Температура плавления меди и латуни: Как расплавить латунь в домашних условиях: плавление латуни дома

alexxlab | 28.08.2019 | 0 | Разное

Содержание

температура плавления и другие характеристики, нюансы обработки металла

Для того чтобы начать работу с тем или иным материалом, для начала следует ознакомиться со всеми его свойствами. Это нужно для того, чтобы знать какое механическое воздействие можно оказывать на материал, а также в каких условиях и какими инструментами можно осуществлять его обработку.

Латунь — металл, так что очень часто её обработка проводится именно посредством плавления. Температура плавления латуни очень важная характеристика, которая должна быть известна, если требуется обработка посредством термического воздействия.

Сплав латуни

Латунь — металл компонентный. Это означает, что чаще всего латунь идёт в сплавах с другими металлами. Для латуни главным легирующим элементом обычно считается цинк. Но при необходимости он может быть дополнен другими элементами: марганец, железо, свинец или никель.

У латуни есть несколько сплавов, которые в разной мере популярны, но рассмотреть следует два самых востребованных и интересных в практическом плане: двойной и многокомпонентный, содержащий медь.

Для любого мастера, работающего с латунью, температура плавления этого сплава имеет определённый практический смысл. Осведомлённость в этой области сможет помочь в решении многих вероятных проблем.

Если знать температуру плавления латуни, то есть предел, при котором её можно расплавить, то появится возможность изготавливать различные конструктивные элементы, возможно и в домашних условиях.

Основные характеристики

На такой показатель, как температура плавления латуни в первую очередь влияет её состав. Температура в разных случаях может иметь различные показатели, которые колеблются в диапазоне от восьмисот восьмидесяти градусов по Цельсию до девятисот пятидесяти.

Конечно, возможно этот диапазон понизить. Если существует потребность в этом, то следует просто в состав сплава вводить больше цинка. Для обратного эффекта следует делать соответственно наоборот.

Обработка этого металла может осуществляться посредством сварки, но следует помнить, что в таком случае она может прокатываться.

Следует знать тот важный факт, что если не позаботиться о покрытии поверхности этого сплава дополнительной защитой, то впоследствии придётся столкнуться с почернением поверхности. Это связано с тем, что при контакте с воздухом она

немного окисляется, вследствие чего и происходит лёгкое почернение.

Поверхность латуни достаточно легко поддаётся полировке. Для того чтобы выбрать способ плавления для этого металла следует, для начала, учесть его состав.

Следует помнить, что на латунный сплав весьма негативно влияют такие элементы, как свинец или висмут. Это связано с тем, что эти элементы значительно снижают свойства материала к деформации в условиях, когда он находится в состоянии нагрева.

Латунь является цветным металлом, но в то же время она обладает множеством особых характеристик, что свойственны только этому материалу. Металл обладает некоторыми преимуществами, которые напрямую влияют на популярность материала:

  1. Латунь имеет высокую устойчивость к процессам коррозии.
  2. Материал обладает довольно высокой степенью текучести, что является очень важным фактором при его плавлении.
  3. Можно отметить и высокие антифрикционные свойства этого металла, а также довольно низкую склонность к ликвации.

В принципе, можно отметить ещё

много разных достоинств, которые приписываются латуни, но они не общие, а узконаправленные. Это означает, что в зависимости от марки, материал используется в различных промышленных сферах.

Латунь используется в таких важных областях, как автомобилестроение и машиностроение. Также из этого компонентного металла создают большое количество разнообразных изделий различного назначения.

Для того чтобы можно было осуществлять работу с таким материалом, нужно для начала знать все его физические свойства, что впоследствии окажет непосредственную помощь в обработке латуни в домашних условиях.

Технические особенности латуни

  • Температура плавления латуни — 880–950 градусов по Цельсию.
  • Удельная теплоёмкость этого металла — 0,377 кДж*кг — 1*К-1 при термическом воздействии в 20 градусов по Цельсию.
  • Плотность материала — 8300–8700 кг/метр кубический.
  • Удельное электрическое сопротивление (0,07–0,08)*6—10 Ом*м.

Что следует учитывать при работе с латунью

Домашний мастер в бытовой обстановке использует довольно много изделий, изготовленных именно на основе латуни.

Очень много инструментов изготавливаются именно с использованием латуни, её очень часто можно встретить в различных сплавах, основой которых может быть медь или бронза.

Если быть осведомлённым насчёт того, какая температура плавления приемлема для латуни и её сплавов, впоследствии возможно использовать эти знания при починке или изготовлении различных изделий, которые могут быть использованы в хозяйстве.

Процедура плавления такого универсального компонента не лишена различных тонкостей и нюансов, о которых следует знать и помнить, чтобы избежать различных трудностей при обработке, а также отрицательных последствий в результате ошибочных действий.

Следует помнить, что при всех существующих тонкостях при плавлении латуни, отдельные нюансы следует учитывать при плавлении сплавов из бронзы и меди.

Дело в том, что эти сплавы имеет несколько другие параметры плавления, которые отличаются от характеристик латуни, поэтому прежде, чем начать работу с такими латунными сплавами, нужно для начала подробно узнать все их свойства. Это позволит не допустить досадных ошибок при их обработке, а также провести работу максимально эффективно и плодотворно.

Для того чтобы произвести плавку металла в домашних условиях, следует обладать определёнными знаниями и навыками, а также и специальными инструментами, которые смогут помочь в работе и произвести необходимые действия, предполагающие плавку латуни.

К тому же опытные мастера рекомендуют перед процедурой плавки латуни в домашних условиях запастись терпением, так как процедуру эту быстрой никак назвать не получится.

Для работы необходимо запастись следующими элементами:

  • техническое серебро;
  • газовая горелка ручного типа;
  • специальная графитовая горелка;
  • медный сплав.

Нужно перед работой приобрести буру, причём в достаточном количестве. К тому же для того чтобы обеспечить максимальные безопасные условия для окружающего пространства во время плавления металла, следует использовать асбестовый лист.

Процесс плавки латуни является довольно трудоёмким и потребует определённых затрат как времени, так и приложенных сил.

Опять же следует учесть особенности плавления сплавов, содержащих бронзу и медь, так как они имеют немного другие характеристики и свойства, что означает при плавке придётся применять другую температуру термического воздействия.

К процессу плавки латуни следует переходить уже только в том случае, когда рабочее место подготовлено должным образом, а все рабочие инструменты находятся на своём месте и готовы к работе.

Порядок проведения работ

Для начала следует подготовить муфельную печь. В ней и будет осуществляться вся основная работа.

Перед тем как начать непосредственно саму плавку, следует проверить работу имеющихся горелок, которые будут использованы в процессе. Кроме того, под рукой следует иметь специальный сосуд, сделанный из огнеупорного материала. Таким материалом является тигель, так что можно будет применить именно его.

Приобретённый ранее асбестовый лист, следует уложить на поверхность основания. Очень важным фактором является

поддержание хорошей вентиляции в помещении, в котором будет проводиться вся работа.

Перед началом плавки, латунь следует измельчить, то есть создать измельчённую массу. Следует помнить, что чем меньше будут получившиеся куски металла, тем легче она будет впоследствии плавиться.

Затем тигель с измельчённой латунной массой помещается в муфельную печь, после чего пользователь выставляет необходимое температурное значение, используя специальный регулятор температур. После включения печи, можно будет наблюдать за всем процессом плавления через специальное маленькое окошко, которое имеется у таких печей.

После того как металл полностью расплавится, пользователю требуется лишь аккуратно открыть дверцы муфельной печи и достать оттуда тигель с расплавленной латуни.

Конечно, делать это нужно, используя специальные щипцы, для того, чтобы обезопасить себя от возможных ожогов. У расплавленной латуни, кстати, есть интересное свойство, которое заключается в том, что на поверхности образуется тонкая плёночка

, которую впоследствии надо будет убрать. Такую процедуру можно будет проделать, если использовать обычную стальную проволоку.

После снятия образовавшейся плёнки с поверхности расплавленной латуни, следует просто залить металл в требуемую форму, которую пользователь должен предварительно подготовить на своём рабочем месте.

Плавление с помощи горелки

Кстати, бывают случаи, когда пользователь, к сожалению, не может использовать специальное оборудование, предназначенное для плавления. В этом случае, не стоит отчаиваться, так как плавка латуни может быть осуществлена при помощи газовых горелок.

При этом горелка должна быть установлена в вертикальном положении и очень хорошо закреплена. Затем на подставку устанавливает сосуд с металлом и производится плавка.

Следует опять же помнить, что если латунь содержит в своей основе медь, то температура будет непременно увеличиваться, что означает, что металл будет плавиться дольше.

Оцените статью: Поделитесь с друзьями!

Температура плавления меди латуни бронзы

Теплопроводность латуни и бронзы

В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.

) в зависимости от температуры — в интервале от 4 до 1273 К.

Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).

Теплопроводность медных сплавов всегда ниже теплопроводности чистой меди при прочих равных условиях. Кроме того, теплопроводность медно-никелевых сплавов имеет особенно низкое значение. Самым теплопроводным из них при комнатной температуре является мельхиор МНЖМц 30-0,8-1 с теплопроводностью 30 Вт/(м·град).

Таблица теплопроводности латуни, бронзы и медно-никелевых сплавов
СплавТемпература, КТеплопроводность, Вт/(м·град)
Медно-никелевые сплавы
Бериллиевая медь300111
Константан зарубежного производства4…10…20…40…80…3000,8…3,5…8,8…13…18…23
Константан МНМц40-1,5273…473…573…67321…26…31…37
Копель МНМц43-0,5473…127325…58
Манганин зарубежного производства4…10…40…80…150…3000,5…2…7…13…16…22
Манганин МНМц 3-12273…57322…36
Мельхиор МНЖМц 30-0,8-130030
Нейзильбер300…400…500…600…70023…31…39…45…49
Латунь
Автоматная латунь UNS C36000300115
Л62300…600…900110…160…200
Л68 латунь деформированная80…150…300…90071…84…110…120
Л80 полутомпак300…600…900110…120…140
Л90273…373…473…573…673…773…873114…126…142…157…175…188…203
Л96 томпак волоченый300…400…500…600…700…800244…245…246…250…255…260
ЛАН59-3-2 латунь алюминиево-никелевая300…600…90084…120…150
ЛМЦ58-2 латунь марганцовистая300…600…90070…100…120
ЛО62-1 оловянистая30099
ЛО70-1 оловянистая300…60092…140
ЛС59-1 латунь отожженая4…10…20…40…80…3003,4…10…19…34…54…120
ЛС59-1В латунь свинцовистая300…600…900110…140…180
ЛТО90-1 томпак оловянистый300…400…500…600…700…800…900124…141…157…174…194…209…222
Бронза
БрА5300…400…500…600…700…800…900105…114…124…133…141…148…153
БрА7300…400…500…600…700…800…90097…105…114…122…129…135…141
БрАЖМЦ10-3-1,5300…600…80059…77…84
БрАЖН10-4-4300…400…50075…87…97
БрАЖН11-6-6300…400…500…600…700…80064…71…77…82…87…94
БрБ2, отожженая при 573К4…10…20…40…802,3…5…11…21…37
БрКд293340
БрКМЦ3-1300…400…500…600…70042…50…55…54…54
БрМЦ-5300…400…500…600…70094…103…112…122…127
БрМЦС8-20300…400…500…600…700…800…90032…37…43…46…49…51…53
БрО10300…400…50048…52…56
БрОС10-10300…400…600…80045…51…61…67
БрОС5-25300…400…500…600…700…800…90058…64…71…77…80…83…85
БрОФ10-1300…400…500…600…700…800…90034…38…43…46…49…51…52
БрОЦ10-2300…400…500…600…700…800…90055…56…63…68…72…75…77
БрОЦ4-3300…400…500…600…700…800…90084…93…101…108…114…120…124
БрОЦ6-6-3300…400…500…600…700…800…90064…71…77…82…87…91…93
БрОЦ8-4300…400…500…600…700…800…90068…77…83…88…93…96…100
Бронза алюминиевая30056
Бронза бериллиевая состаренная20…80…150…30018…65…110…170
Бронза марганцовистая3009,6
Бронза свинцовистая производственная30026
Бронза фосфористая 10%30050
Бронза фосфористая отожженая20…80…150…3006…20…77…190
Бронза хромистая UNS C18200300171

Примечание: Температура в таблице дана в градусах Кельвина!

Температура плавления латуни

Температура плавления латуни рассмотренных марок изменяется в интервале от 865 до 1055 °С. Наиболее легкоплавкой является марганцовистая латунь ЛМц58-2 с температурой плавления 865°С. Также к легкоплавким латуням можно отнести: Л59, Л62, ЛАН59-3-2, ЛКС65-1,5-3 и другие.

Наибольшую температуру плавления имеет латунь Л96 (1055°С). Среди тугоплавких латуней по данным таблицы можно также выделить: латунь Л90, ЛА85-0,5, томпак оловянистый ЛТО90-1.

Температура плавления латуни
Латуньt, °СЛатуньt, °С
Л59885ЛМц55-3-1930
Л62898ЛМц58-2 латунь марганцовистая865
Л63900ЛМцА57-3-1920
Л66905ЛМцЖ52-4-1940
Л68 латунь деформированная909ЛМцОС58-2-2-2900
Л70915ЛМцС58-2-2900
Л75980ЛН56-3890
Л80 полутомпак965ЛН65-5960
Л85990ЛО59-1885
Л901025ЛО60-1885
Л96 томпак волоченый1055ЛО62-1 оловянистая885
ЛА67-2,5995ЛО65-1-2920
ЛА77-2930ЛО70-1 оловянистая890
ЛА85-0,51020ЛО74-3885
ЛАЖ60-1-1904ЛО90-1995
ЛАЖМц66-6-3-2899ЛС59-1900
ЛАН59-3-2 латунь алюминиево-никелевая892ЛС59-1В латунь свинцовистая900
ЛАНКМц75-2-2,5-0,5-0,5940ЛС60-1900
ЛЖМц59-1-1885ЛС63-3885
ЛК80-3900ЛС64-2910
ЛКС65-1,5-3870ЛС74-3965
ЛКС80-3-3900ЛТО90-1 томпак оловянистый1015

Температура плавления бронзы

Температура плавления бронзы находится в диапазоне от 854 до 1135°С. Наибольшей температурой плавления обладает бронза АЖН11-6-6 — она плавится при температуре 1408 К (1135°С). Температура плавления этой бронзы даже выше, чем температура плавления меди, которая составляет 1084,6°С.

К бронзам с невысокой температурой плавления можно отнести: БрОЦ8-4, БрБ2, БрМЦС8-20, БрСН60-2,5 и подобные.

Температура плавления бронзы
Бронзаt, °СБронзаt, °С
БрА51056БрОС8-12940
БрА71040БрОСН10-2-31000
БрА101040БрОФ10-1934
БрАЖ9-41040БрОФ4-0.251060
БрАЖМЦ10-3-1,51045БрОЦ10-21015
БрАЖН10-4-41084БрОЦ4-31045
БрАЖН11-6-61135БрОЦ6-6-3967
БрАЖС7-1,5-1,51020БрОЦ8-4854
БрАМЦ9-21060БрОЦС3,5-6-5980
БрБ2864БрОЦС4-4-17920
БрБ2,5930БрОЦС4-4-2,5887
БрКМЦ3-1970БрОЦС5-5-5955
БрКН1-31050БрОЦС8-4-31015
БрКС3-41020БрОЦС3-12-51000
БрКЦ4-41000БрОЦСН3-7-5-1990
БрМГ0,31076БрС30975
БрМЦ51007БрСН60-2,5885
БрМЦС8-20885БрСУН7-2950
БрО101020БрХ0,51073
БрОС10-10925БрЦр0,4965
БрОС10-5980Кадмиевая1040
БрОС12-7930Серебряная1082
БрОС5-25899Сплав ХОТ1075

Примечание: температуру плавления и кипения других металлов можно найти в этой таблице.

В самом базовом смысле латунь — это сплав, главным компонентом которого выступает медь. В качестве дополнительных могут выступать такие металлы, как цинк, олово (его должно быть не слишком много, чтобы сплав не стало возможным называть бронзой), в гораздо меньшей степени марганец, свинец и даже железо. В древности этот сплав часто называли орихалком, в переводе — «златомедью». К бронзам, однако, сплав по классификации не относится, так как если сравнить температуру плавления латуни и бронзы, у второй она будет гораздо выше.

Как и бронза, латунь имеет довольно широкое применение в разных областях. Её используют в основном в автомобилестроении при изготовлении некоторых болтов и других деталей, для изготовления памятных знаков и наград, труб, гильз химической аппаратуры. Очень часто используется при создании предметов интерьера или отдельных элементов мебели.

Характеристики латуни

Изготовление изделий из этого сплава достигается преимущественно посредством литья. Поэтому очень важно знать, при какой температуре плавится латунь. Это сильно зависит от её химического состава, а конкретнее — от содержания в ней цинка, ведь чем больше этого металла, тем меньше требуется тепла для его расплавления. Если в латуни содержится значительное количество примесей висмута или свинца, это очень негативно влияет на её растекаемость, усложняя обработку изделий. Поэтому температура её плавления колеблется в пределах 880−950 градусов Цельсия.

Очень важно при изготовлении изделий из латуни покрывать их защитным слоем. Для этого можно использовать обычный лак. Несмотря на свою стойкость к коррозии, она очень подвержена процессам окисления на открытом воздухе. Многие незащищённые детали или предметы интерьера необходимо регулярно чистить, чтобы они не потемнели. Но сделать это легко, ведь латунь очень хорошо полируется.

Технические показатели сплава

Кроме температуры плавления, у латуни есть ещё несколько важных характеристик, благодаря которым она находит такое широкое применение в различных областях. Вот некоторые из них:

  • Удельное электрическое сопротивление — в пределах 0,07−0,08 микроом на метр.
  • Плотность — около 8,3−8,7 тонн на кубометр.
  • Теплоёмкость — 0,377 килоджоулей на килограмм-Кельвин.

В зависимости от состава, латунь бывает:

  • Двойной — сплав только с содержанием меди и цинка.
  • Многокомпонентной — содержащей большое количество других металлов и примесей.

Марки латуни и области применения

От состава зависит марка латуни и область её применения. Например, томпак, принадлежащий к классу деформируемых латуней, в котором содержится больше 95% меди, может легко соединяться со сталью, образуя с ней биметалл. Используется такое соединение в изготовлении знаков отличия и различных предметов искусства и интерьера — статуэток, рамок, подсвечников.

Латуни марки ЛО используются для изготовления конденсаторных трубок, применяемых в разной теплотехнической аппаратуре, например, газовых котлах, автоклавах, сильфонах.

Марка ЛС используется при создании деталей часовых механизмов, переходных и соединительных втулок. Из неё также изготавливают полиграфические матрицы.

ЛМц — содержится в старых советских монетах номиналом до 5 копеек, арматуре, гайках и болтах, а её подвид с приставкой «А» — в деталях речных и морских судов.

Латунь, имеющая маркировку ЛА или ЛЖМ (и её подвиды), также используется для постройки морских судов и самолётов, различных электрических машин и подшипников. Очень распространена в деталях для различной химической техники.

Плавка в домашних условиях

Сплав имеет довольно низкую по сравнению с другими металлами температуру расплавления, а потому возможна его обработка, изготовление и ремонт изделий даже дома. Для этого необходимо собрать специальное оборудование и иметь большую рабочую область, позволяющую соблюдать все меры безопасности, требующиеся при работе с раскалённым или расплавленным металлом.

Необходимые инструменты

Для плавки латуни в домашних условиях нужна печь. Собрать её можно из кирпича, обладающего достаточной огнеупорностью, соединив его таким же термостойким раствором. В качестве нагревательного элемента лучше всего использовать индукционные нагревательные элементы. Это керамические трубки, на которые намотана проволока из нихрома. Они могут разогреваться до больших температур (1000 градусов по Цельсию и больше) и пригодятся для работы с другими, более тугоплавкими металлами и сплавами.

Минимально требуемая мощность источника электричества, которое будет подаваться на нагрев должна быть около 25−30 киловатт. Он должен быть собран из достаточно качественных электротехнических деталей и иметь высокий показатель КПД.

Тигель — ёмкость, где будет, собственно, плавиться металл, можно изготовить из шамота — выпаленной до спекания глины. Для дополнительной жаропрочности и надёжности можно обмазать его раствором силиката калия, или просто «жидким стеклом» с примесью талька. Такой тигель прослужит намного дольше и выдержит большее количество расплавлений. Есть также и тигли, выполненные из графита, но они сильно уступают глиняным по надёжности. Для операций с тиглем необходимо изготовить или приобрести щипцы. Они должны обладать довольно длинными ручками и иметь закруглённые губки.

Описание процесса

В тигель помещается сплав, желательно в виде кусков. Чем мельче они будут, тем легче пойдёт процесс расплавления, так как тепло от нагревательных элементов будет быстрее распределяться между ними. Тигель, при помощи щипцов, помещается в печь, и только после этого начинается её разогрев. Вынимать его из печи можно только после того, как весь объём помещённого в него металла переходит в полностью жидкую форму. Это операция производится с помощью тех же щипцов. Если на поверхности расплавленной латуни образовалась плёнка, её следует с помощью предварительно подготовленной проволоки убрать.

Для изготовления литых изделий из сплава следует использовать специальные формы, вырезанные из дерева или распечатанные на 3D-принтере из материала, более жаропрочного, чем жидкая латунь. Деревянные формы в большинстве своём одноразовые. Алгоритм действий прост: вынимаем тигль, снимаем плёнку, заливаем и ждём полного остывания.

Техника безопасности

Для проведения всех операций с металлами, разогреваемыми до очень высоких температур необходимо заботиться о своей безопасности и минимизации влияния процесса на здоровье. Следует помнить, из каких металлов состоит латунь, при какой температуре плавится конкретный образец и каким образом она достигается. Вот несколько советов:

  1. Используйте защитные перчатки, одежду из материалов, плохо поддающихся горению — шерсти, хлопка и других. Не стоит использовать одежду из синтетики, она может очень быстро загореться.
  2. Позаботьтесь о защите глаз и лица с помощью очков и масок, так как случайная капля расплавленного металла может стоить вам зрения или причинить серьёзный ожог коже лица.
  3. Литьё необходимо выполнять в месте с достаточной вентиляцией, так как в его процессе выделяются вещества, которые, приобретая достаточную концентрацию, могут нанести большой вред вашему здоровью.
  4. Для того чтобы свести к минимуму риски поджога или случайного воспламенения близлежащих предметов, можно застелить поверхность, на которой будет располагаться печь асбестовым листом. Опять же, не забывайте при этом о хорошей вентиляции.

Следуя таким правилам, вы сможете безопасно и эффективно выполнять действия с раскалёнными или расплавленными металлами, не опасаясь причинения вреда себе и окружающим.

Температура плавления латуни, бронзы и меди примерно одинаковая. Во всяком случае значения этой характеристики для всех трех данных цветных металлов находятся в одном узком диапазоне температур. Это обусловлено тем, что бронза и латунь являются сплавами меди, свойства которой в значительной степени влияют на их физические характеристики.

1 Расшифровка термина для чистых веществ и металлов

Для твердых кристаллических материалов, к коим относятся и металлы, состоящие из чистого (без примесей) вещества, температурой плавления является такой показатель их нагревания, при котором они переходят в другое состояние – жидкое. Причем при этой же температуре чистые вещества (металлы) и застывают. То есть для них такой показатель нагрева является температурой одновременно и плавления, и кристаллизации. А сами металлы, нагретые до температуры их плавления, могут находиться не только в жидком, но и твердом состоянии. Это зависит от того, продолжить подводить к ним дополнительное тепло или дать начать остывать.

Вообще, по достижении температуры плавления чистое вещество сначала все еще остается твердым. Если продолжить нагрев, то оно станет жидким. Но температура вещества не будет повышаться (меняться) до тех пор, пока оно все полностью не расплавится в рассматриваемой системе (изделии, теле). А когда расплавленное вещество остывает до температуры кристаллизации (плавления), то оно сначала все еще остается жидким. И только если начать дополнительное отведение от него тепла, тогда оно станет переходить в кристаллическое твердое состояние (застывать). Но температура вещества, опять же, не будет меняться (понижаться), пока оно полностью не затвердеет.

2 Особенности расплавления смесей и марок меди

У смесей веществ (в том числе и у различных сплавов металлов) нет температуры плавления/кристаллизации. Они совершают переход из одного состояния в другое (из твердого в жидкое и обратно) в некотором определенном интервале степени своего нагрева, граничные значения диапазона которого имеют соответствующее название. Температуру, при которой смеси веществ и сплавы металлов начинают переходить в жидкую фазу (или полностью затвердевают), называют "точкой солидуса". Степень нагрева, при котором происходит полное расплавление (или начинается кристаллизация при остывании), называют "точкой ликвидуса". Но в обиходе чаще говорят: температура солидуса и ликвидуса.

Точно замерить эти температуры как для смесей веществ, так и для сплавов металлов невозможно. Их определяют по специальным расчетным методикам, в которых учитывается точное процентное соотношение в смеси каждого элемента и ряд других параметров.

То есть относительно рассматриваемых металлов можно сделать следующие выводы. Температура плавления есть только у меди. Причем, только у чистой. У всех остальных металлов (латуни, бронзы и различных марок меди) ее нет, а есть температуры солидус и ликвидус. Для латуни и бронзы это так, потому что они являются сплавами меди, в которых в зависимости от марки добавлены различные легирующие добавки (другие металлы или иные вещества) и еще есть какие-то примеси. А производимые металлургической промышленностью для различных нужд марки меди имеют такие характеристики плавления, так как они тоже производятся легированными и с примесями. Чистую медь изготавливать нецелесообразно, и она уступает по своим характеристикам, требуемым для народного и промышленного ее использования, свойствам выпускаемых из нее марок.

Очевидно, что величина температуры ликвидус рассматриваемых металлов будет зависеть от их химического состава. В первую очередь от процентного содержания меди, так как ее в них всегда больше 50 %. И, соответственно, точка ликвидус марок этих металлов будет тем ближе к температуре плавления самой меди, чем ее больше в сплаве. А легирующие металлы или другие вещества и примеси, в зависимости от своего процентного содержания и температуры плавления, будут вносить соответствующую корректировку в сторону понижения либо повышения точки ликвидус у марок меди, бронзы и латуни. Понижать, если своя температура плавления ниже, чем у меди, и повышать, когда выше.

Так, ознакомившись, какие виды и марки бронзы производят, можно самому догадаться, в какую сторону будет отличаться у них точка ликвидус от температуры плавления чистой меди. Сам состав бронзы подскажет его влияние на эту и другие характеристики данного сплава. А ознакомление с составом латуни даст возможность судить об отклонениях ее точки ликвидус от температуры плавления меди. С марками меди то же самое, но влияние легирующих добавок и примесей на их точку ликвидус будет рассмотрено отдельно ниже.

3 Какова температура плавления меди, латуни и бронзы?

Температура плавления чистой меди – 1084,5 °C. А выпускаемые марки меди содержат ничтожно малое по отношению к самому этому металлу количество других веществ. Такое, что даже легирующие элементы, как, например, серебро и никель, наравне с прочими "случайными" веществами, относят в составе марок меди к примесям. Самого этого металла – от 99,93 до 99,99 %. И поэтому точки солидус и ликвидус выпускаемых марок меди очень близки к температуре плавления самого этого металла. Температуры полного расплавления в зависимости от марки: меди – 1083–1084 °C, латуни – 880–1050 °C, а бронзы – 900–1140 °C.

Температурные характеристики латуни главным образом зависят от содержания меди и гораздо менее тугоплавкого цинка, являющегося в латунных сплавах основным легирующим элементом. А относительно бронзы следует отметить, что ее так называемые оловянные марки, с легированием оловом, полностью плавятся при температуре 900–950 °C, а не содержащие этот металл, безоловянные – при 950–1140 °C.

4 Можно ли в кустарных условиях расплавить и отлить металлы?

Прям совсем уж в домашних условиях плавить эти металлы, да еще потом и отливать из них какие-то заготовки, а тем более изделия, не получится. Надо будет сначала предварительно соответствующим образом подготовить подходящее помещение, обзавестись необходимым оборудованием и инструментом или смастерить самому что-то из требуемого для плавки и литья оснащения. И, разумеется, желательно поточнее выяснить характеристики сплава, с которым предполагается работать. А именно, его состав и температуру ликвидус.

А какие именно необходимо создать условия для работы, подготовить оборудование, оснащение и инструменты, а также технология плавки и литья перечислены и описаны в одной из публикаций сайта. Это статья: "температура и технология плавления в домашних условиях бронзы". Так как у этого сплава и у марок меди с латунью точки ликвидус близки по своим значениям, а другие свойства, влияющие на процессы плавки и литья, относительно сопоставимы, то и вся технология в кустарных условий для этих металлов идентична. То есть для меди и латуни можно воспользоваться инструкциями-рекомендациями по плавке бронзы из этой статьи.

Температура плавления меди и ее сплавов, график, характеристики

Медные изделия отличаются хорошей прочностью, пластичностью, высокой электропроводностью, устойчивостью к коррозии и химически активным веществам. Для изготовления объектов используется медная руда, которая на заводах обогащается и переплавляется в однородные бруски, прутья или слитки. Чтобы изготовить какое-либо медное изделие, материал помещают в термостойкую форму, доводят до температуры плавления, а потом прекращают нагрев, что приводит к застыванию вещества. Но какая температура плавления меди? Можно ли расплавить медные заготовки в домашних условиях — или для этого требуются специальные печи? О каких правилах техники безопасности нужно знать?

Общие сведения

Температурой плавления называют температуру, при которой твердое вещество переходит в жидкость. Медь расплавляется при температуре 1083 градусов, поэтому этот металл относят к категории тугоплавких. При снижении этой температуры металл может вновь принять твердую форму. Плавят медь на заводах, хотя эту процедуру можно провести в домашних условиях. На химическом уровне расплавление возникает за счет деструкции кристаллической решетки, которая формирует твердую структуру вещества. Атомы меди в кристаллической решетке всегда находятся в непрерывном движении.

Однако их взаимное притяжение и отталкивание происходит сбалансировано, поэтому атомы сохраняют исходное положение в течение длительного времени. В случае повышения температуры атомы меди получают дополнительную энергию, что заставляет двигаться их более интенсивно. При небольшом повышении дополнительная энергия «гасится» за счет сбалансированного движения атомов в решетке. Однако при достижении определенной температуры нагрева количество энергии становится избыточным, а кристаллическая решетка начинает разрушаться.

В этот момент и происходит расплавление вещества. Взаимное притяжение атомов частично сохраняется, поэтому вещество принимает жидкую форму. Однако в случае дальнейшего нагрева энергия атомов усиливается еще сильнее, что может привести к окончательному разрыву связи атомов друг с другом. Эту точку перехода называют испарением (жидкость трансформируется в пар). В случае снижения температуры медного пара может переходить обратно в жидкость, а потом — в твердое состояние.

Температура плавления меди

При нормальных условиях температура плавления меди составляет 1083 градусов по шкале Цельсия. А во время нагрева происходит ряд превращений на молекулярном уровне, что приводит к изменению свойств вещества. Чтобы разобраться во всех этих изменениях, нужно рассмотреть основные этапы нагрева и расплавления медного слитка. Примерный график плавления меди выглядит так:

  1. В нормальном состоянии при температуре от 0 до 100 градусов внутри меди образуется прочная кристаллическая решетка, которая обеспечивает материалу большую устойчивость, упругость, химическую инертность. Решетка является достаточно прочной, однако в случае сильной деформации может происходить пространственное изменение положения атомов в решетке. Этим объясняется ковкость и пластичность медных изделий, которые могут сгибаться и деформироваться (скажем, при кузнечной обработке или в случае пресса).
  2. В нормальном состоянии при температуре от 0 до 100 градусов на поверхности медного изделия также образуется тонкая оксидная пленка. Наличие такой пленки является большим плюсом для изделия, поскольку она выполняет множество важных функций — минимизирует контакт с внешними веществами, защищает материал от коррозии, немного увеличивает прочность. В случае охлаждения материала ниже температуры 0 градусов сама медь сохраняет все свои физические свойства. Однако оксидная пленка при охлаждении становится менее упругой и плотной, изделие становится менее твердым (хотя с практической точки зрения это снижение прочности практически незаметно).
  3. При нагреве материала выше температуры 100 градусов происходит постепенная деструкция оксидной пленки на поверхности металла. Это повышает химическую активность материала, что делает его восприимчивым к воздействию веществ во внешней среде. Одновременно с этим при нагреве происходит насыщение энергией атомов меди, что делает материал более пластичным. По этой причине ковку медных изделий выполняют именно после нагрева, поскольку без нагрева для изменения формы изделия понадобится большое количество физических усилий (это может быть мускульная сила кузнеца, расходы электроэнергии для запуска электрического пресса и так далее).
  4. При достижении температуры 1083 градусов кристаллическая медная решетка начинается постепенно разрушаться, что превращает твердую медь в жидкую. На физическом уровне происходит следующее — из-за избытка энергии атомы начинают двигаться в кристаллической решетке более интенсивно и хаотично, что приводит к частому столкновению атомов между собой. В конечном счете это разрушает решетку, хотя за счет взаимного столкновения и притяжения атомы не разлетаются в разные стороны. На физическом уровне такая структура материала соответствует жидкости (то есть такому состоянию вещества, при котором атомы находятся в относительно свободном движении, но не разлетаются в разные стороны подобно газу).
  5. При остывании медной жидкости ниже температуры 1083 градусов происходит постепенная кристаллизация вещества. Медь вновь обретает твердую форму (чем ниже температура, тем интенсивней происходит затвердение вещества). Однако при необходимости жидкую медь можно и дальше нагревать (на химическом уровне будет происходить дальнейшее насыщение атомов энергией). При достижении температуры 2595 градусов по Цельсию жидкость начнет закипать, а медь начнет принимать газообразную форму. На практике длительное удержание вещества в газообразной форме проблематично — при контакте с атмосферным воздухом вещество будет быстро остывать, обратно превращаясь в жидкость. Чтобы обойти это ограничение, используются разные технологии. Оптимальная — нагрев вещества в тугоплавкой камере с поддержанием стабильной температуры выше критической точки (то есть выше температуры 2595 градусов). В таком случае температура среды будет высокой, а остывание вещества происходить не будет.

Чтобы расплавить/испарить медное изделие с помощью высокоточного нагревательного прибора, нагревать рекомендуется до чуть более высокой температуры. Скажем, в случае расплавления нагревать изделие следует до температуры 1100-1200 градусов (а не 1083 градусов). С практической точки зрения объясняется это просто — нагрев вещества происходит неравномерно, поэтому некоторые фрагменты медного изделия будут долго держать свою форму, тогда как другие — быстро расплавятся. К тому же вещество будет постоянно остывать, что может привести к кристаллизации отдельных фрагментов расплава.

Плавление сплавов на основе меди

На практике медь используют не только в качестве чистого вещества, но и в виде различных сплавов. Примеры таких сплавов — бронза, латунь, мельхиор и другие. Так как сплавы являются многокомпонентными веществами, то их плавление происходит по другому принципу. Рассмотрим примерный алгоритм плавления медных сплавов на примере латуни:

  1. При температуре до 100 градусов Цельсия кристаллическая решетка является устойчивой и однородной. В случае удара происходит деформация материала. На поверхности материала имеется тонкая оксидная пленка, которая защищает изделие от воздействия воды, атмосферного воздуха, химически активных веществ.
  2. При нагреве латуни до 100 градусов внешняя пленка постепенно плавится, что делает вещество менее прочным. Также из-за повреждения защитной пленки увеличивается химическая активность материала (то есть он начинает более активно вступать в реакцию с водой, воздухом, химическими веществами). Кристаллическая решетка устойчива к небольшому нагреву, поэтому материал сохраняет свою форму.
  3. Температура 880 градусов — это точка солидуса. При достижении этой температуры начинается расплавление самых легкоплавких элементов, входящих в состав сплава. Это приводит к частичному переходу твердого вещества в жидкость. На химическом уровне при достижении точки солидуса происходит частичное разрушение кристаллической решетки вещества, однако у более тугоплавких фракций решетка сохраняется.
  4. Температура 950 градусов — это точка ликвидуса. При достижении этой отметки плавятся самые тугоплавкие фракции, которые сохраняют свою твердость при более низких температурах. В результате на химическом уровне материал полностью становится жидким, поскольку полностью разрушается кристаллическая решетка у всех компонентов, входящих в состав латуни.

Как расплавить медь в домашних условиях?

Обычно медь и сплавы на ее основе плавят в специальных печах, где происходит не только расплавление материала, но и формовка новых деталей. Однако при желании медные изделия можно расплавить и в домашних условиях. Температура плавления меди в домашних условиях будет стандартной — 1083 градусов. Опытные металлурги рекомендуют нагревать вещество с небольшим запасом, чтобы минимизировать теплопотери и не допустить повторной кристаллизации вещества при его охлаждении. Во время домашнего расплавления необходимо соблюдать правила техники безопасности. Ниже мы рассмотрим эти правила, а потом узнаем, как именно нужно проводить домашнюю расплавку медных изделий.

Оборудование и правила техники безопасности

Для расплавления Вам понадобится купить или собрать специальное оборудование. В качестве исходного вещества подойдет чистая медь в слитках или брусках. Также для переплавки можно использовать различные детали и домашнюю утварь, содержащие большое количество меди. Это могут быть декоративные изделия, запчасти авто, очищенные провода и другие. Перед переплавкой проверьте удельное содержание меди (обычно ставится штамп с нужной информацией). Для нагрева объектов понадобится муфельная печь с регулятором температуры.

Для расплавления слитков или изделий понадобится не только печь, но и посуда-тигель, в которую будет помещаться медь. При выборе тигля отдайте свое предпочтение посуде, выполненной из тугоплавкой керамики или огнеупорной глины. Эти материалы не трескаются и не деформируются при большой нагреве. Из керамики или огнеупорной глины Вам также нужно выполнить форму, в которую будет заливаться расплавленная медь. Помимо этого Вам понадобится и ряд вспомогательных элементов — металлургические щипцы и крюк для работы с тиглем, древесный уголь (если Вы используете обычную печь), бытовой пылесос для удаления мусора с металлургической площадки и так далее.

Также стоит не забывать о правилах техники безопасности:

  • Все работы рекомендуется проводить на улице либо в хорошо проветриваемом большом помещении с нормальным уровнем влажности воздуха. Это может быть гараж, пристройка к дому, мастерские.
  • Для металлургических работ человеку понадобится купить защитную одежду, которая будет защищать его тело от маленьких капель расплавленной меди и термического воздействия высоких температур. Защитная одежда должна покрывать не только туловище, но и руки, голову и ноги.
  • В случае утечки металла из активной зоны нужно выключить печь, чтобы остановить процедуру переплавки. «Сбежавший» металл необходимо потушить, однако учтите — вода для этих целей не подходит. В случае тушения раскаленного металла водой жидкость может начать распадаться на молекулы кислорода и водорода, что может спровоцировать взрыв (молекулярный водород чрезвычайно взрывоопасен). Для тушения расплавленного металла следует использовать асбестовое одеяло либо сухую кальцинированную соду или хлорид натрия.

Алгоритм расплавления медных изделий

Переплавку медных изделий следует делать так:

  1. Возьмите медные изделия или слитки и поместите в тигель. Тигель с расходными материалами поместите в печь. Начните постепенно нагревать материал: сперва выставите температуру 100 градусов, потом — 200 и так далее. Доведите температуру до 1090-1150 градусов (медь плавится при температуре 1083 градусов, однако нужно брать температуру с небольшим запасом).
  2. Когда материал расплавится, достаньте его из печи с помощью металлургических щипцов. На поверхности смеси вы увидите остатки оксидной пленки. С помощью крюка ее нужно сдвинуть к одной из стенок тигля, чтобы она не попала в форму. После удаления пленки аккуратно перелейте расплавленную медь в форму (переливать жидкость нужно тонкой струей, чтобы не допустить утечку или распрыскивания металла).
  3. Выключите муфельную печь, накройте форму огнеупорной крышкой и дождитесь полного остывания формы вместе с расплавленным металлом. При желании Вы можете поставить форму обратно в печь, чтобы минимизировать контакт металла с атмосферным воздухом (однако перед помещением формы убедитесь, что печь выключена). После полного остывания и затвердения металла достаньте переплавленную запчасть из формы.При необходимости выполните финальную полировку или шлифовку.

Заключение

Твердая медь переходит в жидкое состояние при температуре 1083 градуса по Цельсию. Расплавление представляет собой сложный химический процесс, при котором разрушается твердая кристаллическая решетка вещества, что приводит к изменению его формы. Для повышения температуры меди нужно выполнить ее нагрев. На заводах и фабриках для этого используют специальные камеры и печи. Выполнить нагрев вещества можно в домашних условиях — для этого нужно собрать или приобрести мощную печь, которая может нагревать вещества до температуры выше 1100 градусов. Нагревать медь нужно с запасом, что связано с теплопотерями и особенностями процедуры нагрева.

Для переплавки меди в домашних условиях помимо печи нужно подготовить дополнительное оборудование — тигель, металлургические щипцы, крюк, керамическую форму и так далее. Переплавка выполняется просто — с помощью печи медь нагревается до 1083 градусов, а потом она переливается в форму для застывания. Расплавление медных сплавов отличается от расплавления чистой меди. Сплавы характеризуются «плавающей» температурой плавления. Например, латунь плавится при температуре от 880 до 950 градусов в зависимости от концентрации легирующих элементов. Металлурги рекомендуют плавить латуниевый сплав при температуре 950 градусов (точка ликвидуса).

Используемая литература и источники:

  • Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. — «Химия», 2000.
  • Максимов М. М., Горнунг М. Б. Очерк о первой меди. — М.: Недра, 1976.
  • Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006.
  • Статья на Википедии

Поделиться в социальных сетях

Цветные металлы и сплавы

Подробности
Подробности
Опубликовано 27.05.2012 13:22
Просмотров: 11905

Наибольшее применение в технике имеют следующие цветные металлы: медь, латунь, бронза, алюминий и его сплавы, свинец, олово, цинк.

Медь. Медь представляет собой металл красновато-розового цвета. Температура плавления меди 1083°. Медь обладает высокой электропроводностью, теплопроводностью, пластичностью и стойкостью против атмосферной коррозии. По сравнению со сталью теплопроводность и электропроводность меди выше в шесть раз.

Высокая пластичность позволяет производить прокатку ее в холодном состоянии в тонкие листы. Прочность нагартованной меди достигает 40 кг!мм2, а отожженной и литой — 18—20 кг/мм2.

Обычно применяется медь марок МО, M1, М2, МЗ, (М4) (ГОСТ 859-41), отличающихся друг от друга содержанием примесей. Наиболее чистой от примесей является медь марки МО (количество примесей 0,05%) и марки M1 (примесей 0,1%). Чем меньше примесей, тем лучше медь поддается сварке.

При нагревании свыше 600° С прочность меди резко снижается, она становится хрупкой. В жидком состоянии медь легко поглощает газы и окисляется. Это ограничивает ее применение для литых изделий, а также затрудняет сварку. Высокая теплопроводность и жидко текучесть в расплавленном состоянии также затрудняют сварку меди.

С понижением температуры механические свойства меди не снижаются, что позволяет применять медь в конструкциях, работающих при низкой температуре. Благодаря высокой электропроводности медь широко применяется в электропромышленности, в химическом машиностроении и других отраслях промышленности для изготовления баков, котлов, теплообменной аппаратуры и т. д.

Латунь. Латунь представляет собой сплав меди с цинком золотисто-желтого цвета. Содержание цинка в латуни 20—45%. Температура плавления латуни в зависимости от состава достигает 880— '950° С. С увеличением содержания цинка температура плавления понижается. Латунь достаточно хорошо сваривается и прокатывается. Изготовляется и применяется она обычно в виде листов, прутков, трубок и проволоки. Широкое применение латуни обусловливается ее меньшей стоимостью по сравнению с медью.

По ГОСТ 1019-47 латуни разделяются в зависимости от их химического состава на ряд марок: томпак марок Л96 и Л90 (содержание меди 88—97%), полутомпак марок JI80 и Л85 (меди 79— 86%), латунь марок Л62, Л68 и Л70 (цифра обозначает среднее содержание меди). Кроме того, имеются алюминиевые латуни марки ЛА77-2 (меди 76—79%, алюминия в среднем до 2%), марганцовистые, железомарганцовистые и др. Такие латуни обладают повышенной прочностью и вязкостью.

Бронза. Сплавы меди с оловом, марганцем, алюминием, никелем, кремнием, бериллием и другими элементами называют бронзами. Наиболее известны оловянистые бронзы, содержащие олова от 3 до 7%. Оловянистая бронза обладает очень малой усадкой и хорошими литейными свойствами.

Бронзы применяются в промышленности, главным образом в качестве литейного материала для изготовления подшипников и деталей, работающих на трение, а также для различного рода арматуры котлов, аппаратов и т. д.

Температура плавления бронзы зависит от количества в ней примесей и в среднем составляет: для оловянистых бронз 900—950 ° С, для безоловянистых — 950— 1080° С. Бронзы хорошо свариваются.

По ГОСТ 5017-49 различают следующие марки: Бр. ОФ 6,5-0,15 (олова 6—7%, фосфора 0,1—0,25%), Бр. ОФ 4-0,25 (олова 3,5— 4%, фосфора 0,2—0,3%), Бр. ОЦС-4-4-2,5 (олова 3—5%, цинка 3—5%, свинца 1,5—3,5%).

Алюминий и его сплавы. Алюминий — очень легкий металл, светло-серого, почти белого цвета. Он почти в три раза легче стали. Его удельный вес 2,7 г/см3. Алюминий имеет высокую теплопроводность и электропроводность и хорошо сопротивляется окислению благодаря тонкой, но прочной пленке окислов, защищающей его поверхность. Температура плавления алюминия 658° С. Несмотря на низкую температуру плавления, алюминий требует для расплавления большого количества тепла благодаря своей высокой удельной теплоемкости. Механические свойства чистого алюминия невысоки.

Сплавы алюминия с медью (дюралюминий), с магнием (электрон), с кремнием (силумин) и другие обладают прочностью, близкой к прочности малоуглеродистой стали.

В чистом виде алюминий применяется в электротехнике и химическом машиностроении. Алюминиевые сплавы широко применяются в промышленности в качестве литейного материала, а также в виде листового и сортового металла. Алюминий и его сплавы хорошо свариваются.

Из большого количества алюминиевых сплавов в сварных конструкциях чаще всего применяют алюминиево-марганцевый сплав АМц (содержащий до 1,6% марганца), дюралюминий (марки Д1, Д6, Д16) и др.

Все алюминиевые сплавы могут быть разделены на литейные, из которых изготовляются литые детали, и деформируемые, которые используются для изготовления полуфабрикатов прокаткой, прессованием, ковкой, штамповкой (полосы, листы, трубы и другие профили).

Литейные сплавы обозначаются АЛ1-АЛ13 (ГОСТ 2685-44) и отличаются низкими механическими свойствами (предел прочности от 12 до 28 кг/мм2у относительное удлинение от 0,5 до 9%).

Деформируемые алюминиевые оплавы (ГОСТ 4784-49) делятся на две группы: неупрочняющиеся термической обработкой (сплавы марки АМц, АМг) « упрочняющиеся (Д6, Д16, В95).

Упрочняющиеся оплавы (Д6, Д16) после термической обработки имеют предел прочности 42—46 кг/мм2 и относительное удлинение 15—17%. Такие сплавы обозначаются Д6Т, Д16Т.

При сварке указанных упрочняющихся сплавов значительный нагрев металла в зоне, расположенной рядом со швом, приводит к понижению механических свойств (предел прочности понижается до 21—22 кг/мм2).

Магний и его сплавы. Чистый магний в машиностроении не применяется. Широко применяются сплавы магния с алюминием, марганцем, цинком. Магниевые сплавы относятся к легчайшим металлам. Их удельный вес равен 1,75—1,85 г/см3. Температура плавления 648—650° С. Магниевые сплавы удовлетворительно свариваются газовой сваркой. Они могут быть как литейные (марки МЛ1-7-МЛ6, ГОСТ 2855-45), так и деформируемые (марки МА1Ч-МА5).

Цинк — металл синевато-белого цвета. Температура плавления 419° С, температура кипения 906° С. Цинк легко окисляется, пары его весьма вредны для здоровья.

Свинец отличается большим удельным весом (11,3 г/см3), малой теплопроводностью (9% от теплопроводности меди), низкой температурой плавления (325° С), малой прочностью на разрыв (1,35 кг/мм2) и значительным относительным удлинением — 50 %.

При нагревании свинец легко окисляется, покрываясь пленкой окиси с температурой плавления 850° С.

Пары и пыль свинца очень ядовиты.

Свинец и его сплавы свариваются удовлетворительно.

Олово — мягкий и вязкий металл серебристо-белого цвета; температура плавления 232° С. Для него характерна хорошая стойкость против окисления на воздухе и слабая окисляемость в воде. Применяется для лужения посуды, изготовления припоев и различных медных сплавов.


Читайте также

Добавить комментарий

Резка меди, латуни и других сплавов

Медь Cu — метал красновато-розового цвета, обладает высокой тепло- и электропроводностью, пластичностью и тягучестью. Плотность ее 8,94; температура плавления 1083°С; твердость по Моосу 2,5—3. Из-за своей мягкости медь плохо обрабатывается режущим инструментом, однако хорошо полируется.

Находясь в сухом месте, медь покрывается тончайшей пленкой оксида меди, которая служит хорошей защитой от дальнейшего окисления. Во влажной среде покрывается зеленоватым напетом закиси меди, который тоже сохраняет ее о* разрушения. Медь легко растворяется в азотной кислоте и в концентрированной серной кислоте при нагревании. В соляной кислоте растворяется только в присутствии кислорода.

Медь, обладая прекрасными физическими характеристиками, широко применяется почти во всех отрасли» промышленности. В художественной промышленности медь употребляют для чеканных и филигранных работ, для изделий под эмаль и других поделок, в ювелирном производстве — для легирования сплавов благородных металлов.

Медь служит также основой для производства сплавов — латуней, бронзы, мельхиора, нейзильбера.

Латуни — медно-цинковые сплавы, содержащие до 45% цинка. Латуни значительно дешевле меди, причем, чем больше в них цинка, тем они дешевле. Латуни обладают высокими механическими свойствами: легко поддаются пластической деформации, хорошо обрабатываются режущим инструментом и полируются. На открытом воздухе неустойчивы, быстро теряют блеск, темнеют. Легко растворяются в большинстве кислот.

Плотность латуней 3 2-8,6; температура плавления 900— 1045°С; твердость по Моосу 3—4. Высокомедистые латуни — томпаки (содержание цинка до 20%) — близки по цвету к золотым сплавам. Их используют в художественной промышленности для изготовления сувенирных и спортивных значков, декоративной посуды и дешевой ювелирной галантереи.

Латуни — основной материал, используемый при обучении ювелиров. Механические свойства латуней, содержащих от 30 до 40% цинка (марки Л62, Л68), сходны со свойствами золотого сплава 583-й пробы.


Бронзы — медно-оловянистые сплавы, содержащие от 3 до 12% олова. В состав олова в зависимости от его назначения могут входить цинк, свинец, фосфор, никель. Кроме оловянистых существуют и другие бронзы — алюминиевые, кремнистые, бериллиевые, кадмиевые.

Плотность бронзы 7,5—8,8; температура плавления 1010—1140°С; твердость по Моосу 4—4,5. Оловянистые бронзы отличаются хорошими литейными свойствами. Это было замечено людьми еще в глубокой древности. И в наши дни бронза считается прекрасным материалом для художественного литья.

В художественной промышленности используется бериллиевая бронза. Она отличается высокой твердостью и упругостью, наиболее устойчива к коррозии. Применяется для изготовления юбилейных значков и сувениров.


Мельхиор — медно-никелевый сплав с содержанием никеля от 18 до 20%. Относится к числу декоративных сплавов. Обладает красивым серебристым цветом. Отличается высокой коррозионной стойкостью. Пластичен, легко обрабатывается: штампуется, чеканится, режется, паяется полируется. Изделия из мельхиора достаточно прочны. Плотность мельхиора 8,9; температура плавления 1170°С; твердость по Моосу 3. Мельхиор — сплав, имитирующий серебро, поэтому его применяют для изготовления посуды и недорогих ювелирных изделий с полудрагоценными камнями и без камней.


Нейзильбер — трехкомпонентный сплав на медной основе, в состав которого кроме меди входят 13,5—16,5% никеля и 18— 22% цинка. Так же как и мельхиор, считается декоративным сплавом и по внешнему виду напоминает серебро. Нейзильбер дешевле мельхиора, обладает достаточной пластичностью, тягучестью, прочностью и коррозионной устойчивостью. Плотность 8,4; температура плавления 1050°С; твердость по Моосу 3. Подобно мельхиору, нейзильбер используют в художественной и ювелирной промышленности для изготовления столовых приборов и ювелирных украшений. Широкое распространение получил при изготовлении филигранных изделий.

Для расчета и заказа работ по гидроабразивной резке материалов необходимо обратиться по:

Внимание! Не забудьте приложить чертеж реза.Чертеж желательно присылать в программе AutoCAD в масштабе 1:1, перевод чертежа из других форматов, а также изготовление чертежа по эскизу оплачивается дополнительно.

Латунь температура плавления - Энциклопедия по машиностроению XXL

Твердые припои имеют температуру плавления в интервале 800—900°С и являются сплавами меди и цинка (латуни) и меди, цинка и серебра (так называемые серебряные припои). Последние применяют при пайке электроприборов, когда электропроводность спая не должна уменьшаться по сравнению с электропроводностью основного металла.  [c.624]

Специфическая особенность при сварке латуней заключается в том, что в процессе сварки цинк, содержащийся в латуни, значительно испаряется и сгорает, так как температура испарения цинка (Т сп=906°С) близка к температуре плавления латуни (Т =90Б°С). Поэтому снижается содержание цинка в металле шва и ухудшаются механические свойства соединения. Кроме того, пары цинка ядовиты. Для уменьшения выгорания цинка целесообразны сварка на пониженной мощности, применение присадочного металла, содержащего кремний (кремний создает на поверхности расплавлен-  [c.137]


Применение индукционного нагрева обычно экономически оправдано при пайке среднеплавкими припоями (медь, латунь, ферромарганец, медно-серебряные сплавы) с температурой плавления 400—1200 °С.  [c.219]

Добавка лития к литой латуни Л68 с примесью свинца существенно улучшила пластичность при температуре горячей прокатки (табл. 76) вследствие образования соединений лития со свинцом с температурой плавления —ТОО С п изменения характера распределения свинца в латуни.  [c.179]

Литий уменьшает вредное влияние на латунь висмута, образующего с литием соединение с температурой плавления 1145 С. Добавка 0,05 %  [c.179]

Для специфических условий нагружения это явление принято обозначать другими терминами, например, коррозионное растрескивание стали в щелочных средах называют каустической или щелочной хрупкостью, разрушение латуней во влажной атмосфере— сезонным растрескиванием аналогичны коррозионному растрескиванию хрупкие разрушения металлов, происходящие вследствие проникновения по границам зерен легкоплавких примесей. Диффузия легкоплавкого металла вдоль границ зерен сплава, находящегося под действием напряжения и температуры, близкой к температуре плавления диффундирующего металла, приводит также к снижению прочности и пластичности основного металла. Этот вид порчи материала иногда называют легированием под напряжением. Развивающееся во времени в металлах разрушение при наводороживании, называемое водородным растрескиванием, в некоторой степени можно отнести к категории коррозионных разрушений, хотя чаще его классифицируют как замедленное разрушение. Во всяком случае, когда в процессе коррозионного воздействия освобождаются атомы водорода и материал чувствителен к водородному охрупчиванию, разрушение значительно ускоряется.  [c.70]

Однако на практике эти условия не всегда соблюдаются. Так, при пайке латунных деталей серебряными припоями ПСр.25, ПСр.45 и пер.70 с температурами плавления 720—780° до последнего времени в качестве флюса использовалась бура, плавящаяся при 741°. Отсутствие разницы в температурах плавления флюса и припоев в этом случае приводило к тому, что металл покрывался толстым слоем окисной пленки, затрудняющей пайку и снижающей ее качество.  [c.273]

Латунь дельта — Температура плавления 6 — 193  [c.129]

Для стальных деталей припоем обычно служит чистая электролитическая медь (марки М1 и М2). Она весьма жидкотекуча в восстановительной атмосфере, даёт прочное, чистое соединение, не требует флюса, за исключением некоторых плохо смачиваемых сортов стали. Применение флюсов вообще удорожает процесс пайки и требует последующей очистки. Флюсы требуются при содержании в стали более 1—2о/о хрома, марганца, кремния, ванадия и алюминия, образующих окисные плёнки, не восстанавливаемые газовой атмосферой и ухудшающие смачивание. Никель, наоборот, усиливает смачивание и является желательным элементом в сталях для пайки. Иногда в качестве припоя используется латунь, которая обычно требует применения флюса для уменьшения окисления цинка и растворения образовавшейся окиси. В процессе пайки латунь может повышать температуру плавления вследствие испарения части цинка. С флюсом латунь растекается почти так же хорошо, как и чистая медь. Для меди и медных сплавов, не-  [c.448]


Температуры плавления и разливки латуней  [c.193]

Общий нагрев деталей в печах и горнах применяют только при твердой пайке латунью или медью. Подготовленные и собранные детали с припоем и флюсом около шва загружают в печь, нагретую на 50—80° выше температуры плавления припоя.  [c.208]

Латунь является сплавом меди с цинком. Содержание цинка в латуни доходит до 50%. Температура плавления латуни колеблется от 800 до 950° С и зависит от количества цинка. Латунь широко применяется в технике в виде листового и сортового металла, а также литья.  [c.15]

Твердые припои бывают медно-цинковые и серебряные. Такие припои применяют для пайки медных, бронзовых, латунных и стальных деталей, когда соединение требует большой прочности. Температура плавления твердых припоев от 600 до 900° С. Предметы, подлежащие пайке, должны быть плотно стянуты проволокой.  [c.36]

Газовую сварку чугуна цветными сплавами без подогрева детали в сочетании с дуговой сваркой широко применяют в ремонтном производстве для сварки трещин на обрабатываемых поверхностях корпусных деталей. Присадочным материалом для газовой сварки является латунь, которая более соответствует требованиям сварки по сравнению с другими цветными сплавами на медной основе. Температура плавления латуни ниже температуры плавления чугуна (880—950 °С), поэтому ее можно применить для сварки, не доводя чугун до плавления и не вызывая в нем особенных структурных изменений и внутренних напряжений.  [c.111]

При сварке латуней возможно испарение цинка, температура кипения которого составляет 907 °С, т. е. ниже температуры плавления меди. Образующийся оксид цинка ядовит, поэтому при сварке требуется хорошая вентиляция. Испарение цинка может привести к пористости металла шва. Введение Мп и Si в шов уменьшает испарение Zn.  [c.264]

Пайка нержавеющих сталей и жаропрочных сплавов латунью и другими припоями с температурой плавления  [c.345]

При сварке некоторых сплавов цветных металлов возможно испарение отдельных легкоплавких компонентов. Так, температура плавления цинка 419 °С, олова 232 °С, а температура плавления латуней и бронз  [c.437]

Стали кадмиевыми припоями паяли только после меднения. Активирование кадмиевых припоев цинком, имеюш,им высокое химическое сродство с железом, позволило применить их для пайки сталей и одновременно повысить их прочность. Припой такого типа, содержащий 60—85% d 15—50% Zn и 0,4—5% Ni с температурой плавления 290—270° С, пригоден для пайки не только меди, цинка и латуни, но и сталей, в том числе и коррозионно-стойкой. Предел прочности стыковых соединений из медного листа толщ,иной 2 мм, паяных таким припоем, равен 23,3 кгс/мм, между тем предел прочности соединений из того же металла, паянных оловянно-свинцовым припоем, 5,5 кгс/мм. Этот припой не содержит серебра и применяется для пайки изделий в электротехнической промышленности и теплообменников. Введение никеля в припой дополнительно активирует и упрочняет его, так как никель образует с железом непрерывный ряд твердых растворов, а с кадмием — фазу типа у-латуни.  [c.96]

Более высокую температуру плавления, чем у припоев на основе системы Си—Р, имеют припои на основе сплавов системы Си—Zn (латуни).  [c.123]

Прочность литых латуней, состоящих из а-фазы, непрерывно увеличивается с повышением содержания цинка (табл. 34). Наиболее прочна латунь с содержанием —42% Zn. Латунные припои, содержащие 60% Си, имеют температуру плавления 900° С. Введение в них добавок олова, кадмия или увеличение содержания цинка позволяет снизить их температуру плавления максимум на 50° С.  [c.124]

Наличие в сплавах системы Си—Мп твердого раствора с минимальной температурой плавления 870° С (при 35% Мп) позволяет разрабатывать припои с температурами пайки не выше, чем у латунных припоев. Однако сплавы с марганцем склонны к ликвации. Из-за большой упругости пара марганец заметно испаряется. По А. Салли для двойных сплавов Си—Мп, особенно содержащ,их более 20% Мп, вследствие полиморфизма марганца и метастабильности характерны невысокие пластичность и технологичность. Так, например, припой Си—36% Мп с 0,15— 0,20% Li малопластичен и может быть применен только в виде литых колец. Среди сплавов системы Си—Мп известен только один припой, применяемый для пайки коррозионно-стойких сталей он содержит 15% MHj температура его плавления 950° С температура пайки 970° С.  [c.128]


Припои на основе Ag и Си. Серебряные припои содержат медь, цинк, кадмий известны прппои, содержащие также золото. Температурный интервал пайки этих припоев 600—1000° С. Содержание серебра колеблется 6т 25 до 70%. В качестве примера моллегирующие элементы, образующие низкотемпературные эвтектики меди с фосфором при 707° С, с серебром при 779° С. Для снижения температуры плавления к припою добавляют олово и цинк. Медно-фосфористый припой МФ1 с содержанием 10% фосфора имеет. Т л = 714 850° С. Для пайки латуни применяют медно-цинковые припои с содержанием 50—60% Си. Их температура плавления составляет 850—940° С. В качестве флюсов для указанных припоев применяют, в основном смеси плавленой буры ЫагВ40, и борной кислоты. Бура плавится при 743° С для активирования в состав вводят фториды.  [c.283]

А. С. Лавров не только открыл явления юна 1Ьной ликвации, но и объяснил их происхождение и основные закономерности. В чем же причины ликвации Прежде всего в химической неоднородности любых металлических сплавов, будь то сталь, латунь или бронза. В отличие от чистых металлов сплавы застывают и кристаллизуются не при одной определенной температуре, а в некотором интервале температур. Когда жидкая сталь налита в изложницу, в первую очередь затвердевают ее наиболее lyroJiflauioie составляющие, прежде всего железо, температура плавления которого 1530°. Поэтому ранее остывшие слои металла, расположенные у внешней поверхности слитка, содержат больше железа и меньше других химических элементов — углерода, фосфора, серы и т. д. по сравнению с внутренними частями слитка, затвердевающими позже. Наружные слои стального слитка обладают вследствие этого более высокими механическими свойствами.  [c.66]

Литий — серебристо-белый очень мягкий металл, легко окисляющийся на воздухе. По ГОСТ 8774—75 устанавливаются три марки лития ЛЭ-1 (содержание чистого лития не менее 99,5%), Л9-2(98,8%) и ЛЭ-3 (98,0%). Применяется в машиностроении для дегазации и раскисления стали, чугуна, бронз и латуни, в баббитах — вместо олова для повышения температуры плавления и апти-фрикгцгонных свойств. Повышает качество алюминиевых, магниевых, медных, свинцовых и других сплавов, улучшает их антикоррозионные и литейные свойства и т. д., образует твердые припои для пайки без флюсов. Поставляетс.ч в виде чушек массой до 2,5 кг и хранится в плотно закрытых (запаянных) банках из белой жести (по 12—20 чушек — до 50 кг), залитых смесью трансформаторного масла (50%) и парафина (50%) с надписью Осторожно, от воды загорается .  [c.170]

В отдельных случаях для пайки лопаток можно использовать также припой на медно-цинковой основе типа латуней марок ЛОК-62-0,6-0,4 и ЛОК-59-1-03. Эти припои имеют более высокую температуру плавления (905—938°) и поэтому их применение целесообразно лишь при пайке лопаток из аустенитных сталей. Пайка ими лопаток из хромистой стали неиз-  [c.152]

Цинк в 4H T0iM виде применяют в основном для оцин-кования стали, в электрических батареях и элементах. В большом количестве применяют цинк в сплаве с медью и другими металлами для получения латуни, припоев и т. п. Температура плавления цинка равна 419° С,  [c.14]

Мягкие припои изготовляют в основном из сплава олова и свинца или олова, свинца и висмута. Такие припои нримедяют для пайки цинка, латуни, жести, меди и других металлов, когда от соединения не требуется большой прочности. Температура плавления мягких припоев от 180 до 300° С в зависимости от состава. Чем больше в припое свинца, тем выше температура плавления припоя. Пайка мягкими припоями производится при помощи паяльника, изготовленного из красной меди.  [c.36]

Для пайки латуней, богатых медью, используют серебряные припои ПСр 72, ПСр 40, ПСр 45, ПСр 25, ПСр 12, а также латуни с низкой температурой плавления (припои типа ПМЦ 36 ПМК 48 ПМЦ 54) и медно-фосфори-стые.  [c.252]

При сварке латуней поры могут возникать вследствие испарения цинка (7кип = 907 °С ниже температуры плавления меди). Образующийся при испарении оксид цинка ядовит. Испарение цинка уменьшается при использовании предварительного подогрева и высоких скоростей сварки, при легировании металла шва кремнием.  [c.457]

Для исправления дефектов на чугунных изделиях при ремонте иногда целесообразно, в целях снижения термических напряжений. применять вместо сварки чугунным присадочным прутком пайкосварку латунными припоями. Этот процесс идет при более низкой рабочей температуре с нагревом основного металла (чугуна) до температуры плавления латуни (850—900°С), т. е. без расплавления чугуна. Затем кромки разделки или раковину посыпают флюсом и залуживают участками латунным прутковым припоем. Пайкосварка выполняется правым способом (рис. 5.2) снизу вверх с расположением свариваемых кромок в наклонном положении (для того, чтобы расплавленная латунь не стекала на нелуженую поверхность).  [c.105]

Чистая медь имеет розовато-красный цвет, плотность ее 8,93 г/см , температура плавления 1083 °С. В отожженном состоянии а = 250 МПа, 5 = 45-60 %, твердость 60 НВ. Кристаллизуется в кубической гранецент-рированной решетке и полиморфных превращений не имеет. Благодаря высокой электропроводности около половины всей произведенной меди используют в элек-тро- и радиотехнической промышленности для изготовления проводников, монтажных и обмоточных проводов, токопроводящих деталей приборов, аппаратов, в электровакуумной технике. Как конструкционный материал медь не используется из-за высокой стоимости и низких механических свойств. Маркируется буквой М и цифрами, зависящими от содержания примесей. Медь марок МОО (0,01 % примесей), МО (0,05 % ) и Ml (0,1 %) используется для изготовления проводников электрического тока, медь М2 (0,3 % ) — для производства высококачественных сплавов меди, М3 (0,5 % ) — для сплавов обыкновенного качества. Широкое использование в промышленности имеют сплавы меди с другими элементами — латуни и бронзы.  [c.198]


Латунь Плот- ность. г/см Температура плавления, °С Теплопровод- ность, (кал/см С-°С) Коэффициент линейного расшн )ения Р. Ом-мм /м Е, кгс/мм Gg, кгс/мм  [c.427]

Широкое применение в качестве припоев получили высокотемпературные припои — сплавы на основе серебра, алюминия, меди и др., обладающие, как правило, температурой плавления выше 450—500° С (723—773° К). Наибольшее применение находят медно-цинковые припои ПМЦ 36, ПМЦ 48, ПМЦ 54 (ГОСТ 1534—42). Они имеют предел прочности = 21—35 кПмм (206,0—343,2 Мн/м ), относительное удлинение до 26% и рекомендуются для пайки изделий из меди, томпака, латуни, бронзы. Серебряные припои имеют температуру плавления 740—830° С (413—1103° К). Согласно ГОСТу 8190—56 марки припоев разделяются в зависимости от содержания в сплавах серебра, которое изменяется в пределах от 10 (ПСр 10) до 72% (ПСр 72). Остальными составляющими являются цинк, медь и в небольшом количестве свинец. Эти припои применяются для пайки тонких деталей, для соединений медных проводов и в случаях, когда медь спая не должна резко уменьшать электропроводность соединений встык. Эти припои применяются для пайки тонкой луженой стальной проволоки в кабельном производстве и т. д.  [c.113]

Зибель и Помп пересмотрели проблему Людвика. Исследования Людвика (Ludwik [1909, 1]) из-за низкой температуры плавления олова предназначались для твердых тел со сходственной температурой Т/Т =0,59 при Т, равном комнатной температуре. Для свинца и цинка, которые он полагал также вязкопластическими, значения сходственной температуры при том же условии были Т Тт = = 0,50 и Т/Т =0,43 соответственно. С другой стороны, для стали, меди и латуни, для которых по его утверждению вязкими эффектами. можно было пренебречь, Т/Т =0,17 0,22 и 0,25 соответственно. Таким образом, на выводы Людвика повлияло то, что он выбрал частное значение Т, т. е. комнатную температуру, для всех своих сравнений.  [c.189]

Соединения, паяные припоями системы Ag—Си—Zn— d, теплостойки примерно до 4 Ю С, а припои системы Ag—Си—Zn — до температуры 500 С в связи с упрочнением твердого раствора на основе серебра. При пайке сталей двухфазные припои на основе Ag—Си имеют важное преимуш,ество по сравнению с при-пояйи на основе а-латуней они не проникают по границам зерен. Это связано с более низкой температурой плавления первой системы припоев, когда диффузионные процессы протекают с меньшей скоростью.  [c.110]

Исходя из этих соображений С. В. Лашко, О. П. Бондарчук, Г. Н. УполоБникова и др. предложили припой ПМФСб-0,15 с пониженным содержанием фосфора, легированный кремнием или кремнием и серебром. Пределы содержания легирующих элементов в припое 5—8% Р 0,10—1,5% Si Си— остальное. Припой такого состава рекомендован для пайки изделий из меди и латуни, работающих без воздействия значительных ударных нагрузок, температура плавления припоя 725° С температура пайки 750—780° С. Для изделий с повышенной ударной вязкостью паяных соединений предложен вариант припоя состава 5—6% Р 3% Ag 0,15% Si Си—остальное температура пайки 750—780° С. Данные по сопротивлению срезу соединений из латуни Л62, паянных припоями ПМФС6-0, 5 и др., приведены в табл. 32.  [c.122]

Широкое распространение латунных припоев для пайки медных сплавов и сталей объясняется их относительно низкой температурой плавления, узким интервалом кристаллизации, большой растворимостью цинка в меди и недефицитностью. Температура пайки сталей латунными припоями 850—950° С. Температура ликвидуса латуни непрерывно снижается с увеличением содержания цинка,  [c.123]

Основной недостаток латунных припоев заключается в частичном испарении цинка при пайке вследствие высокого давления его пара. Чистый цинк кипит при температуре 906° С. В латунях температура испарения цинка повышается и равна 1000° С при 50% Си, 1200° С при 75% Си и 1400° С при 85% Си. Из латуней цинк испаряется в виде белой окиси цинка ZnO, имеющей температуру плавления 1975 С. Температура испарения цинка из латунных припоев отличается от их температуры плавления всего лишь на —100° С. Перегрев латунных припоев при пайке поэтому весьма нежелателен, так как ухудшаются свойства паяных соединений (появляется пористость). Окись цинка, вдыхае-  [c.125]

Эвтектика Си—Р содержит 8,4% Р. Добавка фосфора резко снижает температуру плавления медных припоев. Припои систем Си—Р, Си—Р—Zn, Си—Р—Sb обеспечивают сравнительна низкую прочность паяных соединений меди и плохо удерживаются в зазорах более 0,3 мм. Введение в припои Си—Р кремния, бора, алюминия, никеля обеспечивает их пригодность для пайки меди при зазорах 0,3—0,6 мм, повышает прочность и пластичность паяных соединений при сохранении температуры пайки в пределах 750—780° С. Это позволяет применять такие припои взамен серебряных типа ПСр45 при пайке латуней. Такие припои имеют 134  [c.134]


Латунь

     Латунь, от немецкого  Latun, это двойной или многокомпонентный сплав на основе меди, где основным легирующим элементом является цинк (до 50%), иногда с добавлением олова, никеля, свинца, марганца, железа и других элементов. Хотя цинк был открыт только в XVI веке, латунь была известна уже древним римлянам, т.е. до н.э.  До конца XVIII в. латунь получали плавкой меди с цинковой рудой, смешанной с древесным углём. В XIX в. этот способ был вытеснен прямым сплавлением меди с металлическим цинком, такая латунь впервые была получена в Англии в 1781 году. В Западной Европе и России в XIX веке латунь использовали в качестве поддельного золота.

     Латунь имеет плотность — 8300—8700 кг/м³, удельную теплоёмкость при 20 °C — 0,377 кДж·кг−1·K−1 и удельное электрическое сопротивление — (0,07-0,08)×10−6 Ом·м. Температура плавления латуни в зависимости от состава достигает 880—950 °C. Латунь плавится при температуре ниже точки плавления меди, с увеличением содержания цинка температура плавления понижается. Латунь достаточно хорошо сваривается и прокатывается. Хотя поверхность латуни, если не покрыта лаком, чернеет на воздухе, в общем, она лучше сопротивляется действию атмосферы, чем медь и намного медленней изнашивается. Латунь имеет жёлтый цвет и отлично полируется, поэтому широко используется в качестве недорогих декоративных покрытий и изделий «под золото».

     Варьирование температуры обработки и массовой доли (и состава) примесей позволяет получать различные механические свойства латуней. Некоторые латуни куются и обрабатываются только «на холодную», некоторые – только при определенном нагреве. Но все латуни, при нагреве около 90% от точки плавления, становятся хрупкими, что позволяет их дробить в мелкодисперсный «песок».

      Висмут и свинец оказывают вредное влияние на латунь, уменьшая способность к деформации в горячем состоянии.

      Благодаря хорошей обрабатываемости давлением в горячем и холодном состояниях, высоким механическим свойствам, красивому цвету и сравнительной дешевизне,  латуни являются самыми распространёнными из медных сплавов. Легкость обработки позволяет получать латунные листы, ленты, прутки, трубы, вить пружины и ламели, пружинные контакты, проволоку, а также штамповать детали любой сложности (деформируемые латуни), изготавливать отливки (литейные латуни, При увеличении содержания цинка, цвет латуни изменяется от красноватого до светло-желтого.

       Простые латуни это сплавы меди только с цинком. Латуни, содержащие до 10% Zn, называют томпаками, а от 10 до 20% — полутомпаками. Такие сплавы, отличаются хорошей коррозионной стойкостью и повышенной пластичностью, их используют для изготовления радиаторных и конденсаторных труб, листов и ленты для плакирования стали. Латунь, содержащую около 30% Zn и способную к глубокой вытяжке, называют патронной и широко применяют для изготовления изделий холодной штамповкой, а также прессованием и волочением.  Латуни используются также в общем машиностроении, приборостроении, теплотехнике и многих др. отраслях промышленности.

      Для улучшения механических, антикоррозионных и других свойств, к двойным сплавам меди с цинком добавляют алюминий, олово, железо, марганец, никель, кремний, свинец и другие элементы (в сумме примерно до 10%). Многокомпонентные (или специальные) латуни называют алюминиевыми, кремнистыми, алюминиево-никелевыми, железомарганцовистыми и т. п. Латунь, содержащая около 15% Zn и 0,5% Al, имеет красивый золотистый цвет и повышенную стойкость против атмосферной коррозии; такой сплав используют как заменитель золота для знаков отличия и художественных изделий. Латуни с добавкой до 1,5% Sn (так называемые морские латуни) имеют повышенную стойкость против коррозии в морской воде. Добавка свинца (до 3%) делает стружку ломкой и позволяет получать при обработке резанием поверхность высокой чистоты (автоматная латунь). Свинцовистые латуни применяются в автомобильной и часовой промышленности (часовые латуни).

      Многие латуни, содержащие более 20—30% Zn, склонны к коррозионному растрескиванию из-за одновременного действия остаточных напряжений в изделии и коррозионного воздействия аммиака, а также сернистого газа во влажной атмосфере. Это явление называют сезонной болезнью латуни, т. к. усиленное коррозионное растрескивание происходит в месяцы с повышенной влажностью воздуха. Растрескивание предотвращают, применяя отжиг для уменьшения остаточных напряжений (при 250—300°С).

Порядок маркировки

Принята следующая маркировка. Сплав латуни обозначают буквой «Л», после чего следует буквы основных элементов, образующих сплав. В марках деформируемых латуней первые две цифры после буквы «Л» указывают среднее содержание меди в процентах. Например, Л70 — латунь, содержащая 70 % Cu. В случае легированных деформируемых латуней указывают ещё буквы и цифры, обозначающие название и количество легирующего элемента, ЛАЖ60-1-1 означает латунь с 60 % Cu, легированную алюминием (А) в количестве 1 % и железом в количестве 1 %. Содержание Zn определяется по разности от 100 %. В литейных латунях среднее содержание компонентов сплава в процентах ставится сразу после буквы, обозначающей его название. Например, латунь ЛЦ40Мц1,5 содержит 40 % цинка (Ц) и 1,5 % марганца (Мц).

Деформируемые латуни

Томпак (фр. tombac, от малайск. tambaga — медь) — латунь с содержанием 90—97% меди. Обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами, хорошо сваривается со сталью, его применяют для изготовления биметалла сталь-латунь. Благодаря золотистому цвету, томпак используют для изготовления художественных изделий, знаков отличия и фурнитуры.

Двойные деформируемые латуни

Марка

Область применения

 

Л96, Л90, Л85, Л80

Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др.

Л70

Гильзы химической аппаратуры, отдельные штампованные изделия

Л68

Большинство штампованных изделий

Л63       

Гайки, болты, детали автомобилей, конденсаторные трубы

Л60

Толстостенные патрубки, гайки, детали машин

               

Многокомпонентные деформируемые латуни

Марка 

Область применения

ЛА77-2

Конденсаторные трубы морских судов

ЛАЖ60-1-1

Детали морских судов.

ЛАН59-3-2

Детали химической аппаратуры, электромашин, морских судов

ЛЖМа59-1-1

Вкладыши подшипников, детали самолетов, морских судов

ЛН65-5

Манометрические и конденсаторные трубки

ЛМц58- 2

Гайки, болты, арматура, детали машин

ЛМцА57-3-1

Детали морских и речных судов

ЛO90-1, ЛO70-1, ЛO62-1, ЛO60-1

Конденсаторные трубы теплотехнической аппаратуры

ЛС63-3, ЛС74-3                               

Детали часов, втулки

ЛС64-2

Полиграфические матрицы

ЛС60-1, ЛС59-1

Гайки, болты, зубчатые колеса, втулки

ЛЖС58-1-1

Детали, изготовляемые резанием

ЛК80-3

Коррозионностойкие детали машин

ЛМш68-0,05

Конденсаторные трубы

ЛАНКМц75- 2- 2,5- 0,5- 0,5

Пружины, манометрические трубы

               

Литейные латуни

Марка

Область применения

ЛЦ16К4

Детали арматуры

ЛЦ23А6ЖЗМц2

Массивные червячные винты, гайки нажимных винтов

ЛЦЗОАЗ

Коррозионно-стойкие детали

ЛЦ40С 

Литые детали арматуры, втулки, сепараторы, подшипники

ЛЦ40МцЗЖ

Детали ответственного назначения, работающие при температуре до 300 °C

ЛЦ25С2

Штуцера гидросистемы автомобилей

 

      Большую часть лома латуни, поступающего на наш приемный пункт, составляют различные сантехнические детали, краны, фланцы, метизы, обрезки труб, радиаторы и змеевики. Часто встречаются латунные вкладыши, сепараторы подшипников, различные токарные детали - втулки, переходники, шпильки и прочее. Лом электротехнической  латуни - трущиеся контакты и втулки валов, различные щетки и токосъемники.

      Поскольку латунь применяется в промышленности довольно широко, образуется большое количество латунной стружки. Данный вид отходов латуни получается при механической обработке латунных заготовок, такой как фрезерование, сверление, токарная обработка. 

   ООО «Красмет» закупает весь спектр лома и отходов латуни и других медных сплавов. 

   В случае, если Вы хотите продать лом и отходы латуни или других медных сплавов, заключить договор о поставках металлолома в адрес нашей компании, заказать вывоз металлолома, а также получить информацию по вопросам приема металлолома, ценам на металлолом на момент сдачи, позвоните нам и Вас сориентируют по ценам и условиям покупки лома и отходов латуни и стоимости услуг.

Телефоны специалистов:

 +7 391 293 30 32
Так же обратиться к нам можно по электронной почте:

[email protected] 
 

Точка плавления металлов

Знание точек плавления различных металлов важно для производителей и сварщиков. Металлы плавятся постепенно, так как металл поглощает тепло. Задолго до того, как кусок металла достигнет полной точки плавления, он может начать размягчаться и деформироваться. Для простоты мы обычно классифицируем точку плавления металла как точку, в которой он стал полностью жидким (называемый ликвидусом).

При соединении металлов с очень разными температурами плавления, таких как медь и сталь, пайка может быть лучшим выбором, чем сварка.При пайке используется кислородно-ацетиленовая горелка для нагрева присадочного металла, обычно латунного сплава, который имеет более низкую температуру плавления, чем две металлические части. По мере плавления наполнитель втягивается в шов, а затем затвердевает при охлаждении. Две соединяемые детали никогда не достигают точки плавления, а это означает, что соединение непостоянно.

Сварка и пайка

Сварка - это процесс соединения двух частей металла путем нагрева обеих частей до их точки плавления, создавая ванну жидкого расплава, в которой их молекулы полностью смешиваются.В ванну расплава часто добавляют третий металлический наполнитель. Когда расплавленный металл охлаждается и затвердевает, две части полностью соединяются неразрывной связью.

Знание того, какие металлы можно сваривать, и выбор лучших металлов для сварки может частично зависеть от их точек плавления - если они сильно различаются, одна из секций будет плавиться быстрее, чем другая. Это может вызвать взрыв или другие механические неисправности.

При соединении металлов с очень разными температурами плавления, таких как медь и сталь, пайка может быть лучшим выбором, чем сварка.При пайке используется кислородно-ацетиленовая горелка для нагрева присадочного металла, обычно латунного сплава, который имеет более низкую температуру плавления, чем две металлические части. По мере плавления наполнитель втягивается в шов, а затем затвердевает при охлаждении. Две соединяемые детали никогда не достигают точки плавления, а это означает, что соединение непостоянно.

Следующий список температур плавления обычных металлов и их сплавов варьируется от минимальной до максимальной (обратите внимание, что температура плавления будет варьироваться в зависимости от точного состава сплава):

Свинец имеет одну из самых низких температур плавления любого металла при 621 F (327 C).

Алюминий имеет относительно низкую температуру плавления 1218 F (659 C). Когда к алюминию добавляются легирующие металлы, его температура плавления может варьироваться от примерно 848 до 1230 F (от 453 до 666 ° C). Добавление алюминия к другим металлам также снижает их температуру плавления.

Бронза : 1675 F (913 C). Подшипниковая бронза содержит в основном медь, а также свинец и цинк, что снижает ее температуру плавления до 1790 F (977 C). Кремниевая бронза - это латунный сплав с низким содержанием свинца, который обычно состоит из 96% меди и небольшого процента кремния.Его температура плавления 1880 F (1025 C).

Латунь : 1700 F (927 C) Латунь - это сплав меди.

Медь : 1981 F (1083 C)

Чугун : 2200 F (1204 C)

Сталь : 2500 F (1371 C)

Нержавеющая сталь : 2750 F (1510 C)

Никель : 2646 F (1452 C)

Кованое железо: 2700 F (1482 C)

Железо : 2800 F (1538 C)

Вольфрам имеет чрезвычайно высокую температуру плавления 6150 F (3399 C), поэтому он используется для сварки электродов TIG.

Industrial Metal Supply предлагает широкий ассортимент металлов, а также сварочное оборудование и принадлежности. Посетите одно из шести наших мест или закажите онлайн сегодня.

Сравнение металлических сплавов: медь, латунь и бронза

Медь, латунь и бронза относятся к категории металлов, известных как «красные металлы», которые характеризуются своим красноватым оттенком. В то время как медь - чистый металл, латунь и бронза - это медные сплавы (латунь - это комбинация меди и цинка; бронза - это комбинация меди и олова).Все три этих металла демонстрируют уникальные комбинации свойств, которые делают их идеальными для использования в металлических листах.

Эта страница посвящена каждому из этих металлов с описанием их различных свойств, доступных марок и потенциальных областей применения. Кроме того, он охватывает некоторые ключевые факторы, которые следует учитывать при выборе меди, латуни и бронзы для конкретного применения.

Сплавы металлов меди, латуни и бронзы

Хотя медь, латунь и бронза относятся к одной и той же категории металлов, каждый из них обладает различными характеристиками, которые делают их идеальными для различных условий.Во всех отраслях промышленности важно, чтобы дизайнеры, инженеры и производители понимали эти различия, чтобы выбрать лучший металл для своих проектов.

Что такое медь?

Медь - переходный цветной металл. В отличие от латуни и бронзы, это чистый металл, встречающийся в природе; поэтому он находится в периодической таблице элементов. Это один из немногих металлов, встречающихся в природе и пригодных для непосредственной обработки.Хотя он используется сам по себе, он также сочетается с другими чистыми металлами и сплавами, образуя собственное подмножество сплавов.

Свойства меди

Медь обладает рядом свойств, которые делают ее идеальной для строительства и производства, например:

  • Медь демонстрирует отличную теплопроводность и электрическую проводимость, что делает ее пригодной для использования в электронных и электрических системах и тепловом оборудовании.
  • Обладает устойчивостью ко многим видам повреждений, включая удары, износ и коррозию.Кроме того, он сохраняет свою прочность при сгибании, формовании и вытягивании.
  • Устойчивость к противомикробным препаратам бактерий. Материал устойчив к бактериям, не разрушаясь. Он даже убивает бактерии, попавшие на его поверхность. Это качество делает его идеальным для использования в оборудовании, пригодном для пищевых продуктов.
Доступные марки меди

Доступность меди во многих различных сортах способствует ее универсальности. В Sequoia Brass & Copper мы предлагаем следующие сорта меди:

.
  • Сплав 101. Этот сплав представляет собой бескислородную медь, которая подходит для тех случаев, когда производителям требуется высокая проводимость и пластичность.
  • Сплав 110. Также называемый электролитической медью (ЭТП), этот сплав демонстрирует высочайший уровень электрической и теплопроводности, а также хорошую пластичность и пластичность.
  • Сплав 122. Этот сплав механически похож на сплав 110, но также демонстрирует превосходную формуемость, свариваемость и способность к пайке.Он доступен в трубках от Sequoia Brass & Copper.
  • Сплав 145. Доступный в прутках и стержнях, , этот сплав также известен как теллуровая медь, поскольку он состоит из меди с содержанием теллура 0,4–0,7%. Как и многие медные сплавы, он характеризуется отличной теплопроводностью и электропроводностью, а также высокой формуемостью и превосходной обрабатываемостью.
Применение медных металлических листов и профилей

В целом медь обладает прекрасной проводимостью, формуемостью и обрабатываемостью.Эти качества делают медные металлические листы подходящими для широкого спектра промышленных применений, в том числе для использования в архитектуре, строительстве, сантехнике, а также в материалах и компонентах теплообменников. Кроме того, его высокая пластичность позволяет втягивать листы в провода для электрических систем.

Что такое латунь?

Латунь, как и медь, является цветным, красным металлом. Однако, в отличие от чистого металла, это металлический сплав, который в основном состоит из меди и цинка.Другие металлы, такие как свинец, олово, железо, алюминий, кремний и марганец, также добавляются для получения более уникальных комбинаций характеристик.

Добавление цинка увеличивает прочность и пластичность основного медного материала. Чем выше концентрация цинка, тем прочнее и пластичнее сплав. Высокопрочная латунь содержит ≥39% цинка.

Свойства латуни

Как медный сплав латунь демонстрирует многие свойства, характерные для меди.Однако этот сплав действительно демонстрирует несколько отличительных свойств по сравнению с чистой медью и другими медными сплавами. Например:

  • Склонность к растрескиванию под напряжением. Поскольку латунь прочнее и жестче, чем чистая медь, она более подвержена образованию трещин под напряжением.
  • Пластичность и формуемость. По сравнению с бронзой, латунь более пластична. Кроме того, его легко отливать или работать.
  • Высокая температура плавления. Латунь имеет температуру плавления около 900 ° C.Точная температура плавления различается в зависимости от концентрации различных металлов в сплаве.
  • Неферромагнитный. Поскольку латунь не является ферромагнитной, ее намного проще переработать для вторичной переработки.

В зависимости от дополнительных металлов, добавленных в сплав, он может демонстрировать различные характеристики, такие как переменная температура плавления или более высокая коррозионная стойкость (из-за присутствия марганца).

Доступные марки латуни

Латунь доступна в различных марках, каждая из которых отличается точным составом материала.Компания Sequoia Brass & Copper предлагает шесть марок латуни:

.
  • Сплав 260. Также известный как патронная латунь, сплав 260 демонстрирует хорошие свойства холодной обработки. Он подходит для использования в боеприпасах, автомобилях, крепежных изделиях и оборудовании.
  • Сплав 272. Этот сплав, также называемый желтой латунью, на 33% состоит из цинка. Обычно он используется в промышленных и архитектурных приложениях.
  • Сплав 330. Сплав латуни 330 подходит для применений, где высокая обрабатываемость имеет решающее значение.Он содержит низкое содержание свинца, достаточное для холодной обработки, и обычно используется для производства труб.
  • Сплав 353. Сплав 353 (также называемый латунью для часов) часто используется для изготовления прецизионных компонентов, таких как часы и детали для часов, из-за его превосходной обрабатываемости.
  • Сплав 360. Также известный как латунь со свободной резкой, этот сплав является наиболее распространенным типом латуни. Он демонстрирует отличную обрабатываемость и формуемость, а также пригоден для операций пайки и пайки.Он обычно находит применение при производстве компонентов оборудования, арматуры, клапанов и крепежа.
  • Сплав 385. Также известный как архитектурная бронза, этот сплав может использоваться в строительстве и архитектуре. Сплав 385 доступен в широком разнообразии экструдированных и вытянутых форм, таких как углы, каналы, квадратная труба, отливки поручней и многое другое.
  • Сплав C48200 - C48500. Средство для обработки из морской латуни со свинцом. Обычно выпускается раундами.
  • Сплав 464. Сплав 464 (или морская латунь) известен своей превосходной стойкостью к коррозии в морской воде в широком диапазоне температур. Кроме того, он демонстрирует пригодность для горячей штамповки и горячей штамповки, а также для волочения, гибки, заголовка, пайки, пайки и сварки.
Применение латунных сплавов

Металлическая латунь имеет несколько различных применений. Поскольку металл имеет внешний вид, похожий на золото, и доступен во множестве оттенков, его часто используют для декоративных и архитектурных элементов.Кроме того, обрабатываемость и обрабатываемость материала позволяют использовать его в производстве сантехники, электроники и музыкальных инструментов.

Что такое бронза?

Бронза - это сплав на основе меди, который обычно состоит из примерно 88% меди и 12% олова. В сплаве также могут присутствовать следовые количества других металлов, таких как алюминий, марганец, фосфор и кремний.

Свойства бронзы

Многие свойства бронзы совпадают со свойствами меди и латуни.Например:

  • Отличная теплопроводность
  • Устойчивость к коррозии в морской воде
  • Высокая пластичность

Однако он также демонстрирует несколько уникальных характеристик, таких как хрупкость и немного более высокую температуру плавления, чем латунь (950 ° C).

Доступные марки бронзы

Существует множество типов бронзовых сплавов в зависимости от их состава. В Sequoia Brass & Copper мы поставляем бронзу следующих двух марок:

.
  • Сплав 932. Этот сплав представляет собой разновидность оловянной бронзы с высоким содержанием свинца и используется для изготовления втулок, шайб и компонентов, не работающих под давлением.
  • Сплав 954. Этот сплав представляет собой разновидность алюминиевой бронзы и используется для монтажа и промышленного оборудования в различных средах.
Применение бронзовых сплавов

Бронзовые металлические листы и профили подходят для широкого спектра промышленных применений, в том числе:

  • Втулки и подшипники
  • Электрические разъемы и пружины
  • Морское оборудование, такое как гребные винты и оборудование лодок или судов
  • Нефтехимический инструмент и компоненты нефтяной вышки, для которых требуются искробезопасные металлы

Правильный выбор металлических сплавов для ваших нужд

Выбор правильного типа металла для области применения имеет решающее значение для проектирования и производства высококачественной детали или продукта.Хотя медь, латунь и бронза обеспечивают электрическую и теплопроводность, коррозионную стойкость и прочность, между этими тремя металлами есть явные различия. При выборе материалов из листового металла следует учитывать следующие ключевые отличия:

  • Хотя каждый из трех металлов долговечен, они не обладают одинаковой гибкостью. Чистая бескислородная медь обеспечивает максимальную гибкость, пластичность и проводимость. Медь отличается высокой гибкостью и отличной проводимостью, тогда как бронза и латунь обладают большей обрабатываемостью.
  • Общего назначения. Латунь часто считается наиболее подходящей для общего применения. Он податливый, легко отливаемый, относительно недорогой и имеет низкий коэффициент трения. Его можно использовать для декоративных компонентов, металлических предметов, с которыми люди регулярно контактируют (например, дверных ручек), и поверхностей пищевого качества, которые должны быть антибактериальными или антимикробными.
  • Инструменты и оборудование, предназначенные для морской среды, должны иметь высокую степень устойчивости к коррозии.Бронза лучше всего подходит для защиты от коррозии в морской и морской среде. Его долговечность и твердость также позволяют ему выдерживать нагрузки в морских условиях.

Предложения из металлов и сплавов от Sequoia Brass & Copper

В Sequoia Brass & Copper мы предлагаем металлы в различных формах, в том числе:

  • Барс
  • Трубы
  • Тарелки
  • Стержни
  • листов
  • Трубы и трубки

Мы предоставляем услуги индивидуальной резки с жесткими допусками ± 0.020 дюймов, чтобы облегчить настройку этих материалов в соответствии с различными приложениями и спецификациями.

Sequoia Brass & Copper занимается поиском и резкой металла с 1983 года и в настоящее время имеет сертификат ISO 9001: 2015. Обладая более чем 30-летним опытом поиска и покупки сплавов, мы обладаем знаниями и навыками для поиска специализированных и труднодоступных медных сплавов для ваших уникальных потребностей.

Другие ресурсы листового металла от Sequoia Brass & Copper

В Sequoia Brass & Copper наша команда прилагает все усилия, чтобы удовлетворить все ваши потребности в меди, латуни и бронзе.Вот почему мы предоставляем ряд бесплатных инструментов, которые помогут облегчить процесс проектирования и разработки, в том числе:

Sequoia Brass & Copper - это бескислородная медь особой формы (OFC), которая представляет собой медь высокой чистоты с минимальным содержанием кислорода или его отсутствием. В нашем процессе используется электрически заряженный раствор сульфата меди и серной кислоты для уменьшения контакта металла с кислородом до 0,001% или менее. Чтобы узнать больше о характеристиках этого уникального материала, посетите страницу нашего продукта.

Свяжитесь с Sequoia Brass & Copper сегодня

Медь, латунь и бронза - это три разных металла, которые обладают множеством полезных характеристик, таких как проводимость, коррозионная стойкость и обрабатываемость.Следовательно, металлические листы, сформированные из этих материалов, находят применение во множестве промышленных приложений и сред конечного использования.

В Sequoia Brass & Copper мы предлагаем широкий выбор этих металлов в форме пластин, стержней и листов. Чтобы узнать больше о наших предложениях материалов, просмотрите наши запасы меди, латуни и бронзы. Если вы хотите стать нашим партнером для вашего следующего проекта, свяжитесь с нами или запросите бесплатное предложение сегодня.

точек плавления металлов - Руководство по плавлению металлов

от CGM Findings от 3 октября 2012 г.

Для тех, кто интересуется плавкой металлов - ну, теперь вы знаете.Разные температуры плавления для разных драгоценных металлов.
Есть над чем подумать при пайке, плавлении, ковке горячего металла.
Мы не включали это. Спасибо кому-то из сети ювелирных художников, кто это сделал.
Это ценная информация, заслуживающая упоминания.
Посмотрите на разницу между алюминием и железом. Что-то думать о. Хотя у вас может даже не быть возможности поработать с ними, конечно, неплохо иметь приблизительное представление о том, с чем вы имеете дело.
Мы действительно удивлены, что латунь, серебро и золото на самом деле выше, чем мы могли подумать, глядя на цифры.

«Обратите внимание, что точки плавления варьируются от ресурса к ресурсу - эта диаграмма составлена ​​с использованием многочисленных источников и перекрестных подтверждений».

Температура плавления металлов

Металл Точка плавления Цельсия Точка плавления по Фаренгейту
Алюминий 659 1218
Латунь (85 Cu 15 Zn) 900-940 1652-1724
Бронза (90 Cu 10 Sn) 850-1000 1562-832
Чугун 1260 2300
Медь 1083 1981
Золото (24k) 1063 1946
Утюг 1530 2786
Свинец 327 621
Никель 1452 2646
Палладий 1555 2831
Платина 1770 3220
Красная латунь 990–1025 1810–1880
Серебро (чистое) 961 1762
Серебро (стерлингов) 893 1640
Нержавеющая сталь 1363 2550
Сталь с высоким содержанием углерода 1353 2500
Средний углерод 1427 2600
Низкоуглеродистый 1464 2700
Олово 232 450
Титан 1795 3263
Желтая латунь 905–932 1660–1710
цинк 419 786

Эта информация взята из: Сеть художников-ювелирных художников [посмотрите и скажите им спасибо]
также у них есть версия в формате PDF, так что вы можете скачать эту таблицу!

http: // www.jewelryartistsnetwork.com/index/metals-melting-temperatures/

Сеть

Ювелирных Художников - Что ЭТО?

«Сеть - это онлайн-сообщество художников, которые хотят делиться, учиться и расти.
Мы говорим о технике, дизайне, бизнесе и многом другом.
Есть информационные статьи, учебные пособия, интервью с художниками, вдохновляющая галерея, видео, а также случайные проблемы и раздачи призов.

Цель - информировать, вдохновлять и поощрять рост ».

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Чтение EAP

Чтение EAP

Металлургия: производство сплавов

Большинство сплавов получают смешиванием металлов в расплавленном состоянии; затем смесь выливают в металлические или песчаные формы и дают застыть.Обычно сначала плавится основной ингредиент; затем остальные добавляются к он и должен полностью раствориться. Например, если водопроводчик делает припой, он может расплавить свинец, добавить олово, перемешать и отлить сплав в форму стержня. Некоторые пары металлов не растворяются таким образом. Когда это так, маловероятно, что образуется полезный сплав. Таким образом, если бы сантехник добавил алюминий, вместо олова к свинцу, два металла не растворятся - они будут вести себя как масло и вода. При литье металлы разделялись на два слоя, тяжелые свинец внизу и алюминий вверху.

Одна из трудностей при изготовлении сплавов состоит в том, что металлы имеют разную температуру плавления. Таким образом, медь плавится при 1083 ° C, а цинк - при 419 ° C и кипит при 907 ° C. при изготовлении латуни, если мы просто поместим кусочки меди и цинка в тигель и нагревая их выше 1083 ° C, оба металла непременно расплавятся. Но при этом при высокой температуре жидкий цинк выкипит, а пар окислится. в воздухе. В этом случае принят метод: сначала нагревают металл, имеющий более высокая температура плавления, а именно медь.Когда он расплавлен, твердый добавляется цинк, который быстро растворяется в жидкой меди до того, как цинк выкипел. Тем не менее, при изготовлении латуни следует делать поправку. из-за неизбежных потерь цинка, составляющих примерно одну двадцатую часть цинка. Следовательно, при взвешивании металлов перед легированием дополнительное количество цинка.

Иногда изготовление сплавов затруднено из-за более высокой температуры плавления. точечный металл находится в меньшей пропорции.Например, один легкий сплав содержит 92% алюминия (точка плавления 660 ° C) с 8% меди (плавление точка 1,083 ° C). Для изготовления этого сплава было бы нежелательно плавить несколько фунтов меди и добавляют почти в двенадцать раз больше веса алюминия. В металл пришлось бы так сильно нагреть, чтобы большая часть алюминия растворить, что газы будут абсорбированы, что приведет к ненадежности. В этом, как во многих других случаях легирование проводится в два этапа. Сначала промежуточный производится «упрочняющий сплав», содержащий 50% меди и 50% алюминия, какой сплав имеет температуру плавления значительно ниже, чем у меди и, фактически, ниже, чем у алюминия.Затем алюминий плавится и правильный количество добавленного сплава-отвердителя; таким образом, чтобы сделать 100 фунтов алюминия-меди сплава нам потребуется 84 фунта. алюминия, который нужно расплавить первым, и 16 фунтов отвердителя сплав, который нужно добавить к нему.

В некоторых случаях температуру плавления сплава можно рассчитать приблизительно по арифметике. Например, если медь (точка плавления 1083 ° C) легирована никель (точка плавления 1,454 ° C) сплав пятьдесят на пятьдесят плавится примерно на полпути между двумя температурами.Даже в этом случае поведение сплава на плавить не просто. Медно-никелевый сплав не плавится и не замерзает сразу. фиксированная и определенная температура, но постепенно затвердевает в диапазоне температура. Таким образом, если медно-никелевый сплав пятьдесят на пятьдесят сжижается, а затем постепенно остывая, он начинает замерзать при 1312 ° C, а по мере понижения температуры все больше и больше сплава становится твердым, пока, наконец, при 1248 ° C он полностью не станет твердым. затвердел. За исключением некоторых особых случаев, этот «диапазон замерзания» встречается в все сплавы, кроме чистых металлов, металлов или химических соединений, и в некоторых специальных составах сплавов, упомянутых ниже, все из которых плавятся. и заморозить при одной определенной температуре.

Сплав олова и свинца представляет собой пример одного из этих особых случаи. Свинец плавится при 327 ° C, олово - при 232 ° C. Если в расплавленное олово добавлен свинец и затем сплав охлаждают, температура замерзания сплава оказывается равной ниже точки замерзания свинца и олова (см. рисунок 1). Например, если расплавленный сплав, содержащий 90 процентов олова и 10 процентов свинца, охлаждается, смесь достигает температуры 217 ° C, прежде чем начинает затвердевать. Потом, по мере дальнейшего охлаждения сплава он постепенно выходит из полностью жидкого состояния, через стадию, когда она похожа на кашицу, пока не станет густой, как каша, и, наконец, при температуре 183 ° C весь сплав стал полностью твердый.Из рисунка 1 видно, что с 80-процентным содержанием олова сплав начинает затвердевать при 203 ° C и заканчивается только тогда, когда температура упала до 183 ° C (обратите внимание на повторение 183 ° C).

Что происходит на другом конце ряда, когда олово добавляется к свинцу? Один раз снова точка замерзания понижается. Сплав, содержащий всего 20 процентов олова и оставшийся свинец начинает замерзать при 279 ° C и завершает затвердевание при теперь знакомая температура 183 ° C. Один конкретный сплав, содержащий 62 на процентов олова и 38 процентов свинца, плавится и полностью затвердевает при температуре 183 ° C.Очевидно эта температура 183 ° C и 62/38% состава важны для система сплава олово-свинец. Подобные эффекты возникают во многих других системах сплавов. и специальный состав, который имеет самую низкую температуру замерзания в серии и который полностью замерзает при этой температуре, получил особое название. Конкретный сплав известен как «эвтектический сплав ». температура (183 ° C в случае сплавов олово-свинец) называется эвтектикой температура.

Путем тщательного выбора компонентов можно изготавливать сплавы с необычно высокой низкие температуры плавления. Такой легкоплавкий сплав представляет собой сложную эвтектику четырех или пяти металлы, смешанные так, чтобы температура плавления была понижена до самой низкой точки плавления точка возможна из любой смеси выбранных металлов. Знакомый плавкий сплав, известный как металл Вуда, имеет состав:

висмут

4 части

Свинец

2 части

Олово

1 часть

Кадмий

1 часть

и его температура плавления около 70 ° C; то есть ниже точки кипения воды.Шутники часто развлекались, бросая это плавкий сплав в форме чайной ложки, который тает при перемешивании чашка горячего чая.

Эти сплавы с низкой температурой плавления регулярно используются для более серьезных целей, как, например, в автоматических противопожарных оросителях, установленных в потолках зданий. Каждая форсунка спринклерной системы содержит кусок плавкого предохранителя. сплава, так что если произойдет пожар и температура поднимется достаточно высоко, сплав плавится и вода выходит через форсунки оросителя.

(из Металлы на службе человека У. Александер и А. Стрит.)

Точки плавления

Свойства медного провода AWG
Размеры центрирующего сверла
Размер сверла и десятичные эквиваленты
Имперская диаграмма ответвлений
Размеры шпоночной канавки
Точки плавления
Метрическая диаграмма ответвлений
Размеры уплотнительного кольца
Трубная резьба
Винтовые экстракторы
Калибры и веса для листового металла
Винты с головкой под торцевой ключ
Расчет конуса
Конические штифты
Размеры конического хвостовика
Размеры шайб
Калибры проводов
Размеры шурупа

Бронза vs.Латунь - в чем разница?

Задолго до эры алюминия и стали был изобретен металлический сплав, то есть материал, созданный путем объединения двух синергетических металлов вместе. Таким образом, полученный сплав не только сохраняет некоторые свойства каждого элемента, но и может иметь новые свойства, которых нет ни у одного из них, что произвело революцию в нашем современном выборе материалов. Два сплава, которые положили начало этому сдвигу, - это бронза и латунь, которые представляют собой древние металлические сплавы, которые тысячелетиями использовались греками и другими бывшими империями.Эти металлы послужили отправной точкой для всех других сплавов, и в этой статье мы исследуем бронзу и латунь и их различия. Будут подробно описаны физические, химические и механические свойства бронзы и латуни, а также то, как они используются до сих пор. Эта статья призвана показать, как эти металлы, будучи более архаичными, чем большинство других инженерных материалов, по-прежнему являются необходимыми компонентами нашего успеха в современную эпоху.

бронза

Бронза - это результат добавления олова к меди, хотя часто бывает много дополнительных побочных элементов, потому что бронза была обнаружена примерно в 3500 году до нашей эры, до того, как были разработаны точные химические методы.В наше время бронза считается классом медных сплавов, который был определен на основе их рабочих свойств и конкретных легирующих элементов. Было обнаружено, что такие металлы, как свинец, марганец, сурьма, никель, цинк, кремний и другие, улучшают бронзу, поэтому теперь у дизайнеров есть широкий выбор марок бронзы. Чтобы узнать больше о различных типах бронзы, прочтите нашу статью о типах бронзы.

Типичная бронза красновато-коричневого / золотого цвета и хрупкая, но менее хрупкая, чем чугун.Он имеет относительную плотность около 8,8 г / см 3 и демонстрирует низкое трение при контакте с другими металлами. Он легко проводит тепло и электричество и имеет диапазон температур плавления 950-1050 ° C, в зависимости от количества присутствующего олова. Он окисляется на воздухе из-за высокого содержания меди, что придает бронзе отчетливую пятнистую патину. Это окисление предотвращает коррозию бронзы, особенно в морской среде; однако, если соединения хлора могут вступать в реакцию с бронзой, начинается процесс, известный как «болезнь бронзы», когда коррозия вызывает еще большую коррозию, медленно разрушая сплав с течением времени.Благодаря устойчивости к соленой воде бронза может использоваться для изготовления лодок и подводных частей моря, а также для скульптур, которые должны противостоять разложению во внешней среде. Он демонстрирует отличные литейные свойства и может быть легко отлит в виде подшипников, зажимов, электрических соединений, пружин и многого другого.

Если вы заинтересованы в приобретении бронзы для своего проекта, не стесняйтесь просматривать нашу платформу закупок для поставщиков бронзы.

Латунь

Латунь была обнаружена около 500 г. до н.э. и представляет собой сплав меди и цинка, хотя она также содержит другие элементы, как и бронза.Поскольку латунь и бронза сильно пересекаются, латунь обычно обозначается большим процентным содержанием цинка и относительным отсутствием олова (хотя, что сбивает с толку, также существуют луженые латунные сплавы, что еще больше размывает линии). Свинец - обычная добавка к латуни, которая увеличивает ее обрабатываемость, а также к другим уникальным элементам, которые создали класс латунных сплавов.

Латунь - это цвет яркого золота, меди или даже серебра, в зависимости от соотношения цинка и меди. Она более пластична, чем бронза, и демонстрирует такое же низкое трение при контакте с другими металлами.Он имеет плотность около 8,73 г / см 3 и имеет низкую температуру плавления 900–1000 ° C, в зависимости от сплава. Латунь отлично проводит тепло и устойчива к коррозии, особенно к гальванической коррозии в морской воде. Он хорошо отливает, достаточно прочен и привлекателен и даже обладает некоторыми антимикробными свойствами благодаря высокому содержанию меди. Чаще всего латунь используется в музыкальных инструментах, декоративных накладках, винтах, радиаторах, гильзах для пуль и т. Д.

Если вы заинтересованы в покупке латуни для вашего проекта, не стесняйтесь просматривать нашу платформу закупок для поставщиков латуни.

Сравнение бронзы и латуни

Хотя эти металлы связаны как по составу, так и по внешнему виду и даже по применению, латунь и бронза часто используются для разных целей. Будет полезно изучить, что отличает эти два медных сплава друг от друга, исследуя некоторые общие механические свойства, показанные ниже в таблице 1.

Таблица 1: Сравнение свойств материалов бронзы и латуни.

Свойства материала

бронза

Латунь

Шт.

Метрическая система

Английский

Метрическая система

Английский

Теплопроводность (20 ° C)

24 Вт / м-К

15 БТЕ / (час фут ° F)

120 Вт / м-К

64.1 британская тепловая единица / (час · фут · ° F)

Усталостная прочность

90,0-352 МПа

13100-51100 фунтов на кв. Дюйм

22-360 МПа

3190-52200 фунтов на кв. Дюйм

Температура плавления (средняя)

1010 ° С

917 ° С

Твердость (по Бринеллю)

40–420

55-73

Обрабатываемость (средняя)

33.0%

46,8%

Теплопроводность - хороший способ узнать, будет ли металл использоваться в тепловых приложениях, потому что она показывает, сколько энергии может передаваться через материал и с какой скоростью. Теплопроводность латуни намного выше, чем у бронзы, что делает ее идеальным выбором для радиаторов отопления. Бронзу также можно использовать в тепловых приложениях, но латунь всегда будет иметь приоритет, если есть выбор между ними.

Усталостное напряжение - это напряжение, вызванное частой сменой небольших напряжений, которые могут вызывать микро- и даже макротрещины в материале в течение длительного периода времени. Это значение жизненно важно для понимания того, будет ли материал подвергаться постоянным нагрузкам, таким как частые изменения температуры или нагрузки, которые могут нарушить целостность сплава при достаточном количестве циклов. Усталостная прочность бронзы и латуни дана в виде диапазонов в Таблице 1, поскольку существует множество сплавов каждого металла. Бронза обычно имеет более высокое сопротивление усталости, чем латунь, что можно увидеть, сравнив нижнюю границу их диапазонов усталостной прочности.Это качество делает бронзу более подходящей для морских деталей и пружин, которые в процессе эксплуатации подвергаются постоянным нагрузкам.

Латунь имеет более низкую среднюю температуру плавления, чем бронза (917 против 1010 ° C), но обе они легко отливаются. При использовании любого из этих металлов для отливки форм учитывайте желаемые механические свойства; более устойчивый проект, скорее всего, выиграет от бронзы, в то время как более декоративный может использовать латунь для большего эффекта.

Твердость - это мера реакции материала на местные поверхностные напряжения и его реакции на царапины, вмятины и т. Д.Шкала твердости по Бринеллю - одна из многочисленных доступных шкал твердости, в которой используется собственная машина для определения твердости для определения реакции материала на стандартизованную силу. Для справки: типичное стекло получает 1500 баллов по шкале твердости Бринелля и свинец 5 баллов; Используя их в качестве ориентиров, таблица 1 ясно показывает, что бронза в среднем тверже латуни. Более твердый материал обычно более хрупкий, и бронза следует этому правилу, поскольку она гораздо более склонна к разрушению, чем латунь. Если обрабатываемость необходима, латунь, безусловно, лучший выбор, чем бронза.Однако, если важны прочность и износостойкость, бронза может быть лучшим вариантом.

Обрабатываемость - это сравнительная оценка металлов, чтобы показать, как они реагируют на механические нагрузки, такие как токарная обработка, фрезерование, штамповка и другие процедуры. Важно понимать показатель обрабатываемости металла, поскольку он определяет, какие типы обработки могут быть выполнены, если таковые имеются. Процент обрабатываемости металла сравнивается с эталонным металлом, где этому металлу присваивается рейтинг 100% (легко обрабатывается).Металлу, который труднее обрабатывать, присваивается рейтинг ниже 100%, что относится как к бронзе, так и к латуни. Есть некоторые сплавы, разработанные специально для механической обработки (например, латунный сплав C360), но большинство медных сплавов слишком пластичны для обработки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *