Температура кипения и плавления меди и серы: Агрегатное состояние Меди в цвет меди запах меди плотность меди растворимость в воде меди теплопро…

alexxlab | 09.03.2023 | 0 | Разное

Оксид серы (IV) | справочник Пестициды.ru

Химические и физические свойства

Диоксид серы – бесцветный газ с резким запахом. Молекула имеет угловую форму.

  • Температура плавления – -75,46 °С,
  • Температура кипения – -10,6 °С,
  • Плотность газа – 2,92655 г/л.

Легко сжижается в бесцветную легкоподвижную жидкость при температуре 25 °С и давлении около 0,5 МПа.

Для жидкой формы плотность равна 1,4619 г/см3 (при – 10 °С).

Твердый диоксид серы – бесцветные кристаллы, ромбической сингонии.

Диоксид серы заметно диссоциирует только около 2800 °С.

Диссоциация жидкого диоксида серы проходит по схеме:

2SO2 ↔ SO2+ + SO32-

Трехмерная модель молекулы

Трехмерная модель молекулы


Растворимость диоксида серы в воде зависит от температуры:

  • при 0 °С в 100 г воды растворяется 22,8 г диоксида серы,
  • при 20 °С – 11,5 г,
  • при 90 °С – 2,1 г.

Водный раствор диоксида серы – это сернистая кислота H2SO3.

Диоксид серы растворим в этаноле, H2SO4, олеуме, CH3COOH. Жидкий сернистый ангидрид смешивается в любых соотношениях с SO3. CHCl3, CS2, диэтиловым эфиром.

Жидкий сернистый ангидрид растворяет хлориды. Иодиды и роданиды металлов не растворяются.

Соли, растворенные в жидком диоксиде серы, диссоциируют.

Диоксид серы способен восстанавливаться до серы и окисляться до шестивалентных соединений серы.

Диоксид серы токсичен. При концентрации 0,03–0,05 мг/л раздражает слизистые оболочки, органы дыхания, глаза.

Основной промышленный способ получения диоксида серы – из серного колчедана FeS2 путем его сжигания и дальнейшей обработки слабой холодной H2SO4.

Кроме того, серный диоксид можно получить путем сжигания серы, а также как побочный продукт обжига медных и цинковых сульфидных руд.

[2]

Содержание диоксида серы в почве и удобрениях

Неорганические соединения серы представлены сульфатами (гипс CaSO4•2H2O, ангидрит CaSO4) и сульфидами (пирит FeS2).

Сульфидная сера доступна растениям только после перехода в сульфатную форму. Большая часть серы присутствует в почве в составе органических соединений, не усваиваемых растениями. Только после минерализации органических веществ и перехода серы в сульфатную форму органическая сера становится доступной для растений.[1]

Химическая промышленность не выпускает удобрений с основным действующим веществом диоксидом серы. Однако в качестве примесей он содержится во многих удобрениях. К ним относятся фосфогипс, простой суперфосфат, сульфат аммония, сульфат калия, калимагнезия, гипс, сланцевая зола, навоз, торф и многие другие.[1]

Поглощение диоксида серы растениями

Сера поступает в растения через корни в виде SO42- и листья в виде диоксида серы. При этом поглощение серы из атмосферы обеспечивает до 80 % потребности растений в данном элементе. В связи с этим вблизи промышленных центров, где атмосфера богата диоксидом серы, растения хорошо обеспечены серой. В удаленных районах количество сернистого ангидрида в осадках и атмосфере сильно снижается и питание растений серой зависит от ее наличия в почве.[2]

 

Температура плавления серы. Установки для плавления серы

Сера – один из самых распространённых элементов земной коры. Чаще всего она встречается в составе минералов, содержащих кроме неё металлы. Очень интересны процессы, происходящие при достижении температуры кипения и плавления серы. Эти процессы, а также связанные с ними сложности мы и разберём в этой статье. Но для начала окунёмся в историю открытия этого элемента.

История

В самородном виде, а также в составе минералов сера была известна ещё с древности. В старых греческих текстах описано ядовитое действие ее соединений на человеческий организм. Сернистый газ, выделяемый при горении соединений этого элемента, действительно может быть смертельно опасен для людей. Примерно в 8 веке серу начали использовать в Китае для приготовления пиротехнических смесей. Неудивительно, ведь именно в этой стране, как считается, изобрели порох.

Ещё в Древнем Египте людям был известен способ обжига серосодержащей руды на основе меди. Таким образом добывали этот металл. Сера уходила в виде ядовитого газа SO2.

Несмотря на известность с древнейших времён, знание о том, что представляет собой сера, пришло благодаря работам французского естествоиспытателя Антуана Лавуазье. Именно он установил, что она является элементом, а продукты её горения – оксидами.

Вот такая вот краткая история знакомства людей с этим химическим элементом. Далее мы подробно расскажем о процессах, происходящих в недрах земли и приводящих к образованию серы в том виде, в котором она есть сейчас.

Как появляется сера?

Существует распространённое заблуждение о том, что чаще всего этот элемент встречается в самородном (то есть чистом) виде. Однако это не совсем так. Самородная сера чаще всего встречается как вкрапление в другую руду.

На данный момент есть несколько теорий, касающихся происхождения элемента в чистом виде. Они предполагают отличие во времени образования серы и руд, в которые она вкрапляется. Первая, теория сингенеза, предполагает образование серы совместно с рудами. Согласно ей некоторые бактерии, обитающие в толще океана, восстанавливали сульфаты, находящиеся в воде, до сероводорода. Последний, в свою очередь, поднимался вверх, где с помощью других бактерий окислялся до серы. Она падала на дно, смешивалась с илом, и впоследствии они вместе образовывали руду.

Суть теории эпигенеза – то, что сера в руде образовалась позднее её самой. Тут есть несколько ответвлений. Мы расскажем лишь о самом распространённом варианте этой теории. Состоит он вот в чём: подземные воды, протекая через скопления сульфатных руд, обогащаются ими. Затем, проходя через месторождения нефти и газа, ионы сульфатов восстанавливаются до сероводорода благодаря углеводородам. Сернистый водород, поднимаясь к поверхности, окисляется кислородом воздуха до серы, которая и оседает в породах, образуя кристаллы. Эта теория в последнее время находит всё больше подтверждений, но пока остаётся открытым вопрос о химизме этих превращений.

От процесса происхождения серы в природе перейдём к её модификациям.

Аллотропия и полиморфизм

Сера, как и многие другие элементы таблицы Менделеева, существует в природе в нескольких формах. В химии их называют аллотропными модификациями. Существует сера ромбическая. Температура плавления её несколько ниже, чем у второй модификации: моноклинной (112 и 119 градусов по Цельсию). А различаются они строением элементарных ячеек. Ромбическая сера отличается большей плотностью и устойчивостью. Она может при нагревании до 95 градусов переходить во вторую форму – моноклинную. У обсуждаемого нами элемента есть аналоги в таблице Менделеева. Полиморфизм серы, селена и теллура учёные обсуждают до сих пор. Они имеют очень тесную связь между собой, и все модификации, которые они образуют, сильно похожи.

А далее мы разберём процессы, происходящие при плавлении серы. Но перед тем как начать, следует немного окунуться в теорию строения кристаллической решётки и явлений, происходящих при фазовых переходах вещества.

Из чего состоит кристалл?

Как известно, в газообразном состоянии вещество находится в виде молекул (или атомов), беспорядочно движущихся в пространстве. В жидком веществе составляющие его частицы группируются, но всё равно имеют достаточно большую свободу движения. В твёрдом агрегатном состоянии всё немного иначе. Здесь степень упорядоченности возрастает до своего максимального значения, и атомы образуют кристаллическую решётку. В ней, конечно, происходят колебания, но они имеют очень малую амплитуду, и это нельзя назвать свободным движением.

Любой кристалл можно поделить на элементарные ячейки – такие последовательные соединения атомов, которые повторяются во всём объёме образца соединения. Тут стоит уточнить, что такие ячейки – это не кристаллическая решётка, и тут атомы располагаются внутри объёма определённой фигуры, а не в её узлах. Для каждого кристалла они индивидуальны, но их можно разделить на несколько основных типов (сингоний) в зависимости от геометрии: триклинная, моноклинная, ромбическая, ромбоэдрическая, тетрагональная, гексагональная, кубическая.

Кратко разберём каждый тип решёток, ведь они делятся ещё на несколько подвидов. И начнём мы с того, чем они могут отличаться между собой. Во-первых, это соотношения длин сторон, а во-вторых, угол между ними.

Таким образом, триклинная сингония, самая низшая из всех, представляет собой элементарную решётку (параллелограмм), в которой все стороны и углы не равны между собой. Ещё один представитель так называемой низшей категории сингоний – моноклинная. Здесь два угла ячейки равны 90 градусам, а все стороны имеют разную длину. Следующий вид, относящейся к низшей категории, – ромбическая сингония. Она имеет три неравные между собой стороны, но все углы фигуры равны 90 градусам.

Перейдём к средней категории. И первый её член – тетрагональная сингония. Тут по аналогии нетрудно догадаться, что все углы фигуры, которую она представляет, равны 90 градусам, а также две из трёх сторон равны между собой. Следующий представитель – ромбоэдрическая (тригональная) сингония. Тут всё немного интереснее. Этот тип определяется тремя одинаковыми сторонами и тремя углами, которые равны между собой, но не являются прямыми.

Последний вариант средней категории – гексагональная сингония. В её определении ещё больше сложности. Этот вариант строится на трёх сторонах, две из которых равны и образуют угол 120 градусов, а третья находится в перпендикулярной им плоскости. Если взять три ячейки гексагональной сингонии и приложить их друг к другу, то мы получим цилиндр с шестигранным основанием (именно поэтому у неё такое название, ведь “гекса” в переводе с латинского означает “шесть”).

Ну а вершина всех сингоний, имеющая симметрию во всех направлениях, – кубическая. Она является единственной принадлежащей к высшей категории. Тут можно сразу догадаться, как её можно характеризовать. Все углы и стороны равны между собой и образуют куб.

Итак, мы закончили разбор теории по основным группам сингоний, а теперь подробнее расскажем о строении различных форм серы и свойствах, которые из этого вытекают.

Строение серы

Как уже было сказано, сера имеет две модификации: ромбическую и моноклинную. После раздела с теорией наверняка стало ясно, чем они отличаются. Но вся суть состоит в том, что в зависимости от температуры структура решётки может меняться. Вся суть в самом процессе превращений, происходящих, когда достигается температура плавления серы. Тогда кристаллическая решётка полностью разрушается, и атомы могут более-менее свободно двигаться в пространстве.

Но вернёмся к строению и особенностям такого вещества, как сера. Свойства химических элементов во многом зависят от их строения. Например, сера в силу особенностей кристаллической структуры обладает свойством флотации. Её частички не смачиваются водой, и прилипающие к ним пузырьки воздуха тянут их на поверхность. Таким образом, комовая сера всплывает при погружении в воду. На этом основаны некоторые способы отделения этого элемента из смеси ему подобных. А далее мы разберём основные методы добычи этого соединения.

Добыча

Сера может залегать с различными минералами, а следовательно, на различной глубине. В зависимости от этого выбирают разные способы добычи. Если глубина небольшая и под землёй нет скоплений газов, мешающих добыче, то материал добывают открытым способом: убирают пласты пород и, находя руду, содержащую серу, отправляют её на переработку. Но если эти условия не соблюдены и есть опасности, то применяют скважинный метод. В нём необходимо, чтобы достигалась температура плавления серы. Для этого применяют специальные установки. Аппарат для плавления комовой серы в этом способе просто необходим. Но об этом процессе -немного позднее.

Вообще при добыче серы любым способом существует большой риск отравления, потому как чаще всего вместе с ней залегают сероводород и сернистый газ, которые очень опасны для человека.

Чтобы лучше понять, какими недостатками и достоинствами обладает тот или иной способ, ознакомимся с методами переработки серосодержащей руды.

Извлечение

Тут тоже есть несколько приёмов, основанных на совершенно разных свойствах серы. Среди них выделяют термические, экстракционные, пароводяные, центрифугальные и фильтрационные.

Самые проверенные из них – термические. Они основаны на том, что температуры кипения и плавления серы ниже, чем у руд, в которые она “вклинивается”. Проблема только в том, что расходуется много энергии. Для поддержания температуры раньше приходилось сжигать часть серы. Несмотря на всю простоту, этот метод малоэффективен, и потери могут доходить до рекордных 45 процентов.

Мы идём по ветке исторического развития, поэтому переходим к пароводяному методу. В отличие от термических эти способы до сих пор используются на многих фабриках. Как ни странно, основаны они на том же свойстве – отличии температуры кипения и плавления серы от аналогичных показателей для сопутствующих металлов. Разница состоит лишь в том, каким образом происходит нагрев. Весь процесс идёт в автоклавах – специальных установках. Туда подаётся обогащённая серная руда, содержащая до 80 % добываемого элемента. Затем под давлением в автоклав закачивается горячий водяной пар. Разогреваясь до 130 градусов по Цельсию, сера плавится и выводится из системы. Конечно, остаются и так называемые хвосты – частички серы, плавающие в воде, образовавшейся благодаря конденсированию водяного пара. Их удаляют и вновь пускают в процесс, так как там тоже содержится немало нужного нам элемента.

Один из самых современных методов – центрифужный. К слову, разработан он в России. Если кратко, суть его в том, что расплав смеси серы и минералов, которым она сопутствует, погружается в центрифугу и раскручивается с большой скоростью. Более тяжёлая порода за счёт центробежной силы стремится от центра, а сама сера остаётся выше. Затем полученные слои просто отделяют друг от друга.

Есть ещё один метод, который тоже по сей день используется на производствах. Заключается он в отделении серы от минералов через специальные фильтры.

В этой статье мы рассмотрим исключительно термические методы извлечения несомненно важного для нас элемента.

Процесс плавления

Исследование теплообмена при плавлении серы – важный вопрос, потому как это один из самых экономичных способов добычи этого элемента. Мы можем комбинировать параметры системы при нагревании, и нам необходимо вычислить их оптимальное сочетание. Именно для этого проводится исследование теплообмена и анализ особенностей процесса плавления серы. Существует несколько видов установок для осуществления этого процесса. Котёл для плавления серы – одна из них. Получение искомого элемента с помощью этого изделия – лишь вспомогательный способ. Однако сегодня есть специальная установка – аппарат для плавления комовой серы. Он может эффективно использоваться на производстве для получения высокочистой серы в большом объёме.

Для вышеизложенной цели в 1890 году была изобретена установка, позволяющая плавить серу на глубине и выкачивать на поверхность с помощью трубы. Её конструкция достаточно проста и эффективна в действии: две трубы находятся друг в друге. По внешней трубе циркулирует перегретый до 120 градусов (температура плавления серы) пар. Конец внутренней трубы достаёт до залежей нужного нам элемента. Нагреваясь водой, сера начинает плавиться и выходить наружу. Всё достаточно просто. В современном варианте установка содержит ещё одну трубу: она находится внутри трубы с серой, и по ней идёт сжатый воздух, который заставляет расплав подниматься быстрее.

Есть ещё несколько методов, и в одном из них достигается температура плавления серы. Под землю опускают два электрода и пускают по ним ток. Так как сера – типичный диэлектрик, она не проводит ток и начинает сильно нагреваться. Таким образом она плавится и с помощью трубы, как и в первом способе, выкачивается наружу. Если серу хотят направить на производство серной кислоты, то её поджигают под землёй и выводят полученный газ наружу. Его доокисляют до оксида серы (VI), а потом растворяют в воде, получая конечный продукт.

Мы разобрали плавление серы, установки плавления серы и способы её добычи. Теперь пришла пора выяснить, зачем нужны столь сложные методы. На самом деле анализ процесса плавления серы и система контроля температуры нужны для того, чтобы хорошо очистить и эффективно применить конечный продукт добычи. Ведь сера – один из важнейших элементов, играющих ключевую роль во многих сферах нашей жизни.

Применение

Бессмысленно говорить, где применяются соединения серы. Проще сказать, где они не применяются. Сера есть в любой резине и резиновых изделиях, в газе, который подаётся в дома (там он нужен для идентификации утечки в случае таковой). Это самые бытовые и простые примеры. На самом деле сфер применения серы бесчисленное множество. Перечислить их все просто нереально. Но если мы возьмёмся делать это, окажется, что сера – один из самых необходимых для человечества элементов.

Заключение

Из этой статьи вы узнали, какая температура плавления у серы, чем этот элемент так важен для нас. Если вы заинтересованы в этом процессе и его изучении, то наверняка почерпнули для себя что-то новое. Например, это могут быть особенности плавления серы. В любом случае нет предела совершенству, и никому из нас не помешают знания процессов, происходящих в промышленности. Вы можете самостоятельно продолжить освоение технологических тонкостей процессов добычи, извлечения и переработки серы и других элементов, содержащихся в земной коре.

Периодическая таблица элементов

Периодическая таблица элементов
Наименование Масса Номер Температура кипения Температура плавления
Водород 1,00794 1 20,28 Кельвина 13,81 Кельвина
Гелий 4,0026 2 4,216 Кельвин 0,95 Кельвин
Литий 6,941 3 1615 Кельвин 453,7 Кельвин
Бериллий 9,01218 4 3243 Кельвин 1560 Кельвин
Бор 10,811 5 4275 Кельвин 2365 Кельвин
Углерод 12,011 6 5100 Кельвин 3825 Кельвин
Азот 14,0067 7 77,344 Кельвин 63,15 Кельвин
Кислород 15,9994 8 90,188 Кельвин 54,8 Кельвин
Фтор 18,9984 9 85 Кельвин 53,55 Кельвин
Неон 20. 1797 10 27,1 Кельвина 24,55 Кельвина
Натрий 22,98977 11 1156 Кельвин 371 Кельвин
Магний 24,305 12 1380 Кельвин 922 Кельвин
Алюминий 26,98154 13 2740 Кельвин 933,5 Кельвин
Силикон 28.0855 14 2630 Кельвин 1683 Кельвин
Фосфор 30,97376 15 553 Кельвин 317,3 Кельвин
Сера 32,066 16 717,82 Кельвин 392,2 Кельвин
Хлор 35,4527 17 239,18 Кельвин 172,17 Кельвин
Аргон 39,948 18 87,45 Кельвин 83,95 Кельвин
Калий 39,0983 19 1033 Кельвин 336,8 Кельвин
Кальций 40,078 20 1757 Кельвин 1112 Кельвин
Скандий 44,9559 21 3109 Кельвин 1814 Кельвин
Титан 47,88 22 3560 Кельвин 1945 Кельвин
Ванадий 50,9415 23 3650 Кельвин 2163 Кельвин
Хром 51,996 24 2945 Кельвин 2130 Кельвин
Марганец 54,938 25 2335 Кельвин 1518 Кельвин
Железо 55,847 26 3023 Кельвин 1808 Кельвин
Кобальт 58,9332 27 3143 Кельвин 1768 Кельвин
Никель 58,6934 28 3005 Кельвин 1726 Кельвин
Медь 63,546 29 2840 Кельвин 1356,6 Кельвин
Цинк 65,39 30 1180 Кельвин 692,73 Кельвин
Галлий 69,723 31 2478 Кельвин 302,92 Кельвин
Германий 72,61 32 3107 Кельвин 1211,5 Кельвина
Мышьяк 74,9216 33 876 Кельвин 1090 Кельвин
Селен 78,96 34 958 Кельвин 494 Кельвин
Бром 79,904 35 331,85 Кельвин 265,95 Кельвин
Криптон 83,8 36 120,85 Кельвина 116 Кельвина
Рубидий 85,4678 37 961 Кельвин 312,63 Кельвин
Стронций 87,62 38 1655 Кельвин 1042 Кельвин
Иттрий 88,9059 39 3611 Кельвин 1795 Кельвин
Цирконий 91,224 40 4682 Кельвин 2128 Кельвин
Ниобий 92,9064 41 5015 Кельвин 2742 Кельвин
Молибден 95,94 42 4912 Кельвин 2896 Кельвин
Технеций 98 43 4538 Кельвин 2477 Кельвин
Рутений 101,07 44 4425 Кельвин 2610 Кельвин
Родий 102,9055 45 3970 Кельвин 2236 Кельвин
Палладий 106,42 46 3240 Кельвин 1825 Кельвин
Серебро 107,868 47 2436 Кельвин 1235,08 Кельвин
Кадмий 112,41 48 1040 Кельвин 594,26 Кельвин
Индий 114,82 49 2350 Кельвин 429,78 Кельвин
Олово 118,71 50 2876 Кельвин 505,12 Кельвин
Сурьма 121,757 51 1860 Кельвин 903,91 Кельвин
Теллур 127,6 52 1261 Кельвин 722,72 Кельвин
Йод 126,9045 53 457,5 Кельвин 386,7 Кельвин
Ксенон 131,29 54 165,1 Кельвин 161,39 Кельвина
Цезий 132,9054 55 944 Кельвин 301,54 Кельвин
Барий 137,33 56 2078 Кельвин 1002 Кельвин
Лантан 138,9055 57 3737 Кельвин 1191 Кельвин
Церий 140,12 58 3715 Кельвин 1071 Кельвин
Празеодим 140,9077 59 3785 Кельвин 1204 Кельвин
Неодим 144,24 60 3347 Кельвин 1294 Кельвин
Прометий 145 61 3273 Кельвин 1315 Кельвин
Самарий 150,36 62 2067 Кельвин 1347 Кельвин
Европий 151,965 63 1800 Кельвин 1095 Кельвин
Гадолиний 157,25 64 3545 Кельвин 1585 Кельвин
Тербий 158,9253 65 3500 Кельвин 1629 Кельвин
Диспрозий 162,5 66 2840 Кельвин 1685 Кельвин
Гольмий 164,9303 67 2968 Кельвин 1747 Кельвин
Эрбий 167,26 68 3140 Кельвин 1802 Кельвин
Тулий 168,9342 69 2223 Кельвина 1818 Кельвина
Иттербий 173,04 70 1469 Кельвин 1092 Кельвин
Лютеций 174,967 71 3668 Кельвин 1936 Кельвин
Гафний 178,49 72 4875 Кельвин 2504 Кельвин
Тантал 180,9479 73 5730 Кельвин 3293 Кельвин
Вольфрам 183,85 74 5825 Кельвин 3695 Кельвин
Рений 186,207 75 5870 Кельвин 3455 Кельвин
Осмий 190,2 76 5300 Кельвин 3300 Кельвин
Иридий 192,22 77 4700 Кельвин 2720 Кельвин
Платина 195,08 78 4100 Кельвин 2042,1 Кельвин
Золото 196,9665 79 3130 Кельвин 1337,58 Кельвин
Меркурий 200,59 80 629,88 Кельвина 234,31 Кельвина
Таллий 204,383 81 1746 Кельвин 577 Кельвин
Свинец 207,2 82 2023 Кельвин 600,65 Кельвин
Висмут 208,9804 83 1837 Кельвин 544,59 Кельвин
Астатин 210 85 610 Кельвин 575 Кельвин
Радон 222 86 211,4 Кельвин 202 Кельвин
Франций 223 87 950 Кельвин 300 Кельвин
Радий 226,0254 88 1413 Кельвин 973 Кельвин
Торий 232. 0381 90 5060 Кельвин 2028 Кельвин
Протактиний 231.0359 91 4300 Кельвин 1845 Кельвин
Уран 238,029 92 4407 Кельвин 1408 Кельвин
Нептуний 237.0482 93 4175 Кельвин 912 Кельвин
Плутоний 244 94 3505 Кельвин 913 Кельвин
Америций 243 95 2880 Кельвин 1449 Кельвин

Структуры и физические свойства элементов периода 3

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    3632
    • Джим Кларк
    • Школа Труро в Корнуолле

    На этой странице описаны структуры элементов 3-го периода от натрия до аргона и показано, как эти структуры можно использовать для объяснения физических свойств элементов.

    Точки плавления и кипения

    Через мгновение мы объясним все взлеты и падения на этом графике.

    Электропроводность

    Натрий, магний и алюминий являются хорошими проводниками электричества. Кремний является полупроводником. Ни один из остальных не проводит электричество. Эти тенденции объясняются ниже.

    Три металлические структуры

    Натрий, магний и алюминий имеют металлическую структуру, что объясняет их электропроводность и относительно высокие температуры плавления и кипения. Температуры плавления и кипения трех металлов повышаются из-за увеличения числа электронов, которые каждый атом может вносить в делокализованное «море электронов». Атомы также становятся меньше и имеют больше протонов по мере перехода от натрия к магнию и алюминию.

    Притяжение и, следовательно, температуры плавления и кипения увеличиваются, потому что:

    • Ядра атомов становятся более положительно заряженными.
    • Море становится все более отрицательно заряженным.
    • Море постепенно приближается к ядрам и тем сильнее притягивается.

    Кремний — гигантская ковалентная структура

    Кремний — это неметалл и имеет гигантскую ковалентную структуру, точно такую ​​же, как углерод в алмазе — отсюда и высокая температура плавления. Вы должны разорвать прочные ковалентные связи, чтобы расплавить его. В структуре нет явно свободных электронов, и хотя она проводит электричество, но не так, как металлы. Кремний является полупроводником.

    Четыре молекулярных элемента

    Фосфор, сера, хлор и аргон являются простыми молекулярными веществами, между молекулами которых существует только ван-дер-ваальсово притяжение. Их температуры плавления или кипения будут ниже, чем у первых четырех членов периода, имеющих гигантские структуры. Наличие отдельных молекул предотвращает любую возможность движения электронов, поэтому ни одна из них не проводит электричество. Размеры точек плавления и кипения полностью определяются размерами молекул:

    Молекулы аргона состоят из отдельных атомов аргона.

    • Фосфор : Существует несколько форм фосфора. Данные на графике в верхней части страницы относятся к белому фосфору, который содержит молекулы P 4 . Чтобы расплавить фосфор, вам не нужно разрывать ковалентные связи — достаточно гораздо более слабых ван-дер-ваальсовых сил между молекулами.
    • Сера : сера состоит из S 8 колец атомов. Молекулы больше, чем молекулы фосфора, поэтому притяжение Ван-дер-Ваальса будет сильнее, что приведет к более высокой температуре плавления и кипения.
    • Хлор : Хлор, Cl 2 , представляет собой гораздо меньшую молекулу со сравнительно слабым ван-дер-ваальсовым притяжением, поэтому хлор будет иметь более низкую температуру плавления и кипения, чем сера или фосфор.
    • Аргон : Молекулы аргона — это всего лишь отдельные атомы аргона, Ar. Возможности ван-дер-ваальсова притяжения между ними очень ограничены, поэтому температуры плавления и кипения аргона снова ниже.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *