Температура вспышки масла индустриального: Разбираемся в терминологии моторных масел

alexxlab | 15.08.1989 | 0 | Разное

Содержание

Разбираемся в терминологии моторных масел

ACEA

ACEA (Association des Constructeurs Européens de I`Automobile) – это Ассоциация европейских изготовителей автомобилей, которая была основана в 1991 году.

Ассоциация представляет на уровне Евросоюза интересы 15 разных европейских производителей легковых автомобилей, грузовых автомобилей и автобусов. В число членов организации входят такие производители как BMW, Scania, Volkswagen, MAN, Volvo и т.д. Помимо этого в организацию ACEA также входят представители поставщиков присадок и производителей смазочных материалов, которые подбирают для спецификации испытательные методы и двигатели. Организация разрабатывает спецификации ACEA и в качестве испытательных машин в основном используются двигатели европейских производителей. Спецификации ACEA объединяют лабораторные и технические требования, предъявляемые различными европейскими производителями транспортных средств к маслам. Спецификации также определяют основные требования к чистоте двигателя, стойкости к старению, противоизносной защите, расходу топлива и выбросу загрязняющих веществ.

В целях обеспечения постоянного роста качества моторных масел ACEA начала при- менять в декабре 2010 года новые классы ACEA. Классификация ACEA, изданная в 2010 году, определяет минимальные требования всех европейских производителей транспортных средств и двигателей:

  • ACEA A/B, ACEA C – масла для бензиновых и дизельных двигателей лег- ковых автомобилей;
  • ACEA E – масла для мощных дизельных двигателей.

Номер года – это год издания соответствующей серии испытаний.

Сравнительно «недавний» год указывает на то, что введено новое испытание, параметр испытания или предел значения. В большинстве случаев масло с более новым номером года более качественное и дорогое, нежели масло, которое отвечает старым и устаревшим требованиям. Номер издания (Issue) обновляют без изменения года только в том случае, если спецификацию редактируют без внесения поправок в технические параметры, влияющие на эффективность масла. На большинстве упаковок масел отсутствует информация об издании спецификации.

Эта информация может быть указана в листах описания производителя, которые часто публикуются в Интернете. Производитель должен по меньшей мере суметь предоставить информацию об издании спецификации.

API

API (American Petroleum Institute) – это Американский институт нефти, который выдает классификации API, распространенные в США и Азии.

Издание классификаций API происходит аналогично выдаче спецификаций ACEA. В качестве же испытательных машин в основном используются двигатели американских производителей. Система классификации API разделяет моторные масла только на две группы:

  • API S – масла для бензиновых двигателей;
  • API C – масла для дизельных двигателей.

Обозначение класса API, как правило, состоит из двух букв, первая из которых указывает на тип моторного масла и вторая на соответствие определенному стандарту качест- ва. Чем дальше от начала алфавита находится вторая буква, тем выше качество масла, напр. , масло API SJ более низкого качества, чем API SM. Американские производители двигателей не требуют альтернативы классам ACEA A и B, поскольку они не производят высокооборотистые дизельные двигатели для легковых автомобилей – в США не популярны легковые автомобили с дизельным двигателем.

Стандарты API регулярно дополняют, а также ужесточают, и вторая буква классификации, в сущности, показывает, каким требованиям к качеству отвечает масло, а также в каком году действовали эти требования.

JASO

JASO – это спецификация и знак качества моторных масел для мотоциклов. Классы качества JASO подразделяются на группы M, требования которой распространяются на масла для четырехтактных двигателей и F, которая действует в отношении масел для двухтактных двигателей.

Масла группы M, в свою очередь, делятся на масла категории MA и MB, различающиеся величиной коэффициента трения, создаваемого в смазываемой муфте сцепления.

Масла категории MA характеризуются высоким коэффициентом трения. Они не создают проблем в двигателях мотоциклов с высоким крутящим моментом при сравнительно небольшой муфте сцепления и идеально подходят для муфт сцепления.

К классу MB относят масла, которые хотя и выполняют все остальные критерии спецификации JASO, но не достигают достаточно высокого коэффициента трения. Они лишь ограниченно применимы в мотоциклах с «чутким сцеплением».

Самые высокие требования к моторным маслам для четырехтактных двигателей в на- стоящее время определены стандартом JASO MA-2. Данный класс качества обозначает еще более высокие коэффициенты трения в муфте сцепления и, следовательно, максимальную совместимость с муфтами сцепления даже в случае с двигателями со сверхвысоким крутящим моментом.

Low SAPS

Аббревиатура SAPS образуется от первых букв английских слов Sulphated Ash, Phosphorus и Sulphur, а английское слово low в русском языке означает «низкий». Следовательно, моторное масло с характеристикой low SAPS является маслом, которое содержит минимальное количество сульфатной зольности, фосфора и серы. Поскольку такие масла образуют мало золы, их также называют маслами low ash. Применения моторных масел low SAPS требуют именно современные транспортные средства.

Mid SAPS

Аббревиатура mid образуется от английского слова middle, что в русском языке означает «средний». Таким образом, моторные масла mid SAPS характеризуются средним содержанием сульфатной зольности, фосфора и серы.

SAE

SAE (Society of Automotive Engineers) – это организация, разработавшая классы вязко- сти, которыми обозначают текучесть масел для четырехтактных двигателей.

Классы вязкости указывают на текучесть масла и его зависимость от температуры, но не связаны напрямую с качеством масла. Первая цифра, за которой обычно следует буква W, показывает текучесть масла при низких температурах, то есть т.н. зимнюю вязкость (Winter). Вторая цифра показывает свойство масла сохранять достаточную густоту и при высоких температурах, то есть вязкость масла при 100 °C.

Чем меньше число зимнего класса (SAE 0W, 5W, 10W и т.д.), тем при более низких температурах масло остается жидким – это облегчает пуск двигателя и защищает холодный двигатель. Чем больше число летнего класса (SAE 30, 40, 50 и т.д.), тем выше вязкость масла при 100-градусной температуре и тем лучше оно сможет защитить двигатель при экстремальных условиях эксплуатации.

Большинство двигателей создано для работы на маслах класса вязкости SAE 10W-40, что является достаточным при погоде от -25 до +40 градусов.

Учитывая климатические условия Эстонии, наиболее распространенными моторными маслами являются масла вязкостью SAE 5W-30; 5W-40 и 10W-40.

Вязкость

Вязкость отвечает за способность масла препятствовать износу поверхностей трения за счет образования масляной пленки. Также вязкость характеризует текучесть масла при определенной температуре. Каждое масло имеет индивидуальную зависимость вязкости от температуры.

На изменение вязкости в зависимости от температуры влияют подобранное базовое масло и специальные присадки, например улучшители индекса вязкости

(ИВ, или VI). Вязкость HTHS

У современных всесезонных моторных масел с улучшителями ИВ вязкость однако за- висит не только от температуры, но и от давления и градиента скорости сдвига. Градиент скорости сдвига получают при делении скорости движущейся детали (м/с) на тол- щину масляной пленки (м). Чтобы сделать выводы о вязкости используемого масла, уже некоторое время применяют вязкость HTHS (High Temperature High Shear). Данный параметр описывает поведение масла в смазочном отверстии при температуре 150°C и при высоком градиенте скорости сдвига, который типичен для высоких скоростей двига- теля.

Для того чтобы всесезонные моторные масла с улучшителями индекса вязкости обес- печивали необходимую смазку также при высоких температурах и скоростях, в категории ACEA C установлены предельные значения вязкости HTHS.

Моторные масла, у которых вязкость HTHS составляет менее 3,5 мПа∙с, также помогают снизить расход топлива, однако их нельзя применять в двигателях, не предназначенных для таких масел.

Индекс вязкости

Индекс вязкости – это величина, которая характеризует зависимость вязкости от температуры: чем выше индекс вязкости, тем меньше текучесть масла зависит от температуры, т.е. тем лучше масло выдерживает низкие и высокие температуры. Значения индекса вязкости минеральных масел обычно находятся в диапазоне 90– 110, у синтетических базовых масел индекс вязкости почти всегда превышает 140. Чем выше индекс вязкости, тем меньше энергии потребуется при холодном пуске двигателя или при низких температурах с такой же номинальной вязкостью масла.

Температура вспышки (flash point)

Параметром, который косвенно характеризует испаряемость моторного масла, является температура вспышки, или точка вспышки. Это самая низкая температура, при которой пары нагреваемого моторного масла при определенных условиях образуют смесь с воздухом, взрывающуюся при поднесении пламени (первая вспышка).

При температуре вспышки моторное масло еще не воспламеняется. Температуру вспышки определяют при нагревании моторного масла в открытом или закрытом тигле. Результаты имеют разные значения, в закрытом тигле температура вспышки ниже на 20–25 °C.

При выборе моторного масла следует знать, что чем ниже температура вспышки моторного масла, тем оно интенсивнее испаряется и сгорает на высокотемпературных поверхностях, а также загрязняет двигатель золой, сажей и прочими продуктами горения. Более качественным является моторное масло, имеющее более высокое значение температуры вспышки. У современных моторных масел температура вспышки превышает 200 °C, обычно она равна 210–230 °C и выше.

Температура воспламенения (fire point)

Температура воспламенения моторного масла – это температура, при которой моторное масла при нагревании в открытом тигле (метод Бренкена) воспламеняется от огня и горит не менее 5 секунд. Температура воспламенения моторных масел выше температуры вспышки по меньшей мере на 20–30 °C. Температура воспламенения не является определяющим параметром в случае с моторными маслами.

Летучесть (volatility)

Летучесть – свойство наиболее легких фракций моторного масла испаряться при высоких температурах, что выражается в процентах потери от испарения после нагревания моторного масла в течение часа при температуре 250 °C. Для определения испаряемости, или летучести моторного масла, применяется метод Нок. Если после нагревания в течение часа 1 000 г моторного масла при температуре 250 °C остается 850 г масла, это означает, что его летучесть составляет 15 % (минус 150 г). В соответствии с требованиями ACEA, испаряемость моторных масел класса A1/B1 не смеет превышать 15 %, у масел классов A3/B3, A3/B4, A5/B5, C1, C2, C3, E4, E6, E7, E9 этот показатель должен быть меньше 13 % или равен 13 %, а у масел класса C4 испаряемость должна быть меньше 11 % или равна 11 %. Если моторное масло слишком летуче, его придется чаще заливать в двигатель и по- этому расход масла будет высоким.

Общее щелочное число (ОЩЧ)

Общее щелочное число является мерой количества резервных щелочных добавок, вводимых в смазочные материалы для нейтрализации кислот, замедления окисления и коррозии, повышения смазывающей способности, улучшения вязкостных характеристик и уменьшения тенденции к выпадению осадка. Проще говоря, это тест для оценки способности к нейтрализации агрессивных кислот, которые могут образовываться в процессе нормальной эксплуатации оборудования.

Составы присадок в маслах различных производителей значительно различаются, поэтому наиболее важным аналитическим параметром является изменение щелочного числа свежего либо используемого смазочного материала по отношению к состоянию предыдущей пробы.

Числа нейтрализации моторных масел

Температура затвердевания (setting point)

Температура затвердевания – температура, при которой масло перестает быть жидкостью и застывает. При охлаждении масло перестает течь под воздействием силы тяжести. Температура затвердевания часто ниже температуры застывания на 3–5 °C. Затвердевание масла обусловлено кристаллизацией парафинов, которые присутствуют в базовом масле. При соединении кристаллов парафина консистенция масла становится твердой и похожей на воск.

Температура застывания (pour point)

Температура застывания (точка текучести) – это самая низкая температура, при которой масло еще обладает способностью течь. Температура застывания (pour point) и температура затвердевания (setting point) характеризуют физические свойства смазочного материала при низких температурах.

TBN – Total Base Number, или общее щелочное число

Общее щелочное число показывает количество кислоты, необходимой для нейтрализации щелочей, содержащихся в 1 грамме моторного масла (выражается в мг KOH, или гидроокиси калия). Таким образом, TBN описывает количество слабых и сильных щелочей в составе моторного масла.

TAN – Total Acid Number, или общее кислотное число

Общее кислотное число показывает количество гидроокиси калия (KOH) в миллиграммах, которое необходимо для нейтрализации свободных кислот, находящихся в 1 грамме моторного масла. Таким образом, TAN выражает количество слабых и сильных кислот, содержащихся в моторном масле.

SBN – Strong Base Number, или щелочное число для определения сильных кислот

Щелочное число для определения сильных кислот показывает количество кислоты, которое потребуется для нейтрализации сильных щелочей, содержащихся в 1 грамме моторного масла. Таким образом, SBN выражает количество сильных щелочей, преж- де всего неорганических щелочей, присутствующих в моторном масле, что крайне редко встречается на практике.

SAN – Strong Acid Number, или число сильных кислот

Число сильных кислот показывает количество щелочи, необходимой для нейтрализации сильных кислот, содержащихся в 1 грамме моторного масла (выражается в мг KOH). Таким образом, SAN показывает количество сильных, или неорганических ки- слот, в составе моторного масла.


Температура возгорания масла: градус воспламенения моторного нефтепродукта

Чем отличаются температуры вспышки и возгорания моторного масла. Что включают в себя эти понятия. Почему тепловые характеристики играют такую роль. Ответы на эти и другие вопросы – в статье

В оборудовании, автомобильном моторе в качестве смазки используется масло. Температурные показатели жидкости заметно влияют на проявляемые свойства. Но наиболее опасно превышение тепловых характеристик.

Какие же значения считаются нормой? Чем угрожает вспышка и воспламенение субстанции? Как действовать в таких ситуациях?

Содержание

  1. Оптимальная температура моторного масла
  2. Вспышка и воспламенение индустриального масла
  3. Определение
  4. Причины
  5. Признаки
  6. Опасность
  7. Что делать при возгорании моторного масла

Оптимальная температура моторного масла

Используемые в промышленности группы материалов, предназначенные для смазывания гидравлических передач, оборудования, измерительной аппаратуры, станков, имеет разнообразный режим эксплуатации.

Как правило, рабочая температура находится в диапазоне 40–60 °C. Но с развитием технологий все чаще стали появляться механизмы с повышенным уровнем нагрузок, требованиями к стойкости масла к окислению в течение нескольких тысяч часов эксплуатации, функциональным режимом до 100 °C.

Рабочая температура материала зависит от его вязкости. Чем выше ее уровень, тем при больших тепловых нагрузках будут сохраняться эксплуатационные свойства индустриального масла.

Нормирование параметров для мало- и средневязкого материала производится при температуре 50 °C, а тяжелого (высоковязкого) – при 100 °C.

Рабочий диапазон эксплуатации масла ограничивается двумя величинами. Нижнее значение – это температура застывания, а верхнее – воспламенения паров.

Для механизмов опасна любая крайность, а при достижении больших тепловых показателей появляется угроза загорания мотора.

Вспышка и воспламенение индустриального масла

Эти два параметра относятся к высокотемпературным критическим точкам эксплуатации.

Определение

При повышении температуры материала начинается его испарение с образованием газовой смеси над поверхностью. Если к возникшему облаку поднести источник открытого огня, произойдет быстрогаснущая вспышка, которая не приведет к возгоранию масла.

Наименьшая температура, при которой происходит описанный процесс, называется температурой вспышки вещества.

Если продолжать нагрев материала, то в определенный момент загорится само масло, причем огонь продержится в течение пяти секунд и дольше. В этот момент фиксируется температура возгорания масла.

Причины

Во-первых, тепловые параметры вещества могут изменяться в течение его эксплуатации. Во время использования смазки происходят процессы окисления, внутренние химические реакции. Образуются смеси с лаками, красками, появляются нагар, вкрапления мелких частиц, образующихся при трении деталей мотора.

Данные процессы ускоряются при работе агрегата в условиях повышенных температур, самовоспламенении.

Во-вторых, при возникновении подтекания горючего, например, в автомобильном двигателе. Бензин или дизельное топливо имеют более низкие тепловые показатели вспышки. Смешиваясь со смазкой, они понижают значения температуры возгорания моторного масла.

Для жидких веществ наиболее часто устанавливают и используют показатели вспышки. Есть два метода определения ее температуры в открытой емкости (Кливленда) и закрытом тигле (Пенкси-Мартенса). Эти два способа дают приблизительно одинаковые значения, погрешность составляет не более 20 °C.

Для топлива температуру вспышки определяют в закрытом тигле в соответствии с ГОСТ 6356-75, тогда как для моторных масел применяют метод Кливленда (открытый).

Рассмотрим значения тепловых показателей для некоторых жидкостей.

ПродуктТемпература вспышки, °C
Автобензин–39
Дизельное топливо78
Топливо Т-128
Моторное масло МК-22259
Смазка ТП-22 (турбинная жидкость)198
Индустриальное масло И5А

И20А

И50А

140

200

225

Мазут флотский Ф-12158
Этиловый спирт13

Из таблицы видно, что тепловые показатели топлива заметно ниже, чем у веществ, применяющихся для смазки двигателей.

Для масел, применяемых в процессе приготовления пищи, используется показатель «точка дымления». Это температура, при которой субстанция начинает разлагаться и терять свойства.

Например, подсолнечное нерафинированное масло становится непригодным для употребления уже при 107 °C. А самую высокую тепловую обработку допускается проводить с использованием топленого масла (гхи). Оно сохраняет характеристики до 252 градусов Цельсия.

Признаки

Основанием для того, чтобы заподозрить критическое повышение температуры в двигателе, могут стать:

  • показания приборов, которые монтируются в автомобилях и на некотором промышленном оборудовании: если стрелка термостата приближается к красной зоне, необходимо принять меры для охлаждения механизма;
  • характерный звук закипания смазки или хлопо́к при вспышке;
  • появление дыма вокруг оборудования или из-под капота машины;
  • выхлопы автомобиля черного цвета.

При возникновении одного или нескольких признаков перегрева мотора стоит немедленно приступить к устранению появившейся проблемы.

Опасность

При перекаливании снижается вязкость смазывающего состава.

Это, в свою очередь, приводит к:

  • уменьшению зазора между деталями механизма;
  • ускорению процессов окисления, вступлению состава в химические реакции, старению масла;
  • появлению нагаров, отложений, способных спровоцировать детонационный взрыв двигателя;
  • образованию пленки, которая запекается на внутренних поверхностях;
  • вспышке и возгоранию механизма, который может уничтожить оборудование или автомобиль за считаные минуты.

Что делать при возгорании моторного масла

Если все-таки первые признаки перегрева оборудования были проигнорированы, и начался процесс горения, то прежде всего надо вызвать бригаду МЧС. Затем остановить работу механизма, по возможности его обесточить и приступить к тушению пламени.

Гасить огонь, возникший в масляной среде, водой нельзя. Вода тяжелее масла и не растворяет его, а опускается ниже, начинает испаряться и затруднять мероприятия по ликвидации пожара. Лучше всего использовать углекислотный или порошковый огнетушитель, который перекроет доступ воздуха к пламени и остановит реакцию окисления.

Чтобы не допустить возгорания моторного масла, надо постоянно контролировать температурный режим работы агрегатов, заботиться об охлаждении нагревающихся механизмов и своевременно производить замену смазочного материала.

Детальная информация видна на видео:

Индустриальные масла – НефтеМагнат

Свойства масел

    Назначение индустриальных масел – обеспечить снижение трения и износа деталей металлорежущих станков, прессов, прокатных станов и другого промышленного оборудования. Одновременно индустриальные масла должны отводить тепло от узлов трения, защищать детали от коррозии, очищать поверхности трения от загрязнения, быть уплотняющим средством, не допускать образования пены при контакте с воздухом, предотвращать образование стойких эмульсий с водой или быть способными эмульгировать, хорошо фильтроваться через фильтрующие элементы, быть нетоксичными, не иметь неприятного запаха и т. д. В условиях применения смазочные масла подвергаются воздействию высоких температур и давлений, контактируют с различными металлами, воздухом, водой и различными агрессивными средами. Поэтому в период эксплуатации они окисляются – повышается вязкость, кислотное число, коррозионная активность, засоряются продуктами износа – усиливается абразивный износ, ухудшается фильтрование, появляются продукты деструкции – понижается вязкость, температура вспышки, появляется вода и др.

    Ниже приведены основные нормируемые для индустриальных масел показатели качества.

    Плотность непосредственно связана с такими важными свойствами, как вязкость и сжимаемость. Она существенно влияет на передаваемую гидропередачей мощность и определяет запас энергии в масле при его циркуляции. Применение масел высокой плотности позволяет существенно уменьшить размеры гидропередачи при той же мощности. При повышении давления плотность масел возрастает вследствие их сжимаемости:

 

Давление, МПа

0,1

35

105

140

Плотность, кг/м3

885

895

920

930

 

    Вязкость – одно из важных свойств, имеющих эксплуатационное значение, общее для большинства масел. При гидродинамических расчетах, связанных с конструированием узлов трения и подбором для них масла, обычно используют кинематическую вязкость. Ее обязательно нормируют для всех нефтяных масел. Длительное время кинематическая вязкость индустриальных масел определялась при температурах 50 и 100 °С. В настоящее время принятой по классификации ISO 3448-75 является температура 40 °С (вместо 50 °С). При выборе масла следует учитывать три критических значения вязкости: оптимальное при нормальной рабочей температуре, минимальное при максимальной рабочей температуре и максимальное при самой низкой температуре.

    Вязкость масла в значительной степени зависит от давления. Это имеет особое значение при смазывании механизмов, работающих с большими удельными нагрузками и высоким давлением в узлах трения, что должно учитываться при конструировании и расчетах механизмов. Требуемый уровень вязкости в рабочих условиях положительно сказывается на смазывающих свойствах масла: между поверхностями трения создается прочный смазочный слой. Зависимость вязкости от давления выражается уравнением:

np=n0*eap

где np и n0 – динамическая вязкость при давлении р и атмосферном давлении соответственно, Па-с; е – основание натурального логарифма; ap – пьезокоэффициент вязкости, Па-1-1 (для нефтяных масел находится в пределах 0,001-0,004).

    При высоком давлении вязкость может возрасти настолько, что масло потеряет свойства жидкости и превратится в квазипластичное тело. При давлении более 1015 Па нефтяное масло превращается в твердое тело. При снятии нагрузки первоначальная вязкость восстанавливается. Вязкость масел при всех температурах с увеличением давления растет неодинаково и тем значительнее, чем выше давление и ниже температура.

    Индекс вязкости характеризует вязкостно-температурные свойства масел. Для перевода одних единиц вязкости в другие, для расчета вязкости смеси смазочных масел и для расчета изменения вязкости от температуры или определения индекса вязкости масел следует пользоваться соответствующими формулами, номограммами, таблицами и графиками (ГОСТ 25371-82 устанавливает два метода расчета индекса вязкости (ИВ) смазочных масел по кинематической вязкости при 40 и 100 °С, там же приведены формулы и таблицы для определения ИВ.).

    Индекс вязкости 85 и выше указывает на хорошие вязкостно-температурные свойства. Для гидравлических систем современного оборудования необходимы масла с индексом вязкости более 100 и загущенные масла с индексом вязкости 110-200. Этот показатель особенно важен для масел, применяемых в условиях, когда при изменении рабочих температур недопустимо даже незначительное изменение вязкости (например, для гидравлических систем, высокоскоростных механизмов, для гидродинамических направляющих скольжения и др.). Как правило, индустриальные масла эксплуатируются при сравнительно низких температурах (50-60 °С), поэтому в соответствии с ГОСТ 4. 24-84 нормирование индекса вязкости не обязательно.

    Температура застывания определяется в статических условиях (в пробирке) и не характеризует надежно подвижность масла при низкой температуре в условиях эксплуатации. Характеристикой подвижности масел при низкой температуре служит вязкость при соответствующей температуре, верхний предел которой зависит от условий эксплуатации и конструкции механизмов. Применение присадок позволяет снизить температуру застывания масел. Данные по температуре застывания масел необходимы при проведении нефтескладских операций (слив, налив, хранение).

    Температура вспышки – температура, при которой пары масла образуют с воздухом смесь, воспламеняющуюся при поднесении к ней пламени. Характеризует огнеопасность масла и указывает на наличие в нем низкокипящих фракций. Ее определяют в приборах открытого и закрытого типа. В открытом приборе температура вспышки нефтяных масел на 20-25 °С выше, чем в закрытом.

    Зольность – количество неорганических примесей, остающихся от сжигания навески масла, выраженное в процентах к массе масла. Высокая зольность масел без присадок указывает на недостаточную их очистку, т. е. на наличие в них различных солей и несгораемых механических примесей, и содержание зольных присадок в легированных маслах. Обычно зольность масел составляет 0,002- 0.4 % (масс.).

    Содержание механических примесей, воды, селективных растворителей и водорастворимых кислот и щелочей. По этим показателям контролируют качество масел при их производстве, а также при определении их срока службы для оценки пригодности его для дальнейшего применения (отсутствие или определенная норма в маслах загрязнений и веществ, агрессивных по отношению к металлическим поверхностям).

    Цвет – показатель степени очистки и происхождения нефтяных масел. Некоторые присадки, вводимые в масла, ухудшают их цвет. Изменение цвета масел в процессе эксплуатации косвенно характеризует степень их окисления или загрязнения,

    Кислотное число также характеризует степень очистки нефтяных масел (без присадок) и отчасти их стабильность в процессе эксплуатации и хранения.

    В присутствии присадок увеличивается кислотное число и в то же время повышается стабильность масел при длительной эксплуатации и хранении.

    Содержание серы зависит от природы нефти, из которой выработано масло, а также глубины его очистки. При применении процессов гидрооблагораживания содержание серы в масле указывает на глубину процесса гидрирования. В очищенных маслах из сернистых нефтей сера содержится в виде органических соединений, не вызывающих в обычных условиях коррозии черных и цветных металлов. Агрессивное действие серы возможно при высоких температурах, например, при использовании масел в качестве закалочной среды, контактирующей с раскаленной поверхностью металла. Масла с присадками, в состав которых входит сера, содержат больше серы, чем базовые масла. Серусодержащие присадки вводят в масло для улучшения его смазывающих свойств.

    Антиокислительная стабильность индустриальных масел в процессе эксплуатации и хранения – одна из важных характеристик их эксплуатационных свойств. По антиокислительной или химической стабильности определяют стойкость масла к окислению кислородом воздуха. Все нефтяные масла, соприкасаясь с воздухом при высокой температуре, взаимодействуют с кислородом и окисляются. Недостаточная антиокислительная стабильность масел приводит к быстрому их окислению, сопровождающемуся образованием растворимых и нерастворимых продуктов окисления (органических кислот, смол, асфальтенов и др.). При этом в масле появляются осадки в виде шлама, нарушающие циркуляцию масла в системе и образующие агрессивные продукты, которые вызывают коррозию деталей машин. Срок службы масла при окислении значительно сокращается, повышается его коррозионность, ухудшается способность отделять воду и растворенный воздух. На окисление масла влияют многие факторы: температура, ценообразование, содержание воды, органических кислот, металлических продуктов изнашивания и других загрязнений.

    Химически стабильные масла, работоспособные при высокой температуре, должны создаваться на базе глубокоочищенных базовых масел с антиокислительными присадками. Современные легированные индустриальные масла для улучшения антиокислительной стабильности содержат специальные присадки. Особенно важны антиокислительные свойства для масел, работающих в узлах трения и механизмах при повышенной температуре и при интенсивной циркуляции и перемешивании.

    Защитные (консервационные) свойства определяют способность индустриальных масел предотвращать агрессивное действие на детали машин органических кислот, содержащихся в маслах и образующихся в результате окисления при наличии влаги, попадающей в масла в процессе эксплуатации (конденсация из воздуха, охлаждающая вода и др.), а также веществ, агрессивных по отношению к некоторые металлам. Коррозия черных металлов возникает при попадании в масло воды, а коррозия цветных металлов и сплавов вызывается действием органических кислот, образующихся при окислении масла и некоторых присадок. Вода, а также частицы продуктов коррозии стимулируют коррозионную агрессивность органических кислот. Кроме того, попадая в зону трения, частички продуктов коррозии действуют как абразив и повышают интенсивность изнашивания. Коррозия цветных металлов усиливается с повышением температуры. Защитные свойства улучшаются при введении в масло маслорастворимых ингибиторов коррозии, антикоррозионных присадок, которые препятствуют контакту металла с влагой и органическими кислотами.

    Смазывающие свойства характеризуют способность масел улучшать работоспособность поверхностей трения путем максимального уменьшения износа и трения. Они оцениваются показателем износа, антифрикционными и противозадирными свойствами. Смазывающие свойства масел позволяют судить об их способности предотвращать любой вид удаления материала с контактирующих поверхностей (умеренный износ, задир, выкрашивание, коррозионно-механический, абразивный и др.). При работе узлов и механизмов в условиях гидродинамического режима трения требования по смазывающим свойствам обеспечиваются нефтяными маслами соответствующей вязкости без присадок. При работе узлов и механизмов в условиях граничной смазки смазывающие свойства масел не обеспечиваются естественным составом нефтяных масел. Учитывая, что при работе машин и механизмов имеет место как граничная (при пуске, остановке), так и гидродинамическая (в рабочих условиях, например, гидравлической системы) смазка, к большинству индустриальных масел предъявляют более жесткие требования по показателю износа, чем к маслам без присадок. Для предотвращения износа и заедания в масло вводят соответствующие присадки, которые на поверхности трения при определенных температурах создают защитные пленки.

    В некоторых конструкциях лопастных насосов при высоких частотах вращения, нагрузках и локальных температурах создаются условия, при которых масляная пленка разрушается с образованием контакта металл – металл; наступает катастрофический износ.

    При использовании гидравлических масел с противоизносными присадками следует иметь в виду, что некоторые из них. например, диалкилдитиофосфаты цинка, способствуют повышенному коррозионному износу деталей из медных сплавов. Это необходимо учитывать при подборе масел для насосов и других механизмов, детали которых выполнены из определенных марок бронзы для обеспечения минимального трения при запуске. В этом случае следует применять масла с антиокислительными и антикоррозионными или противоизносными присадками, нейтральными по отношению к сплавам из меди.

    Антифрикционные свойства индустриальных масел не нормируют, но они косвенно характеризуют смазывающую способность.

    Антипенные свойства оценивают способность масел выделять воздух или другие газы без появления пены. Образование пены приводит к потерям масла, увеличению его сжимаемости, ухудшению смазывающей и охлаждающей способностей, вызывает более интенсивное окисление масла. Способность противостоять вспениванию особенно важна для масел, используемых в гидравлических системах и для смазывания высокоскоростных механизмов, так как при их контакте с атмосферой при обычной температуре содержание растворенного воздуха достигает 8 – 9 % (об. ). Большинство современных легированных масел содержат антипенные присадки, которые способствуют разрушению пузырьков пены на поверхности и предотвращают пенообразование.

    Деэмульгирующие свойства свидетельствуют о способности масла обеспечивать быстрый отстой воды. Масла с плохими деэмульгирующими свойствами при обводнении образуют стойкие водомасляные эмульсии. При этом уменьшается вязкость масла, ухудшаются условия трения, металлические поверхности подвергаются коррозии, повышается температура застывания и т. д. Эти свойства нефтяных масел улучшаются введением в них деэмульгаторов.

    Содержание активных элементов. Определяя содержание цинка, фосфора, серы, хлора и других активных элементов, контролируют количество вводимых в легированные масла присадок при производстве.

    Для индустриальных масел специального назначения дополнительно нормируют такие показатели качества, как липкость, смываемость, эмульгируемость, стабильность вязкости загущенных масел. степень чистоты и др. В связи с ужесточением требований к эксплуатационным свойствам индустриальных масел нормируемые показатели их качества будут, очевидно, дополняться новыми.

Температура вспышки в масле – Kumar Metal Industries

Температура вспышки – это минимальная температура, при которой жидкость выделяет пары в концентрации, достаточной для образования воспламеняющейся смеси с воздухом вблизи поверхности жидкости. Это показатель восприимчивости жидкости к воспламенению.

Температура вспышки обычно определяется путем нагревания жидкости в испытательном оборудовании и измерения температуры, при которой происходит вспышка, когда небольшое пламя вводится в паровую зону над поверхностью жидкости.

Температура воспламенения большинства растительных масел обычно составляет около 315°C.

В точке воспламенения накопленные продукты разложения способны самостоятельно поддерживать пламя. т. е. пары масла могут загореться довольно взрывоопасно, и огонь в этот момент является самоподдерживающимся. В растительных маслах это обычно происходит при 375°C.

Учитывая, что большинство сырых пищевых масел транспортируются и отправляются на большие расстояния, температура вспышки является ключевым критерием для определения потенциальной опасности пожара и взрыва. Анализ температуры воспламенения используется для выявления этого дефицита сырой нефти и предотвращения случайного возгорания или взрыва в среде, которая не обязательно является взрывозащищенной. Большинство торговых стандартов автоматически отклоняют поставки сырого растительного масла с температурой вспышки ниже 121°C.

В процессе экстракции растворителем температура воспламенения масел, как правило, ниже из-за остатка растворителя, который остается в масле. С помощью эффективной системы дистилляции этот остаток можно свести к ничтожно малому количеству.

Система дистилляции экстракционной установки обеспечивает средства для выпаривания и удаления растворителя из масла. Масло после перегонки имеет температуру воспламенения не менее 121°С, а предпочтительно 150°С или выше.

При экстракции растворителем мисцелла (богатый маслом экстракт), содержащий 20–30% масла, извлеченного из мясных хлопьев или экспандированных мясных продуктов, направляется в секцию дистилляции, включающую испарители и маслоотделитель. Содержание масла на выходе из испарителя первой ступени составляет 65–70 %. Нагревается парами от десольвентирующего тостера. В испарителе второй ступени содержание масла составляет 90–95%. В маслоотделителе используется впрыск пара, высокая температура и высокий вакуум, чтобы уменьшить содержание растворителя в масле до уровня менее 0,2%. Температура масла в стриппере не должна превышать 115°C, чтобы масло не подгорело и его цвет оставался светлым.

Испарившийся растворитель возвращается в экстрактор. Затем масло направляется в вакуумную сушилку для удаления остаточного конденсата отпарного пара, после чего оно немедленно охлаждается перед помещением на хранение.

Определение температуры вспышки — это простой способ убедиться, что ваше оборудование для выпаривания растворителей работает должным образом.

Более высокая температура воспламенения означает меньшее количество остатка гексана. Для целей этой оценки предположим, что температура вспышки мисцеллы такая же, как у гексана, хотя в действительности ее температура вспышки, вероятно, выше (применимо только к маслам, извлеченным экстракцией растворителем). Не содержащие гексана масла имеют высокие температуры воспламенения, которые могут немного варьироваться в зависимости от степени чистоты. Крайне маловероятно, что они образуют легковоспламеняющуюся (взрывоопасную) атмосферу, если только они не нагреты значительно выше температуры окружающей среды.

Данные о температуре вспышки Сырая экстракционная нефть > 121 °C, предпочтительно > 150 °C Рафинированное масло обычно > 285 °C (в зависимости от условий процесса)

Если показания температуры вспышки во время оценки высокие, это означает, что ваша дистилляционная система не работает как надо. Вам необходимо проверить настройки вакуума, достичь ли установки оптимальных температурных параметров и проверить уровни в отпарных колоннах.

Высокий уровень гексана в масле также означает более высокие потери гексана. Эффективная система дистилляции обеспечивает максимальное удаление остатков гексана как из жмыха, так и из масла и экономит деньги.

Установки Kumar для экстракции растворителем специально разработаны для данного типа сырья с высокоэффективными системами дистилляции, температура воспламенения которых достигает 150°C или выше.

Kumar гарантирует температуру воспламенения 150°C для всех наших установок экстракции растворителем. Это можно довести до 150°C с помощью оптимизированного процесса нефтепереработки.

На протяжении 82 лет компания Kumar поставляет надежные технологические решения для масложировой промышленности. Мы известны своими надежными, универсальными и рентабельными установками и оборудованием. Вот почему более 500 клиентов в 65 странах полагаются на нас в решении своих задач обработки, больших или малых. Если вы хотите узнать больше о наших решениях, пожалуйста, заполните форму ниже:

“*” указывает на обязательные поля

Имя*

Имя Последний

Электронная почта*

Мобильный*

Компания*

Адрес*

CountryAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCabo VerdeCambodiaCameroonCanadaCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos IslandsColombiaComorosCongoCongo, Democratic Republic of theCook IslandsCosta RicaCroatiaCubaCuraçaoCyprusCzechiaCôte d’IvoireDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEswatiniEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHoly SeeHondurasHon g KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth MacedoniaNorthern Mariana IslandsNorwayOmanPakistanPalauPalestine, State ofPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRomaniaRussian FederationRwandaRéunionSaint BarthélemySaint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint MartinSaint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Томе и ПринсипиСаудовская АравияСенегалСербияСейшельские островаСьерра-Лео neSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwedenSwitzerlandSyria Arab RepublicTaiwanTajikistanTanzania, the United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkmenistanTurks and Caicos IslandsTuvaluTürkiyeUS Minor Outlying IslandsUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuelaViet NamVirgin Islands, BritishVirgin Islands, U. S.Wallis and FutunaWestern SaharaYemenZambiaZimbabweÅland IslandsCountry

Сообщение

Электронная почта

Это поле предназначено для проверки и должно быть оставлено без изменений.

автор: Кумар Металл

Категории

  • Биодизель (11)
  • Бизнес (1)
  • Пищевые масла (20)
  • Окружающая среда (11)
  • Механическое извлечение (23)
  • Масло (4)
  • Переработка нефти (24)
  • Экстракция растворителем (15)

Последние сообщения

  • Масла и жиры: сырье для олеохимии
  • Периодическая переработка масел
  • Биодизель: последние разработки
  • Биодизель: коммерческие аспекты
  • 5 вопросов, которые нужно задать, прежде чем создавать бизнес по переработке пищевого масла

Никогда не пропустите сообщение от Кумара

Примечание: для этого контента требуется JavaScript.
СВЯЗАННЫЕ ИСТОРИИ

Наши решения для завода, работающего не на полную мощностьСоевый белок: производство, спецификация и применение

 

Топливо > Температура вспышки

Топливо > Температура вспышки

Температура вспышки и температура самовоспламенения обычных автомобильных жидкостей

Лабораторные измерения

 

Лабораторные измерения температуры вспышки дают полезную информацию о температуре, при которой жидкость может выделять достаточно паров, чтобы поддерживать пламя в идеальных условиях. Измерения температуры самовоспламенения требуют дополнительной интерпретации. В лаборатории самовоспламенение измеряется путем помещения образцов в почти закрытые камеры без доступа воздуха и с помощью приборов для выявления даже хрупких и мимолетных воспламенений. Значения, показанные в следующей таблице, указывают на самые низкие возможные температуры воспламенения для перечисленных жидкостей в идеальных условиях.

Значения в таблице представлены для общего ознакомления и не требуют запоминания. Табличные значения позволяют сравнивать относительную воспламеняемость различных жидкостей и могут использоваться в качестве источника для практических исследований пожаров.

 

Жидкости Точка возгорания [12] или F Температура самовоспламенения [13] o F
Автоматическая коробка передач. Жидкость [ 2, 4] 302-383 410-417
Тормозная жидкость [ 2, 4, 10, 11] 210-375 540-675
Компрессорное масло (ПАГ и сложный эфир) [4, 8] 392-500 410-714
Охлаждающая жидкость    
    Этиленгликоль (100%) [ 1, 2, 4] 232-260 725-775
    Этиленгликоль (90%) [ 2] 270 н/д
    Пропиленгликоль (100%) [ 1, 4] 210-230 700
Дизельное топливо [1, 2, 3, 4] 100-204 350-625
Этанол (в газоголе) [ 1, 3, 5] 55 685
Бензин (октановое число 50-100) [ 1, 2] от -36 до -45 536-853
Бензин (неэтилированный) [ 4] -45 495-833
Моторное масло (обычное и синтетическое) [ 1, 2, 4] 300-495 500-700
Метанол (в жидкости для ветрового стекла) [ 1, 2, 3, 4, 5,14] 52-108 725-878
Жидкость гидроусилителя руля [ 2, 4] 300-500 500-700
Хладагенты    
    R134a 140 кПа (5,5 фунт/кв. дюйм изб.) [ 7] 350  
    R134a[ 7,15,16]
Не воспламеняется при температуре окружающей среды. и атмосферное давление
1370-1418
    Фреон 12 [17] >1382
    ГХФУ-22 [ 9] Воспламеняется при манометрическом давлении 60 фунтов на кв. дюйм
    Углеводородные хладагенты Легковоспламеняющийся Легковоспламеняющийся
Стартерная жидкость (этиловый эфир) [ 5,18] -49 320

 

Примечание к таблице: если разные источники имели разные значения температуры воспламенения или температуры самовоспламенения для одного и того же материала, диапазон в таблице был увеличен, чтобы включить все найденные значения.

Чтобы использовать характеристики воспламеняемости в исследованиях, необходимо также провести измерения в среде транспортного средства.

Чтобы просмотреть ссылок для этой страницы, прежде чем продолжить нажмите здесь,

 

 

Объяснение точки воспламенения | Lazar Scientific, Inc.

8
Промышленность Применение Диапазон температур Модель Seta
Клеи и герметики Тестирование сложных эфиров и кетонов для сертификации. Классификация воспламеняемости по правилам перевозки До 150 °C 30000-3, 35000-0,
82000-2, 82100-2
Авиация и авиация Контроль качества поступающих ГСМ. Соответствие спецификации от 30 до 399 °C 30000-3, 35000-0,
82000-2, 82100-2
Биодизель Тестирование температуры вспышки позволяет убедиться, что химические вещества, такие как метанол, используемые в производственном процессе, ниже безопасного уровня 130 °C 30000-3, 35000-0,
82000-2, 82100-2
Битум и асфальт Используется для правил перевозки и техники безопасности, а также для обозначения возможного присутствия более летучих или легковоспламеняющихся соединений >200 °C 30000-3, 35000-0,
82000-2, 82100-2
Химикаты Тестирование растворителей, используемых в производстве. Класс безопасности по правилам транспортировки Ниже 200 °C 30000-3, 35000-0, 82000-2
Химические продукты Класс воспламеняемости для правил перевозки от 30 до 150 °C 35000-0, 82000-2 Ниже 0 °C
Пищевые масла и жиры Эти продукты используются при повышенных температурах, поэтому проверяется температура воспламенения, чтобы обеспечить правильное соблюдение процессов рафинирования и пределов безопасности До 30 °C 30000-3, 35000-0,
82000-2, 82100-2
Энергетика и мощность Турбинные и трансформаторные масла регулярно испытываются на температуру вспышки для подтверждения целостности продукта от загрязнений, которые могут повлиять на производительность или безопасность 2, 82100-2
Рецептурные пестициды Исследование и классификация воспламеняемости для правил перевозки До 150 °C 30000-3, 35000-0, 82000-2
Смазочные материалы Контроль качества и исследования. Анализ отработанного масла для обнаружения испарения/загрязнения летучими веществами в рабочих условиях от 30 до 399 °C 30000-3, 35000-0
Нефтяные и газовые вышки Качество образцов. Загрязнение отстойника оборудования головки насоса от 30 до 399 °C 30000-3, 35000-0, 82000-2
Обработка/восстановление масла Контроль качества базовых масел и проверка загрязнения отработанных/восстановленных масел и топлива.
Класс безопасности для правил транспортировки
от 30 до 399 °C 30000-3, 35000-0, 82000-2
Краски и лаки Исследования, контроль качества и безопасность. Классификация воспламеняемости по правилам перевозки. Рекомендуется для водоразбавляемых красок Ниже 100 °C 30000-3, 35000-0,
82000-2, 82100-2
Духи, ароматизаторы и отдушки Испытания смесей растворитель/вода. Класс воспламеняемости по правилам транспортировки и безопасности при эксплуатации От окружающей среды до 110 °C 30000-3, 33200-3, 35000-0,
82000-2, 82100-2
Переработка нефти и производных
Проверка качества/загрязнения, когда продукт перекачивается через многопродуктовый трубопровод. Также используется для правил ТБ и ТБ и правил транспортировки от 30 до 399 °C 30000-3, 35000-0
Фармацевтика Проверки производителя по заявленным температурам вспышки 30000-3, 35000-0,
82000-2, 82100-2
Краски для печати Класс воспламеняемости по правилам перевозки Ниже 100 °C 30000-3, 33200-3, 35000-0,
82000-2, 82100-2
Автоцистерны/отгрузочные терминалы Контроль качества резервуаров для хранения и поставок. Классификация безопасности по правилам перевозки от 30 до 399 °C 30000-3, 35000-0, 82000-2
Синтетические смолы Испытания базовых продуктов на основе растворителя и смолы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *