Схемы инверторов – Схема сварочного инвертора – принципиальная схема инверторной сварки

alexxlab | 31.03.2020 | 0 | Разное

СХЕМА ИНВЕРТОРА


   Не секрет, что эффективность переменного тока гораздо выше в сравнении с постоянным током, это доказано как практически, так и теоретически. Но очень часто случается так, что доступен только постоянный ток, например, бортовая сеть автомобиля, аккумуляторы, солнечные батареи и другие альтернативные источники энергии. В то же время, например, при использовании солнечных батарей, в течение дня солнечная энергия поступает в неравных количествах, вечером или в облачную погоду ее значительно меньше, чем днем в ясную погоду. 

   Для выравнивания напряжения в схеме с солнечной батареей используют аккумуляторы, которые при излишках солнечной активности заряжаются, а при недостаточности солнечного света отдают накопленную за предыдущее время энергию. Или бывает необходимость использования переменного тока, но не со стандартными параметрами. Если при помощи трансформатора мы можем понизить или повысить напряжение, то частоту переменного тока, увы, с их помощью не изменишь. Для всех вышеописанных случаев можно применить чудо современной технологии – инвертор электрической энергии. 

   Согласно википедии: Инвертор

— устройство для преобразования постоянного в переменный ток с изменением величины частоты или напряжения.

   По сути инвертор - это преобразователь постоянного тока в переменный ток. Причем получить на выходе можно любой ток, с практически любыми необходимыми параметрами. Ток, получаемый на выходе инвертора, не зависит от входящего. Единственное, что инвертор не может делать – это увеличивать электрическую энергию, дабы не нарушить закон сохранения энергии. Во всем остальном универсальность инверторов огромная, они позволяют получать не статичные параметры тока на выходе, а регулировать его. 

   Принцип работы инвертора, если упростить сам процесс, можно описать так: это трансформатор, к первичной обмотке которого подключены два ключа, которые поочередно открываются и закрываются. В результате работает либо левая, либо правая обмотки. В один момент времени электрический ток движется либо в одну сторону по первой обмотке, либо в противоположную по второй обмотке. В это время во вторичной обмотке индуцируется ток. Токи в обмотке нарастают и уменьшаются, во вторичной обмотке также, но при этом еще и меняя направление тока, в зависимости от того, какая первичная обмотка сейчас активна. Правда, на выходе мы получаем ступенчатую (а), либо апрокисмированую синусоиду (б), а не плавную (в), но это не существенно для работы большинства бытовых приборов. Более дорогие инверторы позволяют получать на выходе и синусоидальную форму выходного напряжения (в).

   Инверторы можно разделить на автономные и сетевые. Автономные инверторы получают питание от мощных аккумуляторных батарей. Питание от них постоянное. Сетевые инверторы получают питание от постоянного тока, но входное напряжение различается по времени. Например, в случае с солнечными батареями оно может колебаться в диапазоне от 300 до 800 вольт. А вот ток на выходе должен оставаться постоянным по параметрам: и по напряжению и по частоте. А значит, в таких инверторах система контроля и коммутации более совершенная, поскольку в качестве генератора частоты используется сама сеть, и работа инвертора синхронизируется с этой сетью. 

   Итак, с теоретической частью разобрались. Но где же можно встретить инверторы в повседневной жизни? В больших городах трёхфазные инверторы обычно используются для создания тяги троллейбусов, трамваев, да и вообще для питания трёхфазных асинхронных электродвигателей. Однофазные инверторы есть практические в каждом офисе – источники бесперебойного питания.

   Массовое использование ИБП связано с обеспечением бесперебойной работы компьютеров, позволяющее подключенному к ИБП оборудованию при пропадании электрического тока или при выходе его параметров за допустимые нормы, некоторое непродолжительное время продолжить работу. Самые распространенные бытовые ИБП оборудованы аккумулятором 12 вольт 7,2 А. 

   Конструктивно преобразователи сильно могут отличаться в зависимости от необходимой выходной мощности. Если инвертор с выходной мощностью до 150 ватт можно собрать, как говорится, на коленках дома из подручных радиодеталей, то с более высокими требованиями придется «повозиться». Это связано, как и большей дороговизной и дефицитностью деталей, так и возрастающим количеством выделяемой теплоты. Ниже приведу схему относительно простого, но маломощного инвертора, мощностью не более 100 ватт:

   От автомобильного аккумулятора такой инвертор может питать устройство мощностью 100 ватт в течение нескольких часов, что является достаточно неплохим показателем. Вот самые необходимые параметры преобразователя:

 Напряжение питания -------------------- 10,5 – 14 В
 Напряжение выходного сигнала ----- 190 - 240 В
 Частота переменного напряжения -- 48 - 52 Гц
 Мощность подключаемой нагрузки-- до 100 Вт

   В качестве задающего генератора DA1 в данном варианте используется специализированная микросхема КР1211ЕУ1. Микросхема содержит интегрированный тактовый генератор, частота генерации которого определяется постоянной времени цепи, подключаемой к выводу 7 микросхемы. Для работы системы защиты используется вывод 1 микросхемы. При подаче на него высокого уровня напряжения работа микросхемы блокируется и на выходах устанавливается низкий уровень напряжения. В рабочий режим микросхема переводится либо выключением и включением питания, либо кратковременной подачей низкого уровня напряжения на вывод 3 микросхемы. Выходные импульсы DA1 поочерёдно открывают полевые транзисторы VT4, VT5, которые создают в первичной обмотке трансформатора T1 переменный электрический ток. При этом на выводах вторичной обмотки T1 формируется выходное переменное напряжение.

   Питание для микросхемы DA1 поступает от маломощного интегрального стабилизатора DA2. Наличие напряжения питания информируется светодиодом VD3. Частота формируемого переменного напряжения определяется номиналами R1, C1. Датчиком перегрузки служат параллельно соединённые резисторы R9 и R10. Протекающий по ним ток создаёт падение напряжения между базой и эмиттером транзистора VT2 через делитель R8, R11. При перегрузке транзистор VT2 открывается и через делитель R6, R5 на вывод 1 микросхемы поступает напряжение высокого уровня. Пороговая величина тока срабатывания защиты определяется номиналами R8, R11 и для данной схемы составляет 10 А.

   При пониженном напряжении питания открывается транзистор VT1. Ток, протекающий через открытый транзистор VT1 и резисторы R4, R5 создаёт на выводе 1 микросхемы DA1 напряжение высокого уровня. Транзисторы VT4, VT5 должны быть установлены на радиаторы площадью 30-50 кв. см. каждый. При этом необходимо обеспечить электрическую изоляцию между радиатором и корпусом транзистора. Рекомендуется использовать прокладки из слюды или керамики, а также диэлектрические шайбы под винты и теплопроводящую пасту. В качестве Т1 подойдёт понижающий трансформатор мощностью не менее 150 Вт.

   Рекомендуется использовать трансформатор ТП-190 после его несложной доработки. Доработка трансформатора заключается в том, чтобы, не прибегая к его разборке, отмотать 10 витков каждой секции вторичной обмотки. Для самостоятельного изготовления трансформатора можно рекомендовать сердечник ПЛМ27-40-58. Первичная обмотка должна содержать две секции по 32 витка провода диаметром 2 мм, а вторичная (повышающая) – 700 витков провода диаметром 0,6 мм. Соединения в цепях истоков транзисторов VT4, VT5 первичной обмотки трансформатора Т1, а также конденсатора С8 должны быть выполнены проводом сечением не менее 1,5 кв. мм. 

   Провода, соединяющие преобразователь с источником питания должны иметь сечение не менее 2,5 кв. мм. Резистор R19 устанавливается непосредственно на выводах конденсатора С8, а элементы R19, C9 устанавливаются на клеммах трансформатора Т1. В качестве выключателя SW1 рекомендуется использовать автомат на ток 16 А. 

   Элементы преобразователя, включая печатную плату, рекомендуется закрепить на металлическом шасси, которое следует соединить с «минусом» источника питания. Используемые в преобразователе полевые транзисторы имеют сопротивление открытого канала около 25 МОм, они рассчитаны на довольно большой допустимый ток стока 40 А, поэтому мощность преобразователя может быть увеличена до 250 Вт путем изменения номиналов схемы блокировки и использования соответствующего трансформатора. 

   Настройка инвертора сводится к подбору частотозадающего резистора R1. При отсутствии измерительных приборов частоту формируемого напряжения можно оценить с помощью простого устройства оценки частоты, схема которого приведена на рис. 5. Разъём XР1 подключается к выходу преобразователя, а разъём XР2 – в электросеть 220 В 50 Гц. При этом частота мигания светодиода VD2 соответствует разности частот напряжений преобразователя и электросети. Подбирая резистор R1, следует добиться наиболее редких миганий светодиода.

   Перечень элементов для сборки данного преобразователя:

Позиция   Наименование   Количество

DA1 КР1211ЕУ1 - 1
DA2 78L06 Интегральный стабилизатор 2
VT1,VT2 КТ3107А - 1
VT3 KT3102A - 1
VT4,VT5 IRZ44 Полевой транзистор 2
VD1,VD2 КД522А - 2
VD3 LED 5мм,G Светодиод зелёный 1
VD4 LED 5мм,R Светодиод красный 1

R1 1,1MОм; 1,2МОм; 1,3МОм Требуется подбор 3
R2,R4 3,9 кОм Оранж., белый, красный 1
R3,R13 6,2 кОм Голубой, красный, красный 1
R5 10 кОм Коричн., чёрный, оранж. 1
R6 9,1 кОм Белый, коричн., красный 1
R7 100 кОм Коричн., чёрный, жёлтый 1
R8 2,2 кОм Красный, красный, красный 1
R16 1,8 кОм Коричн, серый, красный 2
R9,R10 0,1 Ом 5 Вт 2
R11 1,0 кОм Коричн., чёрный ., красный 1
R12,R17 620 Ом Голубой, красный , коричн. 2
R18 82 кОм 2 Вт серый, красный, оранжевый 1
R14,R15 100 Ом Коричн., чёрный, коричн. 2
R19 1,2 кОм коричневый, красный, красный 1
C1 1000 пФ - 1
C2,C3 0,1 мкФ - 2
C4 1000мкФ 16В - 1
C5 10 мкФ 16В - 1
C6,C7 0,047 мкФ - 2
C8 10000 мкФ 16В - 1
C9 0,047 мкФ 400В - 1

   В качестве корпуса использован блок питания с персонального компьютера, транзисторы КТ315 с любым буквенным индексом, КТ209 можно заменить на КТ361 так же с любым буквенным индексом. Стабилизатор напряжения 7805 лучше заменить на отечественный КР142ЕН5А. Резисторы любые, мощностью от 0,125 до 0,25 вт. Диоды подойдут тоже практически любые низкочастотные, например - КД105 или IN4002. Конденсаторы C1 типа К73-11, К10-17В с малым уходом ёмкости при прогреве. Трансформатор был взят от блока питания персонального компьютера, но можно использовать и от старых ламповых телевизоров, например - "Весна" или "Рекорд", важно, чтобы витки, сечение и железо совпадали. С радиодеталями разобрались, теперь, как всё это собрать воедино. Ниже приведу неплохую схему инвертора:

   Этот процесс можно описать так: на микросхеме D1 собран генератор прямоугольных импульсов, частота следования которых около 200 гц - диаграмма "A". С вывода 8 микросхемы импульсы поступают далее на делители частоты, собранные на элементах D2.1 - D2.2 микросхемы D2. В результате чего на выводе 6 микросхемы D2 частота следования импульсов становится вдвое меньше - 100 гц - диаграмма "B", а на выводе 8 импульсы становятся равным частоте 50 гц - диаграмма "C". С вывода 9 снимаются неинвертируемые импульсы 50 гц - диаграмма "D". 

   На диодах VD1-VD2 собрана логическая схема "ИЛИ". В результате чего взятые с выводов микросхем D1 вывод 8, D2 вывод 6 импульсы образуют на катодах диодов импульс соответствующий диаграмме "E". Каскад на транзисторах V1 и V2 служит для увеличения амплитуды импульсов необходимых для полного открывания полевых транзисторов. Транзисторы V3 и V4, подключенные к выходам 8 и 9 микросхемы D2 поочерёдно открываются, запирая тем самым то один полевой транзистор V5, то другой V6. В результате чего управляющие импульсы формируются так, что между ними существует пауза, из-за чего исключается возможность протекания сквозного тока через выходные транзисторы и значительно повышается КПД. На диаграммах "F" и "G" показаны сформированные импульсы управления транзисторами V5 и V6. Вот так будет выглядеть печатная плата:

   Нам остается только подготовить трансформатор от блока питания. Для этого обмотку на напряжение 220 вольт оставляем, а остальные обмотки удаляются. Поверх этой обмотки наматываются две обмотки проводом ПЭЛ - 2 мм. Для лучшей симметрии их следует намотать одновременно в два провода. При подключении обмоток необходимо учесть фазировку. Полевые транзисторы закрепить через слюдяные прокладки на общий радиатор из алюминия. Правильно собранный инвертор начинает работать сразу после подачи питания. Единственное - бывает необходимость выставить частоту 50-60 гц подбором резистора R1 и конденсатора C1.


Поделитесь полезными схемами

БЕСПРОВОДНЫЙ ВИДЕОПЕРЕДАТЧИК

   Схема очень простого самодельного беспроводного видеопередатчика, в том числе и аудиосигнала, показана в данной статье.


ПРОСТОЙ РЕГУЛЯТОР МОЩНОСТИ

   Принципиальная электрическая схема простого регулятора мощности для электродвигателя, паяльника или другого бытового прибора. Приводятся возможные замены деталей.


ТРАНСФОРМАТОРНЫЙ ПАЯЛЬНИК

    Единственное отличие заключается в том, что в данном случае вместо импульсного блока питания использован сетевой трансформатор. Точную мощность трансформатора сказать не могу, но во время работы паяльник потребляет чуть больше 100 ватт.


СХЕМА БЛОКА РОЗЖИГА КСЕНОНА

    Для работы ксеноновой лампочки нужно высокое напряжение порядка 25-30кВ. Для получения такого напряжения используется рассматриваемый блок, который еще и называют блоком розжига ксенона.



samodelnie.ru

Схема отличного инвертора 12 В – 220 В

Хочу поделиться схемой инвертора 12 В – 220 В. Схема проверена, можно смело собирать. Схема достаточно проста, не содержит редких и малодоступных компонентов, собрать её сможет любой желающий. Вместо импортной микросхемы TL494 можно использовать отечественный аналог 1114ЕУ4.

Принципиальная схема инвертора 12-220 на TL494

В данном инверторе используется готовый высокочастотный понижающий трансформатор из БП компьютера, но в нашем преобразователе он станет наоборот повышающим. Данный трансформатор можно взять как из AT, так и из ATX. Обычно, такие трансформаторы отличаются только габаритами, а их расположение выводов совпадает. Убитый блок питания (или трансформатор из него) можно поискать в любой мастерской по ремонту компьютеров.

Если же вы такого трансформатора не найдете, можно попробовать намотать вручную (если хватит терпения). Вот какой трансформатор использовал в своём варианте:

Транзисторы обязательно нужно поставить на радиатор, иначе они могут перегреться и выйти из строя.

Использовал алюминиевый радиатор из полупроводникового советского телевизора. Этот радиатор не совсем подошел по размеру к транзисторам, но другого варианта у меня не было.

Также желательно заизолировать все высоковольтные выводы данного инвертора и лучше собрать все в корпус, ведь если этого не сделать, может случайно произойти короткое замыкание или просто можно коснуться высоковольтного вывода, что будет очень неприятно.

Будьте осторожны! На выходе схемы высокое напряжение и очень серьезно может ударить.

Я использовал корпус от блока питания ноутбука. Он очень хорошо подошел по размерам.

Ну и конечно же инвертор в действии:

Всем удачи, Кирилл.

2shemi.ru

Инвертор на транзисторе | Практическая электроника

Инвертор на транзисторе – прародитель цифровых микросхем. Именно в те далекие времена, благодаря транзистору, цифровая электроника стала развиваться быстрыми темпами.

Схема инвертора на простом ключе

Рассмотрим вот такую простенькую схемку:

Что мы здесь видим? Видим ключ, резистор и источник питания. Резистор R мы повесили для того, чтобы не было короткого замыкания в источнике питания, когда замыкается ключ S. На клемму +U мы подаем плюс питания, а на землю, соответственно, минус. В схеме возможны два варианта развития событий: ключ замкнут и ключ разомкнут. Давайте рассмотрим каждый из этих двух вариантов:

1) Ключ замкнут

В результате в цепи +U——-> R——-> S ——-> земля побежит электрический ток.

Будет ли в этом случае напряжение между клеммой “А” и землей?

Чешем свою репу и думаем… Так как ключ у нас замкнут, следовательно, в идеале его сопротивление 0 Ом. Вспоминаем закон Ома для участка цепи: I=U/R, отсюда U=IR. Получается, что падение напряжения на сопротивлении 0 Ом будет равно U=IR= I х 0 = 0 Вольт. Значит, напряжение между землей и клеммой “А” будет 0 Вольт. Получается, что напряжения на клемме “А” не будет.

2) Ключ разомкнут

Что  в результате у нас будет на клемме “А”? Давайте также посчитаем по закону Ома. Мы знаем, что электрический ток бежит от плюса к минусу. Но так как у нас минус вообще не при делах, так как цепь разорвана ключом, следовательно,  сила тока  в цепи +U——->R——->клемма “А” будет равняться 0 Ампер. Значит, падение напряжения на резисторе R будет равняться U=IR=0 х R = 0 Вольт. Получается, что все полноценные +U Вольт доходят до клеммы “A”. Поэтому, на клемме “А” будет напряжение +U.

Транзистор вместо ключа

А почему бы нам не заменить ключ S транзисторным ключом? Вводя транзистор в режим насыщения или отсечки, мы можем управлять сопротивлением между коллектором и эмиттером.

Следовательно, в режиме отсечки схема примет вот такой вид:

а в режиме насыщения вот такой:

Хотя, если честно, падение напряжения в этом случае на коллекторе-эмиттере будет составлять доли Вольт, что на самом деле не критично.

Как мы видим, ключ на транзисторе у нас имеет Вход и Выход:

Допустим, мы на Вход не подаем никакого сигнала. Что будет на Выходе? Не подавая никакого сигнала на базу транзистора через резистор R1, в данном случае на Вход, у нас транзистор НЕ откроется и ключ будет разомкнут (как вы помните, для открытия мы должны подать на базу более 0,6-0,7 Вольт), поэтому на Выходе  (клемма “А” ) у нас будет +U Вольт

Но если правильно рассчитать резистор R1 и подать сигнал, значение напряжения которого будет больше, чем 0,6-0,7 Вольт, то у нас транзистор войдет в режим насыщения и ключ будет замкнут

В этом случае на Выходе (на клемме “А”) у нас будет напряжение близкое к нулю.

Итак, что получаем? Подаем сигнал и имеем на выходе 0 Вольт, если НЕ подаем сигнал – имеем +U.

Такая схема в народе называется инвертором.

– Закрой окно.
– Я не расслышала, закрыть окно или открыть?
– Инвертируй!

Если за входной сигнал и +U взять напряжение, допустим, в 5 Вольт, и договориться, что значение напряжения близкое к 5 Вольтам принять за логическую единичку, а напряжение близкое к нулю принять за логический ноль, то можно вывести самую простую закономерность:

– подаем логическую единичку на вход, получаем логический ноль на выходе

– подаем логический ноль на вход, получаем логическую единичку на выходе

На осциллограмме все это будет выглядеть вот так:

Также в цифровой электронике есть такое понятие, как таблица истинности, которая показывает значение Выходов каких-либо логических элементов со всеми возможными комбинациями на Входе. Для нашего инвертора таблица истинности примет вот такой вид:

Рассчитываем инвертор на практике

Давайте построим инвертор на транзисторе КТ815Б, рассчитаем его и испытаем. +U возьмем 5 Вольт. На Вход также будем подавать управляющий сигнал в 5 Вольт.  Вся схема  у нас будет вот такая:

Как мы уже сказали, резистор R2 будет ограничивать силу тока в цепи +5 Вольт ——-> R2——-> коллектор——-> эмиттер——-> земля, когда транзистор будет полностью открыт, то есть будет находиться в режиме насыщения.  Также R2 будет задавать силу тока через нагрузку в режиме отсечки, которую мы цепанем на Выход схемы. В принципе, резистора Ом на 500 вполне хватит, чтобы в цепи +U——->R2——->коллектор——->эмиттер——->земля в режиме насыщения протекал ток силой в 10 миллиАмпер (I=U/R= 5 В / 500 Ом = 10 мА)

Дело за малым. Надо рассчитать резистор R1. Для этого щелкаем на статью работа транзистора в режиме ключа, и берем из этой статьи формулы для расчета резистора R1.

Для начала рассчитываем базовый ток по формуле:

где

IБ – это базовый ток, в Амперах

kнас  – коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.

I– коллекторный ток, в Амперах

β – коэффициент усиления тока транзистора, для расчетов берут минимальное значение в даташите или замеряют на практике

С помощью своего китайского транзистор-тестера я без труда замеряю β . Здесь он обозначается как hFE.

Теперь kнас берем 3, так как у нас будет типа переключающая схема. Iк у нас 10 миллиампер, это значение мы высчитывали выше. Считаем базовый ток:

Iб = (3 х 0,01) / 78 = 3,84 х 10-4 А

Так как управляющее напряжение у нас будет 5 Вольт, применяем закон Ома:

Iб = U/R1

R1 = U/Iб = 5 / 3,84 х 10-4 =1,3 х 104 Ом. Берем ближайший из ряда на 12 Килоом.

Следовательно, схема будет с такими параметрами:

Вот так она выглядит на макетной плате:

Давайте вместо нагрузки подцепим светодиод. Когда я НЕ подаю 5 Вольт на Вход, светодиод светится:

Когда беру 5 Вольт с другого блока питания и подаю на Вход схемы, то светодиод тухнет:

Как мы видим, схема работает.

Осциллограммы инвертора на транзисторе

Ну а теперь момент истины, смотрим осциллограммы.  Желтый – входной сигнал амплитудой в 5 Вольт с китайского генератора частоты, а красный  – выходной сигнал:

Подали прямоугольный сигнал в 5 Вольт и с частотой в 7 Килогерц, вышел прямоугольный сигнал в 5 Вольт 7 Килогерц. Выйти-то он вышел, но обратите внимание на то, что его фаза абсолютно противоположна фазе входного сигнала. Если взять 5 Вольт за логическую единичку, а 0 Вольт за логический ноль, то у нас получается, что загоняя единичку на вход, получаем ноль на выходе, и наоборот, загоняя ноль на вход, получаем единичку на выходе. Инвертор во всей своей красе 😉

Все, конечно, замечательно, но и здесь есть свои подводные камни. Дело все в том, что транзистор не может сразу быстро выключаться. Проблема заключается в физическом строении самого биполярного транзистора. Для выключения ему требуется некоторое время. В медленно переключающих схемах это не имеет значения, а вот схемы, которые работают на высоких частотах, уже будут иметь искажения. Вот осциллограмма выходного красного сигнала на частоте в 50 Килогерц :

А вот на частоте в 100 Килогерц:

Как видите, сигнал очень сильно искажается. Как же с этим бороться? Можно спроектировать ключ так, чтобы он переключался чуть выше границы насыщения. В этом случае коэффициент насыщения должен быть равен хотя бы единице. Но в этом случае у нас будет падать бОльшее напряжение между коллектором и эмиттером, что приведет к нагреву транзистора и лишним энергозатратам.

Второй вариант, использовать полевые транзисторы. Их еще называют МОП-транзисторы. Характеристики у МОПов намного лучше  и энергозатраты на переключение даже меньше, чем у биполярных транзисторов. Поэтому в основном сейчас везде применяются МОП-транзисторы в роли ключей. Ну и самый пик моды – это IGBT-транзисторы. Может быть мы когда-нибудь дойдем и до них…

www.ruselectronic.com

Простой инвертор 12-220 до 400 ватт, схема

Сегодня покажу процесс постройки компактного преобразователи напряжением 12 на 220 вольт со стабилизацией выходного напряжения. Сразу скажу, что этот преобразователи выдаёт на выходе постоянное напряжение к нему можно подключать всё кроме устройств содержащих в своем составе сетевые железные трансформаторы или двигатель переменного тока.

Наш преобразователь может обеспечить выходную мощность в 120 ватт, хотя при желании с некоторыми изменениями можно получить и до 400 ватт об этом расскажу походу.

Из недостатков; отсутствует защита от коротких замыканий, поэтому по входу и по выходу стоит добавить предохранителей. Возможно в дальнейшем доработаю схему и присобачу сюда электронную защиту.
Ноутбуки, телевизоры и прочие устройства смело можно подключать и даже компьютер, если слегка увеличить мощность преобразователя, фишка имена в стабильно выходном напряжении. Тут имеется обратная связь и микросхема шим следит за напряжением.

Теперь о конструкции;

Это повышающий двухтактный DС-DС преобразователь, основой служит шим контроллер SG3525, в отличие от старой доброй TL494 эта микросхема имеет мощный выход и способна управлять полевыми транзисторами с большой ёмкостью затвора без дополнительного драйвера.

Выходы микросхемы нагружены затворами полевых ключей, ключи в свою очередь управляют импульсным трансформатором, обратная связь то напряжение организовано на паре стабилитронов и оптроне, стабилитроны задают нужное значение выходного напряжения, в этом варианте 2 стабилитрона подключены последовательно.
Желательно использовать стабилитроны с одинаковым напряжением стабилизации,например 2 по 110 вольт.

Оптопара — любая в моём случае выдрана из компьютерного блока питания, на корпусе подобных оптронов имеется ключ в виде точки, он также нарисован на печатной плате чтобы начинающие не перепутали подключения.

Полевые транзисторы в этом образце стоять IFRZ44, хотя можно и более мощные. Ключи устанавливаются на общий радиатор, притом их нужно изолировать от радиатора с помощью слюдяных прокладок.
Рабочая частота микросхема шим с таким раскладом составляет от 47 до 50 кГц в зависимости от погрешности компонентов. На плате предусмотрен контроль, то есть схема запустится при подачи слаботочного плюса на схему контроллера или же добавлением маломощного выключателя.
Это сделано для того, чтобы вам не пришлось каждый раз отключать силовые провода от аккумулятора, в бесперебойниках довольно пригодная функция.

Так же имеется индикаторный светодиод и функция защиты от обратной полярности, организована эта функция на базе обыкновенного диода, который попросту запирается в случае если вы перепутайте полярность питания.

Трансформатор… — его намоточные данные;

В этом варианте использован сердечник от компьютерного блока питания с реальной габаритной мощностью не более 130 ватт.

Первичная обмотка намотана жгутом из 4 проводов по 0.6 миллиметров, в каждом плече пять веков.
Затем обмотки сфазированы следующим образом для образования средней точки.

Поверх поставил изоляцию из термостойкого скотча.
Вторичная обмотка намотана проводом 0,5 миллиметров содержит 105 витков, через каждые 30 витков также поставил изоляцию.

В выходной части использован двухполупериодный выпрямитель на базе импульсных диодов FR107, подойдут любые импульсные или быстродействующие диоды с током не менее 1 Ампера и с обратным напряжением не менее 400 вольт.

Правильно собранный инвертор почти что не нуждаются в настройке, перед сборкой нужно проверить все компоненты на работоспособность.

До пайки трансформатора стоит проверить наличие импульсов на затворах полевых ключей, лишь после этого подключается импульсный трансформатор.

Ток холостого хода всего в 50-60 ма, это очень хорошо даже для такого маленького инвертора. Всё это благодаря обратной связи и шин управления.

Минимальное напряжение питания 8-9 вольт, следовательно такой инвертор может сильно разрядить ваш АКБ, поэтому советую отслеживать напряжение на последнем или дополнить схему простой функцией защиты от пониженного напряжения.

Для увеличения выходной мощности полевики нужно заменить на более мощные, скажем на IRF3205, добавить вторую пару, заменить силовой трансформатор, также выходной выпрямитель, электролитический конденсатор и естественно предохранитель. В итоге схема будет выглядеть следующим образом.

С таким раскладом инвертор может развивать мощность в 300-400 Ватт.

Плата в формате lay. скачать…

Автор: АКА КАСЬЯН

xn--100--j4dau4ec0ao.xn--p1ai

Преобразователь напряжения 12 220 В своими руками

Чтобы подключить к бортовой электросистеме автомобиля бытовые устройства требуется инвертор, который сможет повысить напряжение с 12 В до 220 В. На полках магазинов они имеются в достаточном количестве, но не радует их цена. Для тех, кто немного знаком с электротехникой есть возможность собрать преобразователь напряжения 12 220 вольт своими руками. Две простые схемы мы разберем. 

Преобразователи и их типы

Содержание статьи

Есть три типа преобразователей 12-220 В. Первый — из 12 В получают 220 В. Такие инверторы популярный у автомобилистов: через них можно подключать стандартные устройства — телевизоры, пылесосы и т.д. Обратное преобразование — из 220 В в 12 — требуется нечасто, обычно в помещениях с тяжелыми условиями эксплуатации (повышенная влажность) для обеспечения электробезопасности. Например, в парилках, бассейнах или ванных. Чтобы не рисковать, стандартное напряжение в 220 В понижают до 12, используя соответствующее оборудование.

Преобразователи напряжения есть в достаточном количестве в магазинах

Третий вариант — это, скорее, стабилизатор на базе двух преобразователей. Сначала стандартные 220 В преобразуются в 12 В, затем обратно в 220 В. Такое двойное преобразование позволяет иметь на выходе идеальную синусоиду. Такие устройства необходимы для нормальной работы большинства бытовой техники с электронным управлением. Во всяком случае, при установке газового котла настоятельно советуют запитать его именно через такой преобразователь — его электроника очень чувствительная к качеству питания, а замена платы управления стоит примерно как половина котла.

Импульсный преобразователь 12-220В на 300 Вт

Эта схема проста, детали доступны, большинство из них можно извлечь из блока питания для компьютера или купить в любом радиотехническом магазине. Достоинство схемы — простота реализации, недостаток — неидеальная синусоида на выходе и частота выше стандартных 50 Гц. То есть, к данному преобразователю нельзя подключать устройства, требовательные к электропитанию. К выходу напрямую можно подключать не особ чувствительные приборы — лампы накаливания, утюг, паяльник, зарядку от телефона и т.п.

Представленная схема в нормальном режиме выдает 1,5 А или тянет нагрузку 300 Вт, по максимуму — 2,5 А, но в таком режиме будут ощутимо греться транзисторы.

Преобразователь напряжения 12 220 В: схема преобразователя на основе ШИМ-контролллера

Построена схема на популярном ШИМ-контроллере TLT494. Полевые транзисторы  Q1 Q2 надо размещать на радиаторах, желательно — раздельных. При установке на одном радиаторе, под транзисторы уложить изолирующую прокладку. Вместо указанных на схеме IRFZ244 можно использовать близкие по характеристикам IRFZ46 или RFZ48.

Частота в данном преобразователе 12 В в 220 В задается резистором R1 и конденсатором C2. Номиналы могут немного отличаться от указанных на схеме. Если у вас есть старый нерабочий беспербойник для компьютера, а в нем — рабочий выходной трансформатор, в схему можно поставить его. Если трансформатор нерабочий, из него извлечь ферритовое кольцо и намотать обмотки медным проводом диаметром 0,6 мм. Сначала мотается первичная обмотка — 10 витков с выводом от середины, затем, поверх — 80 витков вторичной.

Как уже говорили, такой преобразователь напряжения 12-220 В может работать только с нагрузкой, нечувствительной к качеству питания. Чтобы была возможность подключать более требовательные устройства, на выходе устанавливают выпрямитель, на выходе которого напряжение близко к нормальному (схема ниже).

Для улучшения выходных характеристик добавляют выпрямитель

В схеме указаны высокочастотные диоды типа HER307, но их можно заменить на серии FR207 или FR107. Емкости желательно подобрать указанной величины.

 

Инвертор на микросхеме

Этот преобразователь напряжения 12 220 В собирается на основе специализированной микросхемы КР1211ЕУ1. Это генератор импульсов, которые снимаются с выходов 6 и 4. Импульсы противофазные, между ними небольшой временной промежуток — для исключения одновременного открытия обоих ключей. Питается микросхема напряжением 9,5 В, который задается параметрическим стабилизатором на стабилитроне Д814В.

Также в схеме присутствуют два полевых транзистора повышенной мощности — IRL2505 (VT1 и VT2). Они имеют очень низкое сопротивление открытого выходного канала — около 0,008 Ом, что сравнимо с сопротивлением механического ключа. Допустимый постоянный ток — до 104 А, импульсный — до 360 А. Подобные характеристики реально позволяют получить 220 В при нагрузке до 400 Вт. Устанавливать транзисторы необходимо на радиаторы (при мощности до 200 Вт можно и без них).

Схема повышающего преобразователя напряжения 12-220 В

Частота импульсов зависит от параметров резистора R1 и конденсатора C1, на выходе установлен конденсатор C6 для подавления высокочастотных выбросов.

Трансформатор лучше брать готовый. В схеме он включается наоборот — низковольтная вторичная обмотка служит как первичная, а напряжение снимается с высоковольтной вторичной.

Возможные замены в элементной базе:

  • Указанный в схеме стабилитрон Д814В можно заменить любым, выдающим 8-10 V. Например, КС 182, КС 191, КС 210.
  • Если нет конденсаторов C4 и C5 типа К50-35 на 1000 мкФ, можно взять четыре 5000 мкФ или 4700 мкФ и включить их параллельно,
  • Вместо импортного конденсатора C3 220m можно поставить отечественный любого типа на 100-500 мкФ и напряжение не ниже 10 В.
  • Трансформатор — любой с мощностью от 10 W до 1000 W, но его мощность должна быть минимум в два раза выше планируемой нагрузки.

При монтаже цепей подключения трансформатора, транзисторов и подключения к источнику 12 В надо использовать провода большого сечения — ток тут может достигать высоких значений (при мощности в 400 Вт до 40 А).

Инвертор с чистым синусом а выходе

Схемы денных преобразователей сложны даже для опытных радиолюбителей, так что сделать их своими руками совсем непросто. Пример самой простой схемы ниже.

Схема инвертора 12 200 с чистым синусом на выходе

В данном случае проще собрать подобный преобразователь из готовых плат. Как — смотрите в видео.


В следующем ролике рассказано как собирать преобразователь на 220 вольт с чистым синусом. Только входное напряжение не 12 В, а 24 В.

А в этом видео как раз рассказано, как можно менять входное напряжение, но получать на выходе требуемые 220 В.

stroychik.ru

Схема сварочного инвертора

Содержание:

  1. Отличительные черты инверторов
  2. Взаимодействие основных узлов и деталей инвертора
  3. Физические процессы в сварочной схеме
  4. Защитные компоненты и схема управления
  5. Как устранить неисправности инвертора
  6. Плюсы и минусы сварочных инверторов
  7. Видео

До недавних пор все сварочные работы выполнялись при помощи мощных понижающих трансформаторов, обладавших большими размерами и весом. Во многих случаях эти устройства были неудобными, в основном из-за сложностей с их перемещением и высокой энергоемкости. Не каждая электрическая сеть способна выдержать такую нагрузку. Ситуация коренным образом изменилась, когда появилась схема сварочного инвертора, созданная на основе современных технологий.

Получились небольшие легкие устройства с широким набором функций. Вся их работа осуществляется благодаря наличию в конструкции импульсного преобразователя, способного производить высокочастотные токи. Именно они обеспечивают быстрое зажигание сварочной дуги, поддерживают ее стабильное состояние в течение всего периода работы.

Отличительные черты инверторов

Любое инверторное устройство по своей сути является блоком питания, внутри которого происходят физические процессы преобразования электроэнергии.

В сварочных инверторных устройствах они протекают по следующей схеме:

  • На начальном этапе выполняется преобразование входного переменного напряжения (220 В, 50 Гц) в постоянный ток.
  • На втором этапе осуществляется обратное превращение тока с постоянной синусоидой в переменный ток с высокой частотой.
  • Затем созданное напряжение понижается, осуществляется окончательное выпрямление тока с сохранением требуемых высокочастотных показателей. Этот порядок нужно знать, если требуется собрать сварочный инвертор своими руками.

Именно такой порядок действий дал возможность для снижения размеров и веса инверторных устройств. Старая сварочная аппаратура функционировала совсем по другому принципу. Здесь снижение напряжения на первичной обмотке, приводило к росту силы тока во вторичной трансформаторной обмотке. Полученная таким образом сила тока огромного значения, позволила применить дуговой способ сваривания. Поэтому, на вторичной обмотке пришлось снизить количество витков, но увеличить одновременно размеры сечения проводника. Подобная схема делала конструкцию очень громоздкой и тяжелой.

Электрическая схема сварочного инвертора дала реальный шанс повысить частотные показатели рабочего тока до 60, а в некоторых моделях и до 80 кГц без увеличения массы и размеров. В схеме были использованы полевые транзисторы, взаимодействующие между собой на таких же высоких частотах. Они соединяются с трансформаторной катушкой и передают на нее ток с заданной частотой. Поскольку самой катушке не требуется повышать частоту, за счет этого она сохраняет свои миниатюрные размеры. Выходные данные получаются, как и у обычной сварки, но габариты и масса инверторного устройства существенно отличаются в сторону уменьшения.

Взаимодействие основных узлов и деталей инвертора

На входе устройства обязательно нужен постоянный сигнал. Он получается с помощью сетевого выпрямителя, превращающего напряжение 220 вольт в постоянный ток. Основой конструкции этого модуля служит стандартный диодный мост и конденсаторы, сглаживающие пульсации после выпрямления.

Под действием высоких токов даже простейший диодный мост сильно нагревается и требует постоянного охлаждения в процессе работы. Во многих моделях установлен специальный радиатор и термический предохранитель, выполняющий отключение при нагреве моста до 90 градусов.

При подключении сварки к сети происходит сильное увеличение зарядного тока конденсаторов. Возникает реальная опасность пробоя компонентов диодного моста. Защититься от этого помогает схема плавного пуска, снижающая уровень тока при включении. После выхода аппарата в нужный режим, эта схема отключается с помощью реле коммутации.

Пройдя через выпрямительный модуль, напряжение, увеличенное до 310 В, попадает на участок импульсного преобразователя с ключами – транзисторами. Данные компоненты превращают подводимое напряжение в импульсные сигналы прямоугольной формы, частотой 60-80 кГц. Ключевым транзистора во время работы также требуются радиаторы охлаждения.

Наиболее важные функции в схеме инвертора принадлежат понижающему трансформатору. Он отличается компактными размерами и незначительным весом. Кроме того, в нем дополнительно предусмотрена выходная обмотка, обеспечивающая питание схемы управления. В приемную обмотку поступают прямоугольные импульсы на 310 В и частотой 60-80 кГц. Одновременно с этим, напряжение во вторичной обмотке за счет малого количества витков понижается до 60-70 вольт, а выходной ток увеличивается до 110-130 А и окончательно выпрямляется.

С этой целью сигнал от трансформатора поступает к выходному выпрямителю. Именно здесь появляется постоянный ток, под действием которого возникает сварочная дуга. В схеме используются сдвоенные диоды, имеющие высокое быстродействие и определяющие максимальное потребление тока всего инвертора. Данные элементы также охлаждаются с помощью радиаторов.

Принципиальная схема сварочного инвертора

Одной из основных функций инверторных сварочных установок является возможность увеличения частоты тока с 50 Гц стандартного значения, до 60-80 кГц, требуемых для работы. Все регулировки на выходе устройства производятся уже с высокочастотными токами, с использованием компактных малогабаритных трансформаторов. Частота увеличивается на том участке инверторной схемы, где предусмотрено расположение контура на основе мощных силовых транзисторов. На эти транзисторы возможна подача исключительно постоянного тока, поэтому на входе и выполняется выпрямление переменного напряжения.

Принципиальная схема сварочного инвертора условно разделяется на две составляющие. Это зона силового участка и цепь со схемой управления. Основным компонентом силового участка выступает диодный мост, где выполняется превращение переменного тока в постоянный. Такое преобразование приводит к возникновению импульсов, требующих сглаживания.

Сглаживание или фильтрация этих импульсов производится электролитическими конденсаторами, установленными за диодным мостом. Следует помнить, что напряжение, выходящее из моста, приблизительно на 40% превышает его величину на входе. Из-за этого диоды выпрямителя подвергаются сильному нагреву, и их работоспособность может заметно снизиться. Защита от перегрева элементов выпрямителя осуществляется радиаторами, включенными в конструкцию. Непосредственно на диодном мосту установлен термический предохранитель, отключающий питание при нагреве свыше 80-90 градусов.

Работа преобразователя приводит к созданию высокочастотных помех, попадающих через вход в электрическую сеть. Во избежание подобных ситуаций, перед выпрямителем производится установка фильтра, обеспечивающего электромагнитную совместимость. Такой фильтр включает в себя дроссель и конденсаторы.

Сама электросхема инвертора, выполняющего преобразование постоянного тока в переменный со значительно увеличившейся частотой, включает в себя транзисторы, собранные по схеме так называемого косого моста. Они переключаются между собой с высокой частотой и формируют переменный ток с такой же частотой, в пределах десятков или даже сотен килогерц. Результатом таких преобразований является переменный ток высокой частоты с прямоугольной амплитудой.

На выходе инвертора требуется получить постоянный ток с показателями, достаточными для выполнения сварочных работ. Эта функция выполняется понижающим трансформатором, расположенным сразу же за транзисторной схемой. Окончательное получение постоянного тока на выходе производится выпрямителем высокой мощности, собранным на основе диодного моста.

Защитные компоненты и схема управления

В процессе работы сварочный инвертор постоянно подвергается потенциальной опасности из-за возможных сбоев в сети и самой системе. Исключить негативные факторы помогают защитные элементы, установленные на различных участках схемы.

Предотвратить перегрев и сгорание транзисторов во время преобразований токов возможно при помощи специальных демпфирующих цепей. Другие блоки и узлы, присутствующие в электрической схеме и работающие под большими нагрузками, защищены элементами принудительного охлаждения. К каждому из них подключены термодатчики, отключающие питание при температурах нагрева, превышающих критическую отметку. Внутри инверторной аппаратуры система охлаждения, состоящая из вентиляторов и радиаторов, занимает достаточно много места.

Каждая схема инвертора оборудуется ШИМ-контроллером, обеспечивающим управление всей электрической схемой. От него поступают сигналы к разделительному трансформатору, силовым диодам и транзисторам. Для эффективного управления всей системой самому контроллеру также требуется подача установленных электрических сигналов. Такие сигналы вырабатываются операционным усилителем, к которому на вход подается выходной ток, преобразованный в инверторе. Если его значение расходится с заданными показателями, усилитель выполняет формирование управляющего сигнала и далее передает его на контроллер. Такая схема позволяет своевременно отключить аппарат при возникновении критических ситуаций в электрической схеме.

Как устранить неисправности инвертора

В некоторых случаях нарушения правил эксплуатации могут привести к выходу из строя даже самых надежных компонентов схемы сварочного инвертора. Основными причинами являются сбои в системах охлаждения, эксплуатация устройств в условиях повышенной влажности или запыленности. Большое количество пыли, осевшей на радиаторе, создает препятствие движению воздуха и своевременному отводу тепла. Поэтому производители рекомендуют периодически чистить аппаратуру.

Поиск возможных неисправностей нужно начинать от простого к сложному, поскольку современные схемы оборудованы многоступенчатой защитой от коротких замыканий и перегревов. Следует внимательно изучить инструкцию, где подробно указаны особенности эксплуатации конкретного устройства.

Среди основных причин возможных неисправностей можно выделить следующие:

  • Напряжение в сети слишком высокое или низкое. Инвертор сохраняет свою работоспособность в пределах 170-250 вольт.
  • Использование сетевого провода слишком большой длины или с небольшим сечением. Минимальное сечение должно быть не ниже 2,5 мм2, а длина питающего кабеля – не более 30 м.
  • Длина стандартного сварочного кабеля не превышает 3 м, а сечение – 35-50 мм2. Нарушение этих параметров приводит к сбоям в работе.
  • Некачественные контактные соединения силового и питающего кабеля.

В случае обнаружения неисправности, рекомендуется не ремонтировать сварочный инвертор самостоятельно, особенно если схема слишком сложная. Лучше всего – пригласить специалиста для проведения окончательной диагностики на соответствующем оборудовании.

Плюсы и минусы сварочных инверторов

Основными преимуществами инверторных устройств являются следующие:

  • Использование современных технологий позволило снизить массу аппаратов до 5-12 кг, в зависимости от модели. Обычные сварочные агрегаты весят в среднем от 18 до 35 кг.
  • Высокий КПД инверторов – до 90%. Такой показатель достигается за счет снижения затрат на нагрев деталей и компонентов.
  • Низкое энергопотребление, примерно с 2 раза меньше, чем у обычных сварочных трансформаторов.
  • Универсальность и широкий диапазон регулировок позволяют работать с разными металлами, использовать разные технологии сварки.
  • Множество полезных дополнительных опций: плавный пуск, антизалипание, форсаж и другие.
  • Напряжение, подаваемое на дугу, отличается высокой стабильностью. С этой целью автоматика обеспечивает взаимодействие всех компонентов схемы, создавая наиболее оптимальные условия для работы.
  • Даже простой инвертор может работать с любыми типами электродов.
  • Возможность программирования и настройки некоторых моделей на определенный тип сварочных работ.

В качестве минусов отметим недостатки, не оказывающие влияния на качество работ:

  • Высокая стоимость инверторов, примерно на 20-50% превышающая цену обычной аппаратуры.
  • Транзисторы обладают повышенной уязвимостью, а их стоимость иногда составляет 60% от цены всего устройства.
  • Невозможность производить сварку инверторами в сложных условиях эксплуатации.

electric-220.ru

СХЕМА ИНВЕРТОРА 12-220

   Такой простой и компактный преобразователь напряжения автомобилистам, поскольку в машине очень часто может возникнуть необходимость получения сетевого напряжения. Этот преобразователь может быть использован для запитки паяльников, ламп накаливания, кофеварок и прочих устройств, которые питаются от сети 220 Вольт. Преобразователь может также питать активные нагрузки - телевизор или DVD проигрыватель, но стоит заметить, что это достаточно опасно, поскольку рабочая частота преобразователя довольно сильно отличается от сетевых 50 Герц. Но, как известно, в указанных устройствах установлены импульсные блоки питания, где сетевое напряжение выпрямляется диодами. Эти диоды могут выпрямлять ток высокой частоты, но должен заметить, что не во всех импульсных блоках могут быть такие диоды, поэтому лучше не рискнуть. Такой DC-AC преобразователь напряжения можно собрать за пару часов, если меть под рукой нужные компоненты. Уменьшенная схема показана на рискнке: 

   Трансформатор - силовой компонент такого преобразователя. Он намотан на кольце феррита, который был снят от китайского блока для питания галогенок (мощность 60 ватт).

   Первичная обмотка трансформатора моталась 7-ю жилами. Для намотки обеих обмоток использовался провод с диаметром 0,5-0,6мм. Первичная обмотка состоит из 10 витков с отводом от середины, т.е. две равноценные половинки по 5 витков каждая. Обмотки растянуты по всему кольцу. После намотки, обмотки желательно изолировать и мотать повышающую.  


   Вторичная обмотка состоит из 80 витков (провод использовался тот же, что и для намотки первичной обмотки). Транзисторы были установлены на теплоотводы, но не забываем изолировать их при помощи специальных прокладок и шайб. Это делается только тогда, когда у обеих транзисторов общий теплоотвод.

   Дроссель можно убрать и подключить питание напрямую. Он состоит из 7-10 витков провода 1мм. Дроссель может быть намотан на кольце из порошкового железа (такие кольца легко можно найти в компьютерных БП). Схема инвертора 12-220В в предварительной наладке не нуждается и работает сразу. 

   Работа достаточно стабильная, благодаря дополнительному драйверу, микросхема не греется. Транзисторы греются в пределах нормы, но советую подобрать для них теплоотвод побольше. 

   Монтаж выполнен в корпусе от электронного трансформатора, который и играет роль теплоотвода для полевых ключей.

el-shema.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *