Свойства медь сера: Сравните физические свойства меди и серы
alexxlab | 29.01.2023 | 0 | Разное
Свойство – медь – Большая Энциклопедия Нефти и Газа, статья, страница 2
Cтраница 2
Особо ценно свойство меди повышать свою прочность при низких температурах, включая область глубокого охлаждения, сохраняя при этом высокую ударную вязкость. При понижении температуры теплопроводность меди возрастает, становясь при температуре минус 160 С – 400, минус 190 С-450 и минус 252 С – 1600 ккал / м С час. Эти особенности делают медь незаменимым материалом для изготовления аппаратов глубокого охлаждения. [16]
Принято эти свойства меди принимать за 100 %, а все другие технические металлы сравнивать с медью. [17]
Одним из свойств меди, затрудняющим сварку, является ее повышенная текучесть в расплавленном состоянии. Поэтому при сварке меди не оставляют зазора между кромками, стараясь возможно плотнее подогнать их друг к другу. Притупление кромок делают равным 0 2 от их толщины. Кромки перед сваркой зачищают до металлического блеска или подвергают травлению в растворе азотной кислоты с последующей промывкой в воде.
Наши знания свойств активной меди, так же как и активного железа, далеко не полны. Единственная опубликованная работа Фокуно содержит в себе все имеющиеся в нашем распоряжении данные относительно этого катализатора. Фокуно ограничил свои исследования несколькими примерами гидрирования простых ненасыщенных и карбонильных соединений. [19]
Макроструктура слитка вы соко-чистой меди, выплавленного в электроннолучевой печи. X 0 1.| Микроструктура литой меди. X 100.| Микроструктура деформированной меди. X 200. а – степень деформации 20 %. б – то же, 80 %. [20] |
Большое влияние на свойства меди оказывают примеси. [21]
На структуру и свойства меди значительное влияние оказывают примеси. Алюминий, железо, мышьяк, фосфор и сурьма снижают тепло – и электропроводность. Примеси, не растворимые в меди, ухудшают механические и технологические ее свойства.
Устройство для выполнения экстракции в делительных воронках. [23] |
Поэтому было использовано свойство меди образовывать прочные внутрикомплексные соединения. В качестве реагента был выбран ацетилацетон, который занимает промежуточное положение между реагентами и экстрагентами. Он образует прочные комплексы с металлами, выступая как биден-татный реагент, и в то же время хорошо подвергается очистке, как обычный кислородсодержащий растворитель, промывкой и перегонкой. При навеске препарата 0 5 г достаточно четырех экстракций порциями по 10 мл 0 5 М раствором ацетилацетона в хлороформе.
Отрицательно влияют на свойства меди примеси висмута, серы, мышьяка, железа и других элементов. [25]
Мнение о превосходстве свойств меди как материала для стенок ввиду значительной теплопроводности меди не всегда является оправданным, как это явствует из следующего примера. [26]
Давайте рассмотрим, как свойства меди определяют сферы ее применения. [27]
Перечислите электрохимические и коррозионный свойства меди. [28]
Следует отметить, что свойства меди зависят не только от условий механической и термической обработки, но и от содержания в ней примесей. Такие элементы, как Bi, Pb, Sb, O2, S и Р, являются для меди вредными примесями, снижающими ее прочность и технологические свойства. [29]
Их способ основан на свойстве меди в кислой среде вытеснять ртуть из ее соединений и образовывать амальгаму на медной проволоке. Анализ длится более суток. Результат специфичен; чувствительность определения – 0.5 мкг гранозана в образце.
[30]
Страницы: 1 2 3 4
Сера
Сера / Sulphur (S) | |
---|---|
Атомный номер | 16 |
Внешний вид простого вещества | светло-желтое хрупкое твердое вещество, в чистом виде без запаха |
Свойства атома | |
Атомная масса (молярная масса) |
32,066 а. е. м. (г/моль) |
Радиус атома | 127 пм |
Энергия ионизации (первый электрон) |
999,0 (10,35) кДж/моль (эВ) |
Электронная конфигурация | [Ne] 3s2 3p4 |
Химические свойства | |
Ковалентный радиус | 102 пм |
Радиус иона | 30 (+6e) 184 (-2e) пм |
Электроотрицательность (по Полингу) |
2,58 |
Электродный потенциал | 0 |
Степени окисления | 6, 4, 2, -2 |
Термодинамические свойства простого вещества | |
Плотность | 2,070 г/см³ |
Молярная теплоёмкость | 22,61 Дж/(K·моль) |
Теплопроводность | 0,27 Вт/(м·K) |
Температура плавления | 386 K |
Теплота плавления | 1,23 кДж/моль |
Температура кипения | 717,824 K |
Теплота испарения | 10,5 кДж/моль |
Молярный объём | 15,5 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | орторомбическая |
Параметры решётки | a=10,437 b=12,845 c=24,369 Å |
Отношение c/a | — |
Температура Дебая | n/a K |
S | 16 |
32,066 | |
[Ne]3s23p4 | |
Сера |
Се́ра (Sulphur — обозн. «S» в таблице Менделеева) — высокоэлектроотрицательный элемент, проявляет неметаллические свойства. В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде
Природные минералы серы
Схема атома серы
Сера является шестнадцатым по химической распространенности элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде. Важнейшие природные соединения серы FeS2 — железный колчедан или пирит, ZnS — цинковая обманка или сфалерит (вюрцит), PbS — свинцовый блеск или галенит, HgS — киноварь, Sb2S3 — антимонит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах. Сера — шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.
История открытия и происхождение названия
Сера (Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников.
Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, лёгкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали «принципом горючести» и обязательной составной частью металлических руд. Пресвитер Теофил (XII в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте.
В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Таким образом точно происхождение серы не установлено, но как сказано выше этот элемент использовался до Рождества Христова, а значит знаком людям с давних времен.
Происхождение названия
Происхождение латинского sulfur неизвестно. Русское название элемента обычно производят от санскритского «сира» — светло-желтый. Возможно родство «серы» с древнееврейским «серафим» — множественным числом от «сераф» — букв. сгорающий, а сера хорошо горит. В древнерусском и старославянском «сера» — вообще горючее вещество, в том числе и жир.
Происхождение серы
Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы — это порода с вкраплениями чистой серы.
Когда образовались эти вкрапления — одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.
Теория сингенеза (то есть одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементарной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.
Теория эпигенеза (вкрапления серы образовались позднее, чем основные породы) имеет несколько вариантов. Самый распространенный из них предполагает, что подземные воды, проникая сквозь толщи пород, обогащаются сульфатами. Если такие воды соприкасаются с месторождениями нефти или природного газа, то ионы сульфатов восстанавливаются углеводородами до сероводорода. Сероводород поднимается к поверхности и, окисляясь, выделяет чистую серу в пустотах и трещинах пород.
В последние десятилетия находит все новые подтверждения одна из разновидностей теории эпигенеза — теория метасоматоза (в переводе с греческого «метасоматоз» означает замещение). Согласно ей в недрах постоянно происходит превращение гипса CaSO4-h3O и ангидрита CaSО4 в серу и кальцит СаСО3.
Данная теория создана в 1935 году советскими учеными Л. М. Миропольским и Б. П. Кротовым. В ее пользу говорит, в частности, такой факт.
В 1961 году в Ираке было открыто месторождение Мишрак. Сера здесь заключена в карбонатных породах, которые образуют свод, поддерживаемый уходящими вглубь опорами (в геологии их называют крыльями). Крылья эти состоят в основном из ангидрита и гипса. Такая же картина наблюдалась на отечественном месторождении Шор-Су.
Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов — среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.
Но есть одно «но»: химизм процесса превращения гипса в серу и кальцит пока не ясен, и потому нет оснований считать теорию метасоматоза единственно правильной. На земле и сейчас существуют озера (в частности, Серное озеро близ Серноводска), где происходит сингенетическое отложение серы и сероносный ил не содержит ни гипса, ни ангидрита.
Разнообразие теорий и гипотез о происхождении самородной серы — результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.
Получение
Серу получают главным образом выплавкой самородной серы непосредственно в местах её залегания под землей. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.
Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.
В 1890 г. Герман Фраш, предложил плавить серу под землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (113°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.
Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.
Также сера в больших количествах содержится в природном газе в газообразном состоянии (в виде сероводорода, сернистого ангидрида). При добыче она откладывается на стенках труб и оборудования, выводя их из строя. Поэтому её улавливают из газа как можно быстрее после добычи. Полученная химически чистая мелкодисперсная сера является идеальным сырьём для химической и резиновой промышленности.
Крупнейшее месторождение самородной серы вулканического происхождения находится на острове Итуруп с запасами категории A+B+C1 — 4227 тыс. тонн и категории C2 — 895 тыс. тонн, что достаточно для строительства предприятия мощностью 200 тыс. тонн гранулированной серы в год.
Производители
Основными производителями серы в России являются предприятия ОАО Газпром: ООО Газпром добыча Астрахань и ООО Газпром добыча Оренбург, получающие ее как побочный продукт при очистке газа.
Физические свойства
Природный сросток кристаллов самородной серы
Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов серы. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество желтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета. Формулу пластической серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях, например сероуглероде. Серу применяют для производства серной кислоты, вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона.
Химические свойства
Горение серы
При комнатной температуре сера реагирует со фтором и хлором, проявляя восстановительные свойства:
S + 3F2 = SF6
S + Cl2 = SCl2
С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании, окисляясь:
S + 6HNO3(конц.) = H2SO4 + 6NO2 ↑ + 2H2O
S + 2H2SO4(конц. ) = 3SO2 ↑ + 2H2O
На воздухе сера горит, образуя сернистый ангидрид — бесцветный газ с резким запахом:
S + O2 = SO2
С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S2O2, молекулярной серы S2, свободных атомов серы S и свободных радикалов моноокиси серы SO.
При взаимодействии с металлами образует сульфиды. 2Na + S = Na2S
При добавлении к этим сульфидам серы образуются полисульфиды: Na2S + S = Na2S2
При нагревании сера реагирует с углеродом, кремнием, фосфором, водородом:
C + 2S = CS2 (сероуглерод)
Сера при нагревании растворяется в щёлочах — реакция диспропорционирования
3S + 6KOH = K2SO3 + 2K2S + 3H2O
Пожароопасные свойства серы
Тонкоизмельченная сера склонна к химическому самовозгоранию в присутствии влаги, при контакте с окислителями, а также в смеси с углем, жирами, маслами. Сера образует взрывчатые смеси с нитратами, хлоратами и перхлоратами. Самовозгорается при контакте с хлорной известью.
Средства тушения: распыленная вода, воздушно-механическая пена.
Обнаружение горения серы является трудной проблемой. Пламя сложно обнаружить человеческим глазом или видеокамерой, спектр голубого пламени лежит в основном в ультрафиолетовом диапазоне. Горение происходит при низкой температуре. Для обнаружения горения тепловым извещателем необходимо размещать его непосредственно близко к сере. Пламя серы не излучает в инфракрасном диапазоне. Таким образом оно не будет обнаружено распространенными инфракрасными извещателями. Ими будут обнаруживаться лишь вторичные возгорания. Пламя серы не выделяет паров воды. Таким образом детекторы ультрафиолетовых извещателей пламени, использующие соединения никеля, не будут работать.
Для эффективного обнаружения пламени рекомендуется использовать ультрафиолетовые извещатели с детекторами на основе молибдена. Они имеют спектральный диапазон чувствительности 1850…2650 ангстрем, который подходит для обнаружения горения серы.
Так как воздух по объему состоит приблизительно из 21 % кислорода и 79 % азота и при горении серы из одного объема кислорода получается один объем SO2, то максимальное теоретически возможное содержание SO2 в газовой смеси составляет 21 %. На практике горение происходит с некоторым избытком воздуха и объемное содержание SO2 в газовой смеси меньше теоретически возможного составляя обычно 14…15 %.
Горение серы протекает только в расплавленном состоянии аналогично горению жидкостей. Верхний слой горящей серы кипит, создавая пары, которые образуют слабосветящееся пламя высотой до 5 см. Температура пламени при горении серы составляет 1820 °C
Пожары на складах серы
В декабре 1995 года на открытом складе серы предприятия, расположенного в городе Сомерсет Вест Западной Капской провинции Южно-Африканской Республики произошел крупный пожар, погибли два человека.
16 января 2006 г. около пяти вечера на череповецком предприятии «Аммофос» загорелся склад с серой. Общая площадь пожара — около 250-ти квадратных метров. Полностью ликвидировать его удалось лишь в начале второго ночи. Жертв и пострадавших нет.
15 марта 2007 рано утром на ООО «Балаковский завод волоконных материалов» произошел пожар на закрытом складе серы. Площадь пожара составила 20 кв.м. На пожаре работало 4 пожарных расчета с личным составом в 13 человек. Примерно через полчаса пожар был ликвидирован. Никто не пострадал.
4 и 9 марта 2008 года произошло возгорание серы в Атырауской области в хранилище серы ТШО на Тенгизском месторождении. В первом случае очаг возгорания удалось потушить быстро, во втором случае сера горела 4 часа. Объём горевших отходов нефтепереработки, к каковым по казахстанским законам отнесена сера, составил более 9 тысяч килограммов.
В апреле 2008 недалеко от поселка Кряж Самарской области загорелся склад, на котором хранилось 70 тонн серы. Пожару была присвоена вторая категория сложности. К месту происшествия выехали 11 пожарных расчетов и спасатели. В тот момент, когда пожарные оказались около склада, горела еще не вся сера, а только ее небольшая часть — около 300 килограммов. Площадь возгорания вместе с участками сухой травы, прилегающими к складу, составила 80 квадратных метров. Пожарным удалось быстро сбить пламя и локализовать пожар: очаги возгорания были засыпаны землей и залиты водой.
В июле 2009 в Днепродзержинске горела сера. Пожар произошел на одном из коксохимических предприятий в Баглейском районе города. Огонь охватил более восьми тонн серы. Никто из сотрудников комбината не пострадал.
Медные факты сульфида, формула, свойства, используют
- идентификация сульфида меди.
Медь ii сульфид или сульфид меди, представленный химической формулой CuS, который носит название IUPAC sulfanylidenecopper [1] представляет собой черный порошок или комки, растворимые в азотной кислоте, но нерастворимые в воде [3] .
Встречается в виде минерального ковеллита и представляет собой ионное соединение [3, 4] . Он стабилен на воздухе, когда он сухой, но окисляется до сульфата меди влагой воздуха [1] .
Сульфид меди II
Идентификация сульфида меди II
Номер CAS 1317-40-4 [1] Идентификационный номер PubChem 14831 [1] Идентификатор ChemSpider 145403 [2] Номер ЕС 215-271-2 [1] Состав и синтез
Сульфид меди ii может быть получен реакцией между расплавленной серой и медью с последующим кипячением в гидроксиде натрия [1] .
Cu + S = CuS
Сульфид меди II Формула
Свойства и характеристики сульфида меди 2
Общие свойства
Молярная масса/молекулярная масса 95,606 г/моль [1] Физические свойства
Цвет/внешний вид Черный порох [3] Точка плавления/замерзания 220°C, 428°F (разлагается) [3] Температура кипения Н/Д [3] Плотность 4,6 г мл -1 при 25°C [3] Состояние вещества при комнатной температуре (нормальная фаза) Твердый [3] Показатель преломления 1,45 [1] Химические свойства
Растворимость в воде Н/Д [1] Атомные свойства
Кристаллическая структура Шестигранник [1] Структура сульфида меди II
Выраженные реакции CuS
Сульфид меди II реагирует с кислородом при температуре 300-500°C с образованием оксида меди и диоксида серы [7] .
2CuS + 3O 2 = 2CuO + 2SO 2
Сульфид меди Использование
- При приготовлении смешанных катализаторов [3] .
- При разработке анилинового черного красителя для текстильной печати [3] .
- В необрастающих красках [3] .
- В фотооптике и в качестве полупроводника [6] .
Опасно ли это
Сульфид меди токсичен при проглатывании. Следует избегать контакта с глазами и кожей, а также вдыхания, так как это может вызвать раздражение. Оказывает длительное вредное воздействие на водную жизнь [1, 3, 5] . В условиях пожара он разлагается с образованием опасных оксидов меди и оксидов серы [8] .
Ссылки:
- Сульфид меди (II) – Pubchem.ncbi.nlm.nih.gov
- Сульфид меди (II) — Chemspider.com
- Сульфид меди (II) — Chemicalbook.com
- Примеры ионной связи – Examples.
yourdictionary.com
- Сульфид меди CuS – Espimetals.com
- Сульфид меди – Americanelements.com
- Реакция взаимодействия сульфида меди с кислородом – Chemiday.com
- Паспорт безопасности материала – Nwmissouri.edu
Сульфид меди(I) | AMERICAN ELEMENTS®
РАЗДЕЛ 1. ИДЕНТИФИКАЦИЯ
Наименование продукта: Сульфид меди(I)
Номер продукта: Все применимые коды продуктов American Elements, например КУ1-С-05-И , КУ1-С-05-Л , КУ1-С-05-П , CU1-S-05-ST
Номер CAS: 22205-45-4
Соответствующие установленные применения вещества: Научные исследования и разработки
Информация о поставщике:
American Elements
10884 Weyburn Ave.
Los Angeles, CA
Тел.: +1 310-208-0551
Факс: +1 310-2098-0251 Экстренная служба номер телефона:
Внутренний, Северная Америка: +1 800-424-9300
Международный: +1 703-527-3887РАЗДЕЛ 2.
ИДЕНТИФИКАЦИЯ ОПАСНОСТИ
Классификация вещества или смеси в соответствии с 29 CFR 1910 ( OSHA HCS)
Вещество не классифицируется в соответствии с Согласованной на глобальном уровне системой (СГС).
Опасности, не классифицированные иначе
Данные отсутствуют
Элементы маркировки СГС
Н/Д
Пиктограммы опасности
Н/Д
Сигнальное слово
Н/Д
Краткая характеристика опасности
Н/Д
Классификация WHMIS
Классификационные оценки HMI
3 (шкала 0–4)
(Система идентификации опасных материалов)
ЗДОРОВЬЕ
ПОЖАР
РЕАКТИВНОСТЬ
1
0
1
Здоровье (острое воздействие) = 1
Воспламеняемость = 0
Физическая опасность = 1
Прочие опасности
Результаты оценки PBT и vPvB
PBT: н/д
vPvB: н/дВещества
Номер CAS / Название вещества: 22205-45-4 Медь(I) сульфид
Идентификационный номер(а):
Номер ЕС: 244-842-9РАЗДЕЛ 4. МЕРЫ ПЕРВОЙ ПОМОЩИ
Описание
- 6 меры первой помощи
При вдыхании: 903:00 Обеспечить пациента свежим воздухом.Если не дышит, сделайте искусственное дыхание. Держите пациента в тепле.
Немедленно обратитесь к врачу.
При попадании на кожу:
Немедленно промыть водой с мылом; тщательно промыть.
Немедленно обратитесь к врачу.
При попадании в глаза:
Промыть открытые глаза в течение нескольких минут под проточной водой. Проконсультируйтесь с врачом.
При проглатывании:
Обратиться за медицинской помощью.
Информация для врача
Наиболее важные симптомы и эффекты, как острые, так и замедленные
Нет данных
Указание на необходимость немедленной медицинской помощи и специального лечения
Нет данныхРАЗДЕЛ 5. ПРОТИВОПОЖАРНЫЕ МЕРЫ
Средства пожаротушения
Подходящие средства пожаротушения
Продукт не воспламеняется. Используйте меры пожаротушения, подходящие для окружающего огня.
Особые опасности, исходящие от вещества или смеси
При пожаре этого продукта могут выделяться следующие вещества:
Оксиды серы (SOx)
Сероводород
Оксиды меди
Рекомендации для пожарных
Защитное снаряжение:
Носить автономный респиратор.
Носите полностью защитный непроницаемый костюм.РАЗДЕЛ 6. МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ
Меры предосторожности для персонала, защитное снаряжение и порядок действий в чрезвычайных ситуациях
Использовать средства индивидуальной защиты. Держите незащищенных людей подальше.
Обеспечьте достаточную вентиляцию.
Меры предосторожности по охране окружающей среды:
Не допускайте попадания продукта в канализацию, канализационные системы или другие водоемы.
Методы и материалы для локализации и очистки:
Собрать механически.
Предотвращение вторичных опасностей:
Никаких специальных мер не требуется.
Ссылка на другие разделы
См. Раздел 7 для информации о безопасном обращении
См. Раздел 8 для информации о средствах индивидуальной защиты.
Информацию об утилизации см. в Разделе 13.РАЗДЕЛ 7. ОБРАЩЕНИЕ И ХРАНЕНИЕ
Обращение с
Меры предосторожности для безопасного обращения
Держите контейнер плотно закрытым.
Хранить в прохладном, сухом месте в плотно закрытой таре.
Информация о защите от взрывов и пожаров:
Продукт не воспламеняется
Условия безопасного хранения, включая любые несовместимости
Требования, предъявляемые к складским помещениям и емкостям:
Особых требований нет.
Сведения о хранении в одном общем хранилище:
Хранить вдали от окислителей.
Дополнительная информация об условиях хранения:
Хранить контейнер плотно закрытым.
Хранить в прохладном сухом месте в хорошо закрытых контейнерах.
Конкретное конечное использование
Данные отсутствуютРАЗДЕЛ 8. КОНТРОЛЬ ВОЗДЕЙСТВИЯ ВОЗДЕЙСТВИЯ/СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ
Дополнительная информация о конструкции технических систем: не менее 100 футов в минуту.
Параметры управления
Компоненты с предельными значениями, требующими контроля на рабочем месте: 903:00 Нет.
Дополнительная информация: Нет данных
Средства контроля воздействия
Средства индивидуальной защиты
Соблюдайте стандартные меры защиты и гигиены при обращении с химическими веществами.
Хранить вдали от пищевых продуктов, напитков и кормов.
Немедленно снимите всю испачканную и загрязненную одежду.
Мыть руки перед перерывами и по окончании работы.
Поддерживайте эргономически подходящую рабочую среду.
Дыхательное оборудование:
При наличии высоких концентраций используйте подходящий респиратор.
Рекомендуемое фильтрующее устройство для краткосрочного использования:
Используйте респиратор с картриджами типа N95 (США) или PE (EN 143) в качестве резерва средств технического контроля. Необходимо провести оценку риска, чтобы определить, подходят ли респираторы для очистки воздуха. Используйте только оборудование, проверенное и одобренное в соответствии с соответствующими государственными стандартами.
Защита рук:
Непроницаемые перчатки
Осмотрите перчатки перед использованием.
Пригодность перчаток должна определяться как материалом, так и качеством, последнее из которых может варьироваться в зависимости от производителя.
Защита глаз: Защитные очки
Защита тела: Защитная рабочая одежда.РАЗДЕЛ 9. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА
Информация об основных физико-химических свойствах
Внешний вид:
Форма: Порошок
Цвет: Черный
Запах: Без запаха
Порог восприятия запаха: Нет данных.
pH: неприменимо
Точка плавления/диапазон плавления: около 1100 °C (ок. 2012 °F)
Точка/диапазон кипения: данные отсутствуют
Температура сублимации/начало: данные отсутствуют
Воспламеняемость (твердое вещество, газ): Данные отсутствуют.
Температура воспламенения: Данные отсутствуют
Температура разложения: Данные отсутствуют
Самовоспламенение: Данные отсутствуют.
Опасность взрыва: Данные отсутствуют.
Пределы взрываемости:
Нижний: Данные отсутствуют
Верхний: Данные отсутствуют
Давление пара: неприменимо
Плотность при 20 °C (68 °F): 5,6 г/см 3 (46,732 фунта/гал)
Относительный Плотность: Данные отсутствуют.
Плотность пара: н/д
Скорость испарения: н/д
Растворимость в воде (H 2 O): Нерастворим
Коэффициент распределения (н-октанол/вода): Данные отсутствуют.
Вязкость:
Динамическая: Н/Д
Кинематическая: Н/Д
Другая информация: Данные отсутствуютРАЗДЕЛ 10. СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ
Реакционная способность
Данные отсутствуют
Химическая стабильность
Стабилен при рекомендуемых условиях хранения.
Термическое разложение / условия, которых следует избегать:
Разложение не происходит, если используется и хранится в соответствии со спецификациями.
Возможность опасных реакций
реагирует с сильным окисляющим агентом
условиями, чтобы избежать
Данных. ИНФОРМАЦИЯИнформация о токсикологическом воздействии
Острая токсичность:
Воздействие не известно. Значения
LD/LC50, соответствующие классификации:
Нет данных
Раздражение или разъедание кожи:
Может вызывать раздражение
Раздражение или разъедание глаз:
Может вызывать раздражение
Повышение чувствительности:
Сенсибилизирующие эффекты неизвестны.
Мутагенность зародышевых клеток:
Реестр токсических эффектов химических веществ (RTECS) содержит данные о мутациях для этого вещества.
Канцерогенность:
Нет классификационных данных о канцерогенных свойствах этого материала от EPA, IARC, NTP, OSHA или ACGIH.
Репродуктивная токсичность: 903:00 Эффекты неизвестны.
Специфическая системная токсичность на орган-мишень – повторное воздействие:
О влиянии не известно.
Специфическая системная токсичность на орган-мишень – однократное воздействие:
О влиянии не известно.
Опасность при вдыхании:
Воздействие неизвестно.
От подострой до хронической токсичности:
Эффекты неизвестны.
Дополнительная токсикологическая информация:
Насколько нам известно, острая и хроническая токсичность этого вещества полностью не известна.РАЗДЕЛ 12. ЭКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ
Токсичность
Водная токсичность:
Нет данных
Стойкость и способность к разложению
Нет данных
Потенциал биоаккумуляции
Нет данных
Мобильность в почве
Нет данных
Дополнительная экологическая информация:
Избегать попадания в окружающую среду.
Результаты оценки PBT и vPvB
PBT: н/д
vPvB: н/д
Другие неблагоприятные воздействия: данные отсутствуютРАЗДЕЛ 13. РЕКОМЕНДАЦИИ ПО УТИЛИЗАЦИИ
Методы обработки отходов
Рекомендация
Обратитесь к официальным правилам, чтобы обеспечить надлежащую утилизацию.
Неочищенная тара:
Рекомендация: Утилизация должна осуществляться в соответствии с официальными правилами IMDG, IATA
N/A
Класс(ы) опасности при транспортировке
DOT, ADR, ADN, IMDG, IATA
Класс
N/A
Группа упаковки
DOT, IMDG, IATA
N/A
Опасности для окружающей среды:
Н/Д
Особые меры предосторожности для пользователя
Н/Д
Транспортировка наливом в соответствии с Приложением II MARPOL73/78 и Кодексом IBC
Н/Д
Транспортировка/Дополнительная информация:
DOT
Загрязнитель морской среды ):
№РАЗДЕЛ 15. НОРМАТИВНАЯ ИНФОРМАЦИЯ
Правила/законодательные акты по безопасности, охране здоровья и окружающей среды, относящиеся к веществу или смеси
Элементы маркировки СГС
Н/Д
Пиктограммы опасности
Н/Д
Сигнальное слово
Н/Д
Заявления об опасности
Н/Д
Национальные нормы
Все компоненты этого продукта перечислены в Перечне химических веществ Агентства по охране окружающей среды США.
Все компоненты этого продукта перечислены в Канадском перечне веществ для внутреннего потребления (DSL).
Раздел 313 SARA (списки конкретных токсичных химических веществ)
22205-45-4 Сульфид меди(I)
Предложение 65 штата Калифорния
Предложение 65 — Химические вещества, вызывающие рак
Вещество не указано в списке.
Prop 65 – Токсичность для развития
Вещество не указано.
Prop 65 – Токсичность для развития, женщины
Вещество не указано.
Prop 65 – Токсичность для развития, мужчины
Вещество не указано.
Информация об ограничении использования:
Только для использования технически квалифицированными лицами.
Другие правила, ограничения и запретительные положения
Вещество, вызывающее особую озабоченность (SVHC) в соответствии с Регламентом REACH (ЕС) № 1907/2006.
Вещество не указано.
Необходимо соблюдать условия ограничений согласно Статье 67 и Приложению XVII Регламента (ЕС) № 1907/2006 (REACH) для производства, размещения на рынке и использования.