Трансформатор тока высокочастотный: Высокочастотные трансформаторы: конструкция, особенности, выбор

alexxlab | 27.02.2020 | 0 | Разное

Содержание

Высокочастотные трансформаторы: конструкция, особенности, выбор

Высокочастотный трансформатор представляет собой электрическое устройство, которое предназначается для передачи энергии высокой частоты между двумя или более цепями посредством электромагнитной индукции. Поскольку высокочастотное переменное электромагнитное поле обеспечивает более высокие значения напряжения при тех же показателях напряженности поля, то рассматриваемые устройства отличаются компактностью и преимущественно используются как элементы сложных электрических контуров в радиопередающих системах, а также в импульсных источниках питания.

Принцип функционирования

Устройство данного устройства принципиальных отличий от низкочастотных трансформаторов не имеет. Переменный ток в первичной обмотке трансформатора создает переменный магнитный поток в сердечнике и переменное магнитное поле, которое воздействует на вторичную обмотку. Это изменяющееся (как по времени, так и по амплитуде) магнитное поле на вторичной обмотке вызывает изменение электродвижущей силы (ЭДС) или напряжения во вторичной обмотке высокочастотного трансформатора.

Высокочастотный трансформатор

Действие высокочастотного трансформатора зависит от материала сердечника и плотности намотки витков.

Важно! При малой эффективности устройство не передаёт электромагнитную энергию, а накапливает её, что приводит к росту температуры и магнитным потерям.

Выбору материала сердечника уделяют решающее внимание. Такой материал должен обладать следующими характеристиками:

  • Высокой диэлектрической проницаемостью;
  • Линейностью характеристики передачи энергии;
  • Локализацией образующихся помех;
  • Минимальными значениями рассеяния индуктивности обмоток.

Рассматриваемые далее конструкции трансформаторов не меняют частоту. Исключения составляют случаи, когда нелинейность материала сердечника вызывает искажения, которые генерируют новые спектральные компоненты.

Высокочастотный трансформатор

Устройство

Трансформаторы, которые применяются в  преобразователях с мостовыми инверторами, предназначаются для высокочастотного выпрямления и обеспечения гальванической развязки между входом и выходом. Такой агрегат состоит из двух частей:

  • Мостового инвертора на первичной обмотке.
  • Выпрямителя на вторичной обмотке.

Основные отличия низкочастотных трансформаторов от высокочастотных заключаются в особом конструктивном обеспечении связей между обмотками. Фактически параллельно включается ещё одна пара обмоток, причём первичная обмотка второй из них электрически никак не связана с первой, а вторичная обмотка подключается к соответствующим выводам первой вторичной обмотки. Это снижает энергетические потери и устранять риск перегрева устройства при передаче значительной мощности.

Высокочастотный трансформатор

Таким образом, высокочастотный трансформатор (отличия которого состоят в присутствии одной первичной и двух вторичных обмоток, соединенных между собой параллельно), позволяет подключить вторичные обмотки при условии, что они имеют одинаковое количество витков и намотаны на один и тот же магнитный сердечник.

При этом не имеется различий в отношении мощности суммарных электромагнитных помех, если принимаются одинаковыми коэффициенты поворота первичной и вторичной обмоток, а также их номинальные мощности.

Важно! Параллельное подключение вторичных элементов выполняется с целью улучшения процесса комбинированной подачи тока на нагрузку.

Если высокочастотный трансформатор используется в маломощных энергетических цепях (например, в радиопередающих комплексах), то используется один вторичный элемент, выполняемый  из толстой проволоки. Результат действия одинаков, а сложность и громоздкость системы уменьшается.

В практике использования часто имеет значение сравнение двух вышеописанных вариантов по производительности в отношении электромагнитных помех и стабильности напряжения. Если оба типа высокочастотных трансформаторов выдают ток нагрузки при равном напряжении, то падение производительности (из-за индуктивности и сопротивления утечки) несущественно. Однако при мощностях более 10 Вт имеет значение площадь поверхности провода, которая определяет так называемый скин-эффект. Например, для одного вторичного провода необходима увеличенная площадь поперечного сечения для меди, чем для двух бифилярных катушек с намоткой.

Высокочастотный трансформатор

Последовательность действия и характеристики

Независимо от конструктивной разновидности постоянный ток поступает на первичную обмотку. При этом для питания полевого транзистора требуется создание прямоугольной волны амплитудой от 0 В до + 12 В, а трансформатор будет нуждаться в первичной форме волны, которая имеет среднее значение, близкое к нулю.

Магнитный поток в ядре не сбрасывается, поэтому где-то вдоль линии получается насыщение. В результате остаточный поток, оставшийся от одного цикла переключения, создается следующим циклом: считается, что высокочастотный трансформатор «уходит в насыщение».

Параметры тока и напряжения на первичной обмоткой трансформатора изменяются с помощью однополярного истокового повторителя, причем рабочий диапазон достигает 12 В. При малой нагрузке те же колебания воспроизводятся и вторичной обмоткой. Однако имеются и отличия. Ток в первичной обмотке течет только в одном направлении. При высоком напряжении он увеличивается с одной скоростью, а при низком – с другой.

Важно! Когда выходной сигнал становится низким, ток отключается гораздо быстрее, что искажает его форму. Поэтому применяется управление трансформатором с помощью биполярного сигнала, когда ток, симметрично протекает в обоих направлениях.

Высокочастотный трансформатор

Рабочие параметры устройств включают в себя:

  • Импульс: гарантирует, что индуктивность остается в заданном диапазоне и избегает насыщения.
  • Функционал режима переключения, который содержит три дросселя и переключающий трансформатор.
  • Способ обратной связи – по выходному напряжению, которое является функцией удержания тока в трансформаторе (реже встречается обратный вариант, с управлением по току).
  • Рабочее напряжение на инверторе – от 1000 В, при низком входном напряжении.
  • Тип изоляции. Рассчитывается на общее напряжение в диапазоне 15 … 200 В.

Основные применения: установки возобновляемой энергетики,  гибридные транспортные средства, промышленные приводы, а также устройства, предназначенные для  управления энергораспределением.

внешний вид импульсного трансформатора

Особенности конструкции и использования

Позициями, по которым производится выбор рассматриваемых устройств, являются:

  • Потребляемые входные напряжения, В – 0….15000.
  • Напряжения на выходе, В – 0….6000.
  • Реактивная мощность, кВА – 0,25….5000 (для авторитетных производителей эта характеристики не зависят от длительности узла).
  • Коэффициент мощности нагрузки – 0…100% (по отставанию или по опережению).
  • Частота, Гц – 20…100000.
  • Фазность сети – одно- или трехфазная.
  • Электростатическое экранирование – обязательно, может включать в себя один или несколько защитных экранов.
  • Исполнение корпуса – для работы в обычной или агрессивной среде.

Схема Высокочастотный трансформатор

Важным параметром выбора  считается материал сердечников. Используются два типа конструкции. В оболочечном типе обмотки располагаются на общей ножке сердечника, а в трансформаторе с сердечником обмотки намотаны на разные ветви трансформатора. Ввиду того, что главной задачей эффективного использования высокочастотного трансформатора является  обеспечить максимальную связь потока, то толщина проволоки выбирается с учетом рабочего тока, который будет питать устройство. Реже встречаются третичные обмотки высокочастотных трансформаторов.

Основные материалы, используемые для изготовления сердечников, определяются назначением устройства. Например, силовые трансформаторы, работающие на частоте сети, могут иметь мягкие железные сердечники для магнитного соединения первичной и вторичной обмоток.

Важно! Для высокочастотных трансформаторов мягкое железо является неудовлетворительным, потому что материал имеет слишком много «памяти» – то есть достаточно инерционен, чтобы обратить магнитное поле тогда, когда ток в первичной обмотке меняется на противоположный.

Высокочастотный трансформатор

Для аудиотрансформаторов используют преимущественно железо, модифицированное кремнием или никелем- элементами, которые снижают эффект памяти. В конструкциях радиочастотных трансформаторов используются компактированные порошковые материалы – ферриты.

Способы намотки тоже разные. Высокочастотные преобразователи в аудиотехнике нуждаются в быстрой реакции на изменения магнитного поля, поэтому при их производстве укладывают первичную и вторичную обмотки поверх определенного места на ядре.

Наибольшей оперативности в управлении требуют радиочастотные трансформаторы, поэтому они часто наматываются бифилярно, когда первичный и вторичный провода одновременно наматываются вокруг сердечника. Такой метод минимизирует потери и обеспечивает прямую магнитную связь между обмотками.

Высокочастотный трансформатор

Страничка эмбеддера » Трансформатор тока

Иногда нужно узнать – какой ток течет в электрической цепи. Если ток небольшой, для этого можно использовать простой резистор. Если-же ток достигает неприличных величин (к примеру, как в трансформаторах Тесла), приходится искать другие методы измерения. Один из таких методов – использование трансформатора тока.

 image

Что это такое?

Трансформатор тока, для краткости будем называть его ТТ, используется повсеместно. К примеру, в электросчетчиках и на подстанциях. Мы-же будем рассматривать то, как его можно использовать для измерения тока в импульсных источниках питания – сварочных аппаратах, трансформаторах Тесла итп. Стоит сразу обратить внимание, что с помощью ТТ можно измерять только переменный ток, но никак не постоянный!

Итак, ТТ позволяет нам измерять очень большой ток. Чем-же ТТ отличается от обычного трансформатора? А вот ничем! Название придумали из-за области применения и характерной конструкции – катушка на тороидальном сердечнике, через которую пропущен провод.

ТТ преобразует проходящий через него ток в пропорциональное напряжение. К примеру, если через трансформатор проходит 100А, то он выдает 1В, а если проходит 200А, то на выходе мы получим 2В.

 

Основные соотношения

Проделав нехитрые математические выкладки, можно убедиться, что для токов в обмотках ТТ с очень большим коэффициентом трансформации по напряжению и  с короткозамкнутой вторичной обмоткой действует такой закон для тока в обмотках:

image

Для того, чтобы преобразовать ток в напряжение, используют обычный резистор. Типичная схема включения ТТ:

image

Напряжение, падающее на резисторе R, согласно закону Ома, равно E=IR. Таким образом, зависимость выходного напряжения ТТ от тока определяется простым выражением:

imageК примеру, рассмотрим трансформатор Тесла, где через ТТ течет ток в 500А. Если у нас 1 виток в первичной обмотке ( да, просто пропущенный через кольцо провод считается за один виток), а во вторичной обмотке — 1000 витков, то ток во вторичной обмотке окажется равным 0.5А. Если мы возьмем сопротивление R1 = 2ом, то при полном токе на нем будет падать 1вольт.

Просто? Еще-бы!

 

Применения

Раз мы уже знаем, что такое токовый трансформатор, давайте подумаем куда его можно всунуть. Кроме того, что можно измерять большие токи, можно еще строить автогенераторы с обратной связью по току. Практически все DRSSTC являются именно такими. Можно также организовывать защиту от превышения тока, без такой защиты большинство импульсных блоков питания являются ”живыми мертвецами”.

 

Запаздывание по фазе

Для автогенераторного применения важна еще одна характеристика ТТ – задержка сигнала.

Запаздывание сигнала может произойти из-за таких факторов

  • Индукция рассеяния ТТ вместе с выходным резистором образует ФНЧ.

  • Межвитковая емкость в ТТ может стать причиной сдвига фазы.

Для анализа обоих этих ситуация, я набросал простую модель в SWCad’е.

Для предыдущего примера с трансформатором Тесла, возьмем сердечник R25.3 из материала N87 фирмы Epcos. В качестве паразитной емкости, возьмем 1нФ. Не спрашивайте, откуда такая емкость. Мне она кажется значительно большей, чем может возникнуть в любой реальной ситуации. Модель выглядит так:

image

Результаты симуляции при к. связи = 1

image

К. связи = 0.5

image

 

Как видно, отличаются только амплитуды. Сигнала. Никакого запаздывания нет в обоих случаях. Такое поведение сохраняется вплоть до очень высоких частот и до очень маленьких коэффициентов связи. Таким образом, можно сделать вывод, что фаза сигнала практически не зависит от паразитных параметров.

 

Каскадирование токовых трансформаторов

Люди всегда были ленивыми. Некоторым лениво встать из-за компа, а некоторым – мотать тысячи витков в ТТ. Поэтому придумали соединять трансформаторы последовательно. Решение спорное, и поэтому попробуем его проанализировать при помощи того-же симулятора. Включим последовательно два трансформатора на том-же сердечнике с обмоткой по 33 витка на каждом. Замечу, что паразитная емкость в каждом из трансформаторов сильно уменьшилась, что не удивительно.

image

Результаты симуляции очень похожи на одиночный трансформатор. Никакого запаздывания нет. Только амплитуда становится немного менее предсказуемая – она определяется произведением коэффициентов связи в обоих трансформаторах.

image

Вывод – в подавляющем большинстве случаев можно применять несколько ТТ, включенных последовательно.

 

Прямоугольный выходной сигнал

Часто необходимо получить прямоугольный выходной сигнал из синусоиды, выдаваемой ТТ. Конечно, это можно сделать с помощью компаратора, однако быстродействующие компараторы дороги и требуют особых навыков от разработчика. Проще собрать следующую, уже почти ставшую стандартом, схему:

 

 

image

Для чего такие сложности? Стабилитроны – очень медленные устройства. Для повышения быстродействия ограничителя, к ним добавлены диоды Шоттки. Когда напряжение меняет полярность – диоды Шоттки быстро закрываются и не дают стабилитронам испортить сигнал. Такой ограничитель выдает сигнал +-5 вольт. Замечу, что сигнал нужно обязательно ограничивать симметрично, иначе произойдет сдвиг фазы.

Далее идет диодная “вилка” которая защищает вход последующей микросхемы от пробоя отрицательным напряжением.

Диодную вилку нельзя поставить сразу после ТТ, потому, как выбросы из силовой части преобразователя попадут в чувствительные цепи управляющей электроники.

 

Конструкция

Заметьте, что ТТ работает как источник тока, и чем больше витков вы намотаете, тем ближе ТТ будет к идеальному источнику тока и тем точнее будут показания. Также, чем больше витков, тем меньше ток течет через резистор, а значит, уменьшается рассеиваемая на нем мощность. Именно предельная мощность на резисторе обычно является определяющим факторов для количества витков в любительских конструкциях.

Для того, чтобы сделать коэффициент трансформации побольше, первичную обмотку обычно делают всего из одного витка, а во вторичной мотают порядка тысяч.

Проблема насыщения сердечника очень редко проявляется в токовых трансформаторах. Что такое насыщение и как с ним бороться, можно прочитать в статье о GDT.

Чем больше проницаемость сердечника, тем больше к. связи и точнее показания, однако больше становится и паразитная индуктивность, добавляемая в измеряемые цепи. Это часто нежелательно. На практике, в качестве сердечника для ТТ может использоваться практически любой феррит, работающий на необходимой частоте. Для низкочастотных применений используют обычное трансформаторное железо.

В качестве проволоки для вторичной обмотки стоит выбирать проволоку с наибольшим возможным сечением – так уменьшается погрешность измерения.

 

Промышленные ТТ

Естественно, промышленность выпускает громаднейший ассортимент токовых трансформаторов. Они хорошо настроены и могут быть использованы для точных измерений.  Естественно, есть проблемы с доставабельностью в неэпических количествах. К примеру, в киеве, несколько ТТ я видел в магазине “радиомаг”

image

https://www.rcscomponents.kiev.ua/modules.php?name=Asers_Shop&s_op=viewproduct&cid=236

 

Еще почитать

К моему удивлению, материалов по ТТ очень мало. Но википедия, все-же, знает, что это такое.

https://ru.wikipedia.org/wiki/Трансформатор_тока

Привенение ТТ в электросчетчиках. Там-же описывается немного теории.

https://www.eltranstech.ru/aspect.php

RFCT – датчики трансформаторного типа, работающие в HF диапазоне частот

RFCT

Датчики серии «RFCT» (Radio Frequency Current Transformer), предназначенные для регистрации частичных разрядов в изоляции различного высоковольтного оборудования, представляют собой измерительные трансформаторы тока, эффективно работающие в высокочастотном (HF) диапазоне частот.

В отличие от обычных измерительных трансформаторов тока сердечник «RFCT» датчиков изготавливается не из листовой электротехнической стали, а из специализированных высокочастотных материалов – ферритов. В результате датчики этого типа малочувствительны к токам промышленной частоты, но позволяют хорошо регистрировать периодические и импульсные сигналы в диапазоне частот от сотен кГц до десятков МГц, в зависимости от используемого материала сердечника.

Уровень частичных разрядов в высоковольтной изоляции находится примерно в одном диапазоне, составляет от десятков пикокулон до десятков нанокулон, и мало зависит от типа контролируемого высоковольтного оборудования. Поэтому датчики типа «RFCT», в отличие от измерительных трансформаторов тока промышленной частоты, имеют одинаковую чувствительность для всех практических применений, определяемую только особенностями их конструкции.

Датчики регистрации частичных разрядов типа «RFCT», как и все другое диагностическое оборудование, используемое для этих целей, после изготовления не поверяются, а только тестируются на работоспособность и общее соответствие требованиям технических условий на изготовление. Необходимая калибровка чувствительности датчиков типа «RFCT» всегда производится «на месте» проведения измерений, с учетом особенностей созданной измерительной схемы. При этом автоматически учитывается не только реальная чувствительность датчиков, но и степень затухания импульсов частичных разрядов внутри контролируемого оборудования, в соединительных кабелях и во входных цепях измерительных приборов.

По своей конструкции датчики «RFCT» делятся на три типа:

  • Неразъемные стационарные датчики кольцевой конструкции, монтируемые на заземляющих проводах и шинах на отключенном оборудовании. Обычно такие датчики поставляются со стационарно подключенным сигнальным кабелем.
  • Датчики с разъемным сердечником, легко монтируемые на проводниках и шинах даже работающего контролируемого оборудования, обычно используемые для проведения оперативных измерений частичных разрядов. Подключение сигнального кабеля к таким датчикам производится при помощи коаксиального разъема.
  • Модульные датчики частичных разрядов, предназначенные для измерений в слаботочных цепях, включаемые в разрыв соединительного провода (на отключенном оборудовании). Такой тип конструкции применяется и для комплексных датчиков, предназначенных, кроме контроля частичных разрядов, для измерения дополнительных параметров оборудования.

Изоляция корпусов, соединительных кабелей и выходных разъемов датчиков типа «RFCT» конструктивно рассчитана на напряжение до 1000В. По этой причине датчики частичных разрядов трансформаторного типа всегда устанавливаются только на проводниках или шинах заземления (с внешней изоляцией или без изоляции) высоковольтного оборудования (корпусов, баков, обмоток, экранов и т. д.). Установка датчиков частичных разрядов типа «RFCT» на высоковольтных токоведущих проводах высокого напряжения или в точках оборудования, где высокое напряжение может возникнуть даже кратковременно, например, в изолированной нейтрали трехфазной цепи, категорически запрещена.

В настоящее время фирмой «DIMRUS» серийно производятся девять разновидностей высокочастотных трансформаторов тока типа «RFCT». Основная справочная информация о конструкции этих датчиков, их частотные характеристики и особенности практического применения приведены ниже.

Таблица 1. Габаритные и весовые параметры основных семи датчиков серии «RFCT», выпускаемых фирмой «DIMRUS»

  Ширина, мм Высота, мм Длина, мм Масса, кг
RFCT-1 83 52 21 0,10
RFCT-2 50 82 51 0,12
RFCT-3 40 40 13 0,04
RFCT-4 145 160 24 0,72
RFCT-5 77 170 23 0,18
RFCT-6 26 285 (65 без ручки) 60 0,28
RFCT-7 122 114 28 0,48

Датчик частичных разрядов марки «RFCT-1»

RFCT-1

Трансформаторный датчик марки «RFCT-1» предназначен для использования в системах регистрации и анализа частичных разрядов в изоляции высоковольтного оборудования. Основное назначение датчика – проведение измерения частичных разрядов в системах непрерывного или периодического контроля состояния высоковольтного оборудования.

Датчик марки «RFCT-1» может быть использован для регистрации высокочастотных импульсов от частичных разрядов в высоковольтных выключателях, ячейках КРУ, в подходящих к ним кабельных линиях, в цепях нейтрали силовых трансформаторов и в других высоковольтных объектах. Для проведения регистрации частичных разрядов датчик устанавливается на проводниках и шинах заземления контролируемого оборудования. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока в контролируемом проводнике от высокого потенциала «к земле».

Датчик марки «RFCT-1», в соответствии с требуемыми условиями монтажа и заказной спецификацией, может поставляться с соединительным коаксиальным разъемом (марки BNC или TNC) или с «глухо» подключенным коаксиальным кабелем длиной 15 метров. Длина соединительного кабеля может варьироваться в соответствии с утвержденными требованиями заказной спецификации.

Датчик «RFCT-1» не требует периодической поверки. Для него достаточно калибровки на объекте контроля и периодической проверки его работоспособности.

Датчик частичных разрядов марки «RFCT-2»

RFCT-2

Основное назначение датчика «RFCT-2» – регистрация импульсов от частичных разрядов в генераторах, трансформаторах, ячейках КРУ и других высоковольтных объектах.

Внутри изолированного корпуса датчика «RFCT-2» расположен залитый компаундом маломощный сигнальный высокочастотный трансформатор. Первичная обмотка трансформатора подключена к входному винтовому соединителю М4 через разделительный высоковольтный конденсатор. Вторичная обмотка трансформатора, к которой подключается измерительный прибор, выведена на стандартный коаксиальный разъем типа BNC.

Датчик «RFCT-2» предназначен для измерения частичных разрядов, которые можно зарегистрировать между двумя прямо не связанными частями высоковольтного оборудования. Особенностью является то, что между этими частями оборудования возможно возникновение потенциала до десятков вольт, при замыкании которого возможно протекание уравнительных токов большой величины.

Это может быть, например, измерение частичных разрядов между корпусом высоковольтного генератора и экраном отходящего от него токопровода. Или же это может быть измерение частичных разрядов между корпусами (баками) двух силовых трансформаторов (или отдельных фаз группового силового трансформатора), потенциал между которыми, в случае протекания значительных уравнительных токов по цепям заземления, может достигать величины нескольких вольт и даже десятка вольт.

Датчик «RFCT-2» поставляется в пластиковом (АВС) корпусе, в котором располагается высокочастотный трансформатор и разделительные конденсаторы. Весь свободный внутренний объем внутри датчика заливается эпоксидной смолой или специализированной силиконовой резиной, в зависимости от условий будущей эксплуатации.

Благодаря использованию в конструкции датчика высокочастотного разделительного трансформатора, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, а присутствуют только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства, в основном обусловленные импульсами частичных разрядов в изоляции.

Датчик частичных разрядов марки «RFCT-3»

RFCT-3

Датчик частичных разрядов марки «RFCT-3» является вспомогательным, обычно он используется для создания гальванической развязки между контролируемой цепью и измерительным прибором. Это бывает нужным для устранения уравнительных токов промышленной частоты и для организации безопасности проведения работ при измерении частичных разрядов в изоляции.

Внутри изолированного корпуса датчика «RFCT-3», залитого компаундом, располагается только разделительный высокочастотный трансформатор с коэффициентом трансформации, равным единице, подключенный к двум разъемам марки BNC.

Разделительный конденсатор, смонтированный в первичной цепи датчика марки «RFCT-2», здесь отсутствует. Поэтому через входную цепь датчика «RFCT-3» могут протекать токи промышленной частоты (величиной не более 1А). По этой причине датчик марки «RFCT-3», включаемый в разрыв контролируемой цепи, не препятствует протеканию токов промышленной частоты, имеющих место в контролируемой цепи.

По своей амплитудно-частотной характеристике датчик «RFCT-3» соответствует датчику «RFCT-2», так как в них используется одинаковый высокочастотный разделительный трансформатор на ферритовом сердечнике.

Некоторое время датчик «RFCT-3» поставлялся в комплекте со специализированными соединительными проводами под торговой маркой «DBT-1». Этот комплект был предназначен для проведения тестовых испытательных измерений и позволял проводить регистрацию частичных разрядов в силовых трансформаторах. С этой целью через первичную обмотку замыкался на землю измерительный вывод высоковольтных вводов трансформаторов. Практика проведения измерений показала, что в этом случае не удается измерить ток проводимости ввода, что снижало эффективность таких испытаний. В настоящее время для этих целей предлагаются датчики марки «DB-2» различных модификаций.

Датчик частичных разрядов марки «RFCT-4»

RFCT-4

Датчик «RFCT-4» предназначен для регистрации частичных разрядов в системах постоянного и периодического мониторинга состояния изоляции высоковольтного оборудования – в высоковольтных выключателях, ячейках КРУ, подходящих к ним и отдельно расположенных кабельных линиях, в цепях нейтрали силовых трансформаторов и в другом оборудовании.

Отличительной конструктивной особенностью датчика марки «RFCT-4» является то, что он выполнен разъемным, состоящим из двух половин. Это позволяет оперативно монтировать датчики на оборудовании, не разрывая контролируемую электрическую цепь. Кроме того, датчик имеет сравнительно большой внутренний диаметр, позволяющий монтировать его на токоведущих элементах большого сечения, которые часто применяются в составе мощного высоковольтного оборудования.

Половинки датчика, при использовании в составе системы постоянного контроля, стационарно соединяются между собой «скрытыми болтами». При использовании датчика в составе переносных измерительных систем применяются другие болты, более удобные для быстрой фиксации половинок датчика между собой без использования инструмента.

Как и все другие датчики этой серии «RFCT-4» предназначен для установки только в цепях заземления высоковольтного оборудования, поэтому его электрическая изоляция рассчитана на напряжение до 1000 Вольт.

Кроме того, датчик марки «RFCT-4» имеет увеличенное сечение ферритового сердечника, поэтому мощные высокочастотные импульсы в контролируемом проводнике приводят к импульсам большой энергии во вторичной цепи, представляющим опасность для персонала и диагностического измерительного оборудования. Этот факт необходимо учитывать при разработке и создании измерительной схемы, всегда предусматривая дополнительные защитные и заземляющие устройства во входных цепях измерительных приборов регистрации частичных разрядов. Для снижения влияния этого фактора в датчик встроена защита от импульсных токов (коммутационных) с ограничением выходного напряжения на уровне 15 В.

Поскольку датчик марки «RFCT-4» чаще всего монтируется на проводниках большого сечения, по которым возможно протекание токов промышленной частоты, то может происходить насыщение сердечника сильными внешними магнитными полями, что приводит к снижению чувствительности датчика. Для снижения уровня насыщения магнитопровода датчика в зазор сердечника между половинами датчика должна вставляться изолирующая прокладка толщиной до 2 мм, в зависимости от величины тока, протекающего по проводнику заземления. При этом уменьшается степень насыщения сердечника токами промышленной частоты.

Датчик производится в литом пластиковом (АВС пластик) корпусе, в двух половинах которого располагается разрезанный высокочастотный сердечник большого сечения и диаметра. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной. При наружной установке датчика с ним поставляется комплект крепления, дополнительно защищающий пластиковый корпус датчика от солнечной радиации.

Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. В выходном сигнале датчика присутствуют только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства, в основном обусловленные импульсами частичных разрядов в изоляции.

Датчик монтируется на заземляющих шинах, проводах, трубах. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике.

Датчик не требует проведения независимой периодической поверки и калибровки. Это производится на объекте, после монтажа.

Для стационарных систем датчик выпускается с разъемом марки TNC (винтовое крепление) или с «глухо подключенным кабелем длиной 15 м, а для систем периодического мониторинга, использующих переносные приборы, с разъемом BNC.

Датчик частичных разрядов марки «RFCT-5»

RFCT-5

Датчик «RFCT-5» предназначен для использования в системах периодического мониторинга состояния изоляции высоковольтного оборудования. Назначение датчика «RFCT-5» – регистрация импульсов от частичных разрядов в высоковольтных выключателях, ячейках КРУ и подходящих к ним кабельных линиях, в цепях нейтрали силовых трансформаторов и т. д.

Датчик «RFCT-5» производится в литом пластиковом (АВС пластик) корпусе, в котором располагается высокочастотный сердечник. Конструктивно датчик представляет собой «разъемные» высокочастотные измерительные клещи, позволяющие проводить измерения частичных разрядов в проводниках с максимальным диаметром до 24 мм. Габаритные размеры датчика «RFCT-5» – 200 * 100 * 25 мм. Вес датчика – 0,5 кг.

Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. Датчик регистрирует только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства.

Оптимальный рабочий диапазон частот для датчика составляет от 0,1 до 10 МГц. Этого диапазона вполне достаточно для систем регистрации импульсов частичных разрядов в высоковольтном оборудовании в диапазоне HF.

Датчик производит измерения интенсивности частичных разрядов в любых цепях с рабочим напряжением до 1000 В. Направление стрелки на боковом корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике, от высокого потенциала к «земляному».

Калибровка чувствительности датчика «RFCT-5» производится только в составе всей измерительной цепи – объект, емкостная связь, датчик и входные цепи прибора. Датчик не требует проведения периодической поверки и калибровки. Калибровка датчика, в комплексе с переносным измерительным прибором, производится однократно перед измерением, с учетом реального объекта, при помощи калибровочного генератора.

Датчик частичных разрядов марки «RFCT-6»

RFCT-6

Датчик «RFCT-6» предназначен для использования в переносных системах периодического контроля состояния изоляции различного высоковольтного оборудования. Основное технологическое назначение датчика «RFCT-6» – проведение оперативных измерений частичных разрядов без вывода контролируемого оборудования из работы.

Для измерения частичных разрядов датчик «RFCT-6» необходимо приблизить к заземляющим проводникам и шинам так, чтобы направление тока в проводнике совпадало с направлением стрелки на корпусе датчика. При этом корпус датчика будет располагаться перпендикулярно проводнику. По принципу своей работы датчик «RFCT-6» представляет собой «одну половину» датчика марки «RFCT-5» – высокочастотных токовых клещей.

Использование датчика марки «RFCT-6» с переносным прибором эффективно тогда, когда необходимо оперативно провести сравнительное измерение частичных разрядов в большом количестве точек. Это датчик «индикаторного» типа.

Датчик «RFCT-6» производится в металлическом корпусе, в котором располагается высокочастотный сердечник в форме полукольца. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной. Для удобства практического применения датчик «RFCT-6» комплектуется дополнительной изолированной ручкой.

При помощи датчика марки «RFCT-6» можно производить измерения интенсивности частичных разрядов в изолированных цепях с рабочим напряжением до 1000 В. Датчик имеет металлический корпус, поэтому его приближение к оголенным проводникам и участкам оборудования с любым напряжением категорически запрещено.

Датчик марки «RFCT-6», по условиям своего практического применения, не может быть поверен, и даже не может быть откалиброван. Причиной этого является то, что амплитуда выходного сигнала зависит от способа установки датчики относительно контролируемого проводника. Чем дальше датчик будет удален от контролируемого проводника или смещен вбок от проводника, тем меньше будет амплитуда выходного сигнала.

Датчик частичных разрядов марки «RFCT-7»

RFCT-7

Датчик «RFCT-7» предназначен для использования в системах постоянного и периодического мониторинга состояния изоляции высоковольтного оборудования. Наиболее эффективно использовать этот датчик для регистрации частичных разрядов в заземляющих проводниках высоковольтных кабельных линий.

Для удобства монтажа датчик сделан разъемным, состоящим из двух половин, соединяемых при помощи двух болтов. Это позволяет оперативно монтировать его на токоведущих элементах большого сечения, значительно расширяет возможности его практического применения.

Датчик производится в литом пластиковом (АВС пластик) корпусе, в двух половинах которого располагается разрезанный высокочастотный прямоугольный сердечник большого сечения. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной.

Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. Для исключения насыщения сердечника датчика токами промышленной частоты в нем, в полукольце без обмотки, монтируется немагнитная прокладка. В зависимости от толщины этой изолирующей прокладки, датчик «RFCT-7» без значительной потери точности измерений частичных разрядов допускает протекание токов различной амплитуды.

Для удобства маркировки толщины немагнитной прокладки, на ответной части датчика с прокладкой ставятся цветные метки, определяющие максимально допустимый ток промышленной частоты.

  • Зеленая маркировка – Максимальный ток в проводнике 500 А
  • Оранжевая маркировка – Максимальный ток в проводнике 1000 А

Учитывая наличие сердечника сравнительно большого сечения, в датчик «RFCT-7» встроена защита от импульсных токов (коммутационных) с ограничением выходного напряжения на уровне 15 В. Это сделано для защиты персонала и защиты входных цепей измерительных приборов.

Корпусная изоляция датчика «RFCT-7» рассчитана на напряжение до 1000 В.

Датчик «RFCT-7», как и все другие датчики серии «RFCT», монтируется только на заземляющих шинах, проводах, трубах. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике.

Датчик марки «RFCT-7» не требует проведения поверки и калибровки после изготовления. Калибровка должна производиться на объекте контроля после завершения монтажа датчика.

Датчик «SCM» для регистрации ЧР в изоляции и емкостных токов в экранах кабельных линий

SCM-1

Датчики марки «SCM» предназначены для регистрации частичных разрядов в изоляции высоковольтных кабельных линиях.

При помощи датчика «SCM» обычно контролируется состояние изоляции кабельной линии, соединительных муфт, а также всех высоковольтных устройств и аппаратов (высоковольтные выключатели, статоры электрических машин и т. д.), подключенных к данной кабельной линии. Максимальная длина контролируемой кабельной линии зависит от степени затухания частичных разрядов в силовом кабеле, но обычно не превышает 2000 м.

Фирмой «DIMRUS» выпускаются две модификации датчика данного типа – «SCM-1» и «SCM-3». По внешнему виду эти датчики не имеют каких-либо отличий, кроме различной маркировки.

В датчике марки «SCM-1» располагается один высокочастотный трансформатор тока марки «RFCT», а в датчике марки «SCM-3» дополнительно смонтирован измерительный трансформатор тока с обычным стальным сердечником, предназначенный для регистрации токов промышленной частоты. Это дает возможность одновременно, при помощи одного датчика, контролировать частичные разряды и емкостные токи утечки изоляции кабельной линии.

Датчик импульсов частичных разрядов марки «SCM» конструктивно выполнен так, чтобы можно было легко осуществлять его монтаж в разрыв цепи заземления экрана кабеля или соединительной муфты. В процессе монтажа датчика заземляющая жила (экран) кабельной линии отключается от «земли». На освободившееся место монтируется датчик, а заземляющая шина кабеля подключается ко второму «посадочному месту» датчика. Конструктивное исполнение датчика таково, что он имеет практически нулевое внутреннее сопротивление и может, без ухудшения своих параметров, пропускать большие токи, возникающие во время коммутационных и переходных процессов в заземляющих жилах кабельных линий.

Датчик ЧР марки «DRTD-3» для измерений в статорах электрических машин

DRTD-3

Датчик «DRTD-3» предназначен для регистрации частичных разрядов в обмотках статоров крупных электрических машин, генераторов и высоковольтных электродвигателей.

При использовании для регистрации частичных разрядов в изоляции обмотки статора термометров сопротивления, встроенных в пазы статора между секциями обмотки и предназначенных для контроля температуры обмотки, необходимо использовать датчики марки «DRTD-3».

Датчик состоит из трех малогабаритных высокочастотных трансформаторов серии «RFCT-3», залитых компаундом в отдельные корпуса, и расположенных на одной плате с винтовыми клеммами. Каждый модуль датчика включается в разрыв проводов, идущих от одного термометра сопротивления внутри обмотки к измерительному прибору контроля температуры. Соединительных проводов от каждого датчика внутри обмотки статора может быть три или четыре, в зависимости от используемой схемы включения термометров сопротивления.

Высокочастотные сигналы от частичных разрядов в изоляции обмотки статора наводятся в самом термометре сопротивления и в соединительных проводах, проложенных внутри паза статора между секциями обмотки. Благодаря наличию высокочастотного трансформатора тока измерительные цепи контроля частичных разрядов гальванически не связаны с измерителем температуры. Сигналы от частичных разрядов с выхода трансформатора тока по коаксиальному кабелю передаются в измерительный прибор для регистрации и анализа.

Монтировать датчик «DRTD-3» желательно максимально близко к месту выхода проводников от термометров сопротивления из корпуса статора электрической машины, чтобы максимально избежать затухания сигналов от частичных разрядов в соединительном кабеле. Плату датчика «DRTD-3» необходимо обязательно заземлять, используя для этого специальное крепежное отверстие.

Если термометр сопротивления подключен по трехпроводной схеме, то нужно не задействовать нижние клеммы. Необходимо помнить, что нельзя изменять последовательность жил кабеля на входе и выходе датчика, чтобы не нарушить работу прибора измерения температуры.

Для проведения калибровки датчиков типа «DRTD-3» необходимо использовать отключенный режим работы электрической машины, хотя само подключение датчика можно производить и в процессе работы оборудования.

Скачать документацию по датчикам «RFCT»

Похожие материалы:

Виды трансформаторов. Где и для чего применяются?

Здравствуйте, дорогие друзья! Сегодня поговорим про виды трансформаторов, рассмотрим их общее устройство и принцип работы, узнаем где применяются. И так…

В энергетике и электротехнике постоянно требуется преобразование тока из одного состояния в другое. В этих процессах активно участвуют различные виды трансформаторов, представляющие собой электромагнитные статические устройства, без каких-либо подвижных частей. В основе их действия лежит электромагнитная индукция, посредством которой переменный ток одного напряжения преобразуется в переменный ток другого напряжения. При этом частота остается неизменной, а потери мощности совсем незначительные.

Общее устройство и принцип работы

Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.

Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.

В конструкцию простейшего силового трансформатора входит магнитопровод, изготавливаемый из ферромагнитных материалов, преимущественно из листовой электротехнической стали. На стержнях магнитопровода – сердечника располагаются первичная и вторичная обмотки. Первичная обмотка соединяется с источником переменного тока, а вторичная подключается к потребителю.

 

Типы трансформаторов

В соответствии со своими параметрами и характеристиками, все виды трансформаторов разделяются:

  • По количеству фаз могут быть одно- или трехфазными
  • В соответствии с числом обмоток, трансформаторы бывают двух- или трехобмоточными, а также двух- или трехобмоточными с расщепленной обмоткой
  • По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н)
  • По видам охлаждения – с естественным масляным охлаждением (М), с масляным охлаждением и воздушным дутьем (Д), принудительная циркуляция масляного охлаждения (Ц), сухие трансформаторы с воздушным охлаждением (С). Кроме того, существуют устройства без расширителей, для защиты которых используется азотная подушка.

Среди многообразных трансформаторных устройств чаще всего встречаются трансформаторы:

  • силовые
  • измерительные
  • специальные

Силовые трансформаторы

Термином «силовой» определяют назначение, связанное с преобразованием высоких мощностей. Вызвано это тем, что большинство бытовых и производственных потребителей электрических сетей нуждаются в питании напряжением 380/220 вольт. Однако доставка его на большие расстояния связана с огромными потерями энергии, которые снижаются за счет использования высоковольтных линий.

Воздушные ЛЭП высокого напряжения соединяют в единую сеть подстанции с силовыми трансформаторами соответствующего класса.

Виды трансформаторов
   Силовой трансформатор 110 кВ

А по другим линиям напряжение 6 или 10 кВ подводится к силовым трансформаторам, обеспечивающих питанием 380/220 вольт жилые комплексы и производственные предприятия.

Виды трансформаторов

   Силовой мачтовый трансформатор 10 на 0,4 кВ

Измерительные трансформаторы

В этом классе работают два вида устройств, обеспечивающих в целях измерения параметров сети преобразования:

  1. тока
  2. напряжения

Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики периодически подвергают поверке на правильность измерения как величин, так и углов отклонения векторов тока и напряжения.

Трансформаторы тока

Главная особенность их устройства заключается в том, что они постоянно эксплуатируются в режиме короткого замыкания. У них вторичная обмотка полностью закорочена на маленькое сопротивление, а остальная конструкция приспособлена для такой работы.

Чтобы исключить аварийный режим входная мощность ограничивается специальным устройством первичной обмотки: в ней создается всего один виток, который не может создать при протекании по нему тока большого падения напряжения на обмотке и, соответственно, передать в магнитопровод высокую мощность.

Этот виток врезается непосредственно в силовую цепь, обеспечивая его последовательное подключение. У отдельных конструкций просто создается сквозное отверстие в сердечнике, через которое пропускают провод с первичным током.

Нагрузку вторичных цепей трансформатора тока, находящегося под напряжением, нельзя разрывать. Все провода и соединительные клеммы по этой причине изготавливаются с повышенной механической прочностью. В противном случае на разорванных концах сразу возникает высоковольтное напряжение, способное повредить вторичные цепи.

Благодаря работе трансформаторов тока создается возможность обеспечения постоянного контроля и анализа нагрузок, протекающих в электрической системе. Особенно это актуально на высоковольтном оборудовании.

Виды трансформаторов

   Измерительные трансформаторы тока 110 кВ

Номинальные значения вторичных токов измерительных трансформаторов энергетики принимают в 5 ампер для оборудования до 110 кВ включительно и 1 А — выше.

Широкое применение трансформаторы тока нашли в измерительных приборах. За счет использования конструкции раздвижного магнитопровода удается быстро выполнять различные замеры без разрыва электрической цепи, что необходимо делать при использовании обычных амперметров.

Токовые клещи с раздвижным магнитопроводом трансформатора тока позволяют обхватить любой проводник с напряжением и замерить величину и угол вектора тока.

Трансформаторы напряжения

Отличительная особенность этих конструкций заключается в том, что они работают в режиме, близком к состоянию холостого хода, когда величина их выходной нагрузки невысокая. Они подключается к той системе напряжений, величина которой будет измеряться.

Виды трансформаторов

   Измерительный трансформатор напряжения 110 кВ

Измерительные трансформаторы напряжения обеспечивают гальваническую развязку оборудования первичных и вторичных цепей, работают в каждой фазе высоковольтного оборудования.

Из них создают целые комплексы систем измерения, позволяющие фильтровать и выделять различные составляющие векторов напряжения, учет которых необходим для точной работы защит, блокировок, систем сигнализации.

За счет работы трансформаторов тока и напряжения снимают вектора вторичных величин, пропорциональные первичным в реальном масштабе времени. Это позволяет не только создавать цепи измерения и защит по току и напряжению, но и за счет математических преобразований векторов анализировать состояние мощностей и сопротивлений в действующей электрической системе.

Специальные виды трансформаторов

К этой группе относят:

  • разделительные
  • согласующие
  • высокочастотные
  • сварочные и другого типа трансформаторные устройства, созданные для выполнения специальных электрических задач
Разделительные трансформаторы

Размещение двух обмоток совершенно одинаковой конструкции на общем магнитопроводе позволяет из 220 вольт 50 герц на входе получать такое же напряжение на выходе.

Напрашивается вопрос: зачем делать такое преобразование? Ответ прост: в целях обеспечения электрической безопасности.

Виды трансформаторов

   Разделительный трансформатор с системой контроля изоляции, тока нагрузки, температуры трансформатора

При пробое изоляционного слоя провода первичной схемы, на корпусе прибора появляется опасный потенциал, который по случайно сформированной цепи через землю способен поразить человека электрическим током, нанести ему электротравму.

Гальваническое разделение схемы позволяет оптимально использовать питание электрооборудования и в то же время исключает получение травм при пробоях изоляции вторичной схемы на корпус.

Поэтому разделительные трансформаторы широко используются там, где проведение работ с электроинструментом требует принятия дополнительных мер безопасности. Также они широко используются в медицинском оборудовании, допускающем непосредственный контакт с телом человека.

Высокочастотные трансформаторы

Отличаются от обычных материалом магнитопровода, который способен, в отличие от обычного трансформаторного железа, хорошо, без искажений передавать высокочастотные сигналы.

Используется в электротермии, в частности при индукционном нагреве в электротермических установках для высокочастотной сварки металлов, плавки, пайки, закалки и т.д.

Согласующие трансформаторы

Основное назначение — согласование сопротивлений разных частей в электронных схемах. Согласующие трансформаторы нашли широкое применение в антенных устройствах и конструкциях усилителей на электронных лампах звуковых частот.

Сварочные трансформаторы

Первичная обмотка создается с большим число витков, позволяющих нормально обрабатывать электрическую энергию с входным напряжением 220 или 380 вольт. Во вторичной обмотке число витков значительно меньше, а ток протекающий по ним высокий. Он может достигать тысяч ампер.

Поэтому толщина провода этой цепи выбирается повышенного поперечного сечения. Для управления сварочным током существует много различных способов.

Сварочные трансформаторы массово работают в промышленных установках и пользуются популярностью у любителей изготавливать различные самоделки своими руками.

Рассмотренные виды трансформаторов являются наиболее распространёнными. В электрических схемах работают и другие подобные устройства, выполняющие специальные задачи технологических процессов.

 

Смотрите также по теме:

   Трансформатор Тесла (Tesla coil). Делаем своими руками.

   Принцип работы трансформатора. Устройство и режимы работы.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Высокочастотный трансформатор – ток – Большая Энциклопедия Нефти и Газа, статья, страница 1

Высокочастотный трансформатор – ток

Cтраница 1

Применяемые высокочастотные трансформаторы тока также могут либо встраиваться в измеритель ( р ис.  [1]

Приводятся различные конструкции термопреобразователей, высокочастотных трансформаторов тока и термоприборов в целом, дана область их применения. Рассмотрены основные расчетные соотношения элементов схемы термоприбора и дается анализ погрешностей, вносимых этими элементами как при работе термоприбора на промышленной частоте, так и при работе на высоких частотах.  [2]

Добавочное устройство типа П23, состоящее из высокочастотного трансформатора тока и вакуумного термопреобразователя, оформлено в металлическом корпусе, служащем электромагнитным экраном, устраняющим влияние внешних полей.  [3]

Поэтому для токов большой силы обязательны специальные приборы с нагреваемой лентой и многожильными соединительными проводами, или специальные высокочастотные трансформаторы тока.  [4]

Расширение пределов измерения по току до 1 а осуществляется применением термопреобразователей на различные значения номинального тока, для измерения тока свыше 1 а широкое распространение получили высокочастотные трансформаторы тока. Расширение пределов измерения у термовольтметров осуществляется безреактивными добавочными сопротивлениями ( например, твердоугольными или бороуглеродистыми прецизионными типа БЛП), подключенными последовательно с нагревателем термопреобразователя.  [5]

В каждом из генераторных блоков ГБ располагаются четыре эк-ситрона инверторного моста с блоками собственных нужд, смещения и сеточными импульсными трансформаторами, обратные диоды, элементы коммутирующего контура ( катушки, разделительные и коммутирующие конденсаторы), высокочастотные контакторы для ступенчатого изменения монщости генератора, высокочастотный трансформатор тока, элементы электромеханической блокировки.  [7]

Расширение пределов измерения по току до 1 а осуществляется применением термопреобразователей на различные токи при использовании одного и того же милливольтметра. При измерении больших токов для расширения пределов измерения термоамперметров применяют специальные высокочастотные трансформаторы тока.  [8]

В машинном зале установлены пять преобразователей частоты 1 – 5Г типа ВГО-500 / 2500 ( 700 в, 680 а, 2 500 гц) и преобразователь 6Г типа ВГО-250 / 2500 ( 700 в, 340 а, 2500 гц), работающие параллельно на сборные шины. КВ-1225; а фидерах генераторов установлены также; разъединители 4Р – 9Р типа РВО-10 / 1000; разрядники / – 6РЗ и аппаратура измерения и защиты: высокочастотные трансформаторы тока 9 – 14ТТ типа ТКЧ-2-3, высокочастотные трансформаторы типа НОСВ-1-6ТН, измерительные приборы в. Схема включения генератора на сборные шины, так же как и схема включения приводного двигателя, предусматривает отключение генератора и двигателя от шин при снижении давления или отсутствии охлаждающей воды в радиаторах преобразовательного агрегата ( реле давления воды РД и 1РД типа СПОС-6), а также дверную блокировку дверей в. Схемы включения генераторов и схемы включения их двигателей связаны блок-контактами выключателей нагрузки ВН-1 так, что включение соответствующего генератора на общие шины возможно только после включения его приводного двигателя.  [9]

Характерной особенностью новых универсальных приборов является увеличение количества измеряемых величин и пределов измерения. Различными путями, в том числе применением растяжек, уменьшается потребление мощности, повышаются частотные пределы приборов. Пределы измерения высокочастотных приборов с германиевыми выпрямителями расширяются при помощи высокочастотных трансформаторов тока с ферритовыми сердечниками и емкостных делителей напряжения.  [10]

Наиболее чу

что это такое, принцип работы, разновидности, обмотка

Начиная с 19 века, трансформаторы начали приобретать все большее значение в электрике и электронике. Они остаются до сих пор обязательными элементами многих схем и есть практически в любом устройстве, которое потребляет электрический ток.

Принцип его работы основан на свойствах индукции. Трансформатор – это прибор, позволяющий регулировать ток, понижая его или наоборот, понижая. Был придуман он Фарадеем, почти 170 лет назад. Основные элементы, из которых состоит трансформатор – обмотки, которые и влияют на силу тока, тем самым изменяя его до требуемых значений.

В данной стать разобраны основные вопросы работы и устройства трансформатора. Также  статье есть видеоролик и скачиваемый файл по выбранной тематике.

Трансформатор

Трансформатор.

Что такое трансформатор

Трансформатор – это электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте. Действие трансформатора основано на использовании явления электромагнитной индукции.

Переменный электрический ток (ток, который изменяется по величине и по направлению) наводит в первичной катушке переменное магнитное поле. Это переменное магнитное поле, наводит переменное напряжение во вторичной обмотке. Величина напряжения ЭДС зависит от числа витков  в катушке и от скорости изменения магнитного поля.

Что такое трансформатор

Отношение числа витков первичной и вторичной обмоток определяет коэффициент трансформации:
k = w1 / w2;   где:

  • w1 — число витков в первичной обмотке;
  • w2 — число витков во вторичной обмотке.

Если число витков в первичной обмотке больше чем во вторичной — это понижающий трансформатор.

Если число витков в первичной обмотке меньше, чем во вторичной — это повышающий трансформатор.

Что такое трансформатор?

Один и тот же трансформатор может быть как понижающим, так и повышающим, в зависимости от того на какую обмотку подается переменное напряжение.

Трансформаторы без сердечника или с сердечником из высокочастотного феррита или альсифера — это высокочастотные трансформаторы ( частота выше 100 килогерц). Трансформаторы с ферромагнитным сердечником (сталь, пермаллой, феррит) – это низкочастотные трансформаторы (частота ниже 100 килогерц)

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Высокочастотные трансформаторы используются в устройствах техники электросвязи, радиосвязи и др. Низкочастотные трансформаторы используются в усилительной технике звуковых частот, в телефонной связи. Особое место трансформаторы со стальным (набор из стальных листов) сердечником занимают в электротехнике. Развитие электроэнергетики напрямую зависит от мощных, силовых трансформаторов. Мощности силовых трансформаторов имеют величины от нескольких ватт до сотен тысяч киловатт и выше. Классификация типов трансформаторов представлена в таблице ниже.

Типы трансформаторов

Таблица характеристик трансформаторов по их основным типам.

Что такое силовой трансформатор

На замкнутый сердечник (магнитопровод), набранный из стальных листов, надевают две или больше, обмоток, одна из которых соединяется с источником переменного тока. Другая (или другие) обмотка соединяется с потребителем электрического тока – нагрузкой. Переменный ток, проходящий по первичной обмотке, создает в стальном сердечнике магнитный поток, который наводит в каждом витке обмотки – катушки переменное напряжение. Напряжения всех витков складываются в выходное напряжение трансформатора.  Форма сердечника – магнитопровода, может быть Ш – образной, О – образной и тороидальной, в виде тора. Таким образом в силовом трансформаторе электрическая мощность из первичной обмотки передается во вторичную обмотку через магнитный поток в магнитопроводе.

силовой трансформатор

Потребителей электрической энергии очень много: электрическое освещение, электронагреватели, радио и теле аппаратура, электродвигатели и многое другое. И все эти приборы требуют различные напряжения (переменные и постоянные) и разные мощности. Проблема эта легко решается с помощью трансформатора. Из бытовой сети с переменным напряжением 220 вольт можно получить переменное напряжение любой величины и , если необходимо, преобразовать его в постоянное напряжение.

Коэффициент полезного действия трансформатора довольно велик, от 0,9 до 0,98 и зависит от потерь в магнитопроводе и от магнитных полей рассеяния.
От величины электрической мощности Р зависит площадь поперечного сечения магнитопровода S.
По значению площади S определяется, при расчетах трансформатора, количество витков w на 1 вольт:

w = 50 / S.

Мощность трансформатора Рс выбирается из требуемой величины нагрузки Рн плюс величина потерь в сердечнике. 

Что такое трансформатор?

При расчете трансформатора с определенной степенью точности можно считать, что мощность нагрузки во вторичной обмотке Pн = Uн * Iн и мощность потребляемая из сети в первичной обмотке Pc = Uc * Ic приблизительно равны. Если  потерями в сердечнике  пренебречь, то получается равенство: k = Uс / Uн = Iн / Iс.

Трансформаторы и их применение

Трансформаторы и их применение/

Трансформаторы и их применение

Трансформатор – это устройство, служащее для повышения или понижения переменного напряжения без изменения его частоты и практически без потерь мощности. Трансформатор состоит из двух или более катушек, надетых на общий сердечник. Катушка, которая подключается к источнику переменного напряжения, называется первичной, а катушка, к которой присоединяется нагрузка (потребители электрической энергии), – вторичной. Сердечники трансформаторов изготавливаются из электротехнической стали и набираются из отдельных изолированных друг от друга пластин (для уменьшения потерь энергии вследствие возникновения в сердечнике вихревых токов).

Трансформаторы и их применение

Катушки трансформатора, как правило, содержат разное количество витков, причем большее напряжение оказывается приложено к катушке с большим числом витков. Если трансформатор используется для повышения напряжения, то обмотка с меньшим числом витков подключается к источнику напряжения, а к обмотке с большим числом витков присоединяется нагрузка. Для понижения напряжения все делается наоборот. При этом не следует забывать, что подавать на первичную обмотку можно напряжение не больше номинального (того, на которое она рассчитана).

Трансформаторы и их применение

Коэффициентом трансформации называют отношение числа витков в первичной обмотке к числу витков во вторичной обмотке. Он равен также отношению ЭДС в обмотках.  При отсутствии потерь в обмотках коэффициент трансформации равен отношению напряжений на зажимах обмоток: k=U1/U2. Для понижающего трансформатора коэффициент трансформации больше 1, а для повышающего – меньше 1. Принцип работы трансформатора основан на явлении электромагнитной индукции. При протекании переменного тока через первичную катушку вокруг нее возникает перемененное магнитное поле и магнитный поток, который пронизывает также и вторую катушку. В результате во вторичной катушке появляется вихревое электрическое поле и на ее зажимах возникает ЭДС индукции.

Трансформатор характеризуется коэффициентом полезного действия, равным отношению мощности, выделяющейся во вторичной катушке, к мощности, потребляемой первичной катушкой от сети. У хороших трансформаторов КПД составляет 99 – 99,5%. Важным свойством трансформатора является его способность преобразовывать сопротивление нагрузки. Рассмотрим трансформатор с КПД приблизительно равным 100%. В этом случае мощность, выделяющаяся во вторичной цепи трансформатора, будет равна мощности, потребляемой первичной обмоткой от источника напряжения. Для такого трансформатора мощность, потребляемая от источника напряжения, будет чисто активной. Мощность в первичной цепи трансформатора P1=(U12)/R1, а во вторичной цепи P2=(U22)/R2.

Так как P1=P2 и U1=kU2 , то R1=k2R2.

Таким образом, нагрузка сопротивлением R2, подключаемая к источнику переменного напряжения через трансформатор, по мощности будет эквивалентна нагрузке сопротивлением R1, подключаемой без трансформатора. Для регулировки переменного напряжения широко применяются лабораторные автотрансформаторы. Автотрансформаторы рассчитаны на подключение к сети переменного напряжения 220 В или 127 В. Как правило, выходное напряжение автотрансформатора регулируется плавно до 250 В.

Обмотка трансформатора выполнена изолированным проводом в один слой. На участках обмотки, которых касается подвижный контакт с угольной вставкой, изоляция очищена. При перемещении контакта угольная вставка закорачивает виток провода. Однако вследствие небольшого напряжения на одном витке и заметного сопротивления угольной вставки через замкнутый виток протекает допустимый ток.

Первичная обмотка автотрансформатора является частью его вторичной обмотки и поэтому между первичной и вторичной обмоткой трансформатора имеется гальваническая связь. К вторичной обмотке автотрансформатора нельзя непосредственно подключать потребители, один из проводов которых может оказаться соединенным с землей. Такое подключение приведет к аварии или несчастному случаю. При работе с автотрансформатором запрещается заземлять вторичную цепь. Рассмотрим кратко простейший расчет маломощных трансформаторов бытовой радиоаппаратуры.

Мощность трансформатора (в Вт) численно равна квадрату площади (в см2) поперечного сечения среднего стержня магнитопровода. Зная номинальную мощность трансформатора, можно  найти ток в первичной обмотке при номинальной нагрузке во вторичных обмотках. Диаметр провода обмотки выбирается из расчета (2,5-3)А/мм2 поперечного сечения провода. Для стандартных магнитопроводов, применяемых для изготовления трансформаторов, число витков на 1 вольт примерно равно частному от деления 50 на площадь поперечного сечения центрального стержня магнитопровода, выраженную в см2. Однако в зависимости от качества магнитопровода коэффициент может изменяться от 35 до 65.

Трансформатор

Трансформатор.

Полное сопротивление катушки индуктивности с ферромагнитным сердечником зависит от силы протекающего через нее тока. Сопротивление катушки в зависимости от силы протекающего тока сначала увеличивается, достигает максимального значения, а затем уменьшается. Нелинейное возрастание тока холостого хода в зависимости от приложенного к первичной обмотке напряжения начинается примерно с 0,8Uном. Номинальное напряжение первичной обмотки трансформатора выбирают так, чтобы ток холостого хода составлял 5-10% от номинального тока. При напряжении 1,1Uном ток холостого хода не должен превышать 20-25% номинального тока нагруженного трансформатора.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

Что такое трансформатор?

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Режимы работы трансформатора

Режимы работы трансформатора.

Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

Виды трансформаторов

В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В. Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор. Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.

Виды трансформаторов

Виды трансформаторов

Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины. Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем. Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.

Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

Заключение

В данной статье были рассмотрены основные особенности трансформаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике Что такое трансформатор. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.domasniyelektromaster.ru

www.td-automatika.ru

www.ivatv.narod.ru

www.etcenter.ru

www.www.joyta.ru

Предыдущая

ТрансформаторыТрансформаторы для светодиодных лент, мнение специалистов

Следующая

ТрансформаторыЧто такое трансформаторная подстанция

электрический высокочастотный трансформатор – патент РФ 2337423

Рисунки к патенту РФ 2337423

Изобретение относится к области электротехники, в частности к конструкции электрических высокочастотных трансформаторов для устройств передачи электрической энергии.

Известен трансформатор напряжения – электромагнитный статический преобразователь электрической энергии, содержащий первичную и вторичную обмотки. Мощность из одной обмотки в другую передается электромагнитным полем. Для усиления связи обмотки располагают на ферромагнитном сердечнике – магнитопроводе. В трансформаторах имеет место высокий коэффициент электромагнитной связи С=0,93-0,999.

где M – взаимная индуктивность между первичной и вторичной обмоткой,

L1, L 2 – индуктивности первичной и вторичной обмоток.

Для создания магнитного поля в трансформаторе используется реактивная мощность, которая затрачивается на создание поля взаимной индукции и полей рассеяния первичной и вторичной обмоток. Часть активной мощности расходуется на потери в меди в первичной и вторичной обмотке (Копылов И.П. Электрические машины. М.: Логос, 2002 г., стр.131-239).

Недостатком известного устройства является симметрия напряжения на выводах вторичной обмотки, что не позволяет использовать электрический трансформатор для передачи электрической энергии по однопроводниковой линии.

Известно устройство для преобразования и передачи электрической энергии по однопроводной линии на большое расстояние, разработанное Н.Тесла в 1897 году. Согласно изобретению Н.Тесла устройство состоит из двух трансформаторов, один для повышения, а другой для уменьшения потенциала тока, указанные трансформаторы имеют вывод обмотки с проводом большой длины, соединенный с линией, и другой вывод этой обмотки, примыкающий к обмотке из провода более короткой длины, соединен электрически с ней и с землей.

Известен электрический трансформатор, который имеет первичную обмотку, соединенную с электрическим генератором повышенной частоты. Первичная обмотка намотана на вторичную высоковольтную обмотку, длина провода которой значительно больше длины первичной обмотки и приблизительно равна четверти длины волны электромагнитного поля в линии. В этом случае потенциал одного внутреннего вывода высоковольтной обмотки равен нулю, а потенциал другого наружного вывода будет максимальный. Внутренний конец высоковольтной вторичной обмотки соединен с линией передачи электрической энергии, а наружный конец вторичной обмотки и прилегающий вывод первичной обмотки в целях электробезопасности соединен с землей (Н.Тесла Электрический трансформатор. Пат. США №593138 от 02.11.1897 г.).

Недостатком известного устройства являются потери мощности на высокой частоте из-за потерь на сопротивлении высоковольтной обмотки.

Известен высоковольтный высокочастотный трансформатор, содержащий однослойную спиральную катушку, которая выполнена однослойной с электрической длиной, равной четверти длины волны, и подключена к генератору и нагрузке несимметрично (Пат. РФ 2033651 от 22.04.1988 г.).

Недостатком известного устройства является использование для получения резонансных колебаний собственной емкости спиральной обмотки.

Задачей изобретения является повышение эффективности преобразования и передачи электрической энергии. Технический результат заключается в снижении потерь на сопротивлении обмоток трансформатора при работе на повышенной частоте и увеличении добротности высоковольтной обмотки.

Указанный результат достигается тем, что в электрическом высокочастотном трансформаторе, содержащем низковольтную и высоковольтную обмотку, выполненные в виде спиральной катушки с длиной высоковольтной обмотки, равной четверти длины волны тока и напряжения, спиральная обмотка состоит из нескольких последовательно соединенных секций изолированного проводника, площадь сечения которого различна для каждой секции и уменьшается по мере удаления секции от начала спиральной обмотки согласно уравнению:

где cos i – нормированное значение тока i-й секции; где Ii – ток в i-й секции, I 0 – ток в начале первой секции; Si – сечение проводника в i-й секции; а начало спиральной обмотки соединено с концом низковольтной обмотки и через емкость – с одним из выводов высокочастотного генератора.

В варианте исполнения электрического высокочатотного трансформатора в качестве нормированного тока I-ой секции используют среднее значение тока в секции и соответствующее среднему току сечение проводника в секции.

В другом варианте конструкции электрического высокочастотного трансформатора в качестве нормированного тока i-й секции используют максимальное значение тока в этой секции и соответствующее максимальному току максимальное сечение проводника секции.

Сущность изобретения иллюстрируется на фиг.1, 2. На фиг.1 представлена электрическая схема устройства и на фиг.2 показано распределение тока в секциях высоковольтной обмотки высокочастотного трансформатора.

Согласно фиг.1 высокочастотный генератор 1 через емкости 2 подключен к низковольтной обмотке 3 высокочастотного трансформатора 4. Высоковольтная обмотка 5 выполнена в виде спиральной катушки с длиной проводника, равной длины волны тока и напряжения.

где С – скорость электромагнитной волны.

При частоте генератора f0=25 кГц:

Высоковольтная обмотка 5 состоит из секций С 1, С2, C3, C4 с разным сечением проводника.

На фиг.2 показано распределение волны тока в четвертьволновой линии спиральной высоковольтной обмотки 5. Средняя плотность тока ji в каждой секции С i равна:

где Ii=I0 cos I – средний ток в i-й секции,

I0 – ток в начале первой секции,

Si – сечение проводника в i-й секции. Считая плотность тока ji=A постоянной вдоль проводника высоковольтной обмотки, получим уравнение:

где A=const, постоянная величина.

Так как I0 – фиксированная величина тока для данного трансформатора и режима передачи электроэнергии, разделим обе части равенства на I0, получим уравнение (I):

где В – новая постоянная величина, а cos I – нормированное значение тока в i-й секции спиральной обмотки.

На фиг.2 высоковольтная спиральная обмотка четвертьволновой линии длиной 3000 м при частоте 25 кГц содержит три секции по 1000 м каждая. Принимая средние значения нормированных токов для секции С1, 1=15° cos 1=0,996; для секции С 2 2=45° cos 2=0,707; для секции C 3 3=75° cos 3=0,26.

Для выполнения условия (1) одинаковой плотности токов во всех секциях обмотки 5 получаем соотношения для сечений проводника в секциях:

S 1=0,966B, где B – const;

S2 =0,707B;

S3=0,26B;

Выбирая для третьей секции сечение проводника S 3=1 мм2, получим S 2=2,72 мм2, S3 =3,71 мм2.

В варианте исполнения в качестве Ii берут максимальный ток в i-й секции. Тогда для первой секции I1=I 0, cos 1=1.

Пример выполнения высокочастотного трансформатора.

Число витков в низковольтной обмотке 3 W1 =25.

Число витков в высоковольтной спиральной обмотке 5 W2=1244 витков, число слоев – 21, общая длина обмотки 5 lв=2474,019 м. Обмотка имеет 3 секции. Первая секция выполнена из провода ПВЗ-10 длиной 355,63 м, сечением 10 мм2; вторая секция из провода ПЗ-6 сечением 6 мм2, длиной 409,61 м и третья секция из провода ПВВ-1 сечением 1 мм 2, длиной 2100,524 м. Сопротивление обмотки 5 на частоте f0=1 кГц, R=450 кОм, индуктивность L=0,93 Гн, емкость обмотки 26,82 нФ, добротность Q1 =129.

При выполнении высоковольтной обмотки 5 только из провода ПВВ-1 сечением 1 мм2 длиной 2100,524 м добротность снизилась в 3,28 раза и составила Q 2=39,3.

Таким образом, по сравнению с известным трансформатором, у которого высоковольтная обмотка выполнена из проводника минимального сечения, одинакового по всей длине высоковольтной обмотки, выполнение высоковольтной спиральной катушки из нескольких секций, в которых сечение проводника уменьшается в соответствии с соотношением (1), снижает потери на сопротивлении обмоток, увеличивает добротность и эффективность преобразования электромагнитной энергии в высокочастотном трансформаторе.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электрический высокочастотный трансформатор, содержащий низковольтную обмотку, подключенную через емкость к высокочастотному генератору и высоковольтную обмотку, выполненную в виде спиральной катушки с длиной обмотки, равной четверти длины волны тока и напряжения, отличающийся тем, что спиральная обмотка состоит из нескольких секций изолированного проводника, площадь сечения которого различна для каждой секции и уменьшается по мере удаления секции от начала спиральной обмотки согласно уравнению

где cos i – нормированное значение тока i-й секции;

где Ii – ток в i-й секции, I0 – ток в начале первой секции; S i – сечение проводника в i-й секции;

а начало спиральной обмотки соединено с концом низковольтной обмотки и через емкость – с одним из выводов высокочастотного генератора.

2. Электрический высокочастотный трансформатор по п.1, отличающийся тем, что в качестве нормированного тока i-й секции используют среднее значение тока в секции и соответствующее среднему значению тока сечение проводника в секции.

3. Электрический высокочастотный трансформатор по п.1, отличающийся тем, что в качестве нормированного тока i-й секции используют максимальное значение тока в этой секции и соответствующее максимальному току максимальное сечение проводника секции.

ВЫСОКОЧАСТОТНЫЕ ТРАНСФОРМАТОРЫ – L / C Magnetics

Наши возможности кратко описаны ниже. Отправьте нам письмо по адресу [email protected] , и мы ответим в течение часа.

overview-of-all-types-of-custom-transformers

L / C Magnetics предлагает уникальные возможности для высокочастотных трансформаторов. Материал сердечника может быть железным сердечником, ферритовым сердечником или сердечником Metglas. У нас есть необходимые инструменты и намоточное оборудование, чтобы производить эти устройства с быстрым оборотом.

Празднование 30-летия работы

Отправьте нам электронное письмо для получения бесплатного предложения.

Тел .: (714) 624 4740

Наши инженеры ответят в течение часа.

Ferrite Core High Current Transformer, 1 KVA, 1 PH, Frequency 10 KHz, P/N 18811

Сильноточный трансформатор с ферритовым сердечником, 1 кВА, 1 PH, частота 10 кГц, P / N 18811

Ferrite Core High Frequency Transformer, 1 KVA, 1 PH, Frequency 5 KHz to 25 KHz, P/N 18750

Высокочастотный трансформатор с ферритовым сердечником, 1 кВА, 1 PH, частота от 5 кГц до 25 кГц, P / N 18750

Audio Transformer, 1 KVA, 1 PH, 20 Hz to 30 kHZ, P/N 19149

Аудиопреобразователь, 1 кВА, 1 PH, от 20 Гц до 30 кГц, P / N 19149

Празднование 30-летия работы

Отправьте нам электронное письмо для получения бесплатного предложения.

Тел .: (714) 624 4740

Наши инженеры ответят в течение часа.

L / C Magnetics Inc. – производитель, перепродавец и дистрибьютор трансформаторной продукции от 0,1 кВА до 50 МВА, сухого типа или маслонаполненного.

Наше подразделение CEHCO (www.cehco.com) производит выпрямители постоянного тока, трансформаторные выпрямительные сборки и индивидуальные источники питания.

(Соответствующие соответствия этой категории показаны ниже)

Высокочастотный трансформатор

Конструкция высокочастотного трансформатора

Трансформатор высокочастотный цена

Паспорт высокочастотного трансформатора

Распиновка высокочастотного трансформатора

Эквивалентная схема высокочастотного трансформатора

Трансформатор низкочастотный

Индуктивность намагничивания высокочастотного трансформатора

Производитель высокочастотных трансформаторов

Трансформаторы силовые высокочастотные

Основы высокочастотного трансформатора

Высокочастотные трансформаторы OEM

Однофазные высокочастотные трансформаторы

Трансформаторы с ферритовым сердечником

Трансформаторы с сердечником Metglas

Трансформаторы с железным сердечником

Трансформаторы с сердечником из кремнистой стали

Устаревшие высокочастотные трансформаторы

Специальные высокочастотные трансформаторы

Индивидуальные высокочастотные трансформаторы

Снято с производства Высокочастотные трансформаторы

Трудно найти Высокочастотные трансформаторы

Снят с производства Трансформаторы высокой частоты

Высокочастотные трансформаторы

Высокочастотные трансформаторы | Бесплатные консультации по дизайну

Трансформаторы частоты | Многие размеры и текущие рейтинги.

Производители высокочастотных трансформаторов

Какая польза от высокочастотного трансформатора?

Какой тип сердечника используется для высокочастотного трансформатора?

В чем разница между высокой и низкой частотой?

Почему частота трансформатора уменьшается с увеличением размера?

В чем разница между низкочастотным и высокочастотным трансформатором?

Рекомендации по проектированию для высокой мощности высокой частоты

Схема высокочастотного трансформатора

Конструкция высокочастотного трансформатора

Высокочастотный трансформатор PPT

Производители высокочастотных трансформаторов

Использование высокочастотного трансформатора

Уравнение частоты трансформатора

Трансформатор высокочастотный цена

Трансформатор низкочастотный

Высокочастотные трансформаторы OEM

Изображения для высокочастотных трансформаторов

Трансформатор с ферритовым сердечником

Трансформаторы / индукторы – высокочастотный феррит

Высокочастотные магниты

Проектирование индукторов и высокочастотных трансформаторов

Высокочастотные силовые трансформаторы

Производители высокочастотных трансформаторов

Трансформаторы высокой мощности высокочастотные

Прекращено производство высокочастотного и высокочастотного преобразователя частоты

Специальный высокочастотный трансформатор

Специалист по высокочастотному трансформатору

Специальная конструкция высокочастотного трансформатора

Высоковольтный высокочастотный трансформатор

Сильноточный высокочастотный трансформатор

Применение OEM Высокочастотный трансформатор

Сделано в США Высокочастотный трансформатор

Недорогой высокочастотный трансформатор

Экономичный высокочастотный трансформатор

Сухой высокочастотный трансформатор

Обратный инженер высокочастотного трансформатора

Высокочастотный трансформатор 30 лет работы

Специалист по высокочастотному трансформатору

Построен под заказ Высокочастотный трансформатор

Высокочастотный трансформатор, 400 Гц

Высокочастотный трансформатор

Однофазный высокочастотный трансформатор

Трехфазный высокочастотный трансформатор

Высокочастотный трансформатор среднего напряжения

Заменяемый эквивалент высокочастотного трансформатора

Многоканальный высокочастотный трансформатор

Высокочастотный трансформатор с 4 сердечником Mil C

Высокочастотный трансформатор на 300 А

Высокочастотный трансформатор печи

Нагревательный элемент высокочастотный трансформатор

Высокочастотный трансформатор на 500 А

Высокочастотный трансформатор на 700 А

Наземный высокочастотный трансформатор

Ремонт высокочастотного трансформатора

Ремонт высокочастотного трансформатора

Высокочастотный трансформатор с внутренним корпусом

Высокочастотный трансформатор, Nema 1

Высокочастотный трансформатор с наружным корпусом

Высокочастотный трансформатор, Nema 3

Высокочастотный трансформатор, корпус TENV

Высокочастотный трансформатор, повышающий

Высокочастотный трансформатор, понижающий

Высокочастотный автоматический трансформатор

Высокочастотный трансформатор, монтаж на шасси

Высокочастотный трансформатор, монтаж на печатную плату

Высокочастотный трансформатор, залитый

Высокочастотный трансформатор 60 Гц

Высокочастотный трансформатор 50/60 Гц

Высокочастотный трансформатор 5 кГц

Высокочастотный трансформатор 10 кГц

Прекращено производство высокочастотного трансформатора

Специальный высокочастотный трансформатор

Специалист по высокочастотному трансформатору

Специальная конструкция высокочастотного трансформатора

Высоковольтный высокочастотный трансформатор

Сильноточный высокочастотный трансформатор

Применение OEM Высокочастотный трансформатор

Сделано в США, высокочастотный трансформатор

Недорогой высокочастотный трансформатор

Экономичный высокочастотный трансформатор

Высокочастотный трансформатор сухого типа

Обратный инженер высокочастотного трансформатора

Высокочастотный трансформатор 30 лет работы

Специалист по высокочастотному трансформатору

Построен под заказ Высокочастотный трансформатор

Высокочастотный трансформатор, 400 Гц

Высокочастотный высокочастотный трансформатор

Однофазный высокочастотный трансформатор

Трехфазный высокочастотный трансформатор

Высокочастотный трансформатор среднего напряжения

Заменяемый эквивалент высокочастотного трансформатора

Многоканальный высокочастотный трансформатор

Высокочастотный трансформатор с 4 сердечником Mil C

Высокочастотные трансформаторы с рейтингом K

Высокочастотные трансформаторы с разъемным сердечником

Высокочастотный трансформатор на 300 А

Высокочастотный трансформатор печи

Нагревательный элемент высокочастотный трансформатор

Высокочастотный трансформатор на 500 А

Высокочастотный трансформатор на 700 А

Наземный высокочастотный трансформатор

Ремонт высокочастотного трансформатора

Ремонт высокочастотного трансформатора

Высокочастотный трансформатор с внутренним корпусом

Высокочастотный трансформатор, Nema 1

Высокочастотный трансформатор с наружным корпусом

Высокочастотный трансформатор, Nema 3

Высокочастотный трансформатор, повышающий

Высокочастотный трансформатор, понижающий

Высокочастотный автоматический трансформатор

Высокочастотный трансформатор, монтаж на шасси

Высокочастотный трансформатор, монтаж на печатную плату

Высокочастотный трансформатор, залитый

Высокочастотный трансформатор 60 Гц

Высокочастотный трансформатор 50/60 Гц

Высокочастотный трансформатор 5 кГц

Высокочастотный трансформатор 10 кГц

Наши возможности кратко описаны ниже.Отправьте нам письмо по адресу [email protected], и мы ответим в течение часа.

Промышленный трансформатор управления

  • Однофазные трансформаторы для промышленных систем управления

  • Стандартный КПД

  • от 50 до 5000 ВА

  • Для использования в промышленных и коммерческих системах управления

Трехфазный инкапсулированный

  • Общего назначения

  • Стандартный КПД

  • от 3 до 75 кВА

  • Шкафы NEMA 3R

  • Промышленное применение

  • Класс 1, Раздел 2

Нелинейный, К-фактор

  • Нелинейные нагрузки

  • DOE / C802

  • Электростатическая защита

  • Удовлетворяет требованиям нагрузки устройств с твердым телом, включая балласт, компьютеры и коммуникационное оборудование

Бак-Повышение

  • Общего назначения

  • Стандартный КПД

  • от 50 ВА до 50 кВА

  • Ступенчатое повышение или понижение напряжения для экономичного решения проблем с избытком / понижением

  • Освещение и коммерческое применение

Однофазные вентилируемые

  • Общего назначения

  • DOE / C802

  • от 15 до 667 кВА

  • Шкафы NEMA 1

  • Промышленные и коммерческие приложения для управления

Изоляция привода

  • Нагрузки привода и двигателя

  • Стандартная эффективность / C802

  • от 3 до 990 кВА

  • Отвечает требованиям частотно-регулируемых приводов переменного и постоянного тока

Однофазный инкапсулированный

  • Общего назначения

  • Стандартный КПД

  • от 50 ВА до 50 кВА

  • Шкафы NEMA 3R

  • Освещение, промышленное и коммерческое применение

  • Класс 1, Раздел 2

Трехфазный вентилируемый

  • Общего назначения

  • DOE / C802

  • от 15 до 2500 кВА

  • Шкафы NEMA 3R

  • Промышленные и коммерческие приложения для управления

Полностью закрытые, без вентиляции

  • TENV, промышленное применение

  • Стандартный КПД

  • от 15 до 500 кВА

  • NEMA 3R, 4, 4X, 12, 12 X

  • Для использования в неблагоприятных условиях окружающей среды

Празднование 30-летия работы

Отправьте нам электронное письмо для получения бесплатного предложения.

Тел .: (714) 624 4740

Наши инженеры ответят в течение часа.

.

Rm8 Производители высокочастотных трансформаторов тока

Технические характеристики

1. Трансформатор RM8 230 В 110 В

2. Соответствие стандартам SGS, UL, ROHS и бесплатные образцы.

RM8 high frequency current transformer manufacturers RM8 high frequency current transformer manufacturers

Серия

Характеристика

EE Трансформатор

, включенный в основной блок питания трансформатор

EF Transformer

применяется в импульсном источнике питания, основном силовом трансформаторе

EFD Transformer

Вспомогательный трансформатор питания, основной силовой трансформатор , дроссельные катушки

EPC Transformer

Вспомогательный силовой трансформатор, главный силовой трансформатор

PQ Transformer

применяется в th Линейный фильтр, дроссель, импульсный трансформатор, приводной трансформатор

UU Трансформатор

разновидности импульсного трансформатора питания, коксовые катушки и т. д.

EC / EER / ER Трансформатор

применяется в линейном фильтре, трансформаторе тока, сглаживающей дроссельной катушке, приводном трансформаторе, импульсных силовых трансформаторах и дросселях

RM Трансформатор

фильтры, катушки индуктивности и трансформаторы для другое электронное оборудование для телекоммуникаций

POT Transformer

фильтры для телекоммуникационного оборудования и различные типы индукторов и трансформаторов

DR Core

Дроссельные катушки , Пик катушки, катушки линейности, катушки сигнализации, силовые дроссельные катушки, фиксированные дроссельные катушки, фильтрующие катушки и т. д .;

Трансформатор EI

Различные типы трансформаторов и дросселей.

ТОРОИДАЛЬНЫЙ сердечник

Импульсные и широкополосные трансформаторы, различные типы фильтров, индукторов и дросселей.

MOQ:

1PCS

Сертификаты:

UL BV SGS CE

0

24 Оплата

L / C, D / A, D / P, T / T, Western Union, MoneyGram

Характеристики:

Strong, Phenolic, low cost

Обработка поверхности:

полировка

экспорт:

По всему миру

Устройство:

Дом прибор, электронный,

другой:

9002 1 заказ OEM и ODM приветствуется MODEN , LED , MP3

Как сделать покупку у нас:

Предложение PI Подтвердить PI Организовать 30% залог Производство Платежный баланс Доставка.

RM8 high frequency current transformer manufacturers RM8 high frequency current transformer manufacturers

RM8 high frequency current transformer manufacturers RM8 high frequency current transformer manufacturers RM8 high frequency current transformer manufacturers RM8 high frequency current transformer manufacturers

.

Высокочастотный трансформатор тока низкого напряжения 400 / 5A DX 40 | трансформаторы алмазные | трансформаторы памяти трансформаторы 3 новых робота

НАИМЕНОВАНИЕ: ТРАНСФОРМАТОР ТОКА DX

DX-40 400 / 5A

Серия DX:


Модели DX-20, DX-30, DX-40 доступны для подключения с помощью кабеля, а также доступны для подключения с помощью шины

DX-20/30/40 Трансформатор тока:

Первичный ток:
Вторичный ток:
Стандартное одобрение:
Максимальное напряжение:
Частота:
Номинальная нагрузка:
Класс:
Кратковременный тепловой ток:
Номинальный коэффициент безопасности:

50A-1000A
5A, 1A
VDE0414, BS7626, IEC60044-1
0.72/3 кВ
50-60 Гц
1,5 ВА, 2,5 ВА, 5 ВА, 10 ВА

0,5, 1,0
Ith = 60 × Ih
FS <5

Технические данные и спецификации:

Модель

Первичный /
вторичный

Отверстие для шины
Размер
(мм)

Номинальный
Нагрузка
(ВА)

Класс

Номинальное напряжение

DX-20

50 / 5A-150 / 5A

φ = 20 мм

1.5-2,5

1.0

660В

DX-30

100 / 5A-500 / 5A

30 × 10 мм

1,5–2,5

1.0

660В

DX-40

150 / 5A-1000 / 5A

40 × 10 мм

3-10

1.0

660В

Размер корпуса (мм):

Модель

А

B

C

D

E

DX-20

53

28

57

66

54

DX-30

53

28

57

66

54

DX-40

71

45

73

81 год

65

.Трансформатор

Pq2020 высокочастотный, трансформатор тока небольшого размера

Технические характеристики

1. Силовой трансформатор с двойной обмоткой PQ2020

2. Соответствует стандартам SGS, UL, ROHS и бесплатно предоставляет образцы в короткие сроки.

Серия

Характеристика

EE Трансформатор

применяется в импульсном источнике питания, главный силовой трансформатор

EF трансформатор

применяется в импульсном источнике питания, основном силовом трансформаторе

EFD Transformer

Вспомогательный силовой трансформатор, главный силовой трансформатор, дроссельные катушки

EPC Transformer

Вспомогательный трансформатор мощности, главный силовой трансформатор

PQ Transformer

применяется в линейном фильтре, дросселе, импульсном трансформаторе, driv е трансформатор

UU трансформатор

разновидности импульсного трансформатора питания, коксовые катушки и т. д.

EC / EER / ER трансформатор

применяется в линейный фильтр, трансформатор тока, сглаживающая дроссельная катушка, приводной трансформатор, импульсные силовые трансформаторы и дроссели

RM Трансформатор

фильтры, катушки индуктивности и трансформаторы для телекоммуникационного другого электронного оборудования

POT Transformer

фильтры для телекоммуникационного оборудования, а также различные типы индукторов и трансформаторов

DR Core

Дроссельные катушки, обостряющие катушки, катушки линейности, катушки сигнализации , Мощность c Дроссельные катушки, фиксированные дроссельные катушки, фильтрующие катушки и т.д .;

Трансформатор EI

Различные типы трансформаторов и дросселей.

ТОРОИДАЛЬНЫЙ сердечник

Импульсные и широкополосные трансформаторы, различные типы фильтров, катушек индуктивности и дросселей.

MOQ:

1PCS

Сертификаты:

UL BV SGS CE

Оплата

L / C, D / A, D / P, T / T, Western Union, MoneyGram

Характеристики:

Strong, Phenolic, low cost

Обработка поверхности:

полировка

экспорт:

По всему миру

Устройство:

Home прибор, электронный,

другой:

9001 5 OEM и ODM заказ приветствуются MODEN , LED , MP3

Как купить у нас:

Предложение PI Подтвердить PI Организовать 30% залог Производство Платежный баланс Доставка.

FAQ

1-MOQ?

Мы будем работать, чтобы соответствовать вашему MOQ .Small покупка количество нормально.

2-Срок оплаты?

T / T, Western Union, MoneyGram, L / C, D / A, D / P

3 порта доставки ?

Шэньчжэнь, Гуанчжоу, Чжуншань, Гонконг.

4- Дата отгрузки?

Около 7 дней, когда мы проверяем оплату.

5-Вы сами производите сердечник и шпульку

Да. У нас есть 2 головных предприятия, 1 дочерняя компания. Одно предприятие по производству катушек, одно – завод сердечника, последнее – завод трансформаторов.

6-Где находится ваш завод?

Завод по производству катушек находится в городе Хайнин, провинция Чжэцзян,

Завод по производству сердечников находится в городе Хуайань, провинция Цзянсу.

Офис продаж трансформаторов и трансформаторов расположен в городе Чжуншань, провинция Гуандун.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *