Теплопроводность меди и серы: электропроводность :медь;сера,теплопроводность:медь;сера,плотность:медь сера; — Спрашивалка

alexxlab | 28.02.2023 | 0 | Разное

Содержание

34. Cварка меди и медных сплавов

Медь используют в химическом и энергетическом машиностроении ввиду высокой электро- и теплопроводности, высокой коррозионной стойкости в некоторых агрессивных средах. Все эти свойства тем выше, чем выше чистота металла, что предъявляет особые требования к сварке изделий из чистой меди. Сварка бронз и латуней имеет свои особенности, но свойства чистой меди в этих сплавах уже значительно утрачены.

В зависимости от количественного содержания примесей, различают пять основных марок технической меди: М0 – с суммарным содержанием примесей не более 0,05%, М1 – не более 0,10%, М2 – не более 0,30%, М3 – не более 0,50% и М4 – с содержанием примесей не более 1,00%.

Алюминий неограниченно растворим в расплавленной меди; в твёрдом состоянии растворимость его равна 9,8%. Алюминий повышает коррозионную стойкость меди, уменьшает окисляемость и понижает электропроводность и теплопроводность меди.

Бериллий понижает электропроводность меди, повышает механические свойства и резко уменьшает окисляемость меди при повышенных температурах.

Висмут практически не растворим в меди. При повышенном содержании висмута медь делается хрупкой; на электропроводность меди висмут заметного влияния не оказывает.

Железо незначительно растворимо в меди в твёрдом состоянии. При 1050оС до 3,50% железа входит в твёрдый раствор, а при 635оС растворимость его падает до 0,15%. Под влиянием железа повышаются механические свойства меди, резко снижаются её электропроводность, теплопроводность и коррозионная стойкость.

Кислород очень мало растворим в меди в твёрдом состоянии. Он является вредной примесью, так как при повышенном его содержании заметно понижаются механические, технологические и коррозионные свойства меди.

Водород оказывает значительное влияние на медь. Растворимость его в меди зависит от температуры: от 0,06 до 13,6см

3/100гр металла при температуре 500 и 1500оС соответственно. Особенно разрушительное воздействие водород оказывает на медь, содержащую кислород. Такая медь после отжига в водороде или восстановительной атмосфере, содержащей водород, делается хрупкой и растрескивается, вследствие образования водяных паров реакции водорода с закисью меди. Образовавшиеся водяные пары не диффундируют и не диссоциируют и, имея высокое давление, разрушают медь.

Мышьяк растворим в меди в твёрдом состоянии до 7,5%. Он значительно понижает электропроводность и теплопроводность, но значительно повышает жаростойкость меди.

Свинец практически не растворяется в меди в твёрдом состоянии. Заметного влияния на электропроводность и теплопроводность меди он не оказывает, но значительно улучшает её обрабатываемость резанием.

Серебро не оказывает влияния на технические свойства меди, мало влияет на её электропроводность и теплопроводность.

Сурьма растворима в меди в твёрдом состоянии при температуре эвтектики 6450С до 9,5%. Растворимость её резко уменьшается при понижении температуры. Сурьма значительно понижает электропроводность и теплопроводность меди.

Сера растворяется в расплавленной меди, а при затвердевании её растворимость снижается до нуля. Сера незначительно влияет на электропроводность и теплопроводность меди, заметно снижает пластичность. Под влиянием серы значительно улучшается обрабатываемость меди резанием.

Фосфор ограничено растворим в меди в твёрдом состоянии; предел насыщения твёрдого α-раствора при температуре 700

оС достигает 1,3% фосфора, а при 200оС он снижается до 0,4%. Фосфор значительно понижает электропроводность и теплопроводность меди, но положительно влияет на механические свойства и свариваемость, повышает жидкотекучесть.

Теллур растворим в меди в твёрдом состоянии до 0,01%. На электропроводность меди теллур значительного влияния не оказывает.

Селен мало растворим в меди в твёрдом состоянии – до 0,1% и выделяется при затвердевании в виде соединения Se2О. Влияние на медь аналогично влиянию серы.

45. Медь; влияние примесей на свойства меди. Латуни, бронзы, медно-никелевые сплавы. Материаловедение. Шпаргалка

45. Медь; влияние примесей на свойства меди. Латуни, бронзы, медно-никелевые сплавы

Медь – это металл красного, в изломе розового цвета, имеет температуру плавления 1083о С. Кристаллическая решетка ГЦК с периодом а 0,31607 ям. Плотность меди 8,94 г/см3. Медь обладает высокими электропроводимостью и теплопроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм?м.

Марки меди: М00 (99,99 % Си), МО (99,97 % Си), М1 (99,9 % Си), М2 (99,7 % Си), М3 (99,50 % Си). Присутствующие в меди примеси оказывают большое влияние на ее свойства.

По характеру взаимодействия примесей с медью их можно разделять на три группы.

1. Примеси, образующие с медью твердые растворы: Ni, Zn, Sb, Fе. Р и др. Эти примеси (особенно Sb) резко снижают электропроводимость и теплопроводность меди, поэтому для проводников тока применяют медь М0 и М1. Сурьма затрудняет горячую обработку давлением.

2. Примеси Pb, Bi и другие, практически не растворимые в меди, образуют в ней легкоплавкие эвтектики, которые, выделяясь по границам зерен, затрудняют обработку давлением.

При содержании 0,005 % Вi медь разрушается при горячей обработке давлением, при более высоком содержании висмута медь становится хладноломкой; на электропроводимость эти примеси оказывают небольшое влияние.

3. Примеси кислорода и серы, образующие с медью хрупкие химические соединения Сu2О и Сu2S, входящие в состав эвтектики. Если кислород находится в растворе, то он уменьшает электропроводимость, а сера не влияет на нее. Сера улучшает обрабатываемость меди резанием, а кислород, если он присутствует в меди, образует закись меди и вызывает «водородную болезнь».

При нагреве меди в атмосфере, содержащей водород, происходит его диффузия в глубь меди. Если в меди присутствуют включения Си2О, то они реагируют с водородом, в результате чего образуются пары воды. Две основные группы медных сплавов: латуни – сплавы меди с цинком; бронзы – сплавы меди с другими элементами.

Латуни – это многокомпонентные сплавы на основе меди, где основным компонентом является цинк. Технические латуни содержат до 40–45 % Zn. К однофазным б-латуням, которые легко деформируются в холодном и горячем состоянии, относятся Л96 (томпак), Л80 (полутомпак), Л68, обладающая наибольшей пластичностью. Двухфазные (? + ?) – латуни, Л59 и Л60 менее пластичны в холодном состоянии и их подвергают горячей обработке давлением.

По технологическому признаку латуни подразделяют на две группы: деформированные и литейные. Литейные латуни мало склонны к ликвидации и обладают антифрикционными свойствами

Деформируемые латуни обладают высокими коррозийными свойствами в атмосферных условиях.

Латуни, предназначение которых для фасонного литья, содержат большое количество специальных присадок, улучшающих их литейные свойства.

Оловянные бронзы. Сплавы, богатые оловом, очень хрупки.

Оловянные бронзы обычно легируют Zn, Ре, P, Pb, Ni и другими элементами. Цинк улучшает технологические свойства бронзы и удешевляет бронзу. Фосфор улучшает литейные свойства. Никель повышает механические свойства, коррозийную стойкость и плотность отливок и уменьшает ликвацию. Железо измельчает зерно, но ухудшает технологические свойства бронз и сопротивляемость коррозии.

Различают деформируемые и литейные оловянные бронзы, которые обладают хорошими литейными свойствами. Двухфазные бронзы обладают высокими антифрикционными свойствами. Их применяют для изготовления антифрикционных деталей.

Никелевые сплавы широко распространены в машиностроении. Никель сообщает меди повышенную стойкость против коррозии и улучшает ее механические и литейные свойства. Бронзы, которые содержат только никель, не применяются из-за высокой стоимости никеля. Никель вводится в сочетании с другими элементами.

В промышленности распространены никелевые сплавы, которые имеют названия: мельхиор (сплав меди с 18–20 % никеля) – применяется для гильз, имеет белый цвет и высокую коррозийную стойкость; константан – сплав меди с 39–41 % никеля.

Константан имеет большое электрическое сопротивление и применяется в виде проволок и лент для реостатов, электроизмерительных приборов.

Медь и ее сплавы находят широкое применение в электротехнике, электронике, приборостроении, литейном производстве, двигателестроении. Так, 50 % полученной меди потребляется электротехнической и электронной отраслями промышленности. Она стоит на втором месте (вслед за алюминием) по объему производства среди цветных металлов.

Технические и технологические свойства меди: высокие электро– и теплопроводность, достаточная коррозионная стойкость, хорошая обрабатываемость давлением, свариваемость всеми видами сварки, хорошо поддается пайке, легко полируется. У чистой меди небольшая прочность и высокая пластичность. К недостаткам меди относятся:

– высокая стоимость;

– значительная плотность;

– большая усадка при литье;

– горячеломкость;

– сложность обработки резанием.

Данный текст является ознакомительным фрагментом.

Медь и сплавы

Медь и сплавы Довольно часто домашние слесари отдают предпочтение меди (удельный вес 9,0 г/см2), поскольку ее мягкость и пластичность позволяют добиваться точности и высокого качества при изготовлении всевозможных деталей и изделий.Чистая (красная) медь – прекрасный

1. Влияние легирующих компонентов на превращения, структуру, свойства сталей

1. Влияние легирующих компонентов на превращения, структуру, свойства сталей Легирующие компоненты или элементы, вводимые в стали в зависимости от их взаимодействия с углеродом, находящемся в железоуглеродистых сплавах, подразделяют на карбидо—образующие и

1. Цветные металлы и сплавы, их свойства и назначение

1.  Цветные металлы и сплавы, их свойства и назначение Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для

7. Сплавы на основе меди

7. Сплавы на основе меди Медь – элемент первой группы периодической системы, атомная масса – 63,54, порядковый номер – 29, температура плавления – 1083 °C, кипения – 2360 °C. Она имеет кубическую гранецентрированную решетку с параметром а = 0,361 нм (3,61 ?). Плотность – 8,93 г/см2.

7.1. Сплавы меди и никеля

7.1. Сплавы меди и никеля Медь и никель неограниченно растворимы как в жидком, так и в твердом состоянии. Диаграмма состояния Си – Ni показана на рис. 7.1. Структура всех двойных медно-нике-левых сплавов – твердый раствор этих элементов. Кристаллическая решетка –

7.2. Латуни и томпаки

7.2. Латуни и томпаки Технические сплавы меди с цинком называются латунями. Латунь с содержанием цинка 10 %, остальное медь, называют томпаком, а сплавы меди с 14–20 % Zn – полутомпаками.Различают латуни простые – двойные сплавы меди с цинком и с некоторыми примесями, не

7.3. Бронзы

7.3. Бронзы Сплавы меди со всеми металлами, кроме цинка, называют бронзами. В ювелирной промышленности в основном используются оловянистые бронзы (сплавы системы Си – Sn), обладающие высокими литейными свойствами (жидкотекучесть, малая усадка), достаточно высокой

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы. Сплавы меди с цинком,

10.5. Влияние газов на свойства серебряных сплавов

10.5. Влияние газов на свойства серебряных сплавов Серебро не очень активно взаимодействует с различными газами, за исключением кислорода. Так, азот не растворяется ни в жидком, ни в твердом серебре. Ничтожна растворимость инертных газов в серебре. Растворимость водорода в

11.4. Влияние легирующих элементов и примесей на свойства сплавов золота

11.4. Влияние легирующих элементов и примесей на свойства сплавов золота Легирующие элементы и примеси оказывают следующее действие на свойства сплавов золота.Никель. Золото и никель обладают неограниченной растворимостью в жидком, а при высоких температурах и в твердом

11.5. Влияние газов на свойства сплавов золота

11. 5. Влияние газов на свойства сплавов золота Встречающиеся при плавке газы, такие как кислород, водород, углеводороды, азот, моно– и диоксид углерода, сернистый газ, пары воды, образующиеся при попадании водорода в кислородосодержащий раствор, и т. п., ни в твердом, ни в

12.2. Влияние примесей на свойства сплавов платины

12.2. Влияние примесей на свойства сплавов платины Кремний В системе платина – кремний было обнаружено три промежуточных фазы: Pt5Si2, Pt2Si и PtSi. Между твердым раствором кремния в платине, содержащим до 0,2 % по массе Si (1,4 атомных %), и соединением Pt5Si2 обнаружена низкоплавкая

5.2. Медь

5.2. Медь Медь – химический элемент, обозначается символом Сu. Название элемента происходит от названия острова Кипр (лат. Cuprum), на котором изначально добывали медь. Имеет порядковый номер 29, атомный вес – 63,546, валентность – I, II, плотность – 8,92 г/см3, температура плавления –

40.

 Классификация и маркировка легированных сталей. Влияние легирующих элементов на превращения, микроструктуру и свойства стали; принципы разработки легированных сталей

40. Классификация и маркировка легированных сталей. Влияние легирующих элементов на превращения, микроструктуру и свойства стали; принципы разработки легированных сталей Легированная сталь – это сталь, которая содержит кроме углерода и обычных примесей, другие

44. Алюминий; влияние примесей на свойства алюминия; деформируемые и литейные алюминиевые сплавы

44. Алюминий; влияние примесей на свойства алюминия; деформируемые и литейные алюминиевые сплавы Алюминий отличают низкая плотность, высокие тепло– и электропроводность, хорошая коррозийная стойкость во многих средах за счет образования на поверхности металла плотной

C111 / CW114A / Сернистая медь

C111 / CW114C представляет собой сернистую медь свободной обработки с классом обрабатываемости примерно 80% (латунь свободной обработки = 100%). Добавление серы к меди создает сульфид меди Cu2S в микроструктуре, который действует как стружколом и формирует основу свободной механической обработки.

Свободные режущие свойства сернистой меди в сочетании с высокими показателями электропроводности и теплопроводности (обычно присущими только более чистой меди) позволяют использовать ее в самых разных областях. C111/CW114C также можно обрабатывать на гораздо более высоких скоростях с меньшим износом инструмента, что дает механикам и конструкторам более экономичный продукт.

Сернистая медь раскисляется во время производства путем добавления фосфора, в результате чего материал не подвержен водородному охрупчиванию. Другими преимуществами C111/CW114C являются высокая коррозионная стойкость, очень хорошая формуемость и возможность легкого соединения пайкой.

Химический состав

Медь                  

Рем

Сера                  

0,2–0,7%

Фосфор             

0,003-0,012%

Всего показов              

0,1% макс.

  Связанные характеристики

С111

КВ114К

CuSP

С14700

Основные характеристики

  • Отличная электропроводность
  • Свободная обрабатываемость
  • Отсутствие водородного охрупчивания
  • Очень хорошая теплопроводность
  • Высокая коррозионная стойкость

Типичные физические свойства

Точка плавления

1079°С

Плотность

8,94 г/см³

Удельная теплоемкость

385 Дж/кг °К

Теплопроводность

347 Вт/м°К

Коэффициент теплового расширения (20-200°C)

17 x 10 -6 на °C

Электропроводность

93% МАКО

Удельное электрическое сопротивление

0,0181 мкм·м

Модуль упругости                             

12500 кг/мм²

Характеристики изготовления

Диапазон температур горячей обработки

750-870°С

Возможность горячего формования                                    

Хорошо

Способность к холодной штамповке

Хорошо

Холодное восстановление между отжигами

70% макс.

Класс обрабатываемости (свободная обработка латуни = 100)

80

Методы соединения

Пайка

Отлично

Пайка

Хорошо

Кислородно-ацетиленовая сварка

Не рекомендуется

Дуговая сварка в среде защитных газов

Не рекомендуется

Сварка сопротивлением: Точечная и шовная                                   Стыковая сварка                    

Не рекомендуется

Ярмарка

Типичное применение:

Сернистая медь C111/CW114C традиционно используется для электрических компонентов, для которых требуются высокие значения проводимости в сочетании со свободными свойствами механической обработки, в том числе; клеммы трансформаторов и автоматических выключателей, электрические контакты и соединители, зажимы, кабельные вводы и крепеж.

Эта техническая информация предоставляется компанией Holme Dodsworth Metals бесплатно, и пользователь может использовать такую ​​информацию по своему усмотрению и на свой риск. Для получения более подробных технических рекомендаций по выбору отпуска, изготовлению, соединению, обработке, физическим и механическим характеристикам, пожалуйста, свяжитесь с нами, так как объем не позволяет перечислить все характеристики материала.

Одновременное повышение коэффициента мощности и термоэлектрических характеристик сульфида меди путем легирования In2S3

Одновременное повышение коэффициента мощности и термоэлектрических характеристик сульфида меди путем легирования In

2 S 3

Цин-Лун Мэн, ‡ и Шуан Конг, ‡ аб Чживэй Хуанг, ab Юаньху Чжу, и Хенг-Чанг Лю, ac Сяовэй Лу, аб Пэн Цзян* и а также Синьхэ Бао* и

Принадлежности автора

* Соответствующие авторы

и Государственная ключевая лаборатория катализа, Центр передового опыта CAS в области нанонауки, Даляньский институт химической физики, Китайская академия наук, Далянь 116023, Китай
Электронная почта: pengjiang@dicp. ac.cn, [email protected]

б Университет Китайской академии наук, Пекин 100039, Китай

в Школа физических наук и технологий Шанхайского технологического университета, Шанхай, 200031, Китай

Аннотация

В этой работе мы демонстрируем одновременное повышение коэффициента мощности и термоэлектрических характеристик Cu 2 S при введении In 2 S 3 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *