Таблица диодов с характеристиками: Страница не найдена

alexxlab | 10.01.1974 | 0 | Разное

Содержание

Диод | Виды, характеристики, параметры диодов

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

 

Диод – это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся

полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

 

Вот это и есть тот самый PN-переход

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.

  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

 

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

 

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение диода

 

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

Мой генератор частоты выглядит вот так.

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

 

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

 

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

 

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

 

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

[quads id=1]

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота

Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации

(Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор –  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

 

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

На схемах  триодные тиристоры  выглядят вот таким образом:

Существуют также  разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  – одна из разновидностей диодных сборок.

 На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Приобрести диоды можно тут.

Очень интересное видео про диод

Похожие статьи по теме “диод”

Как работает стабилитрон

Диод Шоттки

Диодный мост

Как проверить диод и светодиод мультиметром

Как проверить тиристор

Схема для проверки тиристоров

 

Маркировка диодов: таблица обозначений

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

Характеристики диодов (диодных сборок)

 

Таблица 2. Характеристики одно- и трехфазных диодов и диодных сборок (выпрямителей)
P/N Упаковка, мм Импульсное обратное напряжение, VRRM В Средний ток прямой макс, IFAV А Ударный прямой ток 50/60 Гц, IFSM А Напряжение прямое Ток утечки
VF В IF А IRмкА VR В
Выпрямители 3-х фазные
DB15/25-005 28,5х28,5х10 50 15/25 275/385 1.05 7.5 10 50
DB15/25-01 28,5х28,5х10 100 15/25 275/385 1.05 7.5 10 100
DB15/25-02 28,5х28,5х10 200 15/25 275/385 1.05 7.5 10 200
DB15/25-04 28,5х28,5х10 400 15/25 275/385 1.05 7.5 10 400
DB15/25-06 28,5х28,5х10 600 15/25 275/385 1.05 7.5 10 600
DB15/25-08 28,5х28,5х10 800 15/25 275/385 1.05 7.5 10 800
DB15/25-10 28,5х28,5х10 1000 15/25 375/385 1.05 7.5 10 1000
DB15/25-12 28,5х28,5х10 1200 15/25 275/385 1.05 7.5 10 1200
DB15/25-14 28,5х28,5х10 1400 15/25 275/385 1.05 7.5 10 1400
DB15/25-16 28,5х28,5х10 1600 15/25 275/385 1.05 7.5 10 1600
DB35-005 28,5х28,5х10 50 35 500 1.02 17.5 10 50
DB35-01 28,5х28,5х10 100 35 500 1.05 17.5 10 100
DB35-02 28,5х28,5х10 200 35 500 1.05 17.5 10 200
DB35-04 28,5х28,5х10 400 35 500 1.05 17.5 10 400
DB35-06 28,5х28,5х10 600 35 500 1.05 17.5 10 600
DB35-08 28,5х28,5х10 800 35 500 1.05 17.5 10 800
DB35-10 28,5х28,5х10 1000 35 500 1.05 17.5 10 1000
DB35-12 28,5х28,5х10 1200 35 500 1.05 17.5 10 1200
DB35-14 28,5х28,5х10 1400 35 500 1.05 17.5 10 1400
DB35-16 28,5х28,5х10 1600 35 500 1.05 17.5 10 1600
DBI15/25-005 40х20х10 200 15/25 275/385 1.05 7.5/12.5 10 50
DBI15/25-01 40х20х10 400 15/25 275/385 1.05 7.5/12.5 10 100
DBI15/25-02 40х20х10 600 15/25 275/385 1.05 7.5/12.5 10 200
DBI15/25-04 40х20х10 800 15/25 275/385 1.05 7.5/12.5 10 400
DBI15/25-06 40х20х10 1000 15/25 275/385 1.05 7.5/12.5 10 600
DBI15/25-08 40х20х10 1200 15/25 275/385 1.05 7.5/12.5 10 800
DBI15/25-10 40х20х10 1400 15/25 275/385 1.05 7.5/12.5 10 1000
DBI15/25-12 40х20х10 1600 15/25 275/385 1.05 7.5/12.5 10 1200
DBI15/25-14 40х20х10 50 15/25 275/385 1.05 7.5/12.5 10 1400
DBI15/25-16 40х20х10 100 15/25 275/385 1.05 7.5/12.5 10 1600
DBI25-005A 35х25х4 50 25 390 1.05 12.5 10 50
DBI25-04A 35х25х4 400 25 390 1.05 12.5 10 400
DBI25-08A 35х25х4 800 25 390 1.05 12.5 10 800
DBI25-12A 35х25х4 1200 25 390 1.05 12.5 10 1200
DBI25-16A 35х25х4 1600 25 390 1.05 12.5 10 1600
DBI6-005 40х20х10 200 6 135 1.05 3 10 50
DBI6-01 40х20х10 400 6 135 1.05 3 10 100
DBI6-02 40х20х10 600 6 135 1.05 3 10 200
DBI6-04 40х20х10 800 6 135 1.05 3 10 400
DBI6-06 40х20х10 1000 6 135 1.05 3 10 600
DBI6-08 40х20х10 1200 6 135 1.05 3 10 800
DBI6-10 40х20х10 1400 6 135 1.05 3 10 1000
DBI6-12 40х20х10 1600 6 135 1.05 3 10 1200
DBI6-14 40х20х10 900 6 135 1.05 3 10 1400
DBI6-16 40х20х10 1000 6 135 1.05 3 10 1600
Мосты выпрямительные
B125C1500A/B 19х3,5х10 250 1.8 50     10 250
B125D DIL 250 1 40 1.1 1 10 250
B250C1500A/B 19х3,5х10 600 1.8 50     10 600
B250S DIL 600 1 40 1.1 1 10 600
B380C1500A/B 19х3,5х10 800 1.8 50     10 800
B380D DIL 800 1 40 1.1 1 10 800
B40C1500A/B 19х3,5х10 80 1.8 50     10 80
B40D DIL 80 1 40 1.1 1 10 80
B500C1500A/B 19х3,5х10 1000 1.8 50     10 1000
B500S DIL 1000 1 40 1.1 1 10 1000
B80C1500A/B 19х3,5х10 160 1.8 50     10 160
B80D DIL 160 1 40 1.1 1 10 160
CS10D DIL 20 1 40 0.5 1 500 20
GBI10M 32х5,6х17 1000 3 220     10 1000
GBU10M 20,8х3,3х18 1000 8.4 300 1 12 10 1000
KBPC10/15/2500FP                
KBPC601 15,2х15,2х6,3 100 3.8 125 1.2 3 10 100
KBU12M 23,5х5,7х19,3 1000 8.4 300 1 12 10 1000
KBU8M 23,5х5,7х19,3 1000 5.6 300 1 8 10 1000
MS500 SuperMicroDIL 1000 0.5 20 1.2 0.5 10 1000
MYS250 MicroDIL 600 0.5 20 1.2 0.5 10 600
PB1001 19х19х6,8 70 10 150 1.2 5 10 35
S80 MiniDIL (TO-269AA) 160 0.8 44 1.2 0.8 10 160

Виды и классификация диодов по типам, назначению, конструкции, материалам

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. Электрод, подключенный к положительному полюсу прибора, называют анодом, к отрицательному – катодом. Если к прибору приложено прямое напряжение, то он находится в открытом состоянии, при котором сопротивление мало, а ток протекает беспрепятственно. Если прикладывается обратное напряжение, прибор, благодаря высокому сопротивлению, является закрытым. Обратный ток присутствует, но он настолько мал, что условно принимается равным нулю.

Содержание статьи

Общая классификация

Диоды делятся на большие группы – неполупроводниковые и полупроводниковые.

Неполупроводниковые

Одной из наиболее давних разновидностей являются ламповые (электровакуумные) диоды. Они представляют собой радиолампы с двумя электродами, один из которых нагревается нитью накала. В открытом состоянии с поверхности нагреваемого катода заряды движутся к аноду. При противоположном направлении поля прибор переходит в закрытую позицию и ток практически не пропускает.

Еще одни вид неполупроводниковых приборов – газонаполненные, из которых сегодня используются только модели с дуговым разрядом. Газотроны (приборы с термокатодами) наполняются инертными газами, ртутными парами или парами других металлов. Специальные оксидные аноды, используемые в газонаполненных диодах, способны выдерживать высокие нагрузки по току.

Полупроводниковые

В основе полупроводниковых приборов лежит принцип p-n перехода. Существует два типа полупроводников – p-типа и n-типа. Для полупроводников p-типа характерен избыток положительных зарядов, n-типа – избыток отрицательных зарядов (электронов). Если полупроводники этих двух типов находятся рядом, то возле разделяющей их границы располагаются две узкие заряженные области, которые называются p-n переходом. Такой прибор с двумя типами полупроводников с разной примесной проводимостью (или полупроводника и металла) и p-n-переходом называется полупроводниковым диодом. Именно полупроводниковые диодные устройства наиболее востребованы в современных аппаратах различного назначения. Для разных областей применения разработано множество модификаций таких приборов.

Полупроводниковые диоды

Виды диодов по размеру перехода

По размерам и характеру p-n перехода различают три вида приборов – плоскостные, точечные и микросплавные.

Плоскостные детали представляют одну полупроводниковую пластину, в которой имеются две области с различной примесной проводимостью. Наиболее популярны изделия из германия и кремния. Преимущества таких моделей – возможность эксплуатации при значительных прямых токах, в условиях высокой влажности. Из-за высокой барьерной емкости они могут работать только с низкими частотами. Их главные области применения – выпрямители переменного тока, устанавливаемые в блоках питания. Эти модели называются выпрямительными.

Точечные диоды имеют крайне малую площадь p-n перехода и приспособлены для работы с малыми токами. Называются высокочастотными, поскольку используются в основном для преобразования модулированных колебаний значительной частоты.

Микросплавные модели получают путем сплавления монокристаллов полупроводников p-типа и n-типа. По принципу действия такие приборы – плоскостные, но по характеристикам они аналогичны точечным.

Материалы для изготовления диодов

При производстве диодов используются кремний, германий, арсенид галлия, фосфид индия, селен. Наиболее распространенными являются первые три материала.

Очищенный кремний – относительно недорогой и простой в обработке материал, имеющий наиболее широкое распространение. Кремниевые диоды являются прекрасными моделями общего назначения. Их напряжение смещения – 0,7 В. В германиевых диодах эта величина составляет 0,3 В. Германий – более редкий и дорогой материал. Поэтому германиевые приборы используются в тех случаях, когда кремниевые устройства не могут эффективно справиться с технической задачей, например в маломощных и прецизионных электроцепях.

Виды диодов по частотному диапазону

По рабочей частоте диоды делятся на:

  • Низкочастотные – до 1 кГц.
  • Высокочастотные и сверхвысокочастотные – до 600 мГц. На таких частотах в основном используются устройства точечного исполнения. Емкость перехода должна быть невысокой – не более 1-2 пФ. Эффективны в широком диапазоне частот, в том числе низкочастотном, поэтому являются универсальными.
  • Импульсные диоды используются в цепях, в которых принципиальным фактором является высокое быстродействие. По технологии изготовления такие модели разделяют на точечные, сплавные, сварные, диффузные.

Области применения диодов

Современные производители предлагают широкий ассортимент диодов, адаптированных для конкретных областей применения.

Выпрямительные диоды

Эти устройства служат для выпрямления синусоиды переменного тока. Их принцип действия основывается на свойстве устройства переходить в закрытое состояние при обратном смещении. В результате работы диодного прибора происходит срезание отрицательных полуволн синусоиды тока. По мощности рассеивания, которая зависит от наибольшего разрешенного прямого тока, выпрямительные диоды делят на три типа – маломощные, средней мощности, мощные.

  • Слаботочные диоды могут использоваться в цепях, в которых величина тока не превышает 0,3 А. Изделия отличаются малой массой и компактными габаритами, поскольку их корпус изготавливается из полимерных материалов.
  • Диоды средней мощности могут работать в диапазоне токов 0,3-10,0 А. В большинстве случаев они имеют металлический корпус и жесткие выводы. Производят их в основном из очищенного кремния. Со стороны катода изготавливается резьба для фиксации на теплоотводящем радиаторе.
  • Мощные (силовые) диоды работают в цепях с током более 10 А. Их корпусы изготавливают из металлокерамики и металлостекла. Конструктивное исполнение – штыревое или таблеточное. Производители предлагают модели, рассчитанные на токи до 100 000 А и напряжение до 6 кВ. Изготавливаются в основном из кремния.

Диодные детекторы

Такие устройства получают комбинацией в схеме диодов с конденсаторами. Они предназначены для выделения низких частот из модулированных сигналов. Присутствуют в большинстве аппаратов бытового применения – радиоприемниках и телевизорах. В качестве детекторов излучения используются фотодиоды, преобразующие свет, попадающий на светочувствительную область, в электрический сигнал.

Ограничительные устройства

Защиту от перегруза обеспечивает цепочка из нескольких диодов, которые подключают к питающим шинам в обратном направлении. При соблюдении стандартного рабочего режима все диоды закрыты. Однако при выходе напряжения сверх допустимого назначения срабатывает один из защитных элементов.

Диодные переключатели

Переключатели, представляющие собой комбинацию диодов, которые применяются для мгновенного изменения высокочастотных сигналов. Такая система управляется постоянным электрическим током. Высокочастотный и управляющие сигналы разделяют с помощью конденсаторов и индуктивностей.

Диодная искрозащита

Эффективную искрозащиту создают с помощью комбинирования шунт-диодного барьера, ограничивающего напряжение, с токоограничительными резисторами.

Параметрические диоды

Используются в параметрических усилителях, которые являются подвидом резонансных регенеративных усилителей. Принцип работы основан на физическом эффекте, который заключается в том, что при поступлении на нелинейную емкость разночастотных сигналов часть мощности одного сигнала можно направить на рост мощности другого сигнала. Элементом, предназначенным для содержания нелинейной емкости, и является параметрический диод.

Смесительные диоды

Смесительные устройства используются для трансформации сверхвысокочастотных сигналов в сигналы промежуточной частоты. Трансформация сигналов осуществляется, благодаря нелинейности параметров смесительного диода. В качестве смесительных СВЧ-диодов используются приборы с барьером Шоттки, варикапы, обращенные диоды, диоды Мотта.

Умножительные диоды

Эти СВЧ устройства используются в умножителях частоты. Они могут работать в дециметровом, сантиметровом, миллиметровом диапазонах длин волн. Как правило, в качестве умножительных приборов используются кремниевые и арсенид-галлиевые устройства, часто – с эффектом Шоттки.

Настроечные диоды

Принцип работы настроечных диодов основан на зависимости барьерной емкости p-n перехода от величины обратного напряжения. В качестве настроечных используются приборы кремниевые и арсенид-галлиевые. Эти детали применяют в устройствах перестройки частоты в сверхчастотном диапазоне.

Генераторные диоды

Для генерации сигналов в сверхвысокочастотном диапазоне востребованы устройства двух основных типов – лавинно-пролетные и диоды Ганна. Некоторые генераторные диоды при условии включения в определенном режиме могут выполнять функции умножительных устройств.

Виды диодов по типу конструкции

Стабилитроны (диоды Зенера)

Эти устройства способны сохранять рабочие характеристики в режиме электрического пробоя. В низковольтных устройствах (напряжение до 5,7 В) используется туннельный пробой, в высоковольтных – лавинный. Стабилизацию невысоких напряжений обеспечивают стабисторы.

Стабисторы

Стабиистор, или нормистор, — это полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации (примерно 0,7-2 V).

Диоды Шоттки

Устройства, применяемые в качестве выпрямительных, умножительных, настроечных, работают на базе контакта металл-полупроводник. Конструктивно они представляют собой пластины из низкоомного кремния, на которые наносится высокоомная пленка с тем же типом проводимости. На пленку вакуумным способом напыляется металлический слой.

Варикапы

Варикапы выполняют функции емкости, величина которой меняется с изменением напряжения. Основная характеристика этого прибора – вольт-фарадная.

Туннельные диоды

Эти полупроводниковые диоды имеют падающий участок на вольтамперной характеристике, возникающий из-за туннельного эффекта. Модификация туннельного устройства – обращенный диод, в котором ветвь отрицательного сопротивления выражена мало или отсутствует. Обратная ветвь обращенного диода соответствует прямой ветви традиционного диодного устройства.

Тиристоры

В отличие от обычного диода, тиристор, кроме анода и катода, имеет третий управляющий электрод. Для этих моделей характерны два устойчивых состояния – открытое и закрытое. По устройству эти детали разделяют на динисторы, тринисторы, симисторы. При производстве этих изделий в основном используется кремний.

Симисторы

Симисторы (симметричные тиристоры) – это разновидность тиристора, используется для коммутации в цепях переменного тока. В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания.

Динисторы

Динистором, или диодным тиристором, называется устройство, не содержащее управляющих электродов. Вместо этого они управляются напряжением, приложенным между основными электродами. Их основное применение – управление мощной нагрузкой при помощи слабых сигналов. Также динисторы используют при изготовлении переключающих устройств.

Диодные мосты

Это 4, 6 или 12 диодов, которые соединяются между собой. Число диодных элементов определяется типом схемы, которая бывает – однофазной, трехфазной, полно- или полумостовой. Мосты выполняют функцию выпрямления тока. Часто используются в автомобильных генераторах.

Фотодиоды

Предназначены для преобразования световой энергии в электрический сигнал. По принципу работы аналогичны солнечным батареям.

Светодиоды

Эти устройства при подключении к электрическому току излучают свет. Светодиоды, имеющие широкую цветовую гамму свечения и мощность, применяются в качестве индикаторов в различных приборах, излучателей света в оптронах, используются в мобильных телефонах для подсветки клавиатуры. Приборы высокой мощности востребованы в качестве современных источников света в фонарях.

Инфракрасные диоды

Это разновидность светодиодов, излучающая свет в инфракрасном диапазоне. Применяется в бескабельных линиях связи, КИП, аппаратах дистанционного управления, в камерах видеонаблюдения для обзора территории в ночное время суток. Инфракрасные излучающие устройства генерируют свет в диапазоне, который не доступен человеческому взгляду. Обнаружить его можно с помощью фотокамеры мобильного телефона.

Диоды Ганна

Эта разновидность сверхчастотных диодов изготавливается из полупроводникового материала со сложной структурой зоны проводимости. Обычно при производстве этих устройств используется арсенид галлия электронной проводимости. В этом приборе нет p-n перехода, то есть характеристики устройства являются собственными, а не возникающими на границе соединения двух разных полупроводников.

Магнитодиоды

В таких приборах ВАХ изменяется под действием магнитного поля. Устройства используются в бесконтактных кнопках, предназначенных для ввода информации, датчиках движения, приборах контроля и измерения неэлектрических величин.

Лазерные диоды

Эти устройства, имеющие сложную структуру кристалла и сложный принцип действия, дают редкую возможность генерировать лазерный луч в бытовых условиях. Благодаря высокой оптической мощности и широким функциональным возможностям, приборы эффективны в высокоточных измерительных приборах бытового, медицинского, научного применения.

Лавинные и лавинно-пролетные диоды

Принцип действия устройств заключается в лавинном размножении носителей заряда при обратном смещении p-n перехода и их преодолении пролетного пространства за определенный временной промежуток. В качестве исходных материалов используются арсенид галлия или кремний. Приборы в основном предназначаются для получения сверхвысокочастотных колебаний.

PIN-диоды

PIN-устройства между p- и n-областями имеют собственный нелегированный полупроводник (i-область). Широкая нелегированная область не позволяет использовать этот прибор в качестве выпрямителя. Однако зато PIN-диоды широко применяются в качестве смесительных, детекторных, параметрических, переключательных, ограничительных, настроечных, генераторных.

Триоды

Триоды – это электронные лампы. Он имеет три электрода: термоэлектронный катод (прямого или косвенного накала), анод и управляющую сетку. Сегодня триоды практически полностью вытеснены полупроводниковыми транзисторами. Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен МГц — ГГц высокой мощности при маленьком числе активных компонентов, а габариты и масса не имеют большого значения.

Маркировка диодов

Маркировка полупроводниковых диодных устройств включает цифры и буквы:

  • Первая буква характеризует исходный материал. Например, К – кремний, Г – германий, А – арсенид галлия, И – фосфид индия.
  • Вторая буква – класс или группа диода.
  • Третий элемент, обычно цифровой, обозначает применение и электрические свойства модели.
  • Четвертый элемент – буквенный (от А до Я), обозначающий вариант разработки.

Пример: КД202К – кремниевый выпрямительный диффузионный диод.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Параметры светодиоды. Технические характеристики светодиодов. Сравнительные таблицы

Параметры светодиоды. Технические характеристики светодиодов. Сравнительные таблицы

Условно все светодиоды можно разделить на две большие группы:

Осветительные это те, которые могут обеспечить световой поток не меньше, чем у традиционных источников света. Некоторые модели даже их превосходят.
К ним можно отнести 4 популярных вида:

К индикаторным относится dip светодиоды. Рассмотрим сперва их.

Сокращение DIP расшифровывается как Direct In-line Package. Именно их в первую очередь начали массово выпускать в недалеком прошлом.

Трудно представить, но первые неказистые экземпляры для рядовых пользователей стоили от 200$ за штуку.

На сегодняшний день они уже не так распространены, но все же применяются:

  • в устройствах индикации
  • в панелях электронных приборов
  • световых табло
  • или елочных украшениях

По форме корпуса они могут быть круглыми, овальными или прямоугольными. Самые популярные типоразмеры с выпуклыми линзами – 3,5,8,10мм.

Напряжение питания 2,5-5В, при токе до 25мА.

Бывают разноцветными и многоцветными (RGB). Это когда в одном корпусе спрятано 3 перехода, а внизу есть 4 вывода.

В электрических схемах все светодиоды обозначаются как обычный диод с двумя стрелочками.

Обратите внимание

Несмотря на малые размеры и свою “древность”, отдельные модели из-за специфической формы корпуса, могут выдать в 1,5-2 раза больше яркости, чем некоторые SMD.

К тому же потребление энергии у DIP меньше чем SMD, да и стоят они дешевле. Однако SMD технология не стоит на месте и с каждым годом их параметры стремительно сближаются.

Вот таблицы с основными техническими характеристиками (сила света, рабочее напряжение, сила тока, угол свечения, цена) для индикаторных светодиодов DIP разных типоразмеров.

А также расшифровка маркировки их названий и обозначений (для просмотра нажмите на соответствующую вкладку):

Данный вид на сегодня является самым популярным. SMD расшифровывается с английского = Surface-Mount-Device.

В своей конструкции они имеют полупроводниковый чип или кристалл, установленный на подложку. Снизу расположены контакты для подключения.

Каждый такой светодиод закрывается в корпусе, который напрямую можно припаивать к любой поверхности. Поэтому то их и называют ”изделиями поверхностного монтажа”.

Несмотря на одинаковое название “СМД”, в продаже можно встретить модели обладающие абсолютно разными:

О популярности данного типа могут говорить следующие цифры. Общее количество производимых светодиодов SMD, только в одном корпусе 2835, за год составляет несколько миллиардов штук.

Почему они так популярны? Конечно из-за своих достоинств:

  • продолжительный срок службы
  • ну а самое главное – высокая светоотдача

Именно SMD вид используется в большинстве светодиодных лампочек и светильников.

Таблицы всех технических характеристик наиболее популярных марок светодиодов марки SMD 2835, 3528, 5050, 5730:

COB – Chip On Board. У этого вида большое количество маленьких кристаллов размещено на единой подложке и все это собрано в одном корпусе.

Схема соединения этих кристаллов – последовательно параллельная. Сверху они заливаются люминофором.

По-другому их называют светодиодными матрицами. Их достоинства:

  • разнообразная форма сборки светодиодов

Все эти преимущества очень кстати подошли для изготовления ярких и компактных прожекторов. Также КОБы активно применяют там, где нужна акцентированная и декоративная подсветка.

Однако из-за близости расположения кристаллов друг к другу, происходит сильный нагрев корпуса, даже если вы и обеспечите нормальное охлаждение. Поэтому если вам нужна качественная фокусировка, придется использовать силиконовую оптику.
Она стойка не только к высоким температурам, но самое главное выдерживает без последствий огромное количество циклов нагрев-остывание.

На абы какую поверхность COM матрицы ставить нельзя. Ее необходимо предварительно подготовить.

Как определить марку SMD светодиода. Описание, виды и особенности маркировки SMD диодов

Светодиод – полупроводниковый прибор, преобразующий электрический ток в световое излучение. В отличие от ламп накаливания и энергосберегающих, долговечней и энергоэффективней. По исполнению делятся на два основных типа – DIP и SMD (СМД).

Различаются по конструкции корпуса и расположением контактов. В статье мы расскажем про SMD диоды.

Что такое smd

Surface Mounted Device (SMD) – прибор, монтируемый на поверхность. Говоря другими словами, если DIP светодиод имеет длинные контактные ножки и монтируется через отверстия в электрической плате, то СМД аналоги – прямо на плату или в светодиодную ленту, так как имеют маленькие контакты.

Япония – лидер развития технологий светодиодов, СМД диода в частности. Поэтому лучшая продукция у них.

Корпуса smd элементов

Основной тип – пластмассовый корпус прямоугольной формы.

Массовое производство налажено именно для такого типа. Если брать обычные диоды, а не источники света, то там ещё есть корпус металлостеклянный цилиндрической формы. Для нужд именно освещения смысла в таком исполнении нет.

Более важны размеры СМД светодиодного элемента. Их можно узнать по маркировке.

Маркировка smd полупроводников

Четыре цифры в маркировке обозначают длину и ширину в сотых миллиметра. Например, диод 1206 длинной 12 мм и шириной 6 мм.

Приписка RGB обозначает, что светодиод может выдавать один из трех цветов – красный, зеленый или голубой.

Для радиолюбителя обычно достаточно знания этих двух параметров в маркировке СМД диодов.

Краткие технические характеристики и применение

Популярны СМД светодиоды с маркировками 5050, 3528 и 5630 (5730). Именно в светодиодной ленте используются такие SMD кристаллы, благодаря чему получили широкое распространение.

Но других типоразмеров достаточно много. Вот основные из них (краткая характеристика и сферы применения, наиболее распространенных из них):

0603. Мощность 1,9 – 2, 3 ватт. Обычно применяется в приборных панелях автомобиля и в подсветки экрана в некоторых мобильных телефонах.

2835. Мощность 0, 2 – 1. Применяются в LED-лампочках, в карманных и тактических фонариках. Хорошо экономят энергию. Но в основном только белый цвет.

3528. Появился давно. В отличие от 2835 выпускается в разных цветах: теплый и холодный белый, красный, зеленый, желтый и синий.

3014. Мощность 0, 1 Вт. Современные светодиоды. Конкретную сферу применения назвать сложно, в интернете информации мало.

3030. 1,5 — 2, 2 Вт. Для ремонта ЖК и LED телевизоров.

3535. 1-3 Вт. Заняли твердое место на рынке из-за высокой теплоотдачи. Активно применяются в уличном освещении и на производстве.

5050. 0, 2 или 0, 26 Ватт. В сущности, это просто три диода 3528 в одном корпусе. Используется для красивого общего освещения – барах, ресторанах, гостиницах и проч.

5630. 0, 5 Ватт. Лучшее применение в светодиодных лентах. Требуют хорошего охлаждения, потому почти не используются в других сферах.

0805 и 1206 мало распространены. Применяются в основном радиолюбителями или для подсветки телефонов (смартфонов).

5730. Мощность от 0,5 до 1 ватта. Средние характеристики и невысокая цена. Встречается в светильниках всех видов: от декоративного освещения до уличного и промышленного. Один из самых распространенных кристаллов.

Полезное

В заключение

Светодиодные системы сегодня вытесняют лампы накаливания и энергосберегающие аналоги. Промышленники и жильцы домов любят их за низкое потребление электроэнергии и долгий срок службы. Дизайнеры за высокое качество света и безопасность. Радиолюбители за компактность и множество сфер применения. И наиболее популярные типы светодиодов – это SMD (СМД).

Пишите комментарии и делитесь статьей в социальных сетях, если узнали что-то новое и полезное о маркировке или сферах применения осветительных диодов.

Сверхяркие светодиоды характеристики. Конструкция мощного светодиода и угол рассеивания света

Мощные сверхяркие светодиоды устроены почти так же, как и стандартные. Различие состоит лишь в расположении кристаллов. В стандартном диоде они установлены на специальном основании, в ультраярком установочная площадка оснащена теплоотводом. По этой причине прибор может генерировать световой поток 100 Лм.

Компоненты, которые входят в состав мощного полупроводникового осветительного прибора:

  1. Корпусным основанием служит металлокерамическая подложка, имеющая высокую теплопроводность. За счет этого достигается минимум теплового сопротивления и корпус кристалла электрически изолирован от теплоотвода.
  2. Кристаллы из карборунда.
  3. Подложка. Она изготовлена на основе карборунда и алюмонитрида. В результате в кристалле не возникают механические напряжения при смене температуры.
  4. Отражатель. Данную функцию выполняет металлический корпус.
  5. Линза плавающая. Материал, из которого она произведена, — кварцевое стекло. Линза не закреплена жестко в корпусе. Ее положение сохраняется за счет сцепления с желеобразным герметиком. Благодаря этому исключено появление механического напряжения и выполняется автофокусировка в широком температурном интервале.

Полупроводниковые осветительные приборы отличаются от стандартных углом рассеивания.

Последние излучают свет равномерно во все стороны пространства. Светодиод может иметь угол рассеивания 15-120? Для увеличения указанного параметра используют рассеивающую линзу. Собирательную применяют для сужения угла, например, для создания точечного освещения.

Яркость светового потока диода изменяется в пределах угла. Максимальная освещенность достигается в центре, минимальная — по краям угла рассеивания. Данная характеристика влияет на стоимость светодиода. Например, у прибора, имеющего угол 180 гр, цена выше, чем у светодиода с параметром 60 гр.

Основные характеристики светодиодов. Классификация светодиодов по их области применения

Изначально светодиоды применялись в качестве индикаторов

Элементы led-освещения различаются по области их применения. Основные типы светодиодов: индикаторные и осветительные. Устройства не одинаковы, каждые имеют свои отличительные особенности и технические параметры.

Индикаторные светодиоды

Первый LED-светильник появился в середине прошлого века. Прибор имел тусклое красноватое свечение, небольшую энергетическую эффективность. Несмотря на недостатки, разработки в данном направлении были продолжены. Спустя 20 лет появились варианты с желтым и зеленым оттенком. К началу 90-х сила светового потока достигла 1 Люмена. К началу 2000-х значение достигло уровня 100 Люменов.

В 1993 году японские инженеры представили светодиод синего цвета. Свет устройства стал значительно ярче предшественников. С этого момента на рынке стали появляться устройства с разным свечением – сочетание синего, зеленого, желтого и красного позволяют создавать любой цвет и оттенок.

В настоящее время разработки продолжаются. Появляются новые виды светодиодов. При этом сохраняется низковольтное потребление при увеличении силы светового потока.

Осветительные светодиоды

Первые модели с низкой светимостью (DIP) были пригодны для индикаторной работы (например, в темноте виден выключатель – горит небольшой красный светодиод). Современные устройства позволяют освещать значительные площади – бытовые и промышленные помещения. Мощность светодиода выросла – LED-прибор для фонарика с показателем 3Вт аналогичен лампе накаливания на 25-30Вт. Потребление электроэнергии меньше примерно в 10 раз.

Такие светодиоды получили название осветительные благодаря основной области применения. Используются в лентах, фарах, лампах, других изделиях. Изготавливаются в отдельных корпусах, которые допускают поверхностный монтаж.

Основное отличие – выдают только белый свет холодного или теплого оттенков. Классификация:

  • SMD – популярны модели с рассеивающим элементом на 100-130°; подложка для лампы из меди или алюминия, не нагреваются;
  • СОВ – более мощные, сверхъяркие, состоят из множества небольших кристаллов, угол рассеивания значительный;
  • Filament – обладают самым низким КПД (в сравнении с SMD), часто используются как декоративные элементы, изготавливаются различных размеров и форм.

Исходя из назначения и параметров помещения, выбирают оптимальный вариант. Характеристики осветительных устройств указаны на упаковке и в технической документации.

Ток светодиода. Как делают светодиоды

Светодиоды – это кристаллы, выращенные или наращенные из химических элементов на основе полупроводников. Они помещаются в специальный для каждого вида светодиодов корпус. Технологии изготовления светодиодов разнятся в зависимости от вида светодиода. Изготавливают светодиоды с добавлением различных химических элементов. Среди них полупроводники и не полупроводниковые металлы и их соединения. А также легирующие, то есть придающие составу определенные характеристики, примеси.

Изготовление светодиодов

Процесс изготовления светодиодов выглядит, примерно, следующим образом:

Пластины, служащие в качестве подложки будущих кристаллов светодиодов, помещают в специальную герметичную камеру. Такие пластины изготавливают из удобных для наращивания светодиодов материалов. Например, из искусственного сапфира, у которого подходящая для этого кристаллическая решетка. Прежде всего камеру заполняют смесью газообразных химических веществ на основе полупроводников и легирующих добавок. Затем внутренность такой камеры начинают нагревать. В процессе этого нагрева химические элементы, находящиеся до этого в газообразном состоянии, осаждаются на пластинах.

Процесс длится несколько часов. В итоге на подложке наращивается несколько десятков слоев общей толщиной лишь несколько микрон. Отличие в толщине пластины до и после наращивания не различимо на глаз.

Затем с помощью трафарета на пластину напыляются золотые контакты. После чего ее разрезают на мельчайшие части. Каждая такая часть – это отдельный кристалл светодиода со своими контактами. Размеры ее очень малы. По крайней мере, разглядеть ее в деталях можно лишь под микроскопом.

На следующем этапе готовые кристаллы вставляют в корпус. После того, по необходимости покрывают слоем люминофора. Тип корпуса и количество кристаллов зависят от того, где и как данный светодиод будет использоваться.

Все светодиоды отличаются друг от друга как отпечатки пальцев. То есть нет двух идентичных по своим характеристикам светодиодов. Потому на следующем этапе и происходит сортировка светодиодов по двум-трем сотням параметров. Чтобы отобрать наиболее близкие друг другу по мощности, цветовой температуре и другим характеристикам светодиоды.

В конце концов светодиоды проверяют на работоспособность на испытательных стендах. И лишь затем из них изготавливают светодиодные лампы, ленты или используют в других сферах применения.

Видео светодиоды. Основные параметры

Характеристики светодиодов: обзор основных параметров LED

Экономически оправданной альтернативы LED-источникам пока не изобрели, что прогнозирует повальный переход на этот тип освещения уже в ближайшие годы. Но для корректного использования этих источников необходимо разбираться в их основных характеристиках.

При классификации светодиодных источников света используются параметры, разработанные исключительно для данных типов осветительных приборов. Данная статья как раз и предназначена для ознакомления с особенностями, которые отличают характеристики светодиодов от традиционных источников света.

Сила и напряжение, потребляемого светодиодом тока

Почти все светоизлучающие диоды рассчитаны на стандартную силу тока 20 мА. При вычислении сопротивления светодиода по закону Ома используется именно эта величина.

Светодиод, как собственно и любой диод, способен пропускать ток только в одну сторону, для стабильной работы он должен быть постоянным. Источником питания для LED источников света является дроссель, который выдает необходимые характеристики потребляемого тока. Светодиодный кристалл рассчитан на напряжение, колеблющееся от 0,5 до 6 вольт.

На одной подложке может быть размещено несколько LED кристаллов. Сумма показателей напряжения всех кристаллов составит требуемый показатель для такого источника света.

Следует заметить, что в электрофизических значениях светодиодов существует допустимый разброс вольт амперной характеристики (ВАХ), это обусловлено технологией производства. Невозможно вырастить кристаллы с жестко ограниченными показателями. Подгон показателей производится методом калибровки.

Монтаж следует проводить в соответствии с обозначенной полярностью. При неправильном включении светодиод закроется, и работать не будет. Если напряжение превысит предел в 5 вольт, произойдет пробой, что приведет к порче изделия.

Для правильного подключения катод на DIP светодиодах обозначается более короткой ногой, на SMD это будет спил на подложке возле соответствующего контакта.

Интенсивность светового потока, угол рассеивания

Данная характеристика очень важна в освещении, особенно в помещениях. Интенсивность светового потока измеряется в Люменах (Лм). Для сравнения, обычная лампа накаливания в 100 Вт выдает показатель 1000 Лм. Для простого расчета напряжения лед-источника, который заменит лампу накаливания, необходимо вольтаж классики разделить на 8. Примером, лампе в 100 Вт будет соответствовать светодиод мощностью 12 – 12.5 Вт.

Важно осознавать, что рассматриваемый источник имеет одностороннее направление освещения, в то время как обычная лампа накаливания рассеивает свет во все стороны. Светодиоды имеют точечную направленность. Для увеличения угла рассеивания в конструкции применяются специальные линзы. Угол рассеивания колеблется в пределах 20 — 120˚.

Соотношение параметров эффективности разных источников света, приведенных для сравнения:

  1. Лампа накаливания – 10 Лм/Вт.
  2. Люминесцентная лампа – до 40 Лм/Вт.
  3. Светодиод – до 140 Лм/Вт.

Размер кристалла

В общих характеристиках светоизлучающих диодов можно встретить значение размера кристалла. Эта величина измеряется в Милах (mil), 1 mil соответствует 0,0254 мм. Стандартные размеры квадрата кристалла 24×24, 24×40, 35×35 и 40×40 mil. Считается, чем больше его площадь, тем больше потребляемая мощность, при этом снижается нагрев при работе и увеличивается предел перегрузки. Для сравнения размеры 40×40mil соответствуют 1,143 × 1,143 мм и потребляют около 1 Вт.

Естественно, большое значение имеет материал для изготовления и условия, при которых кристалл выращивался. Также значение имеет качество калибровки. Это к тому, что себе дешевле приобретать светодиоды известных брендов, показатели многих китайских лед источников света завышены.

Недобросовестные продавцы зачастую заявляют повышенную мощность. Обратив внимание на размеры кристалла, можно предостеречь себя от приобретения подделки.

CRI (индекс цветопередачи)

Для более ясного понимания этой характеристики, целесообразно ознакомиться с принципами восприятия цветов человеческим глазом. Белый свет включает в себя весь спектр. Попадая на окружающие нас предметы, отражается только та часть спектра, которая соответствует цвету предмета. Естественно, источник с искаженным спектром будет искажать человеческое цветовосприятие.

Для определения степени достоверности передачи цветов при освещении искусственным источником был разработан индекс цветопередачи (CRI). Степени значений индекса цветопередачи расположены в границах 0 – 100. Показатель 100 соответствует солнечному свету и является сравнительным эталоном.

Полноценный индекс CRI, при котором искажение будет минимальным, не должен быть ниже значения 90.

Цветовые характеристики

Свет имеет волновую природу, длина излучаемой волны определяет цвет и измеряется в нанометрах (нм). Человеческий глаз способен воспринимать диапазон от 380 до 760 нм, что соответствует видимому спектру.

Таблица цветовых характеристик

Примечательно, что человеческий глаз имеет наибольшую чувствительность при показателе 555 нм, следовательно, источник с таким параметром будет иметь наибольшую степень освещенности.

Цветовая температура

Данная характеристика выведена по аналогии цветовосприятия разогреваемого металла. Численные пределы размещены в рамках от 800 до 7500 и измеряются в Кельвинах (К). Наиболее низким показателем обладает красный свет – около 800 К, соответственно, наиболее высокий – у холодного синего.

Для освещения применяется белый свет. Цветные светодиоды в основном используются в декоративных и индикационных целях. Белый цвет по критериям цветовой температуры разделяется на три подкатегории:

  1. Теплый – 2700 – 3500 К.
  2. Нейтральный – 3500 – 5300 К (наиболее сбалансированный для восприятия).
  3. Холодный – 5300 – 7500 К.

Максимальная рабочая температура

Рабочая температура — одна из важнейших характеристик светодиода. При работе выделяется большое количество тепла, переизбыток которого может привести для начала к падению интенсивности светоизлучения, а в дальнейшем и к полной порче светодиода. Некоторые сверхяркие кристаллы способны разогреваться до температуры 150˚ С.

Производители ввели понятие «максимальная рабочая температура» для определения пределов температурного режима, в котором работа лед источника будет оптимальной. Значение допустимой температуры обозначаются в общих паспортных данных.

Для борьбы с избыточной температурой применяются алюминиевые и медные термоотводящие радиаторы. Маломощные SMD светодиоды монтируются на плату (подложку), которая также выступает и в роли охладителя. Для улучшенной теплоотдачи место соединения светодиода и радиатора смазывается термопастой.

Срок эксплуатации

Этот параметр указывает на предполагаемую продолжительность работы LED кристалла. Индикационные светодиоды имеют продолжительность работы до 100 000 часов. Для сверхярких источников этот показатель составляет максимум 60 000 часов. Производители из Поднебесной зачастую завышают и этот показатель.

Для продления срока эксплуатации необходимо соблюдать температурный режим работы лед светильника. Другими словами, чем эффективней охлаждение, тем дольше живет источник.

Для наглядного ознакомления рекомендуется посмотреть видео. Автор видео всего за несколько минут лаконично описывает основные параметры и характеристики, которые действительно важны при выборе светодиодов.

Вывод

При выборе светодиодов желательно отдавать предпочтение маркам, зарекомендовавших себя брендов. Стоимость данных источников света значительно выше традиционных, следовательно, срок окупаемости тоже увеличен. Позарившись на дешевое изделие с плохими характеристиками, можно просто выбросить деньги на ветер и, напротив, светодиодные изделия от проверенных производителей обычно отрабатывают заявленный срок. Более того, при приобретении брендовых осветительных приборов на основе LED, как правило, предоставляется гарантия.

Выпрямительные диоды: устройство, конструктивные особенности, характеристики

Основное предназначение выпрямительных диодов — преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Конструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

  • Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты. Выпрямительные диоды малой мощности
  • Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла. Выпрямительный диод средней мощности
  • Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В). Рис. 4. Выпрямительные диоды высокой мощности

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Таблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Принцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Диодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

диодов - learn.sparkfun.com

Добавлено в избранное Любимый 63

Реальные характеристики диода

В идеале , диоды будут блокировать любой ток, текущий в обратном направлении, или просто действовать как короткое замыкание, если ток идет вперед. К сожалению, реальное поведение диодов не совсем идеальное. Диоды действительно потребляют некоторое количество энергии при проведении прямого тока, и они не будут блокировать весь обратный ток.Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.

Соотношение тока и напряжения

Наиболее важной характеристикой диода является его вольт-амперная зависимость ( i-v ). Это определяет ток, протекающий через компонент, с учетом того, какое напряжение на нем измеряется. Резисторы, например, имеют простую линейную зависимость i-v ... Закон Ома. Кривая i-v диода, однако, полностью не -линейна.Выглядит это примерно так:

Вольт-амперная зависимость диода. Чтобы преувеличить несколько важных моментов на графике, масштабы как в положительной, так и в отрицательной половине не равны.

В зависимости от приложенного к нему напряжения диод будет работать в одном из трех регионов:

  1. Прямое смещение : Когда напряжение на диоде положительное, диод включен, и ток может протекать через него. Напряжение должно быть больше прямого напряжения (V F ), чтобы ток был значительным.
  2. Обратное смещение : Это режим "выключения" диода, при котором напряжение меньше V F , но больше -V BR . В этом режиме ток (в основном) заблокирован, а диод выключен. Очень малый ток (порядка нА), называемый током обратного насыщения, может протекать через диод в обратном направлении.
  3. Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.

прямое напряжение

Чтобы «включиться» и провести ток в прямом направлении, диод требует приложения определенного количества положительного напряжения. Типичное напряжение, необходимое для включения диода, называется прямым напряжением F ). Он также может называться напряжения включения или напряжения включения .

Как мы знаем из кривой i-v , сквозной ток и напряжение на диоде взаимозависимы.Больше тока означает большее напряжение, меньшее напряжение означает меньший ток. Однако, когда напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения. Если диод полностью проводящий, обычно можно предположить, что напряжение на нем соответствует номинальному прямому напряжению.

Мультиметр с настройкой диода можно использовать для измерения (минимального) прямого падения напряжения на диоде.

V F конкретного диода зависит от того, из какого полупроводникового материала он сделан.Обычно кремниевый диод имеет V F около 0,6–1 В . Диод на основе германия может быть ниже, около 0,3 В. Диод типа также имеет некоторое значение для определения прямого падения напряжения; светодиоды могут иметь гораздо больший V F , в то время как диоды Шоттки разработаны специально для того, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.

Напряжение пробоя

Если к диоду приложить достаточно большое отрицательное напряжение, он поддастся и позволит току течь в обратном направлении.Это большое отрицательное напряжение называется напряжением пробоя . Некоторые диоды действительно предназначены для работы в области пробоя, но для большинства нормальных диодов не очень полезно подвергаться воздействию больших отрицательных напряжений.

Для обычных диодов это напряжение пробоя составляет от -50 В до -100 В или даже более отрицательное.

Таблицы данных диодов

Все вышеперечисленные характеристики должны быть подробно описаны в паспорте каждого диода. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):

Таблица данных может даже представить вам хорошо знакомый график вольт-амперной характеристики, чтобы более подробно описать поведение диода.Этот график из таблицы данных диода увеличивает изогнутую переднюю часть кривой i-v . Обратите внимание, как больший ток требует большего напряжения:

Эта диаграмма указывает на еще одну важную характеристику диода - максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенное количество энергии, прежде чем они взорвутся. На всех диодах должны быть указаны максимальный ток, обратное напряжение и рассеиваемая мощность. Если диод подвергается большему напряжению или току, чем он может выдержать, ожидайте, что он нагреется (или, что еще хуже, расплавится, задымится...).

Некоторые диоды хорошо подходят для больших токов - 1 А или более - другие, такие как малосигнальный диод 1N4148, показанный выше, могут подходить только для тока около 200 мА.


Этот 1N4148 - лишь крошечная выборка всех существующих типов диодов. Далее мы рассмотрим, какое удивительное разнообразие существует и для какой цели служит каждый тип.


← Предыдущая страница
Идеальные диоды Руководство по выбору диодов

: типы, характеристики, применение

Полупроводниковый диод - это нелинейное устройство, наиболее выдающейся особенностью которого является то, что ток, по сути, может течь только в одном направлении.Диод построен путем соединения двух полупроводниковых материалов: материала N-типа (богатого отрицательными носителями или свободными электронами) и материала P-типа (богатого положительными носителями или дырками). Площадь контакта называется стыком. По этой причине диод обычно называют PN Junction .


Когда приложенное напряжение заставляет диод проводить электроны от анода к катоду, он работает в состоянии прямого смещения . Когда приложенный потенциал не допускает резкого увеличения тока и наблюдается только минимальное, практически нулевое значение тока на переходе, говорят, что диод находится в состоянии обратного смещения .При прямом смещении диод ведет себя так же, как замкнутый переключатель, а при обратном смещении диод ведет себя как разомкнутый переключатель.

Для обозначения диода используется следующий схематический символ:

Кредит изображения: GotToKnow.com

Анод представляет собой материал P-типа, а катод - материал N-типа перехода.

Работа диода

Работой диода управляет вольт-амперная характеристика диода.Диод в цепи с положительным (самым высоким) потенциалом, подключенным к материалу P, и отрицательным потенциалом, подключенным к материалу N, смещен в прямом направлении. Диод, самый высокий потенциал которого подключен к материалу N, а самый низкий потенциал - к материалу P, смещен в обратном направлении.

На следующем рисунке показано прямое и обратное смещение диода, подключенного к цепи.

Кредит изображения: Electrapk

Характеристики диода

Типичные ВАХ диода показаны на следующем рисунке.Есть две рабочие области, которые четко обозначены: область прямого смещения и область обратного смещения. Две шкалы используются вдоль каждой оси, чтобы отобразить различный отклик диода как в положительном, так и в отрицательном направлениях. Прямой смещенный ток на этой конкретной ВАХ выражается в миллиамперах (мА), тогда как в области обратного смещения ток выражается в микроамперах (мкА). Основные характеристики этих двух рабочих условий объясняются ниже.

Изображение предоставлено: Nikhil.М.Р.

Область прямого смещения

В области прямого смещения существуют две важные области, которые следует различать в зависимости от величины тока, наблюдаемого через диод. Первая область - это низкие уровни напряжения на диодах (V D ) и связанный с этим ток очень мал. Вторая область - это когда напряжение на диоде (V D ) превышает пороговое напряжение (V или ), и ток резко увеличивается.

Напряжение диода <В th - Для любого напряжения диода (V D ) от нуля до (V th ) ток очень мал. В общем, в качестве приближения мы можем считать этот ток равным нулю. Это означает, что в этом диапазоне диод ведет себя как разомкнутый переключатель или как устройство с очень высоким сопротивлением.

Напряжение диода ≥ В th - При любом напряжении диода (V D ) больше, чем (V th ), ток резко возрастает.В общем, в качестве приближения мы можем считать сопротивление равным нулю. Это означает, что в этом диапазоне диод ведет себя как замкнутый переключатель.

Реакция на приложенное напряжение в области прямого смещения контролируется пороговым напряжением диода, которое зависит от типа материала, из которого изготовлен диод. Кремниевый диод имеет приблизительное значение V th = 0,7 В, а германиевый диод имеет приблизительное значение V th = 0.3 В.


Область обратного смещения

В области обратного смещения также существуют две важные области, которые можно различить в зависимости от величины тока, наблюдаемого через диод. Ток через диод очень мал, практически равен нулю, когда напряжение на диоде находится между нулем и напряжением пробоя (V BD ). За пределами напряжения пробоя (V BD ) наблюдается резкое увеличение тока, которое отмечает вторую область интереса в области обратного смещения.

Напряжение диода <В BD - В этой области ток очень мал. Мы называем этот ток током утечки. В практических приложениях вы можете считать его равным нулю. Таким образом, в этой области диод ведет себя как разомкнутый переключатель или как устройство с очень большим сопротивлением.

Напряжение на диоде ≥V BD - В области пробоя ток очень быстро увеличивается в зависимости от напряжения на диоде.Диод ведет себя как замкнутый переключатель или как устройство с очень маленьким сопротивлением. Обратите внимание, что напряжение на диоде в этом случае очень близко к V BD для практических приложений, для любого напряжения источника.

Напряжение пробоя не является постоянным значением, как пороговое напряжение прямого смещения. V BD отличается для каждого диода. Это значение является параметром спецификации, предоставленным производителем.

В следующей таблице приведены рабочие условия диодов.Последний столбец таблицы показывает поведение идеального диода. Когда идеальный диод смещен в прямом направлении, он будет вести себя как замкнутый переключатель с сопротивлением, равным нулю (0 Вт). В обратном смещении идеальный диод аналогичен разомкнутому ключу с током, равным нулю, и бесконечным (∞ Ω) сопротивлением.

Напряжение диода (В D )

Текущий

Сопротивление

Идеальное поведение

Прямое смещение

≈ 0

очень большой

выключатель разомкнутый

(V D th )

(≈ ∞)

Прямое смещение

большой

очень маленький

выключатель замкнутый

(V D ≥ V th )
Обратное смещение

≈ 0

очень большой

выключатель разомкнутый

(V D BD )

(≈ ∞)

Обратное смещение

большой

очень маленький

выключатель замкнутый

(V D ≥ V BD )

Идентификация диода

Схематический символ, используемый для диода, обычно представляет собой стрелку с короткой линией на конце.Катод выполнен из материала N-типа и обозначен острием стрелки. Анод выполнен из материала P-типа и обозначен основанием стрелки.

Производители могут использовать различные методы для обозначения анода и катода диода. В наиболее распространенном методе катод (материал N-типа) идентифицируется цветной полосой. Таким образом, конец диода, ближайший к этой полосе, является катодом. Другой конец - анод (материал P-типа).

Изображение предоставлено: Integrated Publishing

Характеристики диода

Важные характеристики диодов зависят от типа диода и области его применения.Ниже мы перечислим наиболее важные характеристики для всех типов диодов.

  • Прямое напряжение (В F ) - это напряжение на выводах диода, приводящее к резкому увеличению тока в прямом направлении.

  • Прямой ток (I F ) - ток при приложении прямого напряжения; он течет через диод в направлении меньшего сопротивления.

  • Обратный ток (I R ) или ток утечки - это значение тока при приложении обратного напряжения. Это ток, который протекает при приложении обратного смещения к полупроводниковому переходу.

  • Обратное напряжение (В R ) - это максимально допустимое обратное напряжение, которое можно применять повторно.

  • Напряжение пробоя (В BR ) - это обратное напряжение, при котором небольшое увеличение напряжения приводит к резкому возрастанию обратного тока.

  • Рассеиваемая мощность (P D ) - это максимально допустимая рассеиваемая мощность на выходе (в Вт) диода при указанной температуре окружающей среды. Рассеиваемая мощность - это мощность, рассеиваемая диодом во включенном состоянии.

  • Рабочая температура перехода (T j ) - это диапазон температур, при котором диод предназначен для работы.

Типы диодов

Термин «диод» можно использовать для описания типичного PN-диода, также известного как диод общего назначения, или его можно использовать как более широкий термин для описания одного из многих других типов диодов.Определенный тип диода может использоваться для конкретного приложения или демонстрировать определенное поведение или характеристику. Следующие описания и иллюстрации охватывают краткий список диодов общего и специального назначения.

Диоды общего назначения - это электронные компоненты с двумя выводами, которые позволяют току течь только в одном направлении, от анода (+) к катоду. Эти простые полупроводники представляют собой PN-переходы с положительной или P-областью с положительными ионами и отрицательной или N-областью с отрицательными электронами.Приложение прямого напряжения к PN-переходу заставляет ток течь только в одном направлении, поскольку электроны из N-области заполняют «дыры» в P-области. Обратное напряжение диода является потенциальным барьером, препятствующим протеканию тока в обратном направлении, аналогично номинальному давлению на обратном клапане.

Кредит изображения: AMB Laboratories

Светоизлучающие диоды (LED) - это устройства с PN-переходом, которые испускают световое излучение посредством электролюминесценции при прямом смещении.Они используются в качестве различных индикаторов в авиационном, автомобильном и транспортном освещении, а также для освещения некоторых ламп и фонарей. Большинство светодиодов работают в ближнем инфракрасном и видимом диапазонах, хотя теперь есть и УФ-светодиоды.

Кредит изображения: MRISAR

Фотодиоды представляют собой двухэлектродный, чувствительный к излучению переход, сформированный в полупроводниковом материале, в котором обратный ток изменяется в зависимости от освещения.Фотодиоды используются для определения оптической мощности и для преобразования оптической мощности в электрическую. Фотодиоды могут быть PN, PIN или лавинными. PN-фотодиоды имеют двухэлектродный чувствительный к излучению PN-переход, сформированный в полупроводниковом материале, в котором обратный ток изменяется в зависимости от освещения. PIN-фотодиоды - это диоды с большой внутренней областью, зажатой между полупроводниковыми областями, легированными P и N. Фотоны, поглощенные в этой области, создают пары электрон-дырка, которые затем разделяются электрическим полем, таким образом генерируя электрический ток в цепи нагрузки.Лавинные фотодиоды - это устройства, в которых используется лавинное умножение фототока с помощью дырочных электронов, создаваемых поглощенными фотонами. Когда напряжение обратного смещения устройства приближается к уровню пробоя, пары дырка-электрон сталкиваются с ионами, создавая дополнительные пары дырка-электрон, таким образом, достигается усиление сигнала.

Кредит изображения: MCU Tutor

PIN-диоды представляют собой трехслойные полупроводниковые диоды, состоящие из внутреннего слоя, разделяющего сильно легированные слои P и N.Заряд, накопленный в собственном слое, вместе с другими параметрами диода определяет сопротивление диода на ВЧ и СВЧ частотах. Это сопротивление обычно составляет от кОм до менее 1 Ом для данного диода. PIN-диоды обычно используются в качестве переключателей или элементов аттенюатора.

Кредит изображения: Все о схемах

Выпрямители принимают переменный ток (AC) со средним значением нуля вольт и подают постоянный ток (DC), сигнал одной полярности с чистым значением больше нуля вольт, процесс, иначе известный как выпрямление.Важнейшим компонентом выпрямителя является диод. Диод - это электронный компонент, который позволяет току течь только в одном направлении, от анода (+) к катоду (-). Один выпрямительный диод позволит распространяться только половине сигнала переменного тока, блокируя обратную полярность, пока она не превышает напряжение пробоя. Доступны несколько схем, которые позволяют выполнять однополупериодное и двухполупериодное выпрямление.

Изображение предоставлено: Marine Insight

Диоды Шоттки также известны как диоды с барьером Шоттки или диоды с горячей несущей.Они состоят из соединения между металлическим слоем и полупроводниковым элементом. Металлический слой, катод, сильно занят электронами зоны проводимости. Полупроводниковый элемент, анод, представляет собой слаболегированный полупроводник N-типа. При прямом смещении электроны с более высокой энергией в N-области инжектируются в металлическую область, позволяя переходу работать во включенном состоянии. Диоды Шоттки достигают высоких скоростей переключения, поскольку они очень быстро отдают свою избыточную энергию, когда они колеблются между состояниями ВКЛ и ВЫКЛ.

Кредит изображения: Electrical-Info.com

Туннельные диоды - это сильно легированные P-N диоды, в которых туннелирование электронов из зоны проводимости в материале N-типа в валентную зону в области P-типа создает область отрицательного сопротивления. Эта область отрицательного сопротивления является наиболее важной областью эксплуатации. По мере увеличения напряжения ток уменьшается. Эта функция делает туннельные диоды особенно полезными в генераторах малой мощности и радиочастотных (RF) приложениях.

Кредит изображения: HyperPhysics

Варакторные диоды - это диоды с p-n переходом, которые предназначены для работы в качестве конденсатора с регулируемым напряжением при работе под обратным смещением. Когда PN-переход смещается путем приложения напряжения к переходу, это приводит к отрицательному заряду на стороне P и положительному заряду на стороне N. Область между этими положительными и отрицательными зарядами, известная как область истощения, не содержит движущихся зарядов.

Собственная емкость является результатом смещения перехода: два противоположных заряда разделены изолятором. Фактически, все PN-переходы имеют соответствующую емкость (Cj), и когда на диод подается напряжение, область обеднения уменьшается (прямое смещение) или увеличивается (обратное смещение), изменяя значение емкости PN-перехода.

Варакторы изготавливаются таким образом, чтобы емкость PN перехода имела известное и управляемое отношение к приложенному напряжению на диоде.Эта управляемая напряжением емкость обычно создается исключительно с использованием только обратного смещения. На следующем рисунке показаны схема, символ и кривая, показывающая взаимосвязь между приложенным напряжением обратного смещения и емкостью.

Изображение предоставлено: Политех Лилль

Обратите внимание, что по мере увеличения напряжения обратного смещения (V R ) емкость уменьшается.Качество C T - это емкость устройства при отсутствии приложенного напряжения. Связь между напряжением обратного смещения и емкостью определяется следующей формулой:

Где:

C j = емкость перехода

C T = конечная емкость

В R = Напряжение обратного смещения

Стабилитроны - это устройства с PN-переходом, которые предназначены для работы в области обратного пробоя.Напряжение пробоя (Vz) стабилитронов устанавливается путем тщательного контроля уровня легирования во время изготовления. Это явление пробоя называется напряжением Зенера или эффектом Зенера.

Кредит изображения: TDK Lambda UK

Тип диода

Характеристики

Заявка

Светоизлучающий диод (LED)

PN Соединительное устройство, излучающее световое излучение

Передатчик света / оптических сигналов

PN Соединительный диод

Проводить ток от анода (+) к катоду (-)

Общего назначения

Фотодиод

Оптоэлектронное устройство, в котором обратный ток меняется в зависимости от освещенности

Обнаружение / преобразование оптической мощности

PIN диод

Увеличенная область истощения; Более низкая емкость; Повышенное обратное напряжение пробоя

Выпрямитель высокого напряжения, РЧ-переключатель; Фотоприемник

Выпрямитель

проводит постоянный ток (DC), сигнал одинарной полярности с чистым значением выше нуля вольт

Исправление

Диод Шоттки

Низкое прямое напряжение; Нет времени обратного восстановления

Высокая частота; Высокоскоростное переключение

Туннельный диод

Область отрицательного сопротивления в области прямого смещения; Узкая область истощения

Низкое усиление мощности; Высокая частота; Высокоскоростное переключение

Варакторный диод

Емкость является функцией обратного напряжения смещения; Используется как конденсатор переменной емкости

VCO; РФ фильтры

Стабилитрон

проводит ток, когда обратное смещение достигает VBR; Постоянное выходное напряжение; Резкое увеличение тока @ VBR

Источники питания; Регламент напряжения

Этапы жизненного цикла продукта

Диоды

соответствуют этапам жизненного цикла продукта, которые определены Альянсом электронной промышленности (EIA) в EIA-724.EIA-724 признает шесть различных фаз жизненного цикла продукта: внедрение, рост, зрелость, насыщение, снижение и постепенный отказ.

Кредит изображения: UIUC

  • Введение - Планирование или дизайн продукта в стадии разработки. Образцы могут существовать, а могут и не существовать. Могут произойти изменения в спецификациях и запланированные даты внедрения могут быть отложены. Заказы и отгрузка продукции не разрешены.

  • Рост - Производство быстро растет. Производственные мощности добавляются. Заказы и отгрузки разрешены.

  • Срок погашения - Рост продукта стабилизировался или достиг пика. Качество продукции очень высокое. Заказы и отгрузки разрешены. Продукт рекомендован к использованию в новых разработках.

  • Насыщение - Продажи и мощности достигли пика. Заказы и отгрузки разрешены.

  • Снижение - Производительность начинает снижаться.Заказы и отгрузки разрешены, но устройства не рекомендуются для новых разработок

  • Поэтапный отказ - Производственные мощности быстро сокращаются. Может быть выпущено официальное уведомление о прекращении производства. Возможны ограничения на отгрузку, но заказы по-прежнему разрешены. Устройства не рассматриваются в новых разработках.

Соответствие RoHS

Изображение предоставлено: Решения по промышленной безопасности


Ограничение содержания опасных веществ (RoHS) - это директива Европейского Союза (ЕС), которая требует от всех производителей электронного и электрического оборудования, продаваемого в Европе, продемонстрировать, что их продукция содержит только минимальные уровни следующих опасных веществ: свинец, ртуть, кадмий, шестивалентный хром, полибромированный дифенил и полибромированный дифениловый эфир.RoHS вступил в силу 1 июля 2006 г.

Ресурсы

Диоды и выпрямители

Теория полупроводниковых диодов

Типы диодов


ВАХ или кривые вольт-амперной характеристики

Кривые ВАХ , сокращенно ВАХ или просто ВАХ электрического устройства или компонента, представляют собой набор графических кривых, которые используются для определения его работы в электрической цепи.Как следует из названия, кривые ВАХ показывают взаимосвязь между током, протекающим через электронное устройство, и приложенным напряжением на его выводах.

Кривые ВАХ обычно используются в качестве инструмента для определения и понимания основных параметров компонента или устройства, а также могут использоваться для математического моделирования его поведения в электронной схеме. Но, как и в случае с большинством электронных устройств, существует бесконечное количество кривых ВАХ, представляющих различные входные данные или параметры, и поэтому мы можем отобразить семейство или группу кривых на одном графике для представления различных значений.

Например, «вольт-амперные характеристики» биполярного транзистора могут быть показаны с различной величиной возбуждения базы или кривыми ВАХ диода, работающего как в прямой, так и в обратной областях.

Но статические вольт-амперные характеристики компонента или устройства не обязательно должны быть прямой линией. Возьмем, например, характеристики резистора с фиксированным значением, мы ожидаем, что они будут достаточно прямыми и постоянными в определенных диапазонах тока, напряжения и мощности, поскольку это линейное или омическое устройство.

Однако существуют и другие резистивные элементы, такие как LDR, термисторы, варисторы и даже лампочки, кривые ВАХ которых не являются прямыми или линейными линиями, а вместо этого имеют изогнутую форму или форму и поэтому называются нелинейными устройствами, поскольку их сопротивление нелинейные сопротивления.

Если электрическое напряжение питания V, приложенное к клеммам резистивного элемента R выше, было изменено, и полученный ток, который я измерил, этот ток был бы охарактеризован как: I = V / R, что является одним из уравнений закона Ома.

Мы знаем из закона Ома, что с увеличением напряжения на резисторе увеличивается и ток, протекающий через него, поэтому можно было бы построить график, показывающий взаимосвязь между напряжением и током, как показано на графике, представляющем напряжение амперные характеристики (его вольт-амперные характеристики) резистивного элемента. Рассмотрим схему ниже.

ВАХ идеального резистора

Приведенные выше кривые i-v характеристики определяют резистивный элемент в том смысле, что если мы приложим какое-либо значение напряжения к резистивному элементу, результирующий ток будет напрямую получен из ВАХ.В результате мощность, рассеиваемая (или генерируемая) резистивным элементом, также может быть определена по кривой ВАХ.

Если напряжение и ток по своей природе положительные, тогда кривые ВАХ будут положительными в квадранте Ι, если напряжение и, следовательно, ток имеют отрицательный характер, тогда кривая будет отображаться в квадранте, как показано.

В чистом сопротивлении соотношение между напряжением и током является линейным и постоянным при постоянной температуре, так что ток (i) пропорционален разности потенциалов V, умноженной на константу пропорциональности 1 / R, что дает i = (1 / R) х В.Тогда ток через резистор является функцией приложенного напряжения, и мы можем продемонстрировать это визуально, используя кривую ВАХ.

В этом простом примере ток i относительно разности потенциалов V представляет собой прямую линию с постоянным наклоном 1 / R, поскольку соотношение является линейным и омическим. Однако практические резисторы могут демонстрировать нелинейное поведение в определенных условиях, например, при воздействии высоких температур.

Есть много электронных компонентов и устройств с нелинейными характеристиками, то есть их отношение V / I непостоянно.Полупроводниковые диоды характеризуются нелинейными вольт-амперными характеристиками, поскольку ток, протекающий через общий кремниевый диод с прямым смещением, ограничен омическим сопротивлением PN-перехода.

ВАХ полупроводников

Полупроводниковые устройства, такие как диоды, транзисторы и тиристоры, все построены с использованием полупроводниковых PN-переходов, соединенных вместе, и поэтому их кривые ВАХ будут отражать работу этих PN-переходов.Тогда эти устройства будут иметь нелинейные ВАХ, в отличие от резисторов, которые имеют линейную зависимость между током и напряжением.

Так, например, основная функция полупроводникового диода - выпрямление переменного тока в постоянный. Когда диод смещен в прямом направлении (более высокий потенциал подключен к его аноду), он пропускает ток. Когда диод смещен в обратном направлении (более высокий потенциал подключен к его катоду), ток блокируется. Затем PN-переход требует напряжения смещения определенной полярности и амплитуды для протекания тока.Это напряжение смещения также управляет сопротивлением перехода и, следовательно, протеканием тока через него. Рассмотрим схему диода ниже.

ВАХ диода

Когда диод смещен в прямом направлении, анод положительный по отношению к катоду, прямой или положительный ток проходит через диод и действует в верхнем правом квадранте его кривых ВАХ, как показано. Начиная с нулевого пересечения, кривая постепенно увеличивается в прямом квадранте, но прямой ток и напряжение чрезвычайно малы.

Когда прямое напряжение превышает напряжение внутреннего барьера P-N-переходов диодов, которое для кремния составляет около 0,7 вольт, возникает лавино, и прямой ток быстро увеличивается при очень небольшом увеличении напряжения, образуя нелинейную кривую. Точка «колена» на кривой вперед.

Аналогичным образом, когда диод смещен в обратном направлении, катод положительный по отношению к аноду, диод блокирует ток, за исключением чрезвычайно малого тока утечки, и работает в нижнем левом квадранте своих кривых ВАХ.Диод продолжает блокировать ток, протекающий через него, пока обратное напряжение на диоде не станет больше, чем его точка напряжения пробоя, что приведет к внезапному увеличению обратного тока, образуя довольно прямую нисходящую кривую при контроле потерь напряжения. Эта точка обратного напряжения пробоя хорошо работает с стабилитронами.

Затем мы можем видеть, что кривые ВАХ для кремниевого диода нелинейны и сильно отличаются от линейных кривых ВАХ предыдущих резисторов, поскольку их электрические характеристики отличаются.Кривые вольт-амперных характеристик можно использовать для построения графика работы любого электрического или электронного компонента, от резисторов до усилителей, полупроводников и солнечных элементов.

Вольт-амперные характеристики электронного компонента многое говорят нам о его работе и могут быть очень полезным инструментом при определении рабочих характеристик конкретного устройства или компонента, показывая его возможные комбинации тока и напряжения, а также в качестве графического средства помочь визуально лучше понять, что происходит в цепи.

Характеристики диодов

- полупроводниковые диоды

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Полупроводниковые диоды обладают свойствами, которые позволяют им выполнять множество различных электронных функций. Для выполнения своей работы инженеры и техники должны иметь данные об этих различных типах диодов. Информация, представленная для этой цели, называется ДИОДНЫМИ ХАРАКТЕРИСТИКАМИ.Эти характеристики указываются производителями либо в их руководствах, либо в таблицах спецификаций (таблицах данных). Из-за множества производителей и множества типов диодов нецелесообразно предлагать вам спецификацию и называть ее типовой. Помимо разницы между производителями, один производитель может даже предоставить листы спецификаций, которые различаются как по формату, так и по содержанию. Несмотря на эти различия, обычно требуется определенная информация о характеристиках и конструкции.Мы обсудим эту информацию в следующих нескольких абзацах.

Стандартный лист технических характеристик обычно содержит краткое описание диода. В это описание включены тип диода, основная область применения и любые особенности. Особый интерес представляет конкретное применение, для которого подходит диод. Производитель также предоставляет чертеж диода с указанием размеров, веса и, при необходимости, любых опознавательных знаков. В дополнение к приведенным выше данным также предоставляется следующая информация.Статический рабочий стол (дает точечные значения параметров при фиксированных условиях), иногда характеристическая кривая, подобная той, что на этом рисунке (показывающая, как параметры изменяются во всем рабочем диапазоне), и номиналы диодов (которые являются предельными значениями рабочих условий). снаружи, что может привести к повреждению диода).

Производители указывают эти различные рабочие параметры и характеристики диодов с помощью «буквенных символов» в соответствии с установленными определениями. Ниже приводится список с буквенным обозначением основных электрических характеристик выпрямителя и сигнальных диодов.

Выпрямительные диоды

БЛОКИРУЮЩЕЕ НАПРЯЖЕНИЕ ПОСТОЯННОГО ТОКА [В R ] - максимальное обратное постоянное напряжение, не вызывающее пробоя.

СРЕДНЕЕ Падение прямого напряжения [V F (AV) ] - среднее прямое падение напряжения на выпрямителе при заданном прямом токе и температуре.

СРЕДНИЙ ВЫПРЯМИТЕЛЬНЫЙ ПРЯМОЙ ТОК [I F (AV) ] - средний выпрямленный прямой ток при заданной температуре, обычно 60 Гц с резистивной нагрузкой.

СРЕДНИЙ ОБРАТНЫЙ ТОК [I R (AV) ] - средний обратный ток при заданной температуре, обычно 60 Гц.

PEAK SURGE CURRENT [I SURGE ] - пиковый ток, указанный для заданного количества циклов или части цикла.

Сигнальные диоды

PEAK REVERSE VOLTAGE [PRV] - максимальное обратное напряжение, которое может быть приложено до достижения точки пробоя. (PRV также относится к выпрямительному диоду.)

ОБРАТНЫЙ ТОК [I R ] - небольшое значение постоянного тока, протекающего при обратном смещении полупроводникового диода.

МАКСИМАЛЬНОЕ ПЕРЕПАД НАПРЯЖЕНИЯ ПРИ УКАЗАННОМ ПЕРЕДНЕМ ТОКЕ [V F @I F ] - максимальное прямое падение напряжения на диоде при указанном прямом токе.

REVERSE RECOVERY TIME [t rr ] - максимальное время, необходимое диоду прямого смещения для восстановления своего обратного смещения.

Номинальные параметры диода (как указано ранее) являются предельными значениями условий эксплуатации, превышение которых может вызвать повреждение диода либо из-за пробоя напряжения, либо из-за перегрева.Диоды с PN-переходом обычно рассчитаны на: МАКСИМАЛЬНЫЙ СРЕДНИЙ ПРЯМОЙ ТОК, ПИКОВЫЙ РЕАКТИВНЫЙ ПРЯМОЙ ТОК, МАКСИМАЛЬНЫЙ БРОСНЫЙ ТОК и ПИКОВОЕ ОБРАТНОЕ НАПРЯЖЕНИЕ.

Максимальный средний прямой ток обычно дается при особой температуре, обычно 25 ° C (77 ° F), и относится к максимальной величине среднего тока, которая может протекать в прямом направлении. Если этот рейтинг будет превышен, может произойти поломка конструкции.

Пиковый повторяющийся прямой ток - это максимальный пиковый ток, которому можно разрешить течь в прямом направлении в форме повторяющихся импульсов.

Максимальный импульсный ток - это максимальный ток, разрешенный для протекания в прямом направлении в форме непериодических импульсов. Ток не должен равняться этому значению дольше нескольких миллисекунд.

Пиковое обратное напряжение (PRV) - один из самых важных номиналов. PRV указывает максимальное напряжение обратного смещения, которое может быть приложено к диоду, не вызывая пробоя перехода.

Все вышеперечисленные характеристики могут изменяться в зависимости от температуры.Если, например, рабочий температура выше указанной для номинальных значений, тогда рейтинги должны быть уменьшены.

Основы, типы, символы, характеристики, применения и комплектации

Хотя резисторы, конденсаторы и индукторы образуют основные элементы схемы, именно полупроводниковое устройство фактически хранит магию внутри. В каждой электронной схеме есть десятки полупроводниковых устройств, таких как диоды, транзисторы, регуляторы, операционные усилители, переключатели питания и т. Д. Внутри них.У каждого из них есть свои свойства и применение. В этой статье давайте рассмотрим самый простой полупроводниковый прибор - диоды и .

Возможно, вы уже слышали болтовню о том, что «Диоды - это полупроводниковые устройства с двумя выводами, которые проводят только в одном определенном направлении, позволяя току проходить через них…», но почему это так? И какое это имеет отношение к нам при разработке схемы? Какие существуют типы диодов и в каком приложении мы должны их использовать? Держитесь крепче, потому что вам ответят на все эти вопросы, когда вы прочитаете эту статью.

Что такое диод?

Давайте начнем с ответа на самый простой вопрос. Что такое диод ?

A Диод, как я уже говорил ранее, представляет собой полупроводниковый цилиндрический компонент с двумя выводами. Существует множество типов диодов , но наиболее часто используемый из них показан ниже.

Эти две клеммы называются Анод и Катод , мы рассмотрим символ и то, как идентифицировать клеммы позже, но пока просто помните, что любой диод будет иметь только две клеммы (по крайней мере, большинство из них) и они анод и катод.Еще одно золотое правило диодов заключается в том, что они позволяют току проходить через них только в одном направлении, а именно от анода к катоду. Это свойство диода делает его полезным во многих приложениях.

Чтобы понять, почему они действуют только в одном направлении, мы должны посмотреть, как они устроены. Диод изготавливается путем соединения двух одинаково легированных полупроводников P-типа и полупроводникового материала N-типа. Когда эти два материала соединяются вместе, происходит что-то интересное, они образуют еще один небольшой промежуточный слой, называемый слоем истощения.Это связано с тем, что слой P-типа имеет избыточное отверстие, а слой N-типа имеет избыточные электроны, и они оба пытаются диффундировать друг в друга, образуя блокировку с высоким сопротивлением между обоими материалами, как на изображении, показанном ниже. Этот слой блокировки называется слоем истощения.

Этот слой истощения (блокировка) должен быть разрушен, если ток должен протекать через диод. Когда на анод подается положительное напряжение, а на катод - отрицательное напряжение, говорят, что диод находится в прямом смещенном состоянии.В этом состоянии положительное напряжение закачивает больше дырок в область P-типа, а отрицательное напряжение закачивает больше электронов в область N-типа, что вызывает пробой обедненного слоя, заставляя ток течь от анода к катоду. Это минимальное напряжение, необходимое для того, чтобы диод проводил в прямом направлении, называется напряжением прямого пробоя.

В качестве альтернативы, если отрицательное напряжение приложено к аноду, а положительное напряжение приложено к катоду, диод считается находящимся в обратном смещенном состоянии.В этом состоянии отрицательное напряжение будет накачивать больше электронов в материал P-типа, а материал N-типа получит больше дырок от положительного напряжения, что сделает слой обеднения еще более прочным и, таким образом, не позволит току течь через него. Имейте в виду, что эти характеристики применимы только к идеальному диоду (теоретическому), практически, даже в режиме обратного смещения будет течь небольшой ток. Об этом мы поговорим позже.

Приведенная выше анимация иллюстрирует работу диода в цепи , есть две схемы, в каждой из которых мы пытаемся зажечь светодиод от батареи.В одной цепи диод смещен в прямом направлении, а в другой - в обратном. Во время моделирования вы можете заметить, что только диод с прямым смещением позволяет току течь, хотя он, таким образом, светит светодиод, диод с обратным смещением не позволяет току проходить через него.

Типы диодов, расположение выводов и символы

Теперь, когда мы разобрались с основами диодов, важно знать, что существуют разные типы диодов, каждый из которых имеет свои особые свойства и применение.В этой статье мы рассмотрим только три основных типа диодов: выпрямительный диод, стабилитрон и диод Шоттки. Изображение, клеммы и символы всех диодов приведены в таблице ниже

.

Тип диода

Распиновка

Символ

Выпрямительный диод

Стабилитрон

Диод Шоттки

Как показано в таблице, выпрямительный диод и диод Шоттки внешне похожи, но диод Шоттки обычно больше по размеру, чем обычные диоды.С другой стороны, стабилитрон можно легко идентифицировать по его характерному оранжевому цвету и серой линии на нем, как показано в таблице выше.

Выводы анода и катода можно определить по серой линии на диоде, контакт рядом с серой линией будет катодом. Точно так же с символами нижняя часть треугольника всегда будет анодом, а другая - катодом. Это очень важно помнить, так как при интерпретации схемы подключения диода всегда считалось самооценкой.

Терминология и характеристики диодов

Когда вы выбираете диод для своей схемы или пытаетесь понять работу диода в цепи, вы должны учитывать спецификации диода, которые можно найти в его техническом описании. Чтобы понять, что на самом деле означают значения, давайте рассмотрим несколько часто используемых терминологий.

Падение напряжения в прямом направлении (Vf): Когда диод работает в режиме прямого смещения, он позволяет току течь через них.В этом состоянии на диоде будет некоторое падение напряжения, это падение напряжения называется прямым падением напряжения. Для идеального диода он должен быть как можно ниже.

Максимальный прямой ток (если): мы уже знаем, что диод позволяет току течь через него, когда он находится в прямом смещении, то какой максимальный ток может быть разрешен, соответствует максимальному прямому току. Обычно следует убедиться, что этот ток больше, чем ток нагрузки вашей цепи.

Обратный ток пробоя (Vr): Хорошо, вот уловка, о которой я вам говорил: диод не пропускает ток через себя, когда он смещен в обратном направлении. Это верно, но не для всех значений напряжения. Таким образом, максимальное напряжение, до которого диод может выдержать пробой, называется обратным напряжением пробоя. Обычно значения такого напряжения будут очень высокими, например, если обратное напряжение пробоя составляет 500 В, диод не позволит току проходить через него в обратном смещенном состоянии, пока напряжение не превысит эти 500 В.

Обратный ток смещения (Ir): Хотя это правда, что диод не позволяет току течь, хотя в режиме обратного смещения значение тока не будет в идеале равным нулю. Через диод по-прежнему будет протекать очень небольшой и незначительный (в зависимости от схемы) ток. Этот ток называется током с обратным смещением. Значение этого тока будет в диапазоне мА или даже в мкА. Для идеального диода значение этого тока должно быть как можно меньше.Ток называется обратным током утечки.

Reverse Recovery Time: Допустим, вы работаете с диодом в режиме прямого смещения, а затем переключаете его в режим с обратным смещением, изменяя полярность напряжения. Теперь диод не будет внезапно останавливаться, ему потребуется некоторое время, чтобы перекрыть прохождение тока через него. Это время называется временем обратного восстановления.

Характеристики клемм (I-V) переходного диода: есть еще другие параметры, такие как рассеиваемая мощность, тепловое сопротивление и т. Д.связанный с диодом. Эти значения также можно найти в паспорте диода. Чтобы узнать больше о диоде, давайте посмотрим на важный график диода, который представляет собой кривую зависимости тока от напряжения. Кривая I-V идеального диода будет выглядеть примерно так.

Здесь в первом квадранте вы можете увидеть диод, работающий в режиме прямого смещения, а в третьем квадранте диод работает в области обратного смещения и пробоя. Ось X графика показывает напряжение на диоде, а ось Y показывает ток через диод.В режиме прямого смещения вы можете заметить, что диод начинает проводить (пропускать ток) только тогда, когда напряжение на диоде (V D ) превышает 0,5 В, это значение прямого напряжения диода для кремния. На диоде это прямое напряжение может достигать 0,7 В, как показано на графике выше.

Во время обратного смещения напряжение на диоде имеет отрицательный потенциал, поэтому ток также отображается в отрицательном направлении. Здесь, как вы можете видеть, диод не пропускает ток (за исключением небольшого значения), пока не будет достигнуто напряжение пробоя (V BD ).

Цепи приложений

Диоды

имеют широкий спектр применения в зависимости от их свойств и типа. Давайте попробуем охватить наиболее важные применения выпрямителя, стабилитрона и диода Шоттки с их принципиальными схемами.

Выпрямительный диод

Выпрямительный диод или общий диод - это наиболее часто встречающийся диод в любой цепи питания, будь то простой линейный источник питания или цепь SMPS. Как следует из названия, эти диоды используются для выпрямления в таких схемах, как двухполупериодный и полуволновой выпрямитель.Кроме того, они также используются в качестве диодов свободного хода в коммутационных устройствах и схемах преобразователей.

Схема выпрямителя

Выпрямительные диоды используются как в полуволновых, так и в полнополупериодных выпрямительных диодах. Давайте посмотрим на схему полуволнового выпрямителя для простоты. Принципиальная схема и график для однополупериодного выпрямителя показаны ниже

.

Источник входного напряжения Vs представляет собой синусоидальную волну переменного тока со среднеквадратичным напряжением 220 В.Эта волна переменного тока может быть выпрямлена с помощью одного диода. Как показано на графике, во время положительного полупериода диод смещен в прямом направлении, и, следовательно, выходное напряжение присутствует на нагрузке, а ток течет в положительном направлении. Но во время отрицательного полупериода диод смещен в обратном направлении, и, следовательно, ток не достигает нагрузки, а выходное напряжение остается на уровне 0 В, как показано на графике выше. Таким образом, ток всегда может течь только в одном направлении и, таким образом, преобразовывать переменный ток в постоянный.

Конечно, у этой схемы много недостатков, например, выходное напряжение неравномерно и практически не используется. Но теперь, когда у вас есть идея, вы можете изучить полные мостовые выпрямители с четырьмя диодами, которые обычно используются в схемах линейных регуляторов. Также схема выпрямителя будет иметь конденсатор на конце для фильтрации пульсаций, если вы хотите узнать больше о конденсаторах, прочитайте введение в статью о конденсаторах.

Стабилитрон

Стабилитрон широко используется в двух схемах, одна - как грубый стабилизатор напряжения, а другая - как схема защиты от перенапряжения.У стабилитрона есть два важных параметра, на которые следует обратить внимание: напряжение стабилитрона и мощность. Обычно доступные значения диодов: 3,9 В, 4,7 В, 5,1 В, 6,8 В, 7,5 В и 15 В.

В приведенной ниже схеме входное напряжение может варьироваться от 0 В до 12 В, но выходное напряжение никогда не будет превышать 5,1 В, поскольку обратное напряжение пробоя (напряжение стабилитрона) стабилитрона составляет 5,1 В. Когда входное напряжение меньше 5,1 В, выходное напряжение будет равно входному напряжению, но когда оно превысит 5.1 В выходное напряжение будет регулироваться до 5,1 В.

Это свойство схемы можно использовать для защиты выводов АЦП (схема защиты от перенапряжения), которые имеют напряжение 5 В, поскольку вывод может считывать напряжение от 0 до 5 В, но если оно превышает 5 В, стабилитрон не допускает превышения напряжения. Точно так же ту же схему можно использовать для регулирования 5,1 В для нагрузки при высоком входном напряжении. Но ограничение по току для такой схемы намного меньше.

При разработке схемы с использованием стабилитрона следует учитывать одну важную вещь - резистор стабилитрона.Этот резистор используется для ограничения тока через стабилитрон, защищая его от нагрева и повреждения. Величина стабилитрона зависит от напряжения стабилитрона и номинальной мощности стабилитрона. Формула для расчета резистора серии Зенера Rs показана ниже

.

Для стабилитрона 1N4734A значение Vz составляет 5,9 В, а Pz - 500 мВт, теперь при напряжении питания (Vs) 12 В значение Rs будет

.

Rs = (12-5.9) / Iz

Iz = Pz / Vz = 500 мВт / 5.9 В = ~ 85 мА

Следовательно, Rs = (12-5,9) / 85 = 71 Ом

Rs = 71 Ом (приблизительно)

Диод Шоттки

Диод Шоттки также используется в схемах защиты, таких как схема защиты от обратной полярности, из-за низкого падения напряжения в прямом направлении. Давайте посмотрим на общую схему защиты от обратной полярности

Когда Vcc и земля подключены с правильной полярностью, диод проводит в прямом направлении, и НАГРУЗКА получает питание.Преимущество здесь в том, что прямое падение напряжения на диоде очень меньше, скажем, около 0,04 В по сравнению с 0,7 В на выпрямительном диоде. Таким образом, на диоде не будет больших потерь мощности, также диод Шоттки может пропускать больший ток, чем обычный диод, и он также имеет более высокую скорость переключения, поэтому может использоваться в высокочастотной цепи. Теперь, когда я это сказал, у вас может возникнуть вопрос.

В чем разница между диодом Шоттки и общим диодом?

Ну да, диод Шоттки имеет более высокую скорость переключения, низкие потери проводимости и более высокий прямой ток, чем обычный диод.Это может звучать лучше, чем обычный диод, но у него есть один существенный недостаток. То есть он имеет низкое обратное напряжение пробоя, из-за этой особенности его нельзя использовать в схемах выпрямителя, так как схемы выпрямителя всегда будут иметь высокое обратное напряжение, появляющееся на нем во время переключения.

Специальные диоды

Помимо обычно используемых выпрямителей, стабилитронов и диодов Шоттки типа существуют и другие специальные диоды, которые имеют специальное применение, позволяющее быстро пробежать через них.

LED: Да, светодиод (LED), как следует из названия, является диодом. Вы должны быть уже знакомы с этими вещами, поскольку они обычно встречаются и используются. Опять же, существует много типов светодиодов, но круглый светодиод диаметром 5 мм является наиболее часто встречающимся.

Мостовой выпрямитель

: как мы знаем, выпрямительный диод используется в схеме выпрямителя, а для полной мостовой схемы выпрямителя нам потребуются четыре диода, подключенные упорядоченным образом. Сама эта установка доступна в корпусе, называемом выпрямительным диодом.RB156 - один из таких примеров.

Фотодиод: Фотодиод - это диод, который позволяет току проходить через него в зависимости от падающего на него света. Он используется в качестве датчика для обнаружения света, его обычно можно найти в следящих за линией, роботах, уклоняющихся от препятствий, и даже в качестве счетчика объектов или устройства датчика скорости. Вы можете узнать больше о фотодиоде по этой ссылке.

Лазерный диод: Лазерный свет также является разновидностью диода, подобного светодиоду. Они имеют те же свойства, что и диоды, но в режиме прямого смещения они излучают свет с падением напряжения на них, действуя как нагрузка.Лазерный диод 650 нм - это наиболее распространенный лазерный диод.

TVS-диод: Еще одним важным специальным типом диодов является TVS-диод, который означает подавитель переходного напряжения. Это особый тип диода, который обычно используется в цепях питания для борьбы с скачками напряжения и защиты цепи. Эти диоды также называются переходными диодами или тиректорами.

Варакторные диоды: Варакторные диоды используются как переменные конденсаторы.Когда этот диод работает в режиме обратного смещения, шириной обедненной области можно управлять, что заставляет его действовать как конденсатор. Эти диоды также называются варикаповыми диодами и обычно используются в радиочастотных схемах.

Комплекты диодов различных типов

Теперь, когда мы изучили все основы диодов, я считаю, что теперь вы можете выбрать диод, который требуется для вашей схемы. Но до сих пор мы видели один диод со сквозным отверстием, который обычно доступен и хорош для прототипов, но в большинстве продуктов вы не найдете их в корпусах с отверстиями.Сейчас мы обсудим множество различных типов диодных пакетов.

Комплект для сквозных отверстий

Это обычно используемые макеты и совместимые с перфорированными платами. Эти пакеты называются DO-7, DO-35, DO-41, DO-204 и т. Д., Из которых DO-41 является наиболее распространенным. Эти пакеты также называются аксиально-свинцовыми диодами .

Стили поверхностного монтажа

В большинстве готовых изделий, готовых к производству, используются компоненты SMD и .Они дешевле, чем сквозные, и имеют небольшой форм-фактор. SOD-323, SOD-523, SOD-123 SOD-80C - одни из самых популярных диодных SMD-корпусов. В большинстве конструкторов силовых цепей по-прежнему используются сквозные отверстия, поскольку они имеют высокую допустимую нагрузку по току и меньше проблем с электромагнитными помехами, поэтому SMD обычно предпочтительнее в цифровых схемах.

Крепление на 3-контактном болте

Также существует несколько специальных диодов с тремя выводами, которые используются в продвинутых приложениях, таких как космическая промышленность.Они обладают высоким током и коммутационной способностью. Их можно найти в пакетах TO-64, TO-208, TO-254. Между банками имеется паз, позволяющий прикрепить их болтами к корпусу раковины, они также называются диодами с болтовым креплением.

Твердотельные диоды и характеристики диодов [Analog Devices Wiki]

В электронике диод - это двухконтактный компонент с несимметричным током vs.характеристика напряжения, с низким (в идеале нулевым) сопротивлением току в одном направлении и высоким (идеально бесконечным) в другом. Кремниевый полупроводниковый диод, наиболее распространенный тип, представляет собой монокристаллический кусок полупроводникового материала с PN-переходом, подключенным к двум электрическим выводам.

5.1 PN-переход

PN-переход формируется путем соединения полупроводников p-типа и n-типа вместе в единую кристаллическую решетку. Термин переход относится к границе раздела, где встречаются две области полупроводника.Если бы переход был построен из двух отдельных частей, это привело бы к разрыву в кристаллической решетке, поэтому PN-переходы создаются в монокристалле полупроводника путем введения определенных примесей, называемых легирующими добавками, например, ионной имплантацией, диффузией или эпитаксией (выращиванием). слой кристалла, легированного примесями n-типа, поверх слоя кристалла, легированного примесями p-типа, например).

PN-переходы являются элементарными строительными блоками почти всех полупроводниковых электронных устройств, таких как диоды, транзисторы, солнечные элементы, светодиоды и интегральные схемы; они являются активными сайтами, где происходит электронное действие устройства.Например, обычный тип транзистора, транзистор с биполярным соединением, состоит из двух последовательно соединенных PN-переходов в форме NPN или PNP.

5.1.1 Свойства PN-перехода

PN-переход демонстрирует некоторые интересные свойства, которые находят полезное применение в твердотельной электронике. Полупроводник, легированный p-примесью, относительно проводящий. То же самое верно и для полупроводника с примесью n-типа, но переход между областями p- и n-типа является непроводником. Этот непроводящий слой, называемый обедненным слоем, возникает из-за того, что электрически заряженные носители, электроны в кремнии n-типа и дырки в кремнии p-типа, диффундируют в материал другого типа ( i.е. электронов p-типа и дырок в n-типе) и устраняют друг друга в процессе, называемом рекомбинацией. Эта диффузия заряда вызывает встроенную разность потенциалов в обедненной области. Путем манипулирования этим непроводящим слоем PN-переходы обычно используются как диоды: элементы схемы, которые пропускают электрический ток в одном направлении, но не в другом (противоположном) направлении. Это свойство объясняется в терминах прямого смещения и обратного смещения, где термин смещение относится к приложению электрического напряжения к PN-переходу.PN-переход будет проводить ток, когда приложенное внешнее напряжение превышает встроенный потенциал перехода.

5.1.2 Равновесие (нулевое смещение)

В PN-переходе без внешнего приложенного напряжения достигается состояние равновесия, при котором на переходе образуется разность потенциалов. Эта разность потенциалов называется встроенным потенциалом, В BI .

На стыке полупроводников p-типа и n-типа более высокая концентрация электронов в области n-типа вблизи интерфейса PN имеет тенденцию диффундировать в область p-типа.По мере того как электроны диффундируют, они оставляют положительно заряженные ионы (доноры) в n-области. Точно так же более высокая концентрация дырок на стороне p-типа вблизи интерфейса PN начинает диффундировать в область n-типа, оставляя фиксированные ионы (акцепторы) с отрицательным зарядом. Области, непосредственно прилегающие по обе стороны от интерфейса PN, теряют свою нейтральность и становятся заряженными, образуя область пространственного заряда или обедненный слой (см. Рисунок 5.1).

Рисунок 5.1 PN-переход в состоянии равновесия

Электрическое поле, создаваемое областью пространственного заряда, препятствует процессу диффузии как для электронов, так и для дырок.Есть два одновременных явления: процесс диффузии, который имеет тенденцию генерировать больший объемный заряд, и электрическое поле, создаваемое объемным зарядом, которое стремится противодействовать диффузии. В состоянии равновесия эти две силы уравновешивают друг друга. Профиль концентрации носителей в состоянии равновесия показан на рисунке 5.1 синими и красными линиями. Также показаны два уравновешивающих явления, которые устанавливают равновесие.

Область пространственного заряда - это зона с чистым зарядом, обеспечиваемым фиксированными ионами (донорами или акцепторами), которые остались незакрытыми из-за диффузии основных носителей заряда.Когда равновесие достигнуто, плотность заряда аппроксимируется ступенчатой ​​функцией, отображаемой на графике Q (x) на рисунке 5.2. Фактически, область полностью обеднена основными носителями (оставляя плотность заряда равной чистому уровню легирования), а граница между областью пространственного заряда и нейтральной областью довольно резкая. Область пространственного заряда имеет одинаковый заряд по обе стороны от интерфейса PN, поэтому она простирается дальше на менее легированную сторону (сторона n на рисунках 5.1 и 5.2).

5.1.3 Прямое смещение

При прямом смещении положительное напряжение прикладывается к стороне p-типа по отношению к стороне n-типа перехода. При приложении напряжения таким образом дырки в области p-типа и электроны в области n-типа выталкиваются в сторону перехода. Это уменьшает ширину истощающего слоя. Положительный заряд, приложенный к материалу p-типа, отталкивает дырки, в то время как отрицательный заряд, приложенный к материалу n-типа, отталкивает электроны.Расстояние между электронами и дырками уменьшается по мере того, как они движутся к стыку. Это снижает встроенный потенциальный барьер. С увеличением напряжения прямого смещения обедненный слой в конечном итоге становится достаточно тонким, чтобы встроенное электрическое поле больше не могло противодействовать движению носителей заряда через PN-переход, что, в свою очередь, снижает электрическое сопротивление. Электроны, которые пересекают PN-переход в материал p-типа (или дырки, которые проникают в материал n-типа), будут диффундировать в почти нейтральную область.Следовательно, степень диффузии неосновной части в зонах, близких к нейтральной, определяет величину тока, который может протекать через диод.

Только основные носители (электроны в материале n-типа или дырки в материале p-типа) могут протекать через полупроводник на макроскопическую длину. Имея это в виду, рассмотрим поток электронов через переход. Прямое смещение вызывает силу на электронах, толкающую их со стороны N к стороне P. При прямом смещении область обеднения достаточно узкая, чтобы электроны могли пересекать переход и инжектироваться в материал p-типа.Однако они не продолжают течь через материал p-типа бесконечно, потому что для них энергетически выгодно рекомбинировать с дырками. Средняя длина, которую электрон проходит через материал p-типа до рекомбинации, называется диффузионной длиной, и обычно она составляет порядка микрон.

Хотя электроны проникают в материал p-типа только на короткое расстояние до рекомбинации, электрический ток продолжается непрерывно, потому что дырки (основные носители) начинают течь в противоположном направлении, заменяя те, с которыми рекомбинируются электроны неосновных носителей.Полный ток (сумма токов электронов и дырок) постоянен в пространстве, потому что любое изменение вызовет накопление заряда с течением времени (это текущий закон Кирхгофа). Поток дырок из области p-типа в область n-типа в точности аналогичен потоку электронов от N к P (электроны и дырки меняются ролями, и знаки всех токов и напряжений меняются местами).

Следовательно, макроскопическая картина протекания тока через диод включает в себя электроны, текущие через область n-типа к переходу, дырки, протекающие через область p-типа в противоположном направлении к переходу, и два типа носителей, постоянно рекомбинирующих в близость (определяемая диффузионной длиной) перехода.Электроны и дырки движутся в противоположных направлениях, но они также имеют противоположные заряды, поэтому общий ток идет в одном направлении с обеих сторон диода, как и требуется.

5.1.4 Обратное смещение

Обратное смещение обычно относится к тому, как диод используется в цепи. Если диод смещен в обратном направлении, напряжение на катоде выше, чем на аноде. Следовательно, ток не будет течь, пока электрическое поле не станет настолько сильным, что диод не сломается.

Поскольку материал p-типа теперь подключен к отрицательной стороне приложенного напряжения, отверстия в материале p-типа отодвигаются от перехода, что приводит к увеличению толщины обедненного слоя.Точно так же, поскольку область n-типа подключена к положительной стороне, электроны также будут отводиться от перехода. Следовательно, обедненный слой расширяется и увеличивается с увеличением напряжения обратного смещения. Это увеличивает барьер напряжения, вызывая высокое сопротивление потоку носителей заряда, таким образом, позволяя только очень небольшому электрическому току протекать через PN-переход.

Напряженность электрического поля обедненного слоя увеличивается по мере увеличения напряжения обратного смещения.Как только напряженность электрического поля превышает критический уровень, слой истощения PN-перехода разрушается, и начинает течь ток, обычно в результате процессов пробоя Зенера или лавинного пробоя. Оба эти процесса пробоя являются неразрушающими и обратимыми, пока величина протекающего тока не достигает уровней, которые вызывают перегрев полупроводникового материала и термическое повреждение.

Этот эффект используется в схемах стабилизаторов на стабилитронах.Стабилитроны имеют четко определенное низкое обратное напряжение пробоя по своей конструкции. Типичное значение напряжения пробоя составляет, например, 6,2 В. Это означает, что напряжение на катоде никогда не может быть более чем на 6,2 В выше, чем напряжение на аноде, потому что диод выйдет из строя и, следовательно, станет проводящим, если напряжение станет выше. Это эффективно ограничивает напряжение на диоде.

Другое применение, где используются диоды с обратным смещением, - это варакторные диоды (переменные конденсаторы).Слой обеднения действует как изолятор между двумя проводящими пластинами или выводами диода. Емкость зависит от ширины изоляционного слоя и его площади. Ширина зоны истощения любого диода изменяется в зависимости от приложенного напряжения. Это изменяет емкость диода. Варакторы специально спроектированы так, чтобы одна сторона PN-перехода была слегка легированной, поэтому на этой стороне диода будет большая область обеднения. Эта более толстая область также будет больше зависеть от приложенного напряжения смещения, и, таким образом, изменение емкости диода (ΔC / ΔV) будет сильно зависеть от приложенного напряжения смещения.

Сводка раздела

Свойства прямого смещения и обратного смещения PN-перехода предполагают, что он может использоваться в качестве диода. Диод с PN-переходом позволяет электрическим зарядам течь в одном направлении, но не в противоположном; отрицательные заряды (электроны) могут легко проходить через переход от N к P, но не от P к N, и обратное верно для дырок. Когда PN-переход смещен в прямом направлении, электрический заряд течет свободно из-за пониженного сопротивления PN-перехода.Однако, когда PN-переход имеет обратное смещение, барьер перехода (и, следовательно, сопротивление) становится больше, а поток заряда очень мал.

5.2 Фактические диоды

На рисунке 5.3 ниже показан схематический символ диода (а) и изображение типичного диода из лаборатории (б). Диоды - довольно распространенные и полезные устройства. Можно представить себе диод как устройство, которое позволяет току течь только в одном направлении. Это чрезмерное упрощение, но хорошее приближение.

Рисунок 5.3: (a) Схематический символ диода (b) малосигнальный диод.

Как обсуждалось ранее, полупроводниковые диоды изготавливаются в виде двухслойной структуры, образующей PN переход. Полупроводники, такие как кремний или германий, можно легировать небольшими концентрациями определенных примесей, чтобы получить материал, который проводит электричество посредством переноса электронов (n-тип) или через дырки (p-тип). Когда слои из этих двух типов легированного полупроводника построены так, чтобы сформировать PN-переход, электроны мигрируют от стороны n-типа, а дырки мигрируют от стороны p-типа, как показано на рисунке.5.1. Это перераспределение заряда приводит к появлению потенциального промежутка В BI поперек перехода, как показано на рисунке. Этот разрыв составляет VBI ~ 0 . 7 В для кремния и ~ 0 . 3 В для германия.

Рисунок 5.4 PN-переход, образующий промежуток напряжения на переходе.

Когда этот диод с PN-переходом теперь подключен к внешнему напряжению, это может эффективно увеличивать или уменьшать встроенный потенциальный зазор.Это приводит к очень разному поведению в зависимости от полярности этого внешнего напряжения, как показано на типичном графике В - I на рисунке. 5.5. Когда диод смещен в обратном направлении, как показано на рисунке 5.6, зазор увеличивается, и через переход проходит очень небольшой ток (до тех пор, пока в конечном итоге в этом примере не произойдет пробой поля при ~ 6,2 В). Напротив, конфигурация с прямым смещением уменьшает зазор, приближаясь к нулю для внешнего напряжения, равного напряжению зазора, и ток может течь легко.

Выражение для напряжения на диоде (прямое смещение) В D выглядит следующим образом:

(5.1)

Где:
В D = приложенное напряжение на диоде
k = постоянная Больцмана (1,38E-23 Дж / Кельвин)
T = абсолютная температура в Кельвинах
q = заряд электрона (1,6E-19 Кулонов)
I D = фактический ток через диод
I S = ток диффузии (постоянная, зависящая от устройства)
(Так называемое тепловое напряжение, В T , составляет кТ / q = 26 мВ при комнатной температуре.)

Приведенное выше уравнение можно изменить, чтобы получить I D :

(5.2)

Таким образом, при обратном смещении диод ведет себя как разомкнутый переключатель; и при прямом смещении для токов примерно 10 мА или больше диод дает почти постоянное падение напряжения ~ 0,7 В . Диффузионный ток I S, зависит от уровня легирования примесей n-типа и p-типа, площади диода и (в очень большой степени) от температуры.Разумной отправной точкой для диода интегральной схемы с малой геометрией является I S = 1E -16 .

Рисунок 5.5: Зависимость напряжения В D от тока, поведение диода I D

Противоположные заряды в полупроводниковом переходе не отличаются от зарядов на пластинах конденсатора. Итак, у каждого перехода есть емкость; но поскольку расстояние между электронами и дырками, обедненный слой, изменяется с приложенным напряжением, емкость зависит от приложенного напряжения.Чем ниже напряжение, тем выше емкость, и она будет увеличиваться прямо в область прямого смещения.

Рисунок 5.6 Характеристики напряжения в зависимости от тока стабилитрона на 6,2 В

Еще одна вещь, на которую следует обратить внимание в отношении реальных диодов, - это последовательное сопротивление в полупроводниковом материале, не принимаемое областью обеднения. Для обычной концентрации 5E 15 (количество атомов примеси на кубический сантиметр, что дает практическое напряжение пробоя в ИС около 25 В), объемное удельное сопротивление составляет около 1 Ом · см для кремния, легированного фосфором (n-типа), и 3 Ом-см для бора (р-тип).Для сравнения, такой металл, как алюминий, имеет удельное сопротивление 2,8 мкОм-см, медь - 1,7 мкОм-см. Объемное удельное сопротивление (ρ или rho) измеряется между противоположными поверхностями куба материала с длиной стороны (w, h, l) 1 см (10 мм).

5.3 Температурные характеристики диодов

Из уравнения напряжения диода 5.1 мы можем видеть, что оно содержит член абсолютной температуры T. Кроме того, диффузионный ток I S не является на самом деле постоянным, но сильно зависит от температуры.На нижнем наборе графиков на рисунке 5.7 смоделированное напряжение диода в зависимости от температуры показано для четырех различных токов диода (зеленый = 1 мА , синий = 2 мА , красный = 5 мА и голубой = 10 мА). Из графиков видно, что напряжение на диоде имеет довольно сильную отрицательную температурную зависимость.

На верхнем графике показана разница между кривыми 2 мА и 1 мА вместе с разницей между кривыми 5 мА и 10 мА. Эти два результата лежат точно друг на друге.Причина этого станет очевидной, если мы рассмотрим уравнение напряжения на диоде более внимательно.

Рисунок 5.7 Зависимость напряжения диода от температуры при 1 мА, 2 мА, 5 мА и 10 мА

(5,3)

Переставляя и предполагая I S1 = I S2 , получаем:

(5,4)

Теперь сильный температурный эффект I S выпадает из уравнения, и у нас остается только абсолютный температурный член, T, который делает ΔV D пропорциональным абсолютной температуре (PTAT).Оба V D2 - V D1 и V D4 - V D3 имеют одинаковое соотношение 2: 1 для своих токов, и, таким образом, кривые ΔV D будут точно лежать на друг над другом. При комнатной температуре тепловое напряжение В T составляет около 26 мВ , что при умножении на ln (2) дает примерно 18 мВ, видимое на графике при 25 градусах.

5.4 Линейная модель

Линейная модель диода аппроксимирует экспоненциальные характеристики I - В прямой линией, касательной к реальной кривой в точке смещения постоянного тока.На рисунке 5.8 показана кривая с касательной в точке ( V D , I D ). Кривая пересекает горизонтальную ось при напряжении В D0 . Для небольших изменений в V D и I D относительно точки касания касательная линия дает хорошее приближение к реальной кривой.

Рисунок 5.8 I - Характеристики В с касательной при ( В D , I D )

Наклон касательной определяется по формуле:

(5.5)

I D часто намного больше, чем I S , поэтому уравнение часто упрощается до:

(5,6)

Уравнение касательной:

(5,7)

5.5 Модель слабого сигнала

Поскольку уравнение диода для I D как функции V D является нелинейным, инструменты анализа линейных цепей не могут быть применены к цепям, содержащим диоды, так же, как и к цепям, содержащим только резисторы.Однако, если ток диода известен для конкретного напряжения, можно использовать линейный анализ цепи для прогнозирования изменения тока при заданном изменении напряжения, при условии, что это изменение будет постепенно малым. Такой подход называется анализом слабого сигнала. Несколько слов об обозначениях:

Где:
V D и I D - значения смещения постоянного тока, а v d и i d - малосигнальные изменения значений смещения.

Сопротивление слабого сигнала определяется как отношение v d к i d и определяется как:

(5,8)

Это приводит к тому же r d , что и в модели линейного касательного диода на рисунке 5.8. Таким образом, слабосигнальная модель диода при прямом смещении представляет собой резистор номиналом r d . Значение r d обратно пропорционально протекающему через него току. Каждый раз, когда ток удваивается, сопротивление уменьшается вдвое.Из модели линейного диода следует, что r d можно графически интерпретировать как обратную величину наклона кривой i D относительно v D в точке ( V D , I D ) .

Сводка раздела

  1. Полупроводники содержат два типа мобильных носителей заряда: положительно заряженные дырки и отрицательно заряженные электроны.

  2. Полупроводник может быть легирован донорными примесями (легирование n-типа) так, чтобы он содержал подвижные заряды, являющиеся электронами.

  3. Полупроводник может быть легирован акцепторными примесями (легирование p-типа), так что он содержит подвижные заряды, которые являются дырками.

  4. Есть два важных механизма протекания тока в полупроводнике:

    1. диффузия носителей в результате градиента концентрации; и

    2. дрейф носителей в электрическом поле.

  5. В состоянии равновесия через PN-переход создается встроенный потенциальный или потенциальный барьер В BI Вольт.
  6. При приложении напряжения прямого смещения В DF встроенный потенциал снижается до В BI - В D , и ток течет через диод при В DF больше В BI .
  7. При приложении напряжения обратного смещения В DR высота потенциального барьера увеличивается до В BI + В DR и может течь небольшой ток.
  8. Когда В BI + В DR больше некоторого критического напряжения, когда электрическое поле выше диэлектрической прочности полупроводника, происходит обратный пробой перехода и течет ток.
  9. Полный ток диода I D связан с приложенным напряжением В D соотношением

ADALM1000 Лабораторное занятие 2. Диод I vs.Кривые напряжения V
Лабораторная работа ADALM1000, емкость PN перехода, зависящая от напряжения

Лабораторное занятие ADALM2000 2. Кривые зависимости диода I от V
Лабораторное занятие ADALM2000, зависимая от напряжения емкость PN-перехода
Лабораторное занятие ADALM2000: датчик дифференциальной температуры

Вернуться к предыдущей главе

Перейти к следующей главе

Вернуться к содержанию

Характеристики диода

- диодные и диодные схемы

Мы в девятой главе, а в девятой мы рассмотрим диоды и диодные схемы.Диоды - это первое применение полупроводников, которое мы рассмотрим. Первое, что мы хотим сделать, это посмотреть характеристики диодов.

Характеристики диода

Диод - это просто PN переход, но он широко применяется в электронных схемах. Три важных характеристики диода - это, прежде всего, прямое падение напряжения. При прямом смещении это должно быть около 0,7 вольт. Затем происходит обратное падение напряжения.И наоборот, когда мы смещаем диод в обратном направлении, обедненный слой расширяется, и обычно приложенные напряжения ощущаются на диоде. Затем возникает обратное напряжение пробоя. Обратное падение напряжения, которое приведет к обратному течению тока и в большинстве случаев разрушит диод.

Диодные элементы

Диод имеет два вывода, подключенных к внешней цепи. Здесь у нас есть маленький диод, и это будут два вывода. Поскольку диод ведет себя по-разному в зависимости от прямого или обратного смещения, очень важно иметь возможность различать выводы.Анод соединяется с материалом p-типа, это будет анод прямо здесь, он соединяется с материалом p. Катод подключается к материалу n-типа прямо здесь. Когда вы видите диод, на нем обычно есть цветная полоса, и цветная полоса указывает конец, который является катодом. Один из способов запомнить обозначение здесь - стрелка всегда указывает на конечный материал. Здесь будет материал p, а стрелка укажет на конечный материал, который будет катодом.

Идеальные диоды

В идеальном диоде ток свободно течет через устройство при прямом смещении, не имея сопротивления.В идеале это должно произойти или то, что мы хотели бы, но это не то, что произойдет. В идеальном диоде при прямом смещении на нем не было бы падения напряжения. Все напряжения источника будут падать на резисторы цепи. На диоде не будет падения напряжения; все напряжение источника будет приложено к резисторам цепи. В идеальном диоде при обратном смещении он имел бы бесконечное сопротивление, вызывая нулевой ток.

Практические диоды

Теперь практические диоды, это то, что вы на самом деле увидите, практичный диод действительно оказывает некоторое сопротивление току при прямом смещении.Поскольку имеется некоторое сопротивление, при протекании тока через диод прямого смещения будет рассеиваться некоторая мощность. Следовательно, существует практический предел силы тока, который диод может проводить без повреждений.

Диод обратного смещения имеет очень высокое сопротивление. Избыточное обратное смещение может вызвать проводимость диода.

Практическое смещение диода в прямом направлении

Вот и ситуация; приложенное напряжение менее 0,7 вольт. Теперь не забудьте направить смещение диода, который мы должны были разместить более чем.7 вольт, при напряжении менее 0,7 вольт мы не сможем преодолеть барьерный потенциал, и это будет действовать как разрыв, и в цепи не будет падения напряжения. Здесь у нас то же самое, только мы увеличили напряжение до пяти вольт и теперь достаточно прямого смещения этого диода. Обратите внимание, здесь опускается 0,7, здесь падает оставшееся напряжение, 4,3, так что это наши 4,3 плюс семь равняется нашим пяти вольтам. Если бы здесь был компонент 1k, тогда 4,3 разделить на 1k, у нас было бы 4.3 мА тока через этот резистор и через диод. В данном случае мы увеличили напряжение до 25 вольт. Теперь обратите внимание, что падение напряжения, показанное здесь, составляет 0,8 В, в идеале, мы бы сказали, что это 0,7. В этом случае, опять же, если бы оно было 1 кОм, то у нас было бы 24,2 миллиампера тока в этой цепи. В диоде есть внутреннее сопротивление, поэтому при увеличении тока вы увидите, что падение напряжения немного увеличится, но обычно мы говорим, что оно составляет 0,7.

В некоторых случаях я видел выпрямленные диоды, у которых падение напряжения достигает одного вольта, а иногда и может достигать единицы.2. Это необычно; обычно мы считаем, что это 0,7 вольт.

Обратное смещение

Теперь у нас есть конец диода, поэтому он имеет обратное смещение. Обратите внимание, что катод подключен к положительному источнику питания. Помните, что n материала здесь со всеми электронами будет притягиваться таким образом, и мы собираемся увеличить эту область истощения, конденсатор и диод, чтобы они выглядели открытыми. На диоде будут ощущаться 10 вольт, и это состояние обратного смещения.В этой ситуации мы просто увеличили напряжение. Такое же состояние существует, за исключением того, что область истощения, вероятно, немного шире, и здесь чувствуется приложенное напряжение, и в цепи нет тока.

Превышение напряжения пробоя

Теперь здесь приложенное напряжение больше напряжения пробоя. Мы не знаем, какое напряжение пробоя у этого диода, но оно больше. Что произойдет в этот момент, так это то, что, несмотря на то, что это обратное смещение, ток будет принудительно протекать через это устройство.Устройство фактически выходит из строя, и через него должен был пройти ток, равный приложенному напряжению за вычетом любого падения на этом устройстве. Обычно это повреждает диод.

Зависимость тока от напряжения

В практическом диоде прямой ток очень мал, пока не будет достигнуто напряжение барьера. При обратном смещении протекает только небольшой ток, пока обратное напряжение меньше напряжения пробоя устройства. Что у нас есть, у нас есть кривая зависимости тока от напряжения для практического диода.Это довольно типично для диодов. Вы видите, что все основные диоды выглядят так. Есть и другие диоды, диоды специального назначения будут немного отличаться от этого, но это кривая, которую вы обычно видите в диоде. Здесь будет изменяться значение напряжения пробоя. Что это значит? Что ж, здесь у нас есть напряжение колена, напряжение барьера и напряжение колена ... Помните, здесь мы графически изображаем напряжение, идущее в этом направлении. Это будет прямое напряжение, а затем обратное напряжение, указывающее на обратное смещение.Напряжение в условиях прямого смещения обычно составляет 0,7 В, а затем мы строим график тока, идя в этом направлении. Теперь вы видите, что эта кривая не прямая, а плавная. 0,7 вольта на диод начинает проводить, а затем мы получаем то, что мы называем прямым током.

По мере того, как напряжение растет, я думаю, мы изобразили на графике пять вольт, и, вероятно, у нас будет ток примерно здесь, а затем мы сделали 25 вольт и сказали, что у нас было около 0,8 вольт, но вы поймете идею, если мы возьмем это и спустились сюда посмотрим, наверное, это будет примерно о.8 в этом конкретном случае. В любом случае, прямое напряжение обычно составляет 0,7, а затем, в зависимости от того, сколько тока проходит через него, вы можете увидеть немного повышенное значение около 0,7. Теперь, когда мы обратим смещение диода, вы увидите, что ток практически равен нулю, а в идеале он должен быть равен нулю, но будет небольшая утечка. По большей части у вас есть; мы смотрим на отсутствие тока вообще. С другой стороны, мы будем видеть это состояние до тех пор, пока не достигнем точки пробоя.В точке пробоя мы увидим выброс тока, идущий в другом направлении против нормального пути тока диода, и снова это, вероятно, представляет собой разрушение диода.

На этом мы завершаем наше введение в характеристики диодов, и мы рассмотрели последний слайд, на котором мы рассмотрели кривую зависимости тока от напряжения диода для тока и напряжения. Мы также посмотрели на напряжение пробоя, и мы рассмотрели несколько различных условий обратного смещения, а также некоторые условия прямого смещения.Мы поговорили о нем, посмотрим, где это было, мы поговорили о практических диодах, идеальных диодах… ах, вот и они. Мы рассмотрели диодные элементы и на этом завершили рассмотрение характеристик диодов.

Видеолекции, созданные Тимом Фигенбаумом в Общественном колледже Северного Сиэтла.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *