Свойства металлической решетки – Свойства кристаллических решеток

alexxlab | 15.08.2019 | 0 | Разное

Свойства кристаллических решеток

Тип кристаллической решетки

Характеристика

Ионные

Состоят из ионов. Образуют вещества с ионной связью. Обладают высокой твердостью, хрупкостью, тугоплавки и малолетучи, легко растворяются в полярных жидкостях, являются диэлектриками. Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и ослаблению прочности связи между ними. Поэтому их расплавы (растворы) проводят электрический ток. Ионные кристаллические решетки образуют многие соли, оксиды, основания.

Атомные

(ковалентные)

В узлах находятся атомы, которые соединены между собой ковалентными связями. Атомных кристаллов много. Все они имеют высокую температуру плавления, не растворимы в жидкостях, обладают высокой прочностью, твердостью, имеют широкий диапазон электропроводимости. Атомные кристаллические решетки образуют элементы III и IV групп главных подгрупп (Si, Ge, B, C).

Продолжение табл. З4

Молекулярные

Состоят из молекул (полярных и неполярных), которые соединены между собой слабыми водородными, межмолекулярными и электростатическими силами. Поэтому молекулярные кристаллы имеют малую твердость, низкие температуры плавления, малорастворимы в воде, не проводят электрический ток и обладают высокой летучестью. Молекулярную решетку образует лед, твердый углекислый газ («сухой лед»), твердые галогенводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F2, Cl2, Br2, J2, H2, N2, O2), трех- (O3), четырех- (P

4), восьми- (S8) атомными молекулами, многие кристаллические органические соединения.

Металлические

Состоят из атомов или ионов металлов, соединенных металлической связью. Узлы металлических решеток заняты положительными ионами, между которыми перемещаются валентные электроны, находящиеся в свободном состоянии (электронный газ). Металлическая решетка является прочной. Этим объясняются свойственные большинству металлов твердость, малая летучесть, высокая температура плавления и кипения. Она же обусловливает такие характерные свойства металлов как электро- и теплопроводность, блеск, ковкость, пластичность, непрозрачность, фотоэффект. Металлической кристаллической решеткой обладают чистые металлы и сплавы.

Кристаллы по величине электропроводности делятся на три класса:

Проводники I рода – электропроводность 104 - 106 (Омсм)-1–вещества с металлической кристаллической решеткой, характеризующиеся наличием «переносчиков тока» - свободно перемещающихся электронов (металлы, сплавы).

Диэлектрики (изоляторы) – электропроводность 10-10-10-22 (Омсм)-1 – вещества с атомной, молекулярной и реже ионной решеткой, обладающие большой энергией связи между частицами (алмаз, слюда, органические полимеры и др.).

Полупроводники – электропроводность 104-10-10 (Омсм)-1 – вещества с атомной или ионной кристаллической решеткой, обладающие более слабой энергией связи между частицами, чем изоляторы. С ростом температуры электропроводность у полупроводников возрастает (серое олово, бор, кремний и др.)

studfiles.net

Типы кристаллических решёток — урок. Химия, 8–9 класс.

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц. Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки. В узлах воображаемой решётки могут находиться атомы, ионы или молекулы.

 

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную, металлическую, атомную и молекулярную.

Ионными называют решётки, в узлах которых находятся ионы.

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

 

Ионные кристаллические решётки имеют соли, щёлочи, оксиды активных металлов. Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na+ и хлора Cl−, а в узлах решётки сульфата калия чередуются простые ионы калия  K+ и сложные сульфат-ионы SO42−.

 

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые, тугоплавкие, нелетучие. Такие вещества хорошо растворяются в воде.

  

 

Кристаллическая решётка хлорида натрия

  

Кристалл хлорида натрия

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

 

Такие кристаллические решётки характерны для простых веществ металлов и сплавов.

 

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск, ковкость, пластичность, хорошо проводят электрический ток и тепло.

 

Металлическая кристаллическая решётка

  

Металлические изделия

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз — одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит, кремний, бор и германий, а также сложные вещества, например, карборунд SiC и кремнезём, кварц, горный хрусталь, песок, в состав которых входит оксид кремния(\(IV\)) SiO2.

  

Таким веществам характерны высокая прочность и твёрдость. Так, алмаз является самым твёрдым природным веществом. У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения. Например, температура плавления кремнезёма — \(1728\) °С, а у графита она выше — \(4000\) °С. Атомные кристаллы практически нерастворимы.

 

Кристаллическая решётка алмаза

  

Алмаз

Молекулярными  называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость, низкие температуры плавления и кипения. Многие молекулярные вещества при комнатной температуре представляют собой жидкости и газы. Такие вещества летучи. Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние. Некоторые молекулярные вещества имеют запах.

 

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами  (He,Ne,Ar,Kr,Xe,Rn), а также неметаллы с двух- и многоатомными молекулами (h3,O2,N2,Cl2,I2,O3,P4,S8).

  

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода — лёд, твёрдые аммиак, кислоты, оксиды неметаллов. Большинство органических соединений тоже представляют собой молекулярные кристаллы (нафталин, сахар, глюкоза).

 

Кристаллическая решётка углекислого газа

 

«Сухой лёд»

 

Кристаллики иода

 

Если известно строение вещества, то можно предсказать его свойства.

Попробуем определить, каковы примерно температуры плавления у фторида натрия, фтороводорода и фтора.

  

У фторида натрия — ионная кристаллическая решётка. Значит, его температура плавления будет высокой. Фтороводород и фтор имеют молекулярные кристаллические решётки. Поэтому их температуры плавления будут невысокими. Молекулы фтороводорода полярные, а фтора — неполярные. Значит, межмолекулярное взаимодействие у фтороводорода будет сильнее, и его температура плавления будет выше по сравнению со фтором.

 

Экспериментальные данные подтверждают эти предположения: температуры плавления NaF, HF и F2 составляют соответственно \(995\) °С, \(–83\) °С,  \(–220\) °С.

Источники:

Габриелян О. С. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 133 с.  

 

www.yaklass.ru

Кристаллическая решетка

Твердые кристаллы можно представить как трехмерные конструкции, в которых четко повторяется один и тот же элемент структуры во всех направлениях. Геометрически правильная форма кристаллов обусловлена ​​их строго закономерным внутренним строением. Если центры притяжения атомов, ионов или молекул в кристалле изобразить в виде точек, то получим трехмерное регулярное распределение таких точек, которое называется кристаллической решеткой, а сами точки — узлы кристаллической решетки. Определенная внешняя форма кристаллов является следствием их внутренней структуры, которая связана именно с кристаллической решеткой.

Кристаллическая решетка — это воображаемый геометрический образ для анализа строения кристаллов, который представляет собой объемно-пространственную сетчатую структуру, в узлах которой располагаются атомы, ионы или молекулы вещества.

Для характеристики кристаллической решетки используют следующие параметры:

  1. Энергия кристаллической решетки Екр [КДж / моль] — это энергия, выделяющаяся при образовании 1 моля кристалла из микрочастиц (атомов, молекул, ионов), которые находятся в газообразном состоянии и удалены друг от друга на такое расстояние, что исключается возможность их взаимодействия.
  2. Константа кристаллической решетки d [A0] — наименьшее расстояние между центрами двух частиц в соседних узлах кристаллической решетки, соединенных химической связью.
  3. Координационное число — количество ближайших частиц, окружающих в пространстве центральную частицу и сочетаются с ней химической связью.

Основой кристаллической решетки является элементарная ячейка, которая повторяется в кристалле бесконечное количество раз.

Элементарная ячейка — это наименьшая структурная единица кристаллической решетки, которая обнаруживает все свойства ее симметрии.

Упрощенно элементарную ячейку можно определить как малую часть кристаллической решетки, которая еще выявляет характерные особенности ее кристаллов. Признаки элементарной ячейки описываются с помощью трех правил Бреве :

  • симметрия элементарной ячейки должна соответствовать симметрии кристаллической решетки;
  • элементарная ячейка должна иметь максимальное количество одинаковых ребер а, b, с и одинаковых углов между ними abg;
  • при условии соблюдения первых двух правил элементарная ячейка должна занимать минимальный объем.

Для описания формы кристаллов используют систему трех кристаллографических осей 

а, b, с, которые отличаются от обычных координатных осей тем, что они являются отрезками определенной длины, углы между которыми a, b, g могут быть как прямыми, так и непрямыми.

Модель кристаллической структуры: а) кристаллическая решетка с выделенной элементарной ячейкой; б) элементарная ячейка с обозначениями гранных углов

Форму кристалла изучает наука геометрическая кристаллография, одним из основных положений которой является закон постоянства гранных углов: для всех кристаллов данного вещества углы между соответствующими гранями всегда остаются одинаковыми.

Если взять большое количество элементарных ячеек и заполнить ими плотно друг к другу определенный объем, сохраняя параллельность граней и ребер, то образуется монокристалл идеальной строения. Но на практике чаще всего встречаются поликристаллов, в которых регулярные структуры существуют в определенных пределах, по которым ориентация регулярности резко меняется.

В зависимости от соотношения длин ребер а, b, с и углов a, b, g между гранями элементарной ячейки различают семь систем — так называемых сингоний кристаллов. Однако элементарная ячейка может быть построенной и таким образом, что она имеет дополнительные узлы, которые размещаются внутри ее объема или на всех ее гранях — такие решетки называются соответственно объемноцентрированными и гранецентрированными. Если дополнительные узлы находятся только на двух противоположных гранях (верхний и нижний), то это базоцентрированная решетка. С учетом возможности дополнительных узлов существует всего 14 типов кристаллических решеток.

Внешняя форма и особенности внутреннего строения кристаллов определяются принципом плотной «упаковки»: наиболее устойчивой, а потому и наиболее вероятной структурой будет такая, которая соответствует наиболее плотному расположению частиц в кристалле и в которой остается наименьшее по объему свободное пространство.

Типы кристаллических решеток

В зависимости от природы частиц, содержащихся в узлах кристаллической решетки, а также от природы химических связей между ними, различаются четыре основных типа кристаллических решеток.

Ионные решетки

Ионные решетки построены из разноименных ионов, расположенных в узлах решетки и связанные силами электростатического притяжения. Поэтому структура ионной кристаллической решетки должна обеспечить ее электронейтральность. Ионы могут быть простыми (Na+, Cl) или сложными (NH4+, NO3). Вследствие ненасыщенности и ненаправленности ионной связи ионные кристаллы характеризуются большими координационными числами. Так, в кристаллах NaCl координационные числа ионов Na+ и Cl— равна 6, а ионов Cs+ и Cl в кристалле CsCl — 8, поскольку один ион Cs+ окружен восемью ионами Cl, а каждый ион — Cl  соответственно восемью ионами Cs+. Ионные кристаллические решетки образуются большим количеством солей, оксидов и оснований.

Примеры ионных кристаллических решеток: а) NaCl; б) CsCl

Вещества с ионными кристаллическими решетками имеют сравнительно высокую твердость, они достаточно тугоплавкие, нелетучие. В отличие от металлов ионные соединения очень хрупкие, поэтому даже небольшой сдвиг в кристаллической решетке приближает друг к другу одноименно заряженные ионы, отталкивания между которыми приводит к разрыву ионных связей и как следствие — к появлению в кристалле трещин или к его разрушению. В твердом состоянии вещества с ионной кристаллической решеткой относятся к диэлектрикам и не проводят электрический ток. Однако при расплавлении или растворении в полярных растворителях нарушается геометрически правильная ориентировка ионов относительно друг друга, сначала ослабляются, а затем разрушаются химические связи, поэтому меняются и свойства. Как следствие, электрический ток начинают проводить как расплавы ионных кристаллов, так и их растворы.

Атомные решетки

Эти решетки  построены из атомов, соединенных между собой ковалентной связью. Они, в свою очередь, делятся на три типа: каркасные, слоистые и цепочечные структуры.

Каркасную структуру имеет, например, алмаз — одно из самых твердых веществ. Благодаря sp3 -гибридизации атома углерода строится трехмерная решетка, которая состоит исключительно из атомов углерода, соединенных ковалентными неполярными связями, оси которых размещаются под одинаковыми валентными углами (109,5o).

Каркасная структура атомной кристаллической решетки алмаза

Слоистые структуры можно рассматривать как огромные двумерные молекулы. Для слоистых структур присущи ковалентные связи внутри каждого слоя и слабое вандерваальсовское взаимодействие между соседними слоями.

Слоистые структуры атомных кристаллических решеток: а) CuCl2 ; б) PbO. На моделях с помощью очертаний параллелепипедов выделены элементарные ячейки

Классическим примером вещества со слоистой структурой является графит, в котором каждый атом углерода находится в состоянии sp2 -гибридизации и образует в одной плоскости три ковалентные s-связи с тремя другими атомами С. Четвертые валентные электроны каждого атома углерода являются негибридизированными, за их счет образуются очень слабые вандерваальсовские связи между слоями. Поэтому при приложении даже небольшого усилия, отдельные слои легко начинают скользить друг вдоль друга. Этим объясняется, например, свойство графита писать. В отличие от алмаза графит хорошо проводит электричество: под воздействием электрического поля нелокализованные электроны могут перемещаться вдоль плоскости слоев, и, наоборот, в перпендикулярном направлении графит почти не проводит электрического тока.

Слоистая структура атомной кристаллической решетки графита

 

Цепочечные структуры характерны, например, для оксида серы (SO3)n , киновари HgS,  хлорида бериллия BeCl2, а также для многих аморфных полимеров и для некоторых силикатных материалов, таких, как асбест.

Цепная структура атомной кристаллической решетки HgS: а) проекция сбоку б) фронтальная проекция

Веществ с атомной строением кристаллических решеток сравнительно немного. Это, как правило, простые вещества, образованные элементами IIIА- и IVA-подгрупп (Si, Ge, B, C). Нередко соединения двух разных неметаллов имеют атомные решетки, например, некоторые полиморфные модификации кварца (оксид кремния SiO2 ) и карборунда (карбид кремния SiC).

Все атомные кристаллы отличаются высокой прочностью, твердостью, тугоплавкостью и нерастворимостью практически ни в одном растворителе. Такие свойства обусловлены прочностью ковалентной связи. Вещества с атомной кристаллической решеткой имеют широкий диапазон электрической проводимости от изоляторов и полупроводников до электронных проводников.

Атомные кристаллические решетки некоторых полиморфных модификации карборунда — карбида кремния SiC

Металлические решетки

Эти кристаллические решетки содержат в узлах атомы и ионы металлов, между которыми свободно движутся общие для них всех электроны (электронный газ), которые образуют металлическую связь. Особенность кристаллических решеток металлов заключается в больших координационных числах (8-12), которые свидетельствуют о значительной плотность упаковки атомов металлов. Это объясняется тем, что «остовы» атомов, лишены внешних электронов, размещаются в пространстве как шарики одинакового радиуса. Для металлов чаще всего встречаются три типа кристаллических решеток: кубическая гранецентрированная с координационным числом 12 кубическая объемноцентрированная с координационным числом 8 и гексагональная, плотной упаковки с координационным числом 12.

Особые характеристики металлического связи и металлических решеток обусловливают такие важнейшие свойства металлов, как высокие температуры плавления, электро- и теплопроводность, ковкость, пластичность, твердость.

Металлические кристаллические решетки: а) кубическая объемноцентрированная (Fe, V, Nb, Cr) б) кубическая гранецентрированная (Al, Ni, Ag, Cu, Au) в) гексагональная (Ti, Zn, Mg, Cd)

Молекулярные решетки

Молекулярные кристаллические решетки содержат в узлах молекулы, соединенные между собой слабыми межмолекулярными силами — вандерваальсовскими или водородными связями. Например, лед состоит из молекул воды, удерживающихся в кристаллической решетке водородными связями. К тому же типу относятся кристаллические решетки многих веществ, переведенных в твердое состояние, например: простые вещества Н2, О2, N2, O3, P4, S8, галогены (F2, Cl2, Br2, I2), «сухой лед» СО2, все благородные газы и большинство органических соединений.

Молекулярные кристаллические решетки: а) йод I2 ; б) лед Н2О

Поскольку силы межмолекулярного взаимодействия слабее, чем силы ковалентной или металлической связи, молекулярные кристаллы имеют небольшую твердость; они легкоплавкие и летучие, нерастворимые в воде и не проявляют электропроводности.

www.polnaja-jenciklopedija.ru

Типы решеток у металлов

В металле атомы расположены так, что образуют правильную кристаллическую решетку, что определяется минимальной энергией взаимодействия атомов. Наименьший объем кристалла, дающий представление об атомной структуре металла в любом объеме, называется элементарной кристаллической ячейкой. Они бывают кубическая объемноцентрированная (ОЦК), кубическая гранецентрированная (ГЦК) и гексагональная плотноупакованная (ГПУ).

В гексагональной решетке атомы находятся в вершинах и центре шестигранных оснований призмы, а три атома в средней плоскости призмы.

Расстояние между центрами ближайших атомов в элементарной решетке называют периодом решетки a. Обычно a =0,1 – 0,7нм.

Плотность кристаллической решетки характеризуется координационным числом – числом атомов, находящихся на равном и наименьшем расстоянии от рассматриваемого атома. Так у ОЦК решетки координационное число 8, его обозначают К8, у ГЦК – К12.

Благодаря разной плотности атомов в различных плоскостях и направлениях решетки в металлах наблюдается анизотропия свойств. Технические металлы являются поликристаллами, т.е. состоят из большого числа анизотропных кристаллов, которые статически неупорядоченно ориентированы по отношению друг к другу. То есть поликристаллическое тело является псевдоизотропным. Такой изотропности не будет, если кристаллы имеют преимущественную ориентацию (текстуру) в каком – либо направлении; например, за счет значительной холодной деформации.

Дефекты решетки металлов

Различают по геометрическим признакам: точечные, линейные, поверхностные.

Точечные дефекты:

– вакансии;

– межузельные атомы.

Вакансии возникают при переходе атомов из узла решетки на поверхность или из-за испарения и реже в результате перехода в междоузлие. Тепловые вакансии характерны для поверхностного расположения атомов. С ростом температуры концентрация вакансий растет.

Такие дефекты влияют на проводимость, магнитные и другие свойства металлов.

Линейные дефекты

Чаще всего краевые и винтовые дислокации. Вокруг дислокации на протяжении нескольких межатомных расстояний возникают искажения решетки. Вектор Бюргера – критерий такого искажения – разность периметров контуров вокруг данного атома в плоскости удельной решетки и вокруг центра дислокации в реальной решетке.

Поверхностные дефекты

Эти дефекты малы только в одном измерении и представляют собой поверхности раздела между отдельными зернами.

Кристаллизация металлов

Превращения из жидкого состояния в твердое характеризует кристаллизацию. При этом система переходит к термодинамически более устойчивому состоянию с меньшей энергией Гиббса (свободная энергия) Wсв.

При Т>Трав более устойчив жидкий металл. При Т<Трав устойчивее твердое состояние. Трав – равновесная температура кристаллизации, когда сосуществуют обе фазы одновременно.

Кристаллизация начинается с образования кристаллических зародышей – центров кристаллизации. Растущие кристаллы или зерна геометрически правильной формы переходят к неправильной. Минимальный размер зародыша, способного к росту при данной температуре, называется критическим. С повышением ΔТ размер такого зародыша уменьшается, как и работа, необходимая для его образования. Чем выше скорость образования зародышей и их роста, тем интенсивнее идет кристаллизация.

Размер зерна меняет механические свойства. Так вязкость и пластичность растет, если зерно малое. Размер зерна зависит от химического состава, наличия примесей.

Форма кристаллов различна в зависимости от скорости охлаждения, характера и количества примесей. Чаще они имеют разветвленную форму (дендриты). Их можно обнаружить при специальном травлении шлифов особенно у литого металла (сплава). Столбчатые кристаллы нежелательны для стали, так как при ковке и других операциях возможны трещины. Многие металлы в зависимости от температуры могут иметь разные кристаллические формы (полиморфные модификации).

studfiles.net

Металлическая кристаллическая решетка - Большая Энциклопедия Нефти и Газа, статья, страница 1

Металлическая кристаллическая решетка

Cтраница 1

Металлическая кристаллическая решетка присуща элементарным металлам, а также соединениям металлов друг с другом. Такие свойства металлических кристаллов, как летучесть, механическая прочность, температура плавления, сильно колеблются. Однако некоторые физические свойства исключительно характерны для кристаллов металлического типа ( см. гл.  [1]

Металлические кристаллические решетки характеризуются наличием в их узлах положительно заряженных ионов металла.  [2]

Металлическая кристаллическая решетка характеризуется наличием ионов, расположенных в ее узлах, и свободных электронов. Часть свободных электронов удерживается электрическим полем ионов, часть, так называемые электроны проводимости, непосредственно участвует в создании электрического тока. Однако при направленном движении под влиянием электрического поля электроны проводимости испытывают взаимодействие с ионами кристаллической решетки, которые находятся в состоянии теплового колебательного движения. После каждого такого взаимодействия направление движения и скорость электрона меняются. Такой процесс обмена энергией идет непрерывно и требует для ускорения электронов после каждого акта столкновения постоянной затраты энергии извне.  [3]

Металлические кристаллические решетки представляют собой узлы из положительно заряженных ионов, между которыми движутся свободные электроны. Совокупность движущихся свободных электронов называется электронным газом. Он обеспечивает хорошую тепло - и электропроводность металлов. Полупроводники ( закись меди, германий и др.) обладают своеобразными свойствами ( см. § 14 гл. Они подобны кристаллам с гомеополярными связями.  [5]

Металлическая кристаллическая решетка состоит из катионов металла, между которыми относительно свободно перемещаются валентные электроны.  [7]

Внутри металлической кристаллической решетки колеблются положительные ионы, а между ними двигаются во всех направлениях свободные электроны. Несмотря на то, что эти электроны называются свободными, в действительности они только полусвободны, потому что могут беспрепятственно двигаться только в рамках данной кристаллической решетки.  [8]

Веществам с металлической связью присущи металлические кристаллические решетки. Электроны электростатически притягивают катионы, обеспечивая стабильность решетки.  [10]

В твердом состоянии металлы образуют металлические кристаллические решетки. Они рассматриваются в главе о металлах.  [12]

Веществам с металлической связью присущи металлические кристаллические решетки. Электроны электростатически притягивают катионы, обеспечивая стабильность решетки.  [13]

В твердом состоянии металлы образуют металлические кристаллические решетки. Они рассматриваются в главе о металлах.  [14]

Веществам с металлической связью присущи металлические кристаллические решетки. Электроны электростатически притягивают катионы, обеспечивая стабильность решетки.  [15]

Страницы:      1    2    3

www.ngpedia.ru

понятие, виды, основные характеристики :: SYL.ru

Металлы и их значение для человеческой цивилизации

С древнейших времен металлы играют огромную роль в развитии человечества. Внедрение их в повседневную жизнь произвело настоящую революцию как в способах обработки материалов, так и в восприятии человеком окружающей действительности. Современная промышленность и сельское хозяйство, транспорт и инфраструктура невозможны без применения металлов, использования их полезных качеств и свойств. Эти качества, в свою очередь, определяются внутренней структурой данного класса химических соединений, в основе которой лежит кристаллическая решетка.

Понятие и сущность кристаллической решетки

С точки зрения внутреннего устройства любое вещество может находиться в одном из трех состояний – жидком, газообразном и твердом. При этом именно последнее характеризуется наибольшей устойчивостью, что обусловлено тем, что кристаллическая решетка подразумевает не только четкое расположение атомов или молекул в строго определенных местах, но и необходимость приложения достаточно большой силы, чтобы связи между этими элементарными частицами разорвать.

Особенности ионной решетки

Структура любого вещества, находящегося в твердом состоянии, обязательно предполагает периодическую повторяемость молекул и атомов сразу в трех измерениях. При этом в зависимости от того, что находится в узловых пунктах, кристаллическая решетка может быть ионной, атомной, молекулярной и металлической. Что касается первой разновидности, то здесь базовыми компонентами служат разнополярно заряженные ионы, между которыми возникают и действуют так называемые кулоновские силы. При этом сила взаимодействия находится в прямой зависимости от радиусов заряженных частиц.

Металлическая кристаллическая решетка

Такая решетка представляет собой сложную систему, состоящую из катионов металла, в пространстве между которыми перемещаются отрицательно заряженные электроны. Именно наличие этих элементарных частиц придает решетке устойчивость и твердость, ибо они служат своеобразными компенсаторами для положительно заряженных катионов.

Сила и слабость атомной решетки

Достаточно интересной с точки зрения строения является атомная кристаллическая решетка. Уже из названия можно сделать вывод, что в ее узлах располагаются атомы, удерживающиеся за счет ковалентных связей. Многие ученые в последние годы относят данный тип взаимодействия к семейству неорганических полимеров, так как строение данной молекулы во многом определяется валентностью входящих в ее состав атомов.

Основные характеристики молекулярной решетки

Молекулярная кристаллическая решетка является наименее устойчивой из всех представленных. Все дело в том, что уровень взаимодействия находящихся в ее узлах молекул крайне низкий, а энергетический потенциал определяется целым рядом факторов, основную роль в которых играют дисперсионные, индукционные и ориентационные силы.

Влияние кристаллической решетки на свойства объектов

Таким образом, кристаллическая решетка во многом определяет свойства того или иного вещества. Например, атомные кристаллы плавятся при чрезвычайно высокой температуре и обладают повышенной твердостью, а вещества с металлической решеткой являются прекрасными проводниками электрического тока.

www.syl.ru

Кристаллические решетки металлов.

Металлы - кристаллические тела, атомы которых располaгaются в геометрически правилъном порядке, образуя кристаллы, в отличие от аморфных тел (например, смола), атомы которых находятся в беспорядочном состоянии.

Располагаясь в металлах в строгом nopядкe, атомы в плоскости образуют атомную сетку, а в пространстве - атомно-кристаллическую решeтку.

Типы кристаллических решеток у различных металлов различные. Наиболее часто встречаются решетки: кубическая – объемно-центрированная, кубическая гранецентрированная и гексагональная плотноупакованная.

 

Элементарные ячейки таких кристаллических решеток приведены на рис. l.5. В ячейке решетки кубической объемноцетрированной атомы расположены в вершинах куба и в центре куба; такую решетку имеют хром, ванадий, вольфрам, молибден и др. В ячейке кубической гранецентрированной решетки атомы расположены в вершинах и в центре каждой грани куба; такую решетку имеют алюминий, никель, медь, свинец и др. В ячейке гексагональной решетки атомы расположены в вершинах шестиугольных оснований призмы, в центре этих оснований и внугри призмы; гексагональную решетку имеют магний, титан, цинк и др. В реальном металле кристаллическая решетка состоит из огромного количества ячеек.

Размеры кристаллической решетки характеризуются ее параметрами, измеряемыми в ангстремах - Ã (1Ã = 10-8 см или 1 Ã = 0,1 Нм). Параметр кубической решетки характеризуется длиной ребра куба, обозначается буквой а и находится в пределах 0,28 - 0,6 Нм (2,8 - 6 Ã). Для характеристики гексагональной решетки принимают два параметра - сторону шестигранника а и высоту призмы с. Когда отношение с!а = 1,633,то атомы упакованы наиболее плотно, и поэтому такая решетка называется гексагональной плотноупакованной. .

В различных плоскостях кристаллической решетки атомы расположены с различной плотностью и поэтому многие свойства кристаллов в различных направлениях различны. Такое различие называетсяанизотропией. Все кристаллы анизотропны. В отличие от кристаплов аморфные тела (например, смола) в различных направлениях имеют в основном одинаковую плотность атомов и, следовательно, одинаковые свойства, т. е. они изотропны.

Степень анизотропности может быть значительной. Исследования монокристалла (единичного кристалла) меди в различных направлениях показали, что предел прочности σв изменяется от 120 ДО 360 МН2 (от 12 до 36 кгc/мм2), а удлинение δ от 10 до 55%.

В металлах, состоящих из большого количества по-разному ориентированных мелких анизотропных кристаллов (поликристалл), свойства во всех направлениях одинаковы (усредненные). Эта кажущаяся независимость свойств от направления называется – квазиизотропией (приставка «квази» означает по латыни мнимый).

Если в структуре металла создается одинаковая ориентировка кристаллов, то появляется анизотропия.

 

Кристаллизация металлов.

При переходе металла из жидкого состояния в твердое происходит так называемый процесс крисмаллизации.

Основы теории кристаллизации разработаны основоположником науки о металлах - металловедения Д. К. Черновым, который установил, что кристаллизация состоит из двух процессов:

зарождения мельчайших частиц кристаллов (зародышей или «центров» кристаллизации) и роста кристаллов из этих центров (рис. 1.6.)

 

Рост кристаллов заключается в том, что к их зародышам присоединяются все новые атомы жидкого металла. Сначала кристаллы растут свободно, сохраняя правильную геометрическую форму, но это происходит только до момента встречи растущих кристаллов в месте соприкосновения кристаллов рост отдельных их граней прекращается, и развиваются не все, а только некоторые грани кристаллов. В результате кристаллы не имеют правильной геометрической формы. Такие кристаллы называют кристаллитами, или зернами. Величина зерен зависит от числа центров кристаллизации и скорости роста кристаллов. Чем больше центров кристаллизации, тем больше образуется в данном объеме и каждый кристалл (зерно) меньше.

Рис.1.7. Влияние скорости охлаждения на возникновение центров кристаллизации и на величину образующих зерен: 1 – медленное охлаждение; 2 - ускоренное охлаждение; 3 - быстрое охлаждение.

 

На образование центров кристаллизации влияет скорость охлаждения. Чем больше скорость охлаждения металла, тем больше возникает в нем центров кристаллизации, и зерна получаются мельче (рис. l.7.) Это подтверждается на практике в тонких сечениях литых деталей, охлаждающихся более быстро, металл всегда получается более мелкозернистым, чем в толстых массивных литых деталях, охлаждающихся медленнее.

Методом получения мелкого зерна при затвердевании металла является создание искусственных центров кристаллизации. Для этого в расплавленный металл вводят специальные вещества, называемые модификаторами; процесс искусственного регулирования размеров зерен получил название модифицирования.

Форма растущих кристаллов определяется не только условиями их столкновений между собой, но и составом сплава, наличием примесей и условиями охлаждения. В большинстве случаев при кристаллизации металлов механизм образования носит так называемый дендритный характер.

Дендритная кристаллизация характеризуется тем, что рост зародышей происходит с неравномерной скоростью. После образования зародышей их развитие идет главным образом в тех направлениях решетки; которые имеют наибольшую плотность упаковки атомов (минимальное межатомное расстояние).

В этих направлениях образуются длинные ветви будущего кристалла – так называемые оси первого порядка (1 на рис. 1.8.).

В дальнейшем от осей первого порядка под определенными углами начинают расти новые оси, которые называют осями второго порядка (2), от осей второго порядка растут оси третьего порядка (3) и т. д.

По мере кристаллизации образуются оси более высокого порядка (четвертого, пятого, шестого и т. д.), которые постепенно заполняют все промежутки, ранее занятые жидким металлом.

В условиях, при которых не хватает жидкого металла для заполнения пространства между осями, например, при затвердевании последних объемов слитком, дендритное строение выявляется весьма отчетливо рис. 1.8.




infopedia.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *