Трансформатор сварочный схема: Схема сварочного трансформатора

alexxlab | 09.04.2023 | 0 | Разное

Схема сварочного трансформатора

индустрия » Электротехника » Сварочные аппараты » Сварочный трансформатор

Сварочный агрегат представляет собой устройство, в основу которого положен понижающий трансформатор. Различаются они по многим признаком, но запитываются от внешнего


источника напряжения 220 или 380В. Схема сварочного трансформатора включает дополнительные устройства для получения необходимой внешней характеристики, для возможности управления величиной сварочного тока, для защиты от короткого замыкания. Для электродуговой сварки требуется падающая внешняя характеристика тока. Для этого в цепь включается последовательно индуктивное сопротивление. Отдельная дроссельная катушка устанавливается последовательно со сварочной дугой, но существует схема набора дроссельных катушек совмещенных с трансформатором.

Задача сварочного трансформатора состоит в преобразовании внешнего напряжения (380 или 220В) до величины напряжения 60В (в режиме холостого хода).

Подобное напряжение обеспечивает режимы дуговой электросварки.

На фото. 1 представлена схема сварочного трансформатора с самостоятельным дроссельным устройством:

  • поз. 1 – металлический сердечник понижающего трансформатора;
  • поз. 2 – сердечник дроссельного устройства;
  • поз. 3 – подвижный сердечник дросселя;
  • поз. 4 – регулировочный винт, изменяющий воздушный зазор в дросселе;
  • а – воздушный зазор. Изменение величины воздушного зазора обеспечивает регулировку сварочного тока;
  • НН и ВН – обмотки низкого (выходного) и высокого (входящего) напряжения трансформатора;
  • Др – обмотки дроссельного устройства.
Электрическая дуга снижает значение сварочного тока, а это влечет снижение ЭДС самоиндукции дроссельного устройства. Что приводит к получению рабочего напряжения, необходимого для устойчивости горения дуги, которое ниже величины холостого хода трансформатора. Повышение сварочного тока производится увеличением воздушного зазора в дросселе и наоборот, уменьшение зазора приводит к снижению величины тока.
Физически это осуществляется регулировочным винтом.

Электрическая схема со встроенным дросселем представлена на схеме. 2. В подобной схеме металлический сердечник трансформатора имеет замкнутую конфигурацию с воздушным зазором для регулировки тока сварки.

  • Поз. 1 – сердечник трансформатора;
  • Поз. 2 – разомкнутый сердечник дроссельного устройства;
  • Поз. 3 – подвижная составляющая магнитопровода;
  • Поз. 4 – регулировочный винт, изменяющий воздушный зазор (а) в дросселе;
  • НН и ВН – обмотки низкого (выходного) и высокого (входящего) напряжения трансформатора;
  • Др – обмотки дроссельного устройства.
Сварочные трансформаторы промышленного назначения монтируются на шасси для возможности удобного перемещения агрегата к месту сварочных работ. Мощные сварочные трансформаторы обеспечивают 2 и более постов сварки.

Схема сварочного трансформатора с электронной регулировкой тока

Тем, кто любит мастерить всё своими руками, предлагается сделать компактное и надёжное устройство для электросварки изделий из конструкционных сталей электродами диаметром 2-5 мм. Питание его осуществляется от однофазной сети переменного тока напряжением 220 В, что довольно-таки удобно и при работе в домашних условиях, и «на выезде». А наличие встроенного электронного регулятора позволяет к тому же плавно изменять сварочный ток от 20 А до 200 А, что, в свою очередь, дает возможность прочно соединять детали различной толщины и с большим качеством.

Принципиальная электрическая схема сварочного трансформатора с электронной регулировкой тока:

Как следует из принципиальной электрической схемы (см. рис.), в основе данного устройства – разновидность тиристорного регулятора, получившего широкое распространение в последнее время. Оно и понятно. Ведь такое техническое решение позволяет использовать здесь весьма доступные материалы и детали, что важно для повторения и в «центре», и в условиях «глубинки».

«Сварочник» состоит из собственно силового трансформатора Т1, регулирующих тиристоров VS1 и VS2, включённых в цепь силовой обмотки II, и блока электронной регулировки, вырабатывающего управляющие импульсы. Дополнительная обмотка III стабилизирует горение дуги и позволяет улучшить процесс образования шва в начальный момент сварки. Ну а что касается обмотки IV, то она служит для питания блока электронной регулировки тока.

Трансформатор Т1 изготовлен на основе статорного сердечника от асинхронного двигателя переменного тока мощностью 15…18,5 или 22 кВт. По методике, о которой журнал уже не раз рассказывал своим читателям (см., например, № 8’92, 11’95). Напомним лишь, что электродвигатель разбирают, и статор вместе с обмотками извлекают из корпуса.

В случае затруднений последний можно даже разбить (конечно, с соблюдением необходимых предосторожностей).

Прежние обмотки вырубают зубилом. Остатки удаляют, не повреждая, однако, сами статорные пластины. Магнитопровод обматывают затем несколькими слоями стеклоткани или киперной ленты. Причём в последнем случае изолирующий материал промазывают эпоксидным клеем. Или – простым масляным лаком (например, марки ПФ-231).

Первичную обмотку трансформатора выполняют проводом марок ПЭВ-2 (медный) или АПСО (алюминиевый) диаметром 2,5 мм. Содержать она должна 220 витков, которые наматывают равномерно по всему сечению магнитопровода.

Если же провода требуемого диаметра нет, то можно обмотку выполнить двумя проводами. Важно лишь, чтобы суммарное сечение здесь составляло 5 мм . Для удобства намотки используют челнок, на котором предварительно размещают требуемое количество провода.

Получившуюся обмотку I изолируют 2-3 слоями стеклоткани или киперной ленты. Затем нелишне проверить всё на наличие короткозамкнутых витков. Для этого обмотку включают в обычную сеть с напряжением 220 В и убеждаются, что ток в цепи обмотки находится в пределах 0,3-0,5 А, Если замеренное значение превышает указанное, то ничего не остается, кроме как более аккуратно перемотать все 220 витков.

Вторичную обмотку II выполняют уже проводом сечением 35 мм3. Витков у неё поменьше, всего 60. А в качестве провода здесь вполне подойдёт медная или алюминиевая шина с надёжной изоляцией.

Рядом с обмоткой II на магнитопроводе размещают обмотку III, которая также содержит 60 витков, но уже – провода марки ПЭВ-2 диаметром 2,5 мм. А вот у обмотки IV – 40 витков ПЭВ-2 0,7 мм. Причём предусмотрен отвод от середины. Изолируются все вторичные обмотки так же основательно, как и первичная.

После окончательной намотки следует снова испытать трансформатор на холостом ходу. Методика здесь практически та же. Отличие лишь в том, что при указанном ранее значении тока на обмотках II и III должно быть напряжение 220 В, на обмотке IV – 40В.

В основе блока электронной регулировки тока лежит схема аналогичного устройства промышленного изготовления ТС-200. Монтаж выполняется печатным или навесным способом. Но в любом случае для этого блока предусматривается надёжный корпус.

Трансформатор Т2 наматывается на магнитопроводе Ш16 с толщиной набора 16 мм. Обмотка I содержит 140 витков провода марки ПЭВ-2 диаметром 0,5 мм. У II- всего 70 витков ПЭВ-2 0,1 мм, а у III и IV – по 90 витков ПЭВ-2 0,5 мм.

Самодельное сварочное устройство в сборе:

1 – трансформатор, 2 – радиатор (2 шт.), 3 – тиристор (2 шт. ), 4 – пластина верхняя, 5 – брусок, 6 – ручка для переноски, 7 – панель блока регулировки, 8 – потенциометр R-12, 9 – болт М12 с гайкой (2 шт., для крепления сварочного кабеля), 10 – болт М12 стяжной с гайкой и шайбами, 11 – пластина нижняя, 12 – скоба крепления сетевого кабеля, 13 – кабель сетевой.

Резисторы R1…R9 – типа МЛТ-0,5. В качестве R10 и R11 как нельзя лучше подойдут МЛТ-2, а для R12 – СП2-6А. Конденсаторы С1 и С3 целесообразнее использовать типа К50-6.

А что касается С2 и С4, то здесь предпочтительнее К73. Тиристоры VS1 и VS2 – ТЛ-200 или им подобные. Устанавливаются на теплоотводах с общей поверхностью 1000 мм3 каждый.

Блок, собранный из исправных деталей и без ошибок, в наладке не нуждается. Ну а если что-то вдруг не заладится – проверьте монтаж. Обратите внимание на правильность подсоединения обмоток у трансформатора Т2 и на соблюдение указанной в схеме полярности.

Работу блока можно легко проверить с помощью осциллографа. Для этого выходы 4-5 и 6-7 нагружают резисторами сопротивлением по 50 Ом и мощностью 0,5 Вт. Подсоединив прибор сначала к одному выходу, а затем – к другому, убеждаются, что перемещением движка резистора R12 изменяется скважность импульсов.

При отсутствии осциллографа работоспособность блока можно проверить и с помощью вольтметра переменного тока. Причём не подключая обмотку III При правильной работе блока с изменением сопротивления резистора R12 напряжение в точках 9-10 должно плавно меняться от 0 до 60 В.

Возможный вариант конструкции «сварочника» представлен на иллюстрации. Трансформатор Т1 закреплён, как это хорошо видно, на круглом 400-мм основании из 10-мм текстолита или 15-мм фанеры. Причём под него следует подложить два бруска из твёрдого дерева сечением 30×30 мм и длиной 350 мм – для надлежащей циркуляции воздуха, улучшения охлаждения.

К основанию трансформатор крепится при помощи стяжного болта М12 соответствующей длины и такой же, как и снизу, пластины. Сверху на радиаторах размещаются тиристоры.

Ручки для переноски трансформатора изготавливаются из стальной трубы диаметром 0,5”. На них крепятся две текстолитовые пластины толщиной 5 мм. Одна из них служит для установки блока регулировки тока, потенциометра R12, а также подсоединяемого на болтах М12 сварочного кабеля.

На второй пластине закреплены две скобы для намотки сетевого кабеля после окончания работы. Здесь же можно установить и автоматический выключатель, рассчитанный на ток не менее 25 А.

Впрочем, конструкция сварочного агрегата может быть и другой. Его, например, легко разместить в «целостном» корпусе (предусмотрев, соответственно, специальные вентиляционные отверстия или даже малогабаритный вентилятор для обдува). Однако как бы при этом не ухудшился тепловой режим!

Ведь даже в конструкции «свободно продуваемого» трансформатора, которая изображена на рисунке, приходится после каждого часа работы предусматривать 10-минутный перерыв.

Сварку производят электродами марки Э-5РА УОНИ-13/55-2,5 УД-1. Диаметр, как уже указывалось,- от 2 до 5 мм. Вставляют нужный электрод в надёжный и удобный электрододержатель (см. описания таковых в № 11’87, 1’90, 10’94 нашего журнала), включают названные выше устройства – и за дело.

Естественно, с соблюдением техники безопасности. С технологией же сварки можно ознакомиться в соответствующих пособиях.

М. ТЕРЛЕЦКИЙ, Санкт-Петербург. Моделист-конструктор 1996 №3.

WTC – Процесс контактной точечной сварки



Главная Продукция компании & Решения Сервис & Поддержка Учебный центр Новости Юридическая информация Свяжитесь с нами Логин


 

Низкочастотный (50/60 Гц) сварочный трансформатор постоянного тока

Низкочастотная сварка постоянным током трансформатор используется для устранения последствий индуктивное сопротивление сварочного контура. Сила частота на первичной обмотке трансформатора 50/60 Гц при номинальном первичном напряжении 220В, 380В, 480В или 600В. Мощность трансформатора контролируется инверсно-параллельными тиристорами в сварочном контроль. Вторичное напряжение варьируется от 3 вольт до 30 вольт в зависимости от соотношения витков между первичной и вторичной обмотками. Там на вторичной обмотке подключены диодные блоки трансформатор. Трансформатор выше представляет собой Полноволновой мост с центральным отводом. Поскольку ток на вторичное не чередуется между положительным и отрицательные импульсы, индуктивный импеданс становится незначительный.

При определении размера трансформатора необходимо для конкретной сварочной задачи, один первый определяет требуемый выходной ток для сварки, затем определяет напряжение, необходимое для нажатия ток через сопротивление инструментов и заготовки. Только сопротивление инструмента и заготовок должно учитывать при определении требуемого напряжения так как индуктивный импеданс поддерживается только во время первого цикла или около того.

Форма кривой однофазного постоянного тока

Сварочный ток отображается, как показано на однофазном Сварщики постоянного тока. На графике показаны два цикла времени период. Обратите внимание, что между импульсами одинаковой полярности что есть время, когда ток равен нулю. Это иногда называют периодом «межциклового охлаждения». Поскольку импульсы постоянного сварочного тока остаются одинаковыми полярность, индукция снижена, следовательно, эта мощность передача используется для очень больших контурных сварочных систем.



Презентации по сварке сопротивлением Разделы
Сопротивление Сварка
Механический Инструменты
Передача мощности
Сварочное оборудование
Проблемы и Решения

. … Заинтересован в карьере возможности в Welding Technology Corp?

Поиск:
Корпорация сварочных технологий | 24775 Двор Крествью | Фармингтон Хиллз, Мичиган, США 48335 | Телефон: +1 248-477-3900

Copyright 2010 Welding Technology Corp. Все права защищены.

Сварка%20Машина%20Трансформатор%20Электропроводка%20Технические данные и примечания по применению

Лучшие результаты (6)

org/Product”> org/Product”>
Часть Модель ECAD Производитель Описание Загрузить техпаспорт Купить Часть
278-25-336СА2И Ренесас Электроникс Корпорейшн Сварка сопротивлением SMD Crystal
278-24.8832-3СА2И Ренесас Электроникс Корпорейшн
Сварка сопротивлением SMD Crystal
278-25.78125-1СА2И Ренесас Электроникс Корпорейшн Сварка сопротивлением SMD Crystal
278-24.8832-3СА2И8 Ренесас Электроникс Корпорейшн Сварка сопротивлением SMD Crystal
278-2578125-1СА2И8 Ренесас Электроникс Корпорейшн Сварка сопротивлением SMD Crystal
278-25-336СА2И8 Ренесас Электроникс Корпорейшн Сварка сопротивлением SMD Crystal

сварка%20машина%20трансформатор%20проводка%20диаграмма Листы данных Context Search

org/Product”> org/Product”> org/Product”> org/Product”> org/Product”> org/Product”>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Каталог данных MFG и тип ПДФ Ярлыки для документов
1999 – Хьюз mcw 550

Реферат: Сварщик Hughes с разрядной конденсаторной сваркой mcw-550 Сварочный аппарат с конденсаторной разрядкой Hughes VTA90 Сварщик Hughes mcw 550 MCW552
Текст: Нет доступного текста файла


Оригинал
PDF МЦВ-550 ВТА90 МАКСИ90 MCW552 МА09-11 МА-02-25 WE-2231 Хьюз MCW 550 Хьюз сварщик разрядная конденсаторная сварка мкв-550 Сварочный аппарат с конденсаторным разрядом Hughes ВТА90 сварочный аппарат Hughes mcw 550 MCW552
2006 – ИНВЕРТОРНАЯ ДУГОВАЯ СВАРКА

Реферат: сварка IGBT, сварка, инвертор, дуговая сварка, сварка mig, сварка, инвертор, mig mag 200, управление, сварка mig, IGBT для сварки, инверторная сварка
Текст: Нет доступного текста файла


Оригинал
PDF PR10073EN ИНВЕРТОРНАЯ ДУГОВАЯ СВАРКА IGBT-сварка схема сварочного инвертора дуговая сварка миг сварка сварочный инвертор миг маг 200 контрольная сварка IGBT для сварочного инвертора сварка
2014 – Недоступно

Резюме: нет абстрактного текста
Текст: Нет доступного текста файла


Оригинал
PDF СН-6060
инвертор дуговой сварки

Реферат: Контроллер робота FANUC r-30ia Контроллер дуговой сварки, управляемый сотовым телефоном ИНВЕРТОРНАЯ ДУГОВАЯ СВАРКА FANUC r-30ia R30I IN ARC 200 INVERTER WELDER Схема инверторной сварки r-30ia FANUC
Текст: Нет доступного текста файла


Оригинал
PDF 120 кГц РВ-100iC инвертор для дуговой сварки Контроллер робота FANUC r-30ia Робот, управляемый мобильным телефоном схема дуговой сварки ИНВЕРТОРНАЯ ДУГОВАЯ СВАРКА FANUC р-30иа Р30И IN ARC 200 ИНВЕРТОРНАЯ СВАРОЧНАЯ МАШИНА схема инверторного сварочного аппарата р-30иа FANUC
2003 – AXY52000

Резюме: AXW116421A AXW1404A
Текст: Нет доступного текста файла


Оригинал
PDF AXY53000 AXY52000 AXW116421A AXW1404A
1987 – Хьюз mcw 550

Реферат: Сварка с разрядным конденсатором Hughes Welder Сварщик Hughes mcw 550 Сварочный аппарат с разрядным конденсатором Hughes mcw-550 VTA90 Сварка «Примечание по применению» MAXY90
Текст: Нет доступного текста файла


Оригинал
PDF ВТА90 МАКСИ90 MCW552 МА09-11 МА-02-25 WE-2231 Хьюз MCW 550 разрядная конденсаторная сварка Хьюз сварщик сварочный аппарат Hughes mcw 550 Сварочный аппарат с конденсаторным разрядом Hughes мкв-550 ВТА90 сварка “примечание по применению”
Схема ультразвуковой сварки

Реферат: схема индукционной сварки схема ультразвуковой сварки аргоном для сварки сварка сопротивлением фазовому сдвигу сварка сварка «примечание по применению» дуговая сварка схема сварки J-STD-002
Текст: Нет доступного текста файла


Оригинал
PDF GL000017 001EN 001EN. D-79108 D-79008 Схема ультразвуковой сварки схема индукционной сварки Схема ультразвуковой сварки аргон для сварки контактная сварка с фазовым сдвигом сварка сварка “примечание по применению” дуговая сварка схема сварки J-STD-002
2007 – Хьюз mcw 550

Реферат: Hughes Welder mcw-550 Hughes сварочный аппарат с конденсаторной разрядкой VTA90 Сварочный аппарат с разрядной конденсаторной сваркой Hughes mcw 550 Вольфрамовые электроды HUGHES MAXY90
Текст: Нет доступного текста файла


Оригинал
PDF ВТА90 МАКСИ90 MCW552 МА09-11 МА-02-25 WE-2231 5954-2227Е Хьюз MCW 550 Хьюз сварщик мкв-550 Сварочный аппарат с конденсаторным разрядом Hughes ВТА90 разрядная конденсаторная сварка сварочный аппарат Hughes mcw 550 Хьюз вольфрамовые электроды МАКСИ90
2013 – NRW-PS300

Резюме: нет абстрактного текста
Текст: Нет доступного текста файла


Оригинал
PDF NRW-PS300C НТ-ПС300 NRW-PS300 ВА-130/140 0813E
2010 – Схема сварочного аппарата постоянного тока

Аннотация: примечание по применению sg3525 AN3200 SG3525 схема сварочного аппарата с постоянным током схема дуговой сварки схема бесплатная схема сварочный аппарат сварочный аппарат на основе igbt sg3525 WELDER сварочный аппарат трансформаторного типа
Текст: Нет доступного текста файла


Оригинал
PDF АН3200 схема сварочного аппарата постоянного тока примечание к применению sg3525 АН3200 Регулятор постоянного тока SG3525 схема сварочного аппарата схема дуговой сварки бесплатная схема сварочного аппарата сварочный аппарат на основе igbt SG3525 СВАРОЧНЫЙ МАШИН сварочный аппарат трансформаторного типа
2005 – СРГ22

Резюме: AXY51000 AXY52000 AXW1109A
Текст: Нет доступного текста файла


Оригинал
PDF AXY52000 AWG22 AXY51000 AXY52000 AXW1109A
2008 – Плата разъема M12

Резюме: AXP410618 AXP414618 AXP416618 AXP420618 AXP426618 AXP430618 AXP434618 AXP440618 AXP450618
Текст: Нет доступного текста файла


Оригинал
PDF
Недоступно

Резюме: нет абстрактного текста
Текст: Нет доступного текста файла


Оригинал
PDF AXY52000
2008 – AXY51000

Резюме: разъем AXY52000 0 формы с квадратными контактами
Текст: Нет доступного текста файла


Оригинал
PDF AXY52000 AXY51000 AXY52000 Заголовок формы 0 с квадратными контактами
АВГ22

Резюме: AXY51000 AXY52000
Текст: Нет доступного текста файла


Оригинал
PDF AXY52000 AWG22 AXY51000 AXY52000
AXY10000

Аннотация: AXY20101 AXY20201 AXY20202 AXY20203 AXY20205 AXY20301 AXY20302 AXY20303 AXY20305
Текст: Нет доступного текста файла


Оригинал
PDF
2002 – Недоступно

Резюме: нет абстрактного текста
Текст: Нет доступного текста файла


Оригинал
PDF
2008 – AXW3101421A

Аннотация: axw7221 AXW34014A
Текст: Нет доступного текста файла


Оригинал
PDF AXY51000 AXY52000 AXW3101421A ахв7221 AXW34014A
Х01Н2-Д

Реферат: vde 0298 4 луженая медная проволока
Текст: Нет доступного текста файла


Оригинал
PDF H01N2-D Кап01 ПРО86 вде 0298 4 луженых медных провода
2010 – Схема дуговой сварки

Реферат: ДУГОВАЯ СВАРКА Диодный 800-амперный контроллер сварочного аппарата, гибкий подвесной регулятор высоты горелки, высота сварочной горелки для дуговой сварки
Текст: Нет доступного текста файла


Оригинал
PDF 0-800А схема дуговой сварки ДУГОВАЯ СВАРКА диод 800ампер контроллер сварщика гибкая подвеска регулятор высоты горелки сварка дуговая сварка высота факела
2005 – робот

Реферат: роботы для управления дуговой сваркой
Текст: Нет доступного текста файла


Оригинал
PDF
миг сварка

Реферат: Газ аргон для сварки 09016 AMP CONNECTOR сварка
Текст: Нет доступного текста файла


Оригинал
PDF