Теплопроводность цинка: Свойства цинка: плотность, теплопроводность, теплоемкость

alexxlab | 05.02.2023 | 1 | Разное

: Металлургия: образование, работа, бизнес :: MarkMet.ru

СВОЙСТВА И ПРИМЕНЕНИЕ ЦИНКА

Цинк (Zn) — металл голубовато-белого цвета, блестящий в изломе. Название элемента происходит от латинского слова «цинк» — бельмо, белый валет — характерная окраска его соединений. Цинк относительно мягкий металл — он мягче олова, но тверже свинца. В холодном состоянии он хрупок, но при нагревании до 100—150°С делается пластичным и его можно прокатывать в тонкие листы или протянуть в проволоку. Пластичность литого цинка после деформации значительно увеличивается. Цинк и его сплавы имеют низкий предел ползучести и значительно изменяют свои свойства и размеры при естественном старении. Электропроводность цинка равна примерно 28%, а теплопроводность 24% от соответствующих показателей серебра. Основные (физические и механические свойства цинка) приведены ниже:

Атомная масса

65,37

Плотность при 20°С, г/см3

7,13

Температура, °С

 

плавления

419,5

кипения        

907

Удельная теплота  плавления, кал/г

27,03

Удельная теплоемкость при 18°С, кал/(г·град)

0,1275

Теплопроводность при 20°С, кал/(см·сек·град)

0,268

Удельное электросопротивление при 20°С, ом· мм2/м

0,063

Модуль нормальной упругости, кГ/мм2

800-1300

Модуль сдвига, кГ/мм2      

800

Предел текучести цинка, кГ/мм2

 

литого                       

7,5

деформированного

8-10

Временное сопротивление цинка, кГ/мм2

 

литого

12-14

деформированного

12-17

отожженного           

7-10

Относительное удлинение цинка, %

 

литого

0,3-0,5

деформированного

42-50

отожженного           

10-20

Твердость НВ цинка, кГ/мм2

30-40

Ударная вязкость , кГ/мм2

0,6-0,75

В сухом воздухе цинк не подвергается коррозии. В воде, содержащей углекислый газ, и во влажном воздухе он покрывается тонкой плотной пленкой основного карбоната, которая защищает его от дальнейшей коррозии. Пары воды и углекислый газ окисляют цинк. Цинк растворяется в щелочах с образованием цинкатов и в кислотах с образованием соответствующих солей. Чистый цинк почти не растворяется в серной кислоте. При 500°С цинк горит с образованием порошка окиси цинка белого цвета. При нагревании окись цинка переходит в кристаллическую форму лимонно-желтого цвета. Это вещество при нагревании до 1100°С и выше возгоняется. Окись цинка хорошо растворяется в разбавленной серной кислоте. Со многими металлами цинк образует сплавы, в том числе с железом, никелем, медью, алюминием, серебром, золотом, висмутом и др.

Окись цинка — вещество неплавкое: при нагревании выше 1800°С она испаряется без плавления. Температура начала восстановления цинка из окиси углеродом около 950°С. Сульфид цинка ZnS также неплавок и при температурах выше 1180°С обладает летучестью.

Основное количество производимого цинка расходуется в качестве защитного покрытия на изделиях из железа и стали, а также на производство сплавов: с медью (латуни), с медью и алюминием ((алюминиевая бронза), с никелем и медью ((нейзильбер и мельхиор) и др. Цинк входит также в состав подшипниковых сплавов.

Способность цинка давать сплавы с серебром и золотом используют в металлургии для извлечения благородных металлов. Цинковую пыль применяют для осаждения золота и серебра из растворов при их получении гидрометаллургическим способом, а также в химической промышленности и для очистки от меди и кадмия растворов цинка перед их электролизом.

Листовой цинк применяют в производстве аккумуляторов, для изготовления резервуаров и обшивки подводной части морских судов. Мелкие детали из цинка, отлитые под давлением, применяют в машиностроении. Окись цинка используют для изготовления белой краски (цинковых белил), а также в качестве добавок при изготовлении автомобильных шин, глазури и стекла, линолеума, клеенки и целлулоида.

Для защиты древесины от гниения служит раствор хлористого цинка. Сульфат цинка применяют в качестве реагента при флотации руд, в производстве клея, спичек и искусственного волокна. Соединения цинка находят применение в медицине.

Деформированные полуфабрикаты из цинка (листы, ленты) имеют различные свойства вдоль и поперек проката, в частности более высокое временное сопротивление поперек проката.

Свойства цинка значительно изменяются под влиянием примесей. Свинец, висмут, сурьма, мышьяк имеют очень малую растворимость в цинке и отрицательно влияют на его технологические свойства.

Олово, находящееся в цинке, при его затвердевании выделяется в виде эвтектики, плавящейся при температуре 199°C. Если в цинке одновременно присутствуют олово и свинец, образуется тройная эвтектика с температурой плавления 150°С. Располагаясь по границам кристаллитов, эвтектика нарушает их связь, а при горячей обработке давлением такой сплав легко разрушается.

Железо повышает твердость и хрупкость цинка. При содержании железа в цинке выше 0,2% прокатка цинка затрудняется из-за его повышенной хрупкости.

Алюминий, магний и медь положительно влияют на свойства цинка. При повышенном содержании свинца, олова, кадмия или магния скорость коррозии цинка возрастает, особенно под действием горячей воды или пара. В контакте с более электроположительными металлами скорость коррозии цинка резко возрастает. В связи с этим цинк применяют в качестве протектора для всех более благородных металлов, за исключением свинца.

Под действием органических кислот, например кислых пищевых (продуктов, цинк образует токсичные соли, (поэтому его не следует применять в пищевой промышленности. На цинк не действуют органические нейтральные соли.

Мир современных материалов – Оксид цинка ZnO

Информация о материале
Опубликовано: 05 мая 2015 05 мая 2015
Просмотров: 16790 16790

Оксид цинка ZnO— полупроводниковое соединение. Оксид цинка – соединение белого цвета, которое сублимируется при 2000 К, плавится при температуре 2250 К, проявляет как основные, так и кислотные свойства, растворяется в кислотах и в щелочах.

Наиболее распространенная кристаллическая модификация — гексагональная типа вюрцит. Известна также более редкая кубическая типа сфалерит.

Оксид цинка может быть получен при сжигании или окислении цинка, обжигом на воздухе сернистого цинка, при прокаливании
солей, осаждением аммиаком из кипящего водного раствора азотнокислого цинка.

Компактные образцы оксида цинка (цинкит) получают прессованием заготовок из порошкообразного соединения и их последующего спекания. Предварительное спекание проводится при 1100 К. окончательное — при 1700… 1800 К. Нагревание осуществляется либо в специальных высокотемпературных печах, либо прямым пропусканием тока через образцы после их предварительного прогрева до температуры, при которой возникает достаточная электропроводность. При температуре окончательного спекания 1700. .. 1800 К образуются крупнозернистые образцы с кристаллами до 2 мм. Чтобы получить более мелкозернистую структуру, температуру спекания снижают до 1300… 1400 К. Монокристаллы оксида цинка выращивают гидротермальным способом и из газовой фазы.

Тонкие пленки оксида цинка ZnO можно получить испарением и конденсацией цинка на подложку в вакууме с последующим окислением пленки металла при нагревании в атмосфере кислорода или реактивным двухэлектродным ионным распылением Znв атмосфере Ar + О2.

Тонкие пленки ZnOобнаруживают пьезоэлектрический эффект.

Основные свойства оксида цинка

Молекулярная масса   81,38

Кристаллическая структура   Г

Постоянные кристаллической решетки, нм:

                                           а      0,3250

                                           с      0,5206

Плотность, Мг/м3   5,67

Температура, К:

плавления   2250

кипения   2000

Удельная теплоемкость, Дж/(кг×К)   495

Температурный коэффициент линейного расширения для
монокристалла, α×I06, К-1         5,7|| а

                                                 5,2|| с

Удельное сопротивление, Ом×см  108…109

Коэффициент теплопроводности, Вт/(м×К)      15…30

Твердость по шкале Мооса   4,0…5,0

Показатель преломления   1,96

Диэлектрическая проницаемость   8,5

Применение оксида цинка.

Оксид цинка применяется в радиоэлектронике для изготовления самоактивированного люминофора ZnO:Zn. Этот люминофор получают путем прокаливания ZnO в слабовосстановительной атмосфере оксида углерода при 1270 К- Цвет свечения люминофора— сине-зеленый, излучение характеризуется двумя максимумами., приходящимися на длины волн 0,385 мкм (ультрафиолетовая область) и 0,505 мкм (сине-зеленый участок спектра). Этот люминофор отличается очень коротким послесвечением, около 2 мкс.

Основное применение оксид цинка нашел в производстве варисторов, приборов, электрическое сопротивление которых сильно зависит от приложенного напряжения. На основе варисторов создаются ограничители перенапряжений (ОПН), подавляющие перенапряжения в электросетях.

Это обусловлено особым свойством варисторов – нелинейностью вольт-амперной характеристики. Нелинейностью вольт-амперной характеристики обладает и карбид кремния, но коэффициент нелинейности варисторов на основе оксида цинка на 1-1,5 порядка больше.

Для изготовления варисторов порошок ZnO субмикронного размера, оксиды других металлов ~5 % (висмута, кобальта, сурьмы, марганца, хрома) и неорганические связующие вещества смешивают, формуют под давлением ~104…106 МПа и производят обжиг в течение нескольких часов при температурах от 1200 до 1600 °С. В процессе реакционного взаимодействия происходит перенос материала через жидкую фазу от зерен оксида цинка с большой поверхностной энергией к зернам с меньшей поверхностной энергией. Материал в процессе спекания уплотняется, и в результате получается новая поликристаллическая структура.

Варистор на основе оксида цинка представляет собой поликристаллический полупроводниковый материал, отдельные зерна которого находятся в электрическом контакте друг с другом. В местах контакта зерен оксида цинка имеются тонкие изолирующие области, которые и обуславливают нелинейность вольт-амперной характеристики. Механизм нелинейности варисторов недостаточно изучен. Скорее всего, нелинейность обусловлена явлениями на межзеренных границах, а также определяющее влияние имеют и дополнительные добавки в составе варисторов.

Вас также может заинтересовать:

  • Карбид кремния
  • Вперед

Свойства металла цинка | Американская ассоциация гальваников

Свойства цинкового металла | Американская ассоциация гальванистов

• Быстрые ссылки • Поиск

Поиск не дал результатов

Страницы сайта

База знаний Dr. Galv

Галерея проектов

Нажмите ESC, чтобы выйти

Забыли пароль?

Дом ” Дизайн и изготовление » Рекомендации по дизайну » Свойства металла цинка

  • Physical and Mechanical Properties
  • Thermal Properties
  • Other Uses of Zinc
с удлинением волокон)00389
Tensile Strength
(cast) 28 MN/m 2  (4,000 psi)
(катаный, с зерном) 126 МН/м 2  (18 000 psi)
246 МН/м 2  (35 000 psi)
(99. 95% zinc soft temper) 65%
(98.0% zinc hard temper) 5%
Modulus of elasticity 7 x 104 MN/m 2  (1 x 107 psi)
Твердость по Бринеллю, нагрузка 500 кг в течение 30 сек. 30
Ударопрочность
(прессованный цинк, удлинение = 30%) 6,5-9 Дж/см 2 0044 2 )
Поверхностное натяжение, жидкость (4500C) 0,755 Н/м
Поверхностное натяжение, жидкость (419,50C) 0,782 N/M
919. 0.00385 N/m
Coefficient of friction (rolled zinc vs rolled zinc) 0.21
Density See chart below
Hardness 2.5 mohs
Surface Reflectivity See chart below

 

 

13 9003 9003 9004.900313 9003 9004.9003.....)9.9.9141414141414141.191414141414141.900 4004141. -1
Thermal
Melting point 419. 5C (787.1F)
Boiling point (760 mm Hg) 907C (1664,6F)
Температура воспламенения 1800C (прибл. 3272F)
Давление паров (419,5C) 9004 9003 2 г
Thermal Conductivity
solid (18C) 113 W/m.K
solid (410.5C) 96 W/m.K
liquid (419.5C) 164 W/m.K
liquid (750C) 57 W/m.K
Linear coefficient of thermal expansion
(single crystal along a axis 0-100C) 15 mm/ m.K
(монокристалл вдоль оси C 0-100C) 61 мм/ M.K
(поликристаллин 20-250C) 61 мм/ M.K
Коэффициент. 20-400C) 0,89 x 10-6/K
(120-360C) 0,85 x 10-6/K
Сокращение на Freezing At 419. 5C48% 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003 9003.9003
. изменение при замерзании 46 C -> 0C 7,28%
Специфическая жара (20C) 0,382 кДж/кг.K
Латентная тепло слияния (419,5C) 100,9 KJ/KG
1,782 MJ/кг
Тепловая вместимость
Сплош CP = 22,40 +10,5 x 10-3 TJMOL-1 (298-692.7 K)
газ Cp = 20,80 Джмоль-1

 

Необходимо (Обязательно)

Файлы cookie, без которых сайт не может нормально функционировать. Это включает файлы cookie для доступа к безопасным областям и безопасности CSRF. Обратите внимание, что файлы cookie по умолчанию Craft не собирают никакой личной или конфиденциальной информации. Файлы cookie по умолчанию Craft не собирают IP-адреса. Информация, которую они хранят, не отправляется Pixel & Tonic или каким-либо третьим сторонам.

Имя : CraftSessionId

Описание : Craft использует сеансы PHP для поддержки сеансов через веб-запросы. Это делается с помощью файла cookie сеанса PHP. По умолчанию имя файла cookie «CraftSessionId», но его можно переименовать с помощью настройки конфигурации phpSessionId. Срок действия этого файла cookie истечет, как только завершится сеанс.

Поставщик : этот сайт

Срок действия : Сеанс

Имя : *_identity

Описание : Когда вы войдете в панель управления, вы получите файл cookie для проверки подлинности, используемый для поддержания вашего аутентифицированного состояния. Имя файла cookie начинается с длинной случайно сгенерированной строки, за которой следует _identity. Файл cookie хранит только информацию, необходимую для поддержания безопасного аутентифицированного сеанса, и будет существовать только до тех пор, пока пользователь аутентифицируется в Craft.

Поставщик : этот сайт

Срок действия : Постоянный

Имя : *_username

Описание : Если вы установите флажок «Оставаться в системе» во время входа в систему, этот файл cookie используется для запоминания имени пользователя для вашей следующей аутентификации.

Поставщик : этот сайт

Срок действия : Постоянный

Имя : CRAFT_CSRF_TOKEN

Описание Cross-Sites Forger нас и вас как пользователя :

Провайдер : этот сайт

Срок действия : Сеанс

Статистика

Статистические файлы cookie помогают нам понять, как посетители взаимодействуют с веб-сайтами, собирая и сообщая информацию анонимно.

Marketing

Маркетинговые файлы cookie используются для отслеживания посетителей на веб-сайтах. Цель состоит в том, чтобы показывать релевантную и привлекательную рекламу для отдельного пользователя и, следовательно, более ценную для издателей и сторонних рекламодателей.

Детали Скрыть детали

Цинк – Термические свойства – Температура плавления – Теплопроводность

О цинке

В некоторых отношениях цинк химически подобен магнию: оба элемента имеют только одну нормальную степень окисления (+2), а ионы Zn2+ и Mg2+ имеют аналогичный размер.

Термические свойства цинка

Цинк – температура плавления и температура кипения

Температура плавления цинка  419,53°C .

Температура кипения цинка 907°С .

Обратите внимание, что эти точки связаны со стандартным атмосферным давлением.

Цинк – Теплопроводность

Теплопроводность Цинк составляет 116 Вт/(м·К).

Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеряемой в Вт/м·K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что Закон Фурье  применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.

Коэффициент теплового расширения цинка

Линейный коэффициент теплового расширения Цинк   30,2  мкм/(м·K)

Тепловое расширение обычно представляет собой тенденцию материи изменять свои размеры в ответ на изменение ее размеров. в температуре. Обычно его выражают в виде доли изменения длины или объема на единицу изменения температуры.

См. Также: Механические свойства цинка

Точка плавления элементов

Теплопроводность элементов

Термическое расширение элементов

о кипении и точке Melting 9000069

о кипении и точке Melting 9000069

ОБЩЕГО0404040404

. ОБЩЕЯ СОБСТВЕННА4040404

. ОБЩИЕ ИСПРАВЛЕНИЯ

9

. ОБЩИЕ ИСПРАВЛЕНИЯ

. кипение  является фазовым переходом  вещества из жидкой фазы в газовую. температура кипения вещества — это температура, при которой происходит это фазовое превращение (кипение или испарение). Температура, при которой испарение  (кипение) начинается при заданном давлении, также известном как  температура насыщения  , и при этих условиях смесь пара и жидкости может существовать вместе. Можно сказать, что жидкость насыщена тепловой энергией. Любое добавление тепловой энергии приводит к фазовому переходу. При температуре кипения две фазы вещества, жидкость и пар, имеют одинаковую свободную энергию и, следовательно, с равной вероятностью существуют. Ниже точки кипения жидкость является более стабильным состоянием из двух, тогда как выше предпочтительна газообразная форма. Давление, при котором начинается испарение (кипение) при данной температуре, называется давление насыщения . Когда ее рассматривают как температуру обратного перехода из пара в жидкость, ее называют точкой конденсации.

Как видно, точка кипения жидкости варьируется в зависимости от давления окружающей среды. Жидкость в частичном вакууме имеет более низкую температуру кипения, чем когда эта жидкость находится при атмосферном давлении. Жидкость при высоком давлении имеет более высокую температуру кипения, чем при атмосферном давлении. Например, вода кипит при 100 °C (212 °F) на уровне моря, но при 93,4°C (200,1°F) на высоте 1900 метров (6233 фута). С другой стороны, вода кипит при 350°C (662°F) при 16,5 МПа (типичное давление PWR).

В периодической таблице элементов элемент с самой низкой температурой кипения — гелий. Обе точки кипения рения и вольфрама превышают 5000 К при стандартном давлении. Поскольку трудно точно и беспристрастно измерить экстремальные температуры, в литературе упоминаются оба вещества с более высокой температурой кипения.

Точка плавления

В общем,  плавление  является фазовым переходом  вещества из твердого состояния в жидкое. точка плавления вещества — это температура, при которой происходит это фазовое превращение. Точка плавления   также определяет состояние, при котором твердое тело и жидкость могут существовать в равновесии. Добавление тепла превратит твердое тело в жидкость без изменения температуры. В точке плавления две фазы вещества, жидкая и паровая, имеют одинаковую свободную энергию и поэтому с равной вероятностью существуют. Ниже точки плавления твердое состояние является более стабильным из двух, тогда как при температуре выше точки плавления предпочтительна жидкая форма. Температура плавления вещества зависит от давления и обычно указывается при стандартном давлении. Когда ее рассматривают как температуру обратного перехода из жидкого состояния в твердое, ее называют точкой замерзания или точкой кристаллизации.

См. также: Депрессия точки плавления

Первая теория, объясняющая механизм плавления в объеме, была предложена Линдеманном, который использовал колебания атомов в кристалле для объяснения плавления. Твердые тела похожи на жидкости тем, что оба находятся в конденсированном состоянии, а частицы находятся гораздо ближе друг к другу, чем частицы газа. Атомы в твердом теле тесно связаны друг с другом либо в правильной геометрической решетке (кристаллические твердые тела, которые включают металлы и обычный лед), либо в неправильной (аморфное твердое тело, такое как обычное оконное стекло), и обычно имеют низкую энергию. движение отдельных атомов , ионов или молекул в твердом теле ограничивается колебательным движением вокруг фиксированной точки. Когда твердое тело нагревается, его частицы колеблются быстрее , поскольку твердое тело поглощает кинетическую энергию. В какой-то момент амплитуда колебаний становится настолько большой, что атомы начинают вторгаться в пространство своих ближайших соседей и возмущать их, и начинается процесс плавления. Точка плавления  – это температура, при которой разрушительные колебания частиц твердого тела преодолевают силы притяжения, действующие внутри твердого тела.

Как и в случае с точками кипения, точка плавления твердого тела зависит от силы этих сил притяжения. Например, хлорид натрия (NaCl) представляет собой ионное соединение, состоящее из множества сильных ионных связей. Хлорид натрия плавится при 801°С. С другой стороны, лед (твердый H 2 O) представляет собой молекулярное соединение, молекулы которого удерживаются вместе водородными связями, что является эффективным примером взаимодействия между двумя постоянными диполями. Хотя водородные связи являются самыми сильными из межмолекулярных сил, прочность водородных связей намного меньше, чем у ионных связей. Температура плавления льда 0°С.

Ковалентные связи часто приводят к образованию небольших наборов лучше связанных атомов, называемых молекулами, которые в твердых телах и жидкостях связаны с другими молекулами силами, которые часто намного слабее, чем ковалентные связи, удерживающие молекулы вместе внутри. Такие слабые межмолекулярные связи придают органическим молекулярным веществам, таким как воски и масла, их мягкий объемный характер и низкие температуры плавления (в жидкостях молекулы должны прекратить наиболее структурированный или ориентированный контакт друг с другом).

 

О теплопроводности

Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеряемой в Вт/м·K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье  применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.

Теплопроводность большинства жидкостей и твердых тел зависит от температуры. Для паров это также зависит от давления. В общем:

Большинство материалов почти однородны, поэтому обычно мы можем написать k = k (T) . Аналогичные определения связаны с теплопроводностями в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.

Теплопроводность металлов

Перенос тепловой энергии в твердых телах обычно может быть обусловлен двумя эффектами:

  • миграцией свободных электронов
  • решеточные колебательные волны (фононы)

Когда электроны и фононы переносят тепловую энергию, приводящую к теплопроводности в твердом теле, теплопроводность может быть выражена как:0022  являются твердыми телами и поэтому обладают кристаллической структурой, в которой ионы (ядра с окружающими их оболочками остовных электронов) занимают трансляционно эквивалентные позиции в кристаллической решетке. Металлы обычно имеют высокую электропроводность , высокую теплопроводность и высокую плотность. Соответственно перенос тепловой энергии может быть обусловлен двумя эффектами:

  • миграцией свободных электронов
  • решетчатых колебательных волн (фононов).

Когда электроны и фононы переносят тепловую энергию, приводящую к теплопроводности в твердом теле, коэффициент теплопроводности может быть выражен как: структура связана с наличием носителей заряда, в частности, электронов . Электрическая и теплопроводность металлов обусловлена ​​ тем фактом, что их внешние электроны делокализованы . Их вклад в теплопроводность обозначается как электронная теплопроводность , k e . Фактически, в чистых металлах, таких как золото, серебро, медь и алюминий, тепловой ток, связанный с потоком электронов, намного превышает небольшой вклад, обусловленный потоком фононов. Напротив, для сплавов вкладом k ph в k уже нельзя пренебречь.

Теплопроводность неметаллов

Для неметаллические твердые вещества , k  определяется в первую очередь k ph , которое увеличивается по мере уменьшения частоты взаимодействий между атомами и решеткой. Фактически, решеточная теплопроводность является доминирующим механизмом теплопроводности в неметаллах, если не единственным. В твердых телах атомы колеблются вокруг своих положений равновесия (кристаллическая решетка). Колебания атомов не независимы друг от друга, а довольно сильно связаны с соседними атомами. Регулярность расположения решетки оказывает важное влияние на k ph , с кристаллическими (хорошо упорядоченными) материалами, такими как кварц , имеющими более высокую теплопроводность, чем аморфные материалы, такие как стекло. При достаточно высоких температурах k ph ∝ 1/T.

квантов колебательного поля кристалла называются « фононами ». Фонон представляет собой коллективное возбуждение в периодическом упругом расположении атомов или молекул в конденсированных средах, таких как твердые тела и некоторые жидкости. Фононы играют важную роль во многих физических свойствах конденсированного вещества, таких как теплопроводность и электропроводность. Фактически, для кристаллических неметаллических твердых тел, таких как алмаз, k ph  может быть довольно большим, превышая значения k, связанные с хорошими проводниками, такими как алюминий. В частности, алмаз обладает самой высокой твердостью и теплопроводностью (k = 1000 Вт/м·К) среди всех объемных материалов.

Теплопроводность жидкостей и газов

В физике жидкость — это вещество, которое постоянно деформируется (течет) под действием приложенного напряжения сдвига. Жидкости  являются подмножеством фаз материи и включают жидкости , газы , плазму и, в некоторой степени, пластичные твердые тела. Поскольку межмолекулярное расстояние намного больше, а движение молекул более хаотично для жидкого состояния, чем для твердого состояния, транспорт тепловой энергии менее эффективен. Следовательно, теплопроводность газов и жидкостей обычно меньше, чем у твердых тел. В жидкостях теплопроводность обусловлена ​​атомной или молекулярной диффузией. В газах теплопроводность обусловлена ​​диффузией молекул с более высокого энергетического уровня на более низкий уровень.

Теплопроводность газов

Влияние температуры, давления и химических веществ на теплопроводность  газа можно объяснить с точки зрения кинетической теории газов . Воздух и другие газы обычно являются хорошими изоляторами при отсутствии конвекции. Следовательно, многие изоляционные материалы (например, полистирол) функционируют просто благодаря большому количеству заполненных газом карманов , которые предотвращают широкомасштабную конвекцию . Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей раздела, что приводит к быстрому снижению коэффициента теплопередачи.

Теплопроводность газов прямо пропорциональна плотности газа, средней молекулярной скорости и особенно средней длине свободного пробега молекулы. Длина свободного пробега также зависит от диаметра молекулы, причем более крупные молекулы с большей вероятностью столкнутся, чем мелкие молекулы, что представляет собой среднее расстояние, пройденное энергоносителем (молекулой) до столкновения. Легкие газы, такие как водород и гелий  обычно имеют высокую теплопроводность . Плотные газы, такие как ксенон и дихлордифторметан, обладают низкой теплопроводностью.

Как правило, теплопроводность газов увеличивается с повышением температуры.

Теплопроводность жидкостей

Как уже писалось, в жидкостях теплопроводность обусловлена ​​атомной или молекулярной диффузией, но физические механизмы объяснения теплопроводности жидкостей изучены недостаточно. Жидкости, как правило, обладают лучшей теплопроводностью, чем газы, а способность течь делает жидкость подходящей для отвода избыточного тепла от механических компонентов. Тепло можно отводить, пропуская жидкость через теплообменник. Теплоносители, используемые в ядерных реакторах, включают воду или жидкие металлы, такие как натрий или свинец.

Теплопроводность неметаллических жидкостей обычно уменьшается с повышением температуры.

О тепловом расширении

Тепловое расширение  обычно это склонность материи изменять свои размеры в ответ на изменение температуры. Обычно его выражают в виде доли изменения длины или объема на единицу изменения температуры. Тепловое расширение характерно для твердых тел, жидкостей и газов. В отличие от газов или жидкостей, твердые материалы, как правило, сохраняют свою форму при тепловом расширении. А коэффициент линейного расширения  обычно используется для описания расширения твердого тела, в то время как коэффициент объемного расширения более полезен для жидкости или газа.

Коэффициент линейного теплового расширения определяется как:

, где L  – это конкретная длина, а dL/dT  – скорость изменения этого линейного размера на единицу изменения температуры.

Коэффициент объемного теплового расширения является основным коэффициентом теплового расширения и наиболее важным для жидкостей. Как правило, вещества расширяются или сжимаются при изменении их температуры, причем расширение или сжатие происходит во всех направлениях.

Коэффициент объемного теплового расширения определяется как:

, где л  объем материала, а dV/dT  является скоростью изменения этого объема на единицу изменения температуры.

В твердом теле или жидкости существует динамическое равновесие между силами сцепления, удерживающими атомы или молекулы вместе, и условиями, создаваемыми температурой. Поэтому более высокие температуры подразумевают большее расстояние между атомами. Разные материалы имеют разную силу сцепления и, следовательно, разные коэффициенты расширения. Если кристаллическое твердое тело изометрично (имеет во всем одинаковую структурную конфигурацию), расширение будет равномерным во всех измерениях кристалла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *