работают в условиях агрессивной среды.

Все бронзы имеют хорошие антифрикционные показатели, коррозионную стойкость, высокие литейные свойства, которые позволяют использовать сплавы для изготовления памятников, отливки колоколов и др.

При маркировке бронз используются начальные буквы Бр, после которых идут первые буквы названий основных металлов с указанием их содержания в процентах. Например, сплав БрОФ8-0,3 включает 8% олова и 0,3% фосфора.

Латуни


Латунями называют сплавы меди и цинка с добавлением других металлов — алюминия, свинца, никеля, марганца, кремния и др. В простых латунях содержится только медь и цинк, а многокомпонентные сплавы включают от 1% до 8% различных легирующих элементов, которые добавляют для улучшения различных свойств.

  • Марганец, никель и алюминий повышают устойчивость сплава к коррозии и его механические свойства.
  • Благодаря добавкам кремния сплав становится более текучим в жидком состоянии и легче поддается сварке.
  • Свинец упрощает обработку резанием.

Процентное содержание цинка в любой латуни не превышает 50 %. Эти сплавы стоят дешевле, чем чистая медь, а благодаря добавлению цинка и легирующих элементов, они обладает большей устойчивостью к коррозии, прочностью и вязкостью, а также характеризуются высокими литейными свойствами. Латуни используют для изготовления деталей методами прокатки, вытяжки, штамповки и др.

При маркировке простой латуни используется буква Л и число, обозначающее содержание меди. Например, марка Л96 содержит 96% меди. Для многокомпонентных латуней используется сложная формула: буква Л, затем первые буквы основных металлов, цифра, обозначающая содержание меди, а затем состав других элементов по порядку. Например, латунь ЛАМш77-2–0,05 содержит 77% меди, 2% алюминия, 0,05% мышьяка, остальное — цинк.

Магний и его сплавы


Магний — цветной металл, который имеет серебристый оттенок и обозначается символом Mg в периодической системе.

Важные свойства магния:

  • Температура плавления — 650°С.
  • Плотность — 1,74 г/см3.
  • Твердость — 30-40 НВ.
  • Относительное удлинение — 6-17%.
  • Временное сопротивление — 100-190 МПа.

Металл обладает высокой химической активностью, в атмосферных условиях неустойчив к образованию коррозии. Он хорошо режется, воспринимает ударные нагрузки и гасит вибрации. Так как магний имеет низкие механические свойства, он практически не применяется в конструкционных целях, зато используется в пиротехнике, химической промышленности и металлургии. Он часто выступает в качестве восстановителя, легирующего элемента и раскислителя при изготовлении сплавов.

При маркировке используются буквы Мг с цифрами, которые обозначают процентное содержание магния. Например, в марке Мг96 содержится 99,96% магния, а в Мг90 — 99,9 %.

Сплавы на основе магния характеризуются высокой удельной прочность (предел прочности — до 400 МПа). Они хорошо режутся, шлифуются, полируются, куются, прессуются, прокатываются. Из недостатков магниевых сплавов — низкая устойчивость к коррозии, плохие литейные свойства, склонность воспламеняться при изготовлении.

Деформируемые сплавы магния

Наиболее распространены три группы сплавов на основе магния.

Сплавы магния, легированные марганцем

Содержат до 2,5% марганца, не упрочняются термической обработкой. У них хорошая коррозионная стойкость. Так как эти сплавы легко свариваются, они применяются для сварных деталей несложной конфигурации, а также для деталей арматуры, масляных и бензиновых систем, которые не испытывают больших нагрузок. Среди данной группы — сплавы МА1 и МА8.

Сплавы системы Mg-Al-Zn-Mn

В состав этих сплавов, помимо магния и марганца, входят алюминий и цинк. Они заметно повышают прочность и пластичность, благодаря чему сплавы подходят для изготовления штампованных и кованых деталей сложных форм. К этой группе относятся марки МА2-1 и МА5.

Сплавы системы Mg-Zn

Сплавы на основе магния и цинка дополнительно легируются кадмием, цирконием и редкоземельными металлами. Это высокопрочные магниевые сплавы, которые применяются для деталей, испытывающих высокие нагрузки (в самолетах, автомобилях, станках и др.). К данной группе относятся сплавы марок МА14, МА15, МА19.

Литейные сплавы магния

Самая распространенная группа литейных магниевых сплавов относится к системе Mg-Al-Zn. Эти сплавы практически не поглощают тепловые нейтроны, поэтому широко применяются в атомной технике. Из них также делают детали самолетов, ракет, автомобилей (двери кабин, корпуса приборов, топливные баки и др.). Сплавы магния, цинка и алюминия используют в приборостроении и в изготовлении кожухов для электронной аппаратуры. К данной группе относятся марки МЛ5 и МЛ6.

Высокопрочные литейные магниевые сплавы отличаются лучшими механическими и технологическими свойствами. Они применяются в авиации для изготовления нагруженных деталей. К данной группе относятся сплавы МЛ12 (магний, цинк и цирконий), МЛ8 (магний, цинк, цирконий и кадмий), МЛ9 (магний, цирконий, неодим), МЛ10 (магний, цинк, цирконий, неодим).

Цинк и его сплавы


Цинк — цветной металл серо-голубоватого оттенка. В системе Д. И. Менделеева обозначается символом Zn. Он обладает высокой вязкостью, пластичностью и коррозионной стойкостью. Важные свойства металла:

  • Небольшая температура плавления — 419 °С.
  • Высокая плотность — 7,1 г/см3.
  • Низкая прочность — 150 МПа.

В чистом виде цинк используется для оцинкования стали с целью защиты от коррозии. Применяется в полиграфии, типографии и гальванике. Его часто добавляют в сплавы, преимущественно в медные.

Существуют следующие марки цинка: ЦВ00, ЦВ0, ЦВ, Ц0А, Ц0, Ц1, Ц2 и Ц3. ЦВ00 — самая чистая марка с содержанием цинка в 99,997%. Самый низкий процент чистого вещества в марке Ц3 — 97,5%.

Деформируемые цинковые сплавы

Деформируемые сплавы цинка используются для производства деталей методами вытяжки, прессования и прокатки. Они обрабатываются в горячем состоянии при температуре от 200 до 300 ?С. В качестве легирующих элементов выступают медь (до 5%), алюминий (до 15%) и магний (до 0,05%).

Деформируемые цинковые сплавы характеризуются высокими механическими свойствами, благодаря которым часто используются в качестве заменителей латуней. Они обладают высокой прочностью при хорошей пластичности. Сплавы цинка, алюминия и меди наиболее распространены, так как они имеют самые высокие механические свойства.

Литейные цинковые сплавы

В литейных цинковых сплавах легирующими элементами также выступают медь, алюминий и магний. Сплавы делятся на 4 группы:

  • Для литья под давлением.
  • Антифрикционные.
  • Для центробежного литья.
  • Для литья в кокиль.

Слитки легко полируются и принимают гальванические покрытия. Литейные цинковые сплавы имеют высокую текучесть в жидком состоянии и образуют плотные отливки в застывшем виде.

Литейные сплавы получили широкое применение в автомобильной промышленности: из них делают корпуса насосов, карбюраторов, спидометров, радиаторных решеток. Сплавы также используются для производства некоторых видов бытовой техники, арматуры, деталей приборов.

В России цветная металлургия — одна из самых конкурентоспособных отраслей промышленности. Многие отечественные компании являются мировыми лидерами в никелевой, титановой, алюминиевой подотраслях. Эти достижения стали возможными благодаря крупным инвестициям в цветную металлургию и применению инновационных технологий.

ferrolabs.ru

26. Получение железа, никеля, хрома и марганца в промышленности.

Получение железа, никеля, хрома и марганца в промышленности.

Железо

Железная руда (30-40 % Fe) обогащается (65-70% Fe), из концентрата при 1300 градусах получают агломерат или окатыши, большие куски долбят и загружают с коксом и флюсом в доменную печь. В результате доменного процесса получается чугун (раствор угля в железе), практически не находящий применения и полностью перерабатываемый в сталь.

Более эффективно прямое восстановление оксидов железа. После обогащения руды (более 70 % Fe) из нее получают прочные окатыши, более прочные, чем при доменном процессе. Природный газ подвергают конверсии и получают смесь CO и h3. Печи работают по принципу противотока: сырье идет сверху, а снизу подается газ-восстановитель. Руда в печи не плавится, так как в печи температура около 850 градусов. В результате получается губчатое железо, содержащее около 90% Fe и 1,2-2% C.

Особо чистое железо получают:

Fe(CO)5(при нагревании)= Fe + 5CO (не знаю почему тут 5 после скобок у соли)

FeC2O4(при нагревании)= Fe + 2CO2

Никель

Руда Ni после обогащения подвергается обжигу, при этом получаемый NiO восстанавливается коксом в электропечах. Дальнейшая очистка металлов производится электролизом.

Хром

Поскольку основное применение хрома это изготовление сталей, то хромистый железняк восстанавливают коксом, не разделяя металлы и получая феррохром:

Fe(CrO2)2 + 4C (при нагревании)= Fe + 2Cr + 4CO

С целью получения самого металла хромистый железняк подвергают окислительному плавлению с поташем:

4Fe(CrO2)2 + 8K2CO3 + 7O2(при 1100 градусах)= 8CO2 + 2Fe2O3 + 8K2CrO4

Хромат калия хорошо растворим в воде, и его выщелачивают их смешанного продукта водой. Далее хромат переводят в бихромат:

2K2CrO4 + h3SO4 = K2Cr2O7 + K2SO4 + h3O

Который восстанавливают до Cr2O3 коксом или серой:

K2Cr2O7 + 2C(при нагревании)= Cr2O3 + K2CO3 + CO

K2Cr2O7 + S(при нагревании)= Cr2O3 + K2SO4

Металл получают, восстанавливая Cr2O3 алюминием или кремнием. Возможно получение металлов и электролизом раствором соединений Cr(VI).

Марганец

Получают металл, восстанавливая рудный материал коксом:

MnO2 + 2C(при нагревании)= 2CO + Mn

Практикуется и совместное восстановление MnO2 с оксидами железа, при этом получается ферромарганец.

27. Пирометаллургические способы получения металлов (свинец, медь, цинк) из сульфидных руд.

Пирометаллургические способы получения металлов (свинец, медь, цинк) из сульфидных руд.

Свинец

Схема получения свинца: PbS обжигают и получается PbO, оксид восстанавливается CO при нагревании.

2PbS + 3O2 = 2PbO + 2SO2

PbO + CO(при нагревании)= Pb + CO2

Медь

В пирометаллургических методах сульфидную медную руду (после обогащения и концентрирования) плавят в окислительной атмосфере, при этом сульфиды железа окисляются, а сульфиды меди нет. Отделенный таким образом Cu2S продувают в конверторе воздухом и получают черновую медь(98,5% Cu). Её подвергают окислительной плавке с флюсами. Возможна дальнейшая очистка электролизом.

2Cu2S + 3O2 = 2Cu2O + 2SO2

2Cu2O + Cu2S = 3Cu + SO2

Цинк

Схема получения цинка: сульфид обжигают до оксида, оксид восстанавливается до чистого металла.

2ZnS + 3O2 = 2ZnO + 2SO2

ZnO + C(при нагревании)= Zn + CO

studfiles.net

Никель серебро, свинец, медь и цинк

    Галоидные, цианистые и роданистые комплексные соединения. Сурьма, мышьяк, кадмий, кобальт, медь, железо, свинец, ртуть, никель, серебро, олово и цинк образуют комплексы с некоторыми или со всеми вышеупомянутыми ионами. Если ион металла обладает переменной валентностью, то комплексы могут образоваться в обеих формах. Различные комплексные соединения этого типа даны в таблице (стр. 28). [c.27]

    Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]


    Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк,, серебро, нейзильбер [c.111]

    В таблице представлены различные группы веществ легкие и тяжелые металлы (к последним экологи ОТНОСЯТ многие металлы, например алюминий, титан, хром, железо, никель, медь, цинк, кадмий, свинец, ртуть и др.), неорганические и органические соединения. В настоящей таблице данные обобщены и наиболее соответствуют российскому и европейскому стандартам. В нормативах США и ВОЗ органические вещества расписаны подробнее. Так, в стандарте США перечислено около тридцати видов опасной органики. Самыми детальными являются рекомендации ВОЗ, в которых есть следующие отдельные списки неорганические вещества (в основном тяжелые металлы, нитраты и нитриты) органические вещества (около тридцати), пестициды (более сорока) вещества, применяемые для дезинфекции воды (в основном различные соединения брома и хлора — более двадцати) вещества, влияющие на вкус, цвет и запах воды. Также перечислены вещества, которые не влияют отрицательно на здоровье при предельно допустимых концентрациях в воде — к ним, в частности, относятся серебро и олово. [c.74]

    В промышленности различают черные металлы железо и его сплавы, чугун и различные виды сталей и цветные металлы алюминий, кальций, свинец, медь, золото, кадмий, никель, кобальт, серебро, все остальные металлы и их сплавы. Цветные металлы в соответствии с их свойствами делят на л е г к и е (щелочные и щелочноземельные металлы, магний, алюминий, титан), тяжелые (медь, свинец, никель, золото, цинк, марганец, кобальт), редкие, в том числе благородные и радиоактивные металлы (золото, серебро, селен, теллур, германий, металлы платиновой группы платина, палладий, родий, осмий, рутений, иридий радиоактивные металлы уран, то-266 [c.266]

    Металлы можно расположить в следующий ряд в порядке уменьшения их активности алюминий, марганец, цинк, хром, железо, никель, олово, свинец, медь, серебро. [c.243]

    Приводим перечень некоторых ядов (металлы и (или) соедипения), предложенных для деактивации никеля и металлов платиновой группы, с целью сделать их более пригодными для избирательной гидрогенизации углеводородов, особенно ацетиленов серебро, медь, цинк, кадмий, ртуть, алюминий, таллий, олово, свинец, торий, мышьяк, сурьма, висмут, сера, селен, теллур и железо [68, 116]. [c.268]

    Металлические покрытия делят на две группы коррозионностойкие и протекторные. Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электроположительны по отношению к железу, т. е. в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. По отношению к железу они более электроотрицательны, т. е. в ряду напряжений находятся левее железа. [c.144]

    Электролиз водных растворов используется для получения таких металлов, как медь, цинк, никель, кобальт, олово, свинец, сурьма, марганец, хром, железо, кадмий, золото, серебро. Электрический метод используют для получения металлических порошков. [c.5]

    Плавиковая кислота растворяет некоторые металлы с образованием фторидов. Практически нерастворимы в воде фториды кальция, бария, стронция, РЗЭ труднорастворимы фториды меди, никеля, кадмия и хрома (111), все остальные фториды, в том числе AgF легкорастворимы. Кислота применяется для разрушения силикатных горных пород, растворения металлов (тантала, циркония, ниобия и др.). Плавиковая кислота растворяет цинк и железо очень медленно свинец, медь и серебро не реагирует с золотом и платиной. [c.300]

    Уэллс [203] исследовал осаждение ряда солей металлов прп силикатном отношении 3,2, применяя недостаточное количество силиката, с тем чтобы вызвать лишь реакцию с ионами металла. Он обнаружил, что при применении двух солей металлов сразу можно было наблюдать относительно легкое образование осадка. Уэллс расположил металлы в следующий ряд по их способности к осаждению в сульфатных растворах медь, цинк, марганец, кадмий, свинец, никель, серебро, магний н [c.225]

    На рис. 16 приведены схематические кривые титрования раствором феррицианида различных ионов, образующих с феррицианидом малорастворимые осадки и потому титрующихся нормально медь (И), серебро, кадмий, железо (II) —кривые 1 ш 2 ионов, образующих с феррицианидом относительно растворимые осадки и потому дающих размытые кривые титрования цинк, кобальт (II) и ртуть (II) — кривая 3 ионов, образующих малорастворимые осадки не с ферри-, а с ферроцианидом никель и свинец — кривые 4 и 5-, ионов, не образующих осадков с феррицианидом хром (III), сурьма (III), железо (III) —кривая 6. [c.58]

    Металлы и амальгамы металлов. Наиболее универсальным методом восстановления вещества до определенной степени окисления является, по-видимому, обработка раствора пробы металлом. В качестве восстановителей используют цинк, алюминий, кадмий, серебро, ртуть, медь, никель, висмут, свинец, олово и железо. [c.317]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    Титрование можно проводить без наложения внешнего напряжения как с меркур-иодидным, так и с каломельным электродом сравнения. Если в титруемом растворе находятся другие ионы (например, железо, ртуть, медь, висмут, серебро), то титрование мышьяк

www.chem21.info

Металлы, входящие в состав... Хелп!

Вы уверены, что это просто? А с какой точностью надо перечислять? 1) Лампочка - вольфрам, железо, никель, марганец, цинк, олово, свинец, сурьма (смотри ответ Алексей Удовенко - он абсолютно прав) 2) Часы - медь, никель, олово (сплавы типа бронз) , железо, кобальт, никель, хром (сталь) , титан, алюминий, цинк, магний, для корпуса может золото, серебро, палладий, родий; если часы электронные, то кремний, олово, свинец, сурьма, серебро, золото, платина, палладий, селен, родий и ещё могут быть 3) электропроводка - алюминий, кремний или медь и цинк 4) компьютера - ПРАКТИЧЕСКИ ВСЕ (литий, бериллий, магний, алюминий, кремний, скандий титан ванадий хром железо кобальт никель медь цинк галлий цирконий молибден рутений родий палладий серебро кадмий индий олово сурьма цезий барий сурьма, может быть рений, иридий платина золото таллий свинец висмут 5) столовые приборы могут быть стальные (железо, хром, никель, кобальт) , алюминевые (алюминий, магний, цинк) серебряные (серебро, медь) мельхиор/нейзильбер (там медь, цинк, никель, ещё чего-то) , с позолотой, с платиновым ободком, золото и серебро может быть защищено родием. 6) Аналогично ложкам: , всё то же. Тока не алюминий будет а ЦАМ (цинк, алюминий, медь) - для дешёвых фенечек... . 7) Латунь (медь, никель) , алюминевые сплавы, ЦАМ... .

Просто, если знаешь, о чём речь . Корпус часов может быть из чего угодно, как и столовых приборов, комп - просто шедевр - этож даташиты и спецификации всех микросхемулек перебирать, что ли . Надо правильно спрашивать : из чего сделана аллюминиевая вилка )))

Напр. для простой лампы накаливания: вольфрам - для спирали, для держателей спирали - вакуумно нейтральный металл, да еще и термостойкий, для цоколя - сталь, покрытая цинком, для пайки выводов - припой, а в нем и свинец, и сурьма и еще куча всего.

долго писать. могу рассказать при встрече...

touch.otvet.mail.ru

Никель — что это за металл?


Никель — металл с атомным номером 28. Обозначается символом Ni. Он имеет серебристо-белый оттенок, в нормальных условиях покрывается оксидной пленкой. Благодаря своей пластичности, никель легко поддается ковке.

Физические свойства

Никель — ферромагнетик, то есть при температуре ниже точки Кюри он обладает намагниченностью при отсутствии внешнего магнитного поля. Для никеля точка Кюри составляет 358 ⁰С. Металл не тускнеет на открытом воздухе.

Основные физические свойства никеля:

  • Структура решетки — кубическая гранецентрированая.
  • Плотность при нормальных условиях — 8,902 г/см3.
  • Температура плавления — 1453 ⁰С.
  • Удельная теплота плавления — 17,61 кДж/моль.
  • Температура кипения – 3000 ⁰С.
  • Удельная теплота испарения — 378,6 кДж/моль.
  • Молярная теплоемкость — 26,1 Дж/(K*моль)
  • Удельная теплоемкость — 0,440 кдж/(кг*К).
  • Теплопроводность — 90,9 Вт/(м*К).
  • Удельное электрическое сопротивление — 0,0684 мкОм*м.

История

Никель был официально открыт в 1751 году химиком Акселем Кронстедтом, который нашел его в кобальтовой земле. Однако еще раньше его раскапывали в горах Саксонии. Горняки использовали руду, содержащую никель, для изготовления стекла. По внешним признакам саксонцы сначала принимали эту руду за серебряную и пытались переплавить ее в драгоценный металл, но этого не получалось. Кроме того, при плавлении из руды выделялся ядовитый газ, который наносил вред горнякам. Неудачу потерпели и попытки добыть из этой руды медь.

В итоге в конце XVII в. саксонцы назвали руду «купферникель», что в переводе означает «медный дьявол». Это связано с тем, что горняки считали выделение ядовитого газа происками злых духов, обитавших в горах. Именно купферникель исследовал Аксель Кронстедт в 1751 году. Он получил из него окисел зеленого цвета и восстановил его до металла, который до этого не был известен науке. Химик назвал этот металл никелем.

В 1775 году Торберн Улаф Бергман получил никель в более чистом виде и подробнее описал его свойства. Он выяснил, что по своему составу этот металл больше похож на железо, чем на медь. В конце XVIII – начале XIX вв. многие химики, начиная с Жозефа Луи Пруста, детально изучали никель. В 1804 году немецкий химик Иеремия Вениамин Рихтер получил наконец чистый металл, и никель окончательно утвердился как химический элемент.

Биологическая роль

Никель — микроэлемент, который необходим всем живым организмам. Его среднее содержание в растениях — 0,00005 %, в наземных животных — 0,000001 %, в морских — 0,00016 % массы тела.

Роль никеля в организме изучена не до конца. Известно, что он участвует в ферментативных реакциях и влияет на окислительные процессы. Он содержится в легких, печени, мышцах, поджелудочной и щитовидной железах, некоторых отделах головного мозга. Микроэлемент также накапливается в ороговевших тканях человека, животных и птиц, в том числе в волосах и перьях.

Избыточное содержание никеля в растениях приводит к уродливым формам, в организме животных — к различным глазным заболеваниям (кератоконъюнктивитам, кератитам).

Пары и пыль никеля токсичны и могут вызывать поражения кожи, легких и носоглотки, а частое вдыхание паров металла опасно появлением злокачественных новообразований.

Нахождение в природе и производство


Больше всего никеля содержится в глубоких слоях. В земной коре — его 0,0058%, в ультраосновных породах — 0,2 %. Если верить гипотезе, что земное ядро состоит из никелистого железа, общее содержание никеля в земле составляет примерно 3%. Никель также обнаружен в некоторых метеоритах.

В земной коре этот металл соседствует с железом и магнием, с которыми он имеет сходную валентность. В минералах магния и железа никель содержится в виде изоморфной примеси. Также существует 53 известных науке минерала никеля. Большая часть из них была образована под воздействием давления и высоких температур, например, при застывании магмы. Сульфидные руды, содержащие данный металл, имеют в своем составе медь. Некоторые руды никеля включают железо, серу, мышьяк, кобальт, магний.

Больше всего этого металла добывается на территории России. Крупные никелевые рудники также находятся в Канаде, Австралии, Новой Каледонии, Индонезии и на Кубе.

Больше всего никеля (около 80%) получают из сульфидных медно-никелевых руд, значительно меньше — из силикатных (окисленных) руд.

Химические свойства

Никель химически малоактивен. Он образует поверхностную оксидную пленку, из-за чего устойчив в атмосфере, щелочи, многих кислотах и воде. Металл не подвергается коррозии. Образует два оксида (NiO и Ni2O3) и два гидроксида (Ni(OH)2 и Ni(OH)3).

Хлорид, нитрат, сульфат и нитрат никеля — четыре растворимые соли. Они имеют желтый или желто-коричневый оттенок и окрашивают растворы в зеленый цвет. Фосфат, оксалат и сульфиды никеля (черный, зеленый и бронзовый) — нерастворимые соли.

Металл поглощает газы (углерод, водород и многие другие), которые ухудшают его механические свойства. С кислородом взаимодействует при температуре выше 500 ⁰С.

В мелкодисперсном состоянии никель самовоспламеняется на воздухе. При нагревании соединяется с галогенами. Образует сульфид при горении в сере, а при нагревании оксида NiO с серой получается моносульфид. Металл также вступает в реакцию с азотной кислотой: образуются нитрат никеля и оксид азота.

По химическим свойствам больше всего похож на железо и кобальт, в меньшей степени — на благородные металлы и медь. Он горит только в виде порошка, проявляет переменную валентность в соединениях (чаще всего двухвалентен). Образует комплексные и координационные соединения.

Применение

Наиболее широкая область применения никеля — изготовление сплавов различных металлов. Его сплавляют:

  • Со сталью. Это повышает химическую стойкость сплава: все нержавеющие стали содержат в своем составе никель.
  • С железом. Этот сплав имеет низкий коэффициент термического расширения, благодаря чему он успешно используется для изготовления различных деталей для электроприборов.
  • С кобальтом и магнием. Образуется жаростойкий сплав, который выдерживает высокие температуры до 500 ⁰С и отличается устойчивостью к коррозии.
  • С золотом и серебром. Это так называемое «белое золото» — прочный ювелирный сплав.
  • С хромом. В результате образуется нихром — жаропрочный, крипоустойчивый, пластичный сплав, который хорошо держит форму.
  • С железом, медью и хромом. Этот сплав характеризуется высокой магнитной восприимчивостью.

Сплавы никеля отличаются высокой степенью вязкости, благодаря чему находят применение при изготовлении брони. Многие сплавы используются в газотурбинных установках, конструкциях атомных реакторов. Из них также делают нагревательные элементы и монеты. Сплавы получили широкое применение в производстве аккумуляторов.

Никель используется и в чистом виде: из него изготавливают трубы, листы и др., а в химических лабораториях он служит катализатором многих реакций. Из металла также производят специализированную химическую аппаратуру. Оксид никеля применяется в производстве стекла, керамики и глазурей. Для многих металлов используется никелирование — создание никелевого покрытия с целью защитить от коррозии.

Из никеля делают спирали электронных сигарет, им обматывают струны музыкальных инструментов. В медицине этот элемент используется для протезирования и изготовления брекет-систем.

ferrolabs.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о