Трехфазный счетчик активной энергии: Трехфазные электросчетчики | Счетчики электроэнергии трехфазные 380В
alexxlab | 14.09.1972 | 0 | Разное
Трехфазные электросчетчики | Счетчики электроэнергии трехфазные 380В
Трёхфазные счётчики электрической энергии
Для учета потребленной электрической энергии в трехфазных сетях переменного тока, могут применяться приборы учета различных исполнений, принципов действия и функционала метрологической части.
Трёхфазные приборы учета массово выпускаются двух типов:
– электромеханические счетчики; Выпускаются в вариантах учета потребления в 3 проводных и 4 проводных сетях переменного тока. Включение в сеть прямого типа или через трансформатор тока, или трансформаторы тока и напряжения. Оснащены импульсным выходом, ряд моделей учета потребления активной и реактивной мощностей могут быть оснащены оптическим портом или RS-485 интерфейсом связи.
– электронные, или цифровые счетчики электроэнергии.
Цифровые трехфазные счетчики электрической энергии производятся в следующих исполнениях:
– прибор учета активной мощности прямого или трансформаторного включения;
– прибор учета реактивной и активной мощностей прямого или трансформаторного включения;
– прибор двунаправленного учета реактивной мощности, в исполнениях прямого или трансформаторного включения;
– многотарифный прибор учета прямого или трансформаторного включения;
– многотарифный прибор расширенного функционала.
В бытовом секторе применяются счетчики активной мощности, так как за реактивную мощность, вбрасываемую оборудованием в сеть, платит только коммерческий потребитель.
Могут применяться как приборы электромеханического типа так и цифровые приборы в случае необходимости подключения потребителя в систему автоматизированного сбора и коммерческого учета электроэнергии или сокращенно АСКУЭ. Для оптимизации затрат на электроэнергию бытовой потребитель может установить многотарифный прибор, и спланировать максимальное потребление электрической энергии на период действия наиболее дешевого тарифа.
Приборы расширенного функционала помимо тарифного учета, ведение журнала срезов потребленной электроэнергии согласно предварительно заданным временным интервалам срезов, возможности подключения в систему АСКУЭ по различным интерфейсам связи, управлением реле отключения потребителя, индикации неправильного включения, и попыток хищения, дают возможность доступа к следующим функциям:
– контроль частоты, напряжения сети, Cos фи;
– возможность использовать трансформаторы с разным коэффициентом трансформации;
– контроль качества сети на присутствие гармоник;
– возможность гибкой настройки прибора согласно требованиям энергокомпании и специфики конкретной точки учета.
Рынок трёхфазных приборов учета позволяет бытовому или коммерческому потребителю выбрать, согласно своих финансовых возможностей и технических потребностей, наиболее оптимальный прибор учета. Прибор может быть использован для коммерческого учета при условии наличия модели в государственном реестре, и соответствию требованиям энергокомпании с которой заключен договор на поставку электроэнергии.
Трехфазные счетчики учета активной энергии прямого и трансформаторного включения
Счетчики предназначены для коммерческого учета активной электроэнергии в одном направлении в трёх- или четырёхпроводной сети переменного тока и работают как автономно, так и в составе АСКУЭ.
Технические особенности:
- Учет активной электроэнергии в однотарифном режиме нарастающим итогом с момента ввода в эксплуатацию;
- Работа только в сторону увеличения показаний пори любом нарушении фазировки подключения токовых цепей счётчика;
- В счетчиках применены электромеханическое отсчетное устройство и светодиодный индикатор наличия и потребления электрической энергии.
- Cтандартный телеметрический выход позволяет эксплуатировать счетчик в составе АСКУЭ, имеющей возможность приёма учётной информации в импульсах телеметрии.
Скачать:
Наименование
Описание
Купить
Меркурий 230 АМ-00
(Артикул: Меркурий 230 АМ-00)Трехфазный счетчик учета активной энергии прямого и трансформаторного включенияПодробнее…
Производитель: Инкотекс
Цена: по запросу
Меркурий 230 АМ-01
(Артикул: Меркурий 230 АМ-01)Трехфазный счетчик учета активной энергии прямого и трансформаторного включенияПодробнее…
Производитель: Инкотекс
Цена: по запросу
Меркурий 230 АМ-02
(Артикул: Меркурий 230 АМ-02)Трехфазный счетчик учета активной энергии прямого и трансформаторного включенияПодробнее…
Производитель: Инкотекс
Цена: по запросу
Меркурий 230 АМ-03
(Артикул: Меркурий 230 АМ-03)Трехфазный счетчик учета активной энергии прямого и трансформаторного включенияПодробнее…
Производитель: Инкотекс
Цена: по запросу
Меркурий 231 АМ-01
Трехфазный счетчик учета активной энергии прямого и трансформаторного включенияПодробнее…
Производитель: Инкотекс
Цена: по запросу
Другие товары в этой категории
Интересная информация
Схемы включения однофазных и трехфазных электросчетчиков
Схемы включения однофазных и трехфазных электросчетчиков
Для определения и контроля количество потребленной электроэнергии необходимо выполнить грамотное подключение счетчика. Рассмотрим, как это сделать.
Посадочные отверстия для крепления обоих видов электросчётчиков тоже должны быть абсолютно одинаковы, однако некоторые производители не всегда придерживаются этого требования, поэтому иногда могут возникнуть проблемы с установкой электронного электросчётчика вместо индукционного именно в плане крепления на панели.
Зажимы токовых обмоток электросчётчиков обозначаются буквами Г (генератор) и Н (нагрузка). При этом генераторный зажим соответствует началу обмотки, а нагрузочный – ее концу.
При подключении счетчика необходимо следить за тем, чтобы ток через токовые обмотки проходил от их начал к концам. Для этого провода со стороны источника питания должны подключаться к генераторным зажимам (зажимам Г) обмоток, а провода, отходящие от счетчика в сторону нагрузки, должны быть подключены к нагрузочным зажимам (зажимам Н).
Для счетчиков, включаемых с измерительными трансформаторами, должна учитываться полярность как трансформаторов тока (ТТ), так и трансформаторов напряжения (ТН). Это особенно важно для трехфазных счетчиков, имеющих сложные схемы включения, когда неправильная полярность измерительных трансформаторов не всегда сразу обнаруживается на работающем счетчике.
Если счетчик включается через трансформатор тока, то к началу токовой обмотки подключается провод от того зажима вторичной обмотки трансформаторов тока, который однополярен с выводом первичной обмотки, подключенным со стороны источника питания. При этом включении направление тока в токовой обмотке будет таким же, как и при непосредственном включении. Для трехфазных счетчиков входные зажимы цепей напряжения, однополярные с генераторными зажимами токовых обмоток, обозначаются цифрами 1, 2, 3. Тем самым определяется заданный порядок следования фаз 1-2-3 при подключении счетчиков.
Основные схемы включения однофазных счетчиков
На рисунке 1 изображены принципиальные схемы включения однофазного счетчика активной энергии. Первая схема (а) – непосредственного включения – является наиболее распространенной. Иногда, однофазный электросчётчик включают и полукосвенно – с использованием трансформатора тока (б).
Рисунок 1. Схемы включения однофазного счетчика активной энергии: а – при непосредственном включении; б – при полукосвенном включении. Далее рассмотрим схемы включения трёхфазных электросчётчиков.
Самыми распространёнными являются схемы непосредственного (рис.2) и полукосвенного (рис.3) включения в четырехпроводную сеть:
Рисунок 2. Схема непосредственного включения трёхфазного счетчика активной энергии
Рисунок 3. Схема полукосвенного включения трёхфазного счетчика активной энергии.
При полукосвенном включении используют трансформаторы тока. Выбор трансформаторов тока проводят исходя из потребляемой мощности. Промышленностью выпускаются трансформаторы тока с различным коэффициентом трансформации – 50/5, 100/5 …. 400/5 и т.д.
Основные схемы включения трёхфазных электросчётчиков
Кроме полукосвенной схемы, часто применяется и схема косвенного включения трёхфазных электросчётчиков. При этой схеме используют не только трансформаторы тока, но и трансформаторы напряжения.
На рисунке 4 показана схема включения с тремя однофазными трансформаторами напряжения в трёхпроводную сеть, первичные и вторичные обмотки которых соединены в звезду. При этом общая точка вторичных обмоток в целях безопасности заземляется. Это же относится и к вторичным обмоткам трансформаторов тока.
Здесь необходимо обратить внимание на наличие обязательной связи нулевого проводника сети с нулевым зажимом счетчика, т.к. отсутствие такой связи может вызывать дополнительную погрешность при учете энергии в сетях с несимметрией напряжений.
Рисунок 4. Схема косвенного включения трёхфазного счетчика активной энергии в трёхпроводную сеть
Помимо трёхэлементных трёхфазных электросчётчиков, используют и двухэлементные. Принципиальные схемы включения трехфазного двухэлементного
Здесь особо отметим, что к зажиму с цифрой 2 обязательно подключается средняя фаза, т.е. та фаза, ток которой к счетчику не подводится. При включении счетчика с трансформаторами напряжения зажим этой фазы заземляется.
На схеме заземлены зажимы со стороны источника питания (т.е. зажимы И1 трансформаторов тока), но можно было бы заземлять зажимы и со стороны нагрузки.
Счетчики типа САЗ применяются главным образом с измерительными трансформаторами (НТМИ), и поэтому приведенная схема является основной при учете активной энергии в электрических сетях 6 кВ и выше.
Рисунок 5. Схема полукосвенного включения трёхфазного двухэлементного счетчика активной энергии в трёхпроводную сеть
Необходимо отметить один момент, который я упустил раньше. Рабочее напряжение индукционных электросчётчиков, включаемых по схеме непосредственного и полукосвенного включения, равно 220/380 В. В схемах косвенного включения, т.е. с трансформаторами напряжения, применяют электросчётчики на рабочее напряжение 100 В. Некоторые электронные электросчётчики имеют диапазон входного напряжения 100-400 В, что теоретически позволяет использовать их в схемах с любым типом включения.
При монтаже учётов электроэнергии по схеме полукосвенного или косвенного включения, очень большое значение имеет правильное чередование фаз. Для определения чередования фаз применяют различные приборы, например Е-117 “Фаза-Н”.
Схемы включения счетчиков реактивной энергии
Довольно часто, вместе с индукционными электросчётчиками активной энергии, применяют электросчётчики реактивной энергии.
На рисунке 6 приведены схемы полукосвснного включения счетчиков в четырехпроводную сеть (380/220 В). Эта схема требует для монтажа меньшего количества провода или контрольного кабеля. При ее сборке значительно уменьшается риск неправильного включения счетчиков, так как исключается несовпадение фаз (А, В, С) тока и напряжения.
Проверить правильность схемы можно упрощенными способами без снятия векторной диаграммы. Для этого достаточным является измерение фазных напряжений, определение порядка следования фаз и проверка правильности включения токовых цепей с помощью поочередного вывода двух элементов счетчиков из работы и фиксацией при этом правильного вращения диска.
Рисунок 6. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с совмещенными цепями тока и напряжения.
Недостаток схемы заключается в том, что проверка правильности включения токовых цепей вызывает необходимость трижды отключать потребителей и принимать особые меры по технике безопасности при производстве работ, так как вторичные цепи трансформаторов тока находятся под потенциалами фаз первичной сети.
Другим серьезным недостатком рассматриваемой схемы является то, что необходимо зануление или заземления вторичных обмоток измерительных трансформаторов.
В отличие от предыдущей схема на рисунке 7 имеет раздельные цепи тока и напряжения, поэтому она позволяет производить проверку правильности включения счетчиков и их замену без отключения потребителей, так как в этой схеме цепи напряжения могут быть отсоединены. Кроме этого, в ней соблюдены требования ПУЭ к занулению и заземлению вторичных обмоток трансформаторов тока.
Рисунок 7. Схема полукосвенного включения трехэлементных счетчиков активной и реактивной энергии в четырехпроводную сеть с раздельными цепями тока и напряжения.
И в заключение рассмотрим схему косвенного включения двухэлементных электросчётчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ. Принципиальная схема данного включения приведена на рисунке 8.
Рисунок 8. Схема косвенного включения двухэлементных счетчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ.
В данной схеме в качестве счетчика реактивной энергии принят двухэлементный электросчетчик с разделенными последовательными обмотками. Так как в средней фазе сети отсутствует трансформатор тока, то вместо тока Ib к соответствующим токовым обмоткам этого счетчика подведена геометрическая сумма токов Ia +Ic равная – Id.
На рисунке была показана схема включения с использованием трехфазного трансформатора напряжения типа НТМИ. На практике может применяться трехфазный трансформатор напряжения и с заземлением вторичной обмотки фазы В. Вместо трехфазного трансформатора напряжения также могут применяться два однофазных трансформатора напряжения, включенных по схеме открытого треугольника.
Как правило, схема включения счетчика обычно нанесена на крышке клеммной коробки. Однако, в условиях эксплуатации, крышка может оказаться снятой со счетчика другого типа. Поэтому необходимо всегда убедиться в достоверности схемы путем ее сверки с типовой схемой и с разметкой зажимов.
Монтаж цепей напряжения электросчётчика полукосвенного и косвенного включения должен выполняться в соответствии с ПУЭ – медным проводом сечением не менее 1,5 мм, а токовых цепей – сечением не менее 2,5 мм.
При монтаже электросчётчиков непосредственного включения, монтаж должен быть выполнен проводом, рассчитанным на соответствующий ток.
На этом обзор схем включения электросчётчиков будем считать оконченным. Разумеется, нами были рассмотрены далеко не все существующие схемы, а только те, которые наиболее часто используются на практике.
Ранее ЭлектроВести писали, что создана технология беспроводной передачи энергии на большие расстояния.
По материалам: electrik.info.
устройство, принцип работы, установка, подключение
Передача электрической энергии от линий к потребителям может осуществляться как по однофазной схеме, так и трехфазной. Последний вариант применяется для промышленных предприятий, а в последнее время стал особо популярным и среди бытовых потребителей. Для учета израсходованной электрической энергии в таких цепях применяется трехфазный счетчик электроэнергии. В данной статье мы рассмотрим, что представляет собой данный вид прибора учета электроэнергии, и отличительные особенности в его эксплуатации.
Устройство и принцип работы
На практике применяются различные трехфазные счетчики электроэнергии, отличающиеся принципом действия:
- Индукционные – представляют собой набор обмоток тока и напряжения для каждого из фазных проводников, которые приводят в движение алюминиевый диск, вращающийся от воздействия электромагнитных полей.
- Электронные – осуществляют измерение и подсчет данных без использования подвижных элементов. Основой реализации электронных трехфазных электросчетчиков является система преобразования аналогового сигнала в цифровой.
- Гибридные – представляют собой переходной этап от индукционных моделей с механическими вращающимися частями к электронным.
Каждый тип счетчика обладает своими конструктивными особенностями, поэтому в качестве примера рассмотрим обобщенную модель электронного трехфазного прибора учета, как наиболее перспективного.
Рис. 1. Устройство трехфазного счетчика электроэнергииКонструктивно такой счетчик электроэнергии состоит из:
- Датчиков тока и напряжения, которые предназначены для измерения электрических величин в электрической цепи.
- Электронного преобразователя – осуществляет вычисление мощности и по всем фазным потребителям. Может быть представлен несколькими отдельными модулями.
- Микроконтроллера – предназначен для приема счетных импульсов и преобразования сигнала в другие виды.
- Дисплея – предназначен для отображения величины мощности и других параметров электрической цепи.
- Блок памяти – присутствует в электронных моделях, позволяет хранить и извлекать нужную информацию о расходах электроэнергии.
- Блок зажимов – может разделяться на силовые и слаботочные. Первые из них предназначены для включения в трехфазную линию, а вторые для передачи данных по линиям связи.
Принцип действия трехфазного счетчика электроэнергии заключается в измерении силы тока и разности потенциалов для каждого из фазных проводников посредством датчиков тока и напряжения. Затем и ток, и напряжения по каждому фазному выводу проходит этап перемножения в электронном блоке, у индукционных счетчиков электроэнергии эта процедура осуществлялась посредством воздействия полей обмоток на алюминиевый диск. От электронного блока за вычисленную единицу мощности формируется счетный импульс и передается на микроконтроллер. В зависимости от количества поданных импульсов микроконтроллер вычисляет количество потребленных киловатт-часов.
Микроконтроллер представляет собой логическую единицу трехфазного счетчика электрической энергии. Он подает команду на дисплей о смене данных по мере транзита мощности через датчики. Вместе с тем микроконтроллер трехфазного электросчетчика может извлекать из блока памяти информацию об израсходованной мощности за определенный период или в определенном тарифе, что особенно актуально для многотарифных счетчиков электроэнергии. Также микроконтроллер может транслировать информацию по каналам связи через систему АСКУЭ на удаленный диспетчерский пункт.
Отличия от однофазного электросчетчика
Рис. 2. Отличие трехфазного от однофазного электросчетчикаНесмотря на идентичность процессов в обоих типах счетчиков электроэнергии, между ними существует ряд отличий. Трехфазный счетчик электроэнергии отличается от однофазных моделей следующими факторами. Однофазный электросчетчик предназначен для установки в двухпроводные цепи с номинальным напряжением 230В. В то время, как трехфазные счетчики электроэнергии используются в трех и четырехпроводных цепях с номинальным напряжением 230 / 400В.
Однофазные модели характеризуются относительно малой мощностью подключаемого оборудования – порядка 10 кВт. В сравнении с трехфазными счетчиками электроэнергии, мощность которых практически не ограничена, но будет отличаться способ подключения (прямой, косвенный или полукосвенный).
Плюсы и минусы
В сравнении с однофазными моделями трехфазные счетчики электрической энергии обладают рядом весомых преимуществ:
- Позволяют подключить мощное трехфазное оборудование;
- При трехфазном питании существенно снижается нагрузка на линию в сравнении с однофазным для одного и того же значения мощности;
- Современные электронные модели оснащаются функцией разделения дневного и ночного тарифа, что позволяет экономить денежные средства;
- Посредством трехфазного счетчика электрической энергии можно с таким же успехом подключать однофазную нагрузку.
- Позволяют контролировать расход электроэнергии, как в трехфазном режиме, так и отдельно для каждой фазной линии.
К недостаткам трехфазных счетчиков электроэнергии следует отнести более сложную схему подключения и разделение на несколько принципиально отличных вариантов. Поэтому в данном вопросе следует обращаться за помощью к профессиональным электрикам. Также одним из недостатков является использование более высокого номинала напряжения, что создает дополнительную угрозу жизни и здоровью человека, предъявляет более жесткие требования к изоляции линий, цепей, электрооборудования.
Нюансы установки и схема подключения
Все трехфазные счетчики электроэнергии условно подразделяются на устанавливаемые в помещении или за его пределами. Поэтому в соответствии с п.5.9 ГОСТ 31818.11-2012 степень защиты подбирается не менее IP51 для помещения и не менее IP54 для наружной установки.
Высота расположения подбирается таким образом, чтобы съем показаний не создавал лишних трудностей. В соответствии с п.1.5.29 ПУЭ счетчик электрической энергии должен располагаться на высоте от пола в пределах 0,8 – 1,7м.
Кабель подключения от линии не должен иметь скруток паек и других мест, создающих возможность безучетного потребления электроэнергии.
Для трехфазных моделей могут применяться различные схемы подключения, рассмотрим более детально каждую из них. Наиболее простым вариантом являет схема прямого включения:
Рис. 3. Схема прямого подключения трехфазного электросчетчикаЭтот вариант применятся для относительно небольшой нагрузки, которую трехфазный счетчик электрической энергии может пропускать напрямую через собственные цепи. Поэтому фазные проводники вводного кабеля L1, L2, L3 и нейтральный проводник N подсоединяются к соответствующим зажимам, и далее подводятся к нагрузке. Защитный проводник PE используется лишь для заземления корпуса электроприборов.
Рис. 4. Схема полукосвенного подключения трехфазного электросчетчикаСхема полукосвенного подключения трехфазного электросчетчика применяется в цепях с большой нагрузкой, но низким напряжением. В отличии от предыдущего варианта, датчики тока подключаются через специальные понижающие трансформаторы ТТ1, ТТ2, ТТ3, а датчики напряжения подключаются к цепи напрямую. В таких схемах актуально использовать испытательную коробку для проведения плановых работ.
Рис. 5. Схема косвенного подключения трехфазного электросчетчикаКосвенное подключение актуально для линий высокого напряжения электростанций и подстанций, где и датчики тока трехфазного прибора учета электроэнергии, и датчики напряжения подключаются через понижающие трансформаторы тока ТТ1, ТТ2, ТТ3 и трансформаторы напряжения TN1, TN2, TN3 соответственно.
Критерии выбора
При подключении потребителя к линиям электроснабжения важно правильно подобрать трехфазный счетчик электроэнергии. Для этого используют следующие критерии выбора:
- Допустимые величины тока и напряжения, на которые рассчитан прибор учета электрической энергии.
- Способ подключения (прямой, полукосвенный или косвенный) – выбирается в зависимости от параметров цепи.
- Допустимый температурный диапазон – определяет возможные рабочие пределы, которые необходимо сопоставить с пиковыми значениями температуры в вашем регионе.
- Тип трехфазного прибора учета электрической энергии – желательно использовать электронные модели, так как индукционные и гибридные уже устарели и автоматически выводятся энергоснабжающими компаниями.
- Наличие заводских пломб, поверки и сертификата соответствия.
- Способ крепления – на DIN рейку, винтовым соединением или дюбелями.
- Наличие системы автоматической передачи данных – актуально для линий, на которых применяется АСКУЭ.
Как снимать показания?
Если счетчик электроэнергии автоматически передает данные, то снимать показания вам не нужно. Так как они попадают на сервер поставщика электроэнергии автоматически, а с внедрением интеллектуальных систем, вы можете отслеживать показания через интернет приложение.
Если такая функция в вашем счетчике электроэнергии отсутствует, то вам на дисплее необходимо определить показания мощности, как правило, в кВт*ч. Для этого выпишите цифровое значение до запятой, десятые в расчете израсходованной мощности по электросчетчику не учитываются.
Как снять показания электросчетчикаЗатем вычтите из полученных данных оплаченный объем электроэнергии за прошлый месяц – это и будет нужная вам величина.
Если вы используете двухтарифный счетчик электроэнергии, то съем показаний будет отличаться. Более детальную информацию об этом вы можете почерпнуть в соответствующей статье: https://www.asutpp.ru/dvuhtarifnyy-schetchik-elektroenergii.html
Нюансы эксплуатации
В ходе эксплуатации важно обеспечивать равномерную загрузку фазных проводников в линии, чтобы избежать перекоса. Поэтому распределение однофазных электроприборов для трехфазного счетчика следует заранее рассчитать.
Заметьте, в ходе эксплуатации все электронные модели крайне чувствительны к перепадам напряжения и превышению токовой нагрузки. Поэтому такой трехфазный счетчик необходимо защитить от повреждений токами короткого замыкания, для чего со стороны линии и со стороны подключаемых электрических приборов устанавливается защитная аппаратура.
Важно не допускать воздействия неблагоприятных атмосферных, погодных и других факторов на счетчик электроэнергии, так как это может привести к его выходу со строя или другим нарушениям работоспособности.
Типовые часто задаваемые вопросы от читателей
Как подключить 3-х фазный электросчетчик Энергомера СЕ307 R33.043?
Вот схема подключения установленного у вас электросчетчика:
https://www.asutpp.ru/wp-content/uploads/2020/12/shema-vklyucheniya-elektroschetchika.jpg
Прошу заметить, все схемы подключения обязательно сверяйте с паспортом, установленного у вас прибора учета электроэнергии. Все дело в том, что это материалы официального производителя «Энергомера». Если у вас установлено, все-таки, оборудование другой фирмы, могут быть некоторые отличия, поэтому лучше перепроверьте.
Также обратите внимание, узел учета электрической энергии находится на балансе управляющей компании, поэтому самостоятельно вы не имеете права менять способ подключения или вносить какие-то коррективы.
Лучше обратитесь в электроснабжающую организацию с соответствующим заявлением об обнаруженных проблемах в работе узла учета электроэнергии и просьбой принять соответствующие меры. Это их работа, за которую они отвечают, так что лучше не подвергайте себя риску получить штрафные санкции.
Список использованной литературы
- В.А. Рощин «Схемы включения счетчиков электрической энергии: производственно-практическое пособие» 2007
- В.И. Мозоль «Сбыт электроэнергии» 2016
- В. Г. Родионов «Энергетика: проблемы настоящего и возможности будущего» 2010
- В. Лебедев «Микропроцессорные счетчики электроэнергии» 2017
Умные счетчики электроэнергии ЭМИС-ЭЛЕКТРА
АСКУЭ
Счетчики однофазные
Однофазный электросчетчик ЭМИС-ЭЛЕКТРА 971
Соответствуют проекту минимальных требований к 522-ФЗ от 27 декабря 2018 г.
Счетчики электрической энергии однофазные интеллектуальные непосредственного включения «ЭМИС-ЭЛЕКТРА 971» предназначены для измерения и учета активной и реактивной энергии в однофазных цепях переменного тока 230 В с частотой 50 Гц
ПодробнееОднофазный электросчетчик ЭМИС-ЭЛЕКТРА 970
Однофазный многотарифный счетчик предназначен для учета активной электрической энергии в однофазных цепях переменного тока 230 В с частотой 50/60 Гц.
ПодробнееСчетчик ЭМИС-ЭЛЕКТРА 510
Счетчик «ЭМИС-ЭЛЕКТРА 510» предназначен для измерения и учета активной энергии в однофазных цепях переменного тока 230 В с частотой 50/60 Гц.
Подробнее
Счетчики трехфазные
Трехфазный счетчик ЭМИС-ЭЛЕКТРА 976
Соответствуют проекту минимальных требований к 522-ФЗ от 27 декабря 2018 г.
Счетчики электрической энергии трехфазные интеллектуальные непосредственного или трансформаторного включения «ЭМИС-ЭЛЕКТРА 976» предназначены для измерения и учета активной и реактивной энергии в трехфазных цепях переменного тока 0,4 кВ с частотой 50 Гц.
ПодробнееТрехфазный счетчик ЭМИС-ЭЛЕКТРА 975
Счетчик электрической энергии трехфазный электронный «ЭМИС-ЭЛЕКТРА 975» используется для измерения и учета активной энергии в трехфазных цепях переменного тока 0,4 кВ с частотой 50/60 Гц
Подробнее
Концентраторы
Концентратор данных ЭМИС-СИСТЕМА 951
Концентратор ЭС-951 является устройством сбора, хранения и передачи информации со счетчиков электрической энергии ЭМИС-ЭЛЕКТРА в интеллектуальную систему учёта электрической энергии . Концентратор исполняет роль промежуточного оборудования между сервером ИСУЭ и контролируемыми счётчиками.
ПодробнееКонцентратор данных ЭМИС-СИСТЕМА 950/2
Концентратор является центральным устройством сбора, хранения и передачи информации в системе сбора данных ЭМИС-ЭЛЕКТРА.
Подробнее
Программное обеспечение
Функциональная аппаратура
Снято с производства
Счетчик однофазный ЭМИС-ЭЛЕКТРА 970-С
Однофазный электросчетчик сплит-типа предназначен для измерения и учета активной и реактивной энергии.
ПодробнееПланка переходная на 3 винта для счетчика ЭМИС-ЭЛЕКТРА 970М
Планка переходная на 3 винта обеспечивает возможность щитового крепления счетчика ЭМИС-ЭЛЕКТРА 970М
ПодробнееОднофазный счетчик ЭМИС-ЭЛЕКТРА 970-М
Бытовой однофазный счетчик для учета потребленной электроэнергии в бытовом секторе.
Подробнее
устройство и разновидности агрегатов, как правильно подключить прибор учета электроэнергии
Трехфазный счетчик — прибор для измерения расхода электроэнергии в сети переменного тока напряжением 380 В. Однофазные счетчики применяются в сетях 220 В в офисных и жилых помещениях. Приборы, работающие в трехфазной сети, устанавливаются на крупных промышленных предприятиях. С применением мощного электрооборудования все чаще они используются в электрических магистралях частных и загородных домов.
Виды приборов
Трехфазные электросчетчики разделяются по типам подключения и измеряемых величин, разновидности конструкций. По способу подсоединения к электрической сети они делятся на 2 вида. К ним относятся:
- Прямое подключение — приборы устанавливаются непосредственно в сети 220 или 380 В. Они обладают способностью пропускать мощность до 60 кВт и максимальный ток — до 100 А. Подключение осуществляется проводами сечением от 1,5 до 2,5 мм².
- Косвенное подсоединение — счетчики подключаются через трансформаторы и используются в сетях высокого напряжения. Чаще они используются на крупных производственных территориях.
Конструктивно приборы бывают индукционными и электронными. В индукционных аппаратах отсчет происходит благодаря вращению токопроводящего диска под действием магнитного поля от катушек.
Такие агрегаты называются еще электромеханическими. Количество оборотов диска прямо пропорционально количеству израсходованной электрической энергии. У этих счетчиков есть ряд недостатков:
- отсутствие дистанционного снятия показаний;
- большая погрешность;
- однотарифность;
- возможность использования неучтенной электроэнергии.
Все чаще им на замену приходят электронные приборы, в которых напряжение действует на твердотельные элементы, преобразующих аналоговые сигналы в импульсы.
К преимуществам электронных счетчиков относятся: многотарифность, дистанционное снятие показаний, длительный срок службы, высокая точность измерений.
Конструктивные особенности и принцип действия
Трехфазный прибор отличается от однофазного способностью работать в сетях, где номинальная мощность составляет от 15 кВт и выше. Они считаются многофункциональными агрегатами, так как могут применяться как в бытовых сетях, так и для контроля работы трехфазных электродвигателей. В конструкцию прибора входят:
- разборный корпус;
- две обмотки: токовая, напряжения;
- алюминиевый диск;
- магнит для остановки диска;
- червячная передача;
- счетный механизм.
Между двумя электромагнитами располагается алюминиевый диск. Токовый магнитопровод подсоединяется последовательно, а электромагнит напряжения — параллельно. При включении счетчика по обмоткам проходит ток, который вызывает переменные магнитные потоки.
Они пронизывают диск и образуют индукционные вихревые токи, которые взаимодействуют с потоками и заставляют диск вращаться. Через червячную передачу происходит периодичное вращение счетного механизма.
Основными элементами электронного прибора считаются: трансформаторы тока и напряжения, преобразователь, контроллер, клеммы. Преобразователь получает аналоговые сигналы с датчиков тока и превращает их в цифровые импульсы.
Импульсы поступают в контроллер и на дисплее отображаются цифры, показывающие текущее значение электроэнергии.
Трехфазные счетчики подключаются как к трехпроводным схемам, так и четырехпроводным. Приборы способны хранить всю информацию с привязкой ко времени.
Популярные модели
Наиболее популярными считаются многотарифные трехфазные счетчики. Существует множество электронных моделей, выпускаемые российскими производителями. К ним относятся:
- Меркурий 236 ART-02 RS 100 A — прибор предназначен для учета активной и реактивной электроэнергии при прямом подключении. Обладает устройством для длительного хранения информации и ее передачи в центр сбора. Учет показаний осуществляется по 4 тарифам.
- Нева 303 1S0 5—100 A — комбинированное устройство, которое может применяться как в однофазных, так и трехфазных сетях. Дисплей дополнительно оборудован светодиодным индикатором.
- Энергомер ЦЭ 6803 В/1 — однотарифный счетчик, который устанавливается на DIN-рейку. Максимальная сила тока для прямого подключения составляет 100 А. Продукция выпускается ставропольским акционерным обществом.
- Агат 3−1.50.5 — электронный многотарифный прибор с цифровой индикацией от московских производителей. В конструкцию встроен интерфейс связи IRDA. Счетчик оснащен защитой от распространенных приемов хищения электроэнергии. Срок службы — 32 года.
Можно еще отметить механические и электронные модели счетчиков от российских компаний Матрица, Омрон, Каскад и др.
Схема подключения
Чтобы подключить трехфазный счетчик, необходимо наличие вводного выключателя с тремя или четырьмя контактами. Не рекомендуется использовать три однополюсные автомата, так как в них защитное отключение происходит не одновременно. Клеммы прибора подключаются слева направо:
- 1 и 2 — вход и выход первой фазы;
- 3 и 4 — вторая фаза;
- 5 и 6 — подключение третьей фазы;
- 7 и 8 — точки подсоединения нулевого провода.
Заземляющий провод обычно выводится через отдельную колодку. Перед началом монтажа нового счетчика следует отключить вводный автомат. Если крепление старого счетчика не подходит, то предварительно с помощью дрели просверливаются новые монтажные отверстия. Затем с помощью самонарезающих шурупов счетчик устанавливается на специальную площадку.
Некоторые модели монтируются непосредственно на DIN-рейку электрического щита. После проверки надежности крепления прибора осуществляется последовательное соединение проводов слева направо. После подсоединения проводов включается автомат, и счетчик проверяется на нагрузку.
Для регистрации и опломбирования прибора приглашается соответствующий специалист.
Подключение трехфазного счетчика: схема, разновидности и особенности
Правильно выбранный счетчик — главный помощник в экономии. Чтобы сделать правильный выбор при покупке, первым делом предстоит определиться — однофазный или трехфазный. Но чем они отличаются, как происходит установка и в чем плюсы и минусы каждого из них?
Одним словом — однофазные подходят для сети с напряжением 220В, а трехфазные — при напряжении 380В. Первые из них — однофазные — хорошо знакомы каждому, так как устанавливаются в квартирах, административных зданиях и частных гаражах. А вот трехфазные, которые раньше в большинстве случаев эксплуатируются на предприятиях, все чаще и чаще находят применение в частных или загородных домах. Причиной этому стало увеличение количества бытовых электроприборов, требующих более мощного питания.
Выход нашелся в электрификации домов трехфазными кабельными вводами, а для измерения поступившей энергии выпустили множество моделей трехфазных счетчиков, оснащенных полезными функциями. Разберемся со всем по порядку.
Чем трёхфазный счётчик электроэнергии отличается от однофазного
Однофазные счетчики осуществляют учет электроэнергии в двухпроводных сетях переменного тока с напряжением 220В. А трехфазные — в сетях переменного трехфазного тока (3-х и 4-проводных) номинальной частотой 50 гц.
Однофазное питание чаще всего используют для электрификации частного сектора, спальных районов городов, офисных и административных помещений, в которых потребляемая мощность составляет около 10 кВт. Соответственно, в этом случае и учет электричества осуществляется с помощью однофазных счетчиков, большим преимуществом которых является простота их конструкции и монтажа, а также удобство пользования (снятия фазы и показаний).
Но современные реалии таковы, что за последние пару десятилетий существенно возросло количество электроприборов и их мощность. По этой причине не только предприятия, но и жилые помещения — особенно в частном секторе — подключают к трехфазному питанию. Но позволяет ли это потреблять больше мощности на самом деле? Согласно техусловиям на подключение, получается, что питание от трехфазной и однофазной сети практически равны — 15 кВт и 10-15кВт соответственно.
Главное же преимущество заключается в возможности напрямую подключать трехфазные электроприборы, такие как обогреватели, электрокотлы, асинхронные двигатели, мощные электроплиты. Точнее — преимущества сразу два. Первое — при трехфазном электропитании данные приборы работают с более высокими качественными параметрами, а второе — не возникает «перекоса фаз» при одновременном использовании нескольких мощных электроприемников, поскольку всегда есть возможность подключить электроприборы к фазе, свободной от просадки через «перекос».
Увеличение потребности в трехфазном питании обусловило учащение случаев установки трехфазных счетчиков. По сравнению с однофазными, они обладают высшей точностью показаний, но также имеют большие габариты и сложнее устроены, требуют трехфазного ввода.Наличие или отсутствие нулевого провода определяет, какой счетчик потребуется установить: трехпроводной при отсутствии «ноля», а при его наличии — четырехпроводной. Для этого есть соответствующие специальные обозначения в его маркировке — 3 или 4. Также выделяют счетчики прямого и трансформаторного включения (при токах, имеющих 100А и более на фазу).
Чтобы получить более четкое представление о преимуществах однофазного и трехфазного счетчиков друг перед другом, следует провести сравнение их плюсов и минусов.
Начнем с того, в чем проигрывает трехфазный однофазному:
- множество хлопот в связи с обязательным получением разрешения на установление счетчика и вероятность получения отказа
- Габариты. Если до этого использовалось однофазное питание с одноименным счетчиком, следует позаботиться о месте для установления вводного щита, как и самого трехфазного счетчика.
Преимущества трёхфазного исполнения
Посмотреть видео о преимуществах трёхфазной сети:
Перечислим преимущества такого вида счётчиков:
- Позволяет сэкономить. Многие трехфазные счетчики снабжены тарифами, такими, как дневной и ночной, например. Это дает возможность с 11 вечера до 7 утра израсходовать на до 50% меньше энергии, чем при аналогичной нагрузке, но в дневное время.
- Возможность выбора модели, соответствующей конкретным пожеланиям к классу точности. Зависимо от того, покупаемая модель предназначена для эксплуатации в жилом помещении или на предприятии, имеются наименования с погрешностью от 0,2 до 2,5%;
- Журнал событий позволяет нотировать изменения, касающиеся динамики напряжения, активной и реактивной энергии и прямо транслировать их на компьютер или соответствующий коммуникационный центр;
- Наличие встроенного электросилового модема, с помощью которого происходит экспорт показателей по силовой сети.
Виды трёхфазных счётчиков
Различают всего три вида трехфазных счетчиков
- Счетчики прямого включения, которые, подобно однофазным, подключаются непосредственно к сети 220 или 380 В. Они имеют пропускную мощность до 60 кВт, уровень максимального тока не более 100А а также предусматривают подключение проводов небольшого сечения около 15 мм2 (до 25 мм2)
- Счетчики полукосвенного включения требуют подключения посредством трансформаторов, следовательно, подходит для сетей большей мощности. Перед тем, как производить оплату потребленной энергии, необходимо просто умножить разницу показаний счетчика (настоящих с предыдущими) на коэффициент трансформации.
- Счетчики косвенного включения. Их подключение происходит исключительно через трансформаторы напряжения и тока. Обычно устанавливаются на больших предприятиях, так как рассчитаны на учет энергии по высоковольтным присоединениям.
Когда речь заходит об установке любого из таких счетчиков, может возникнуть рад трудностей, связанных с их подключением. Ведь если для однофазных счетчиков существует универсальная схема, то для трехфазных насчитывается сразу несколько схем подключения для каждого из видов. Сейчас разберемся с этим наглядно.
Устройства прямого, или непосредственного включения
Схема подключения этого счетчика во многом (особенно по простоте выполнения) схожа со схемой установки однофазного счетчика. Она указана в техническом паспорте, а также на обратной стороне крышки. Главным условием подключения является строгое соблюдение порядка подсоединения проводов по цвету, указанному в схеме и соответствия нечетных номеров проводов вводу, а четных — нагрузке.
Порядок подсоединения проводов (указано слева направо):
- провод 1: желтый — вход, фаза А
- провод 2: желтый — выход, фаза А
- провод 3: зеленый — вход, фаза В
- провод 4: зеленый — вход, фаза В
- провод 5: красный — вход, фаза С
- провод 6: красный — выход, фаза С
- провод 7: синий — ноль, ввод
- провод 8: синий — ноль, выход
Счетчики полукосвенного включения
Это подключение происходит через трансформаторы тока. Существует большое количество схем данного включения, но самые распространенные среди них:
- Схема подключения десятипроводная является самой простой, а потому и самой популярной. Для подсоединения необходимо соблюдать порядок 11 проводов справа налево: первые три — фаза А, вторая тройка — фаза В, 7-9 для фазы С, 10 — нейтральный.
- Соединение посредством клеммной коробки — она сложнее, чем первая. Подключение осуществляется посредством испытательных колодок;
- Соединение по типу «звезда», как и предыдущая, является достаточно сложной, но требует меньшее количество проводов. Сначала в общую точку собирают первые однополярные выходы вторичной обмотки, а следующие три от других выходов направлены к счетчику, токовые обмотки тоже соединить.
Счетчики косвенного включения
Такие счетчики для жилых помещений не устанавливаются, они предназначены для эксплуатации на промышленных предприятиях. Ответственность за монтаж возлагается на квалифицированных электриков.
Какой же прибор выбрать?
Хоть чаще всего желающего установить счетчик буквально ставят в известность о том, какая именно модель для этого требуется и согласовать ее замену весьма проблематично, не взирая на очевидное ее несоответствие требованиям, но все же стоит освоить азы критериев, которым должен соответствовать трехфазный счетчик по своим характеристикам.
Выбор счетчика начинается с вопроса его подключения — через трансформатор или напрямую в сеть, что можно определить по максимальному току. Счетчики прямого включения имеют токи порядка 5-60/10-100 ампер, а полукосвенного — 5-7,5/5-10 ампер. Строго согласно этим показаниям подбирается и счетчик — если ток 5-7,5А, то и счетчик должен быть аналогичным, но никак не 5-10А, например.
Во вторую очередь обращаем внимание на наличие профиля мощности и внутреннего тарификатора. Что это дает? Тарификатор позволяет счетчику регулировать тарифные переходы, фиксировать график нагрузки за любой временной промежуток. А профиль — фиксирует, регистрирует и сохраняет значения мощности за период времени.
Для наглядности рассмотрим характеристики трехфазного счетчика на примере его многотарифной модели:
Следует взять на заметку, что на сегодняшний день широко распространены трехфазные счетчики для однофазных сетей и наоборот: когда в трехфазную сеть подключают сразу три однофазных.Класс точности определяется в значениях от 0,2 до 2,5. Чем больше это значение, тем больше процент погрешности. Для жилых помещений самым оптимальным считается класс 2.
- значение номинальной частоты: 50Гц
- значение номинального напряжения: В, 3х220/380, 3х100 и другие
Если при применении измерительного трансформатора вторичное напряжение равно 100В, требуется счетчик такого же класса напряжения (100В), а также трансформатор
значение полной мощности, потребляемой напряжением: 5 ВА, а активной мощности — 2Вт
- значение номинального-максимального тока: А, 5-10, 5-50, 5-100
- максимальное значение полной мощности, потребляемой током: до 0,2ВА
- включение: трансформаторное и непосредственное
- регистрация и учет активной энергии
Кроме этого, важен диапазон температурных показателей — чем он шире, тем лучше. Средние значения находятся в пределах от минус 20 до плюс 50 градусов.
Также следует обратить внимание на срок эксплуатации(зависит от модели и качества счетчика, но в среднем это 20 -40 лет) и межпроверочный интервал (5-10 лет).
Большим плюсом будет и наличие встроенного электросилового модема, с помощью которого происходит экспорт показателей по силовой сети. А журнал событий позволяет нотировать изменения, касающиеся динамики напряжения, активной и реактивной энергии и прямо транслировать их на компьютер или соответствующий коммуникационный центр.
И самое главное. Ведь выбирая счетчик, мы в первую очередь думаем об экономии. Так вот, чтобы действительно сэкономить на электроэнергии, следует обратить внимание на наличие тарифов. По этому признаку счетчики бывают одно-, двух- и многотарифные.
Например, двухтарифные заключаются в комбинации позиций «день-ночь«, непрерывно сменяющие друг друга по графику «7 утра -11 ночи; 11 ночи -7 утра» соответственно. Стоимость электроэнергии по ночному тарифу на 50% ниже дневного, поэтому имеет смысл эксплуатировать приборы, требующие много энергии(электродуховки, стиральные и посудомоечные машины и пр.) именно в ночное время.
Практические советы о том как подключить трёхфазный счётчик электричества
Подключение счетчика данного типа осуществляется через вводной автоматический выключатель трехфазного типа (содержащего три или четыре контакта). Стоит сразу заметить, что замена его тремя однополюсными категорически запрещена. Коммутация фазных проводов в трехфазных выключателях должна происходить одновременно.
В трехфазном счетчике максимально просто устроено подключение проводов. Так, первые два провода — вход и выход первой фазы соответственно, аналогично — третий и четвертый провода соответствуют входу и выходу второй, а пятый и шестой — входу и выходу третей фазы. Седьмой же провод соответствует входу нулевого проводника, а восьмой — выходу нулевого провода на потребителя энергии в помещениях.
Заземление, обычно, отведено в отдельную колодку и выполнено в виде совмещенного провода РЕN или же РЕ провода. Лучший вариант, если имеется разделение на два провода.
Теперь по шагам разберем установку счетчика. Предположим, что возникла необходимость заменить трехфазный счетчик прямого включения.
Для начала определимся с причиной замены и временем ее проведения.
Предпочтительно производить замену счетчика в дневное время по той просто причине, что освещение в этот период значительно лучше, нежели от применения фонарика. Это значит — проводить работу будет удобнее и быстрее, что не может не отразиться на вашем кошельке, если придется воспользоваться услугами платного электрика.После этого необходимо снять напряжение, сменив положение переключателя на автоматическом выключателе.
Убедившись, что фазы сняты, проводим демонтаж старого электросчетчика.
Сложности, которые могут возникнуть при установке нового счетчика связаны с тем, насколько отличаются производители и модели старого и нового счетчиков, а вместе с этим их формы и габариты.
Производим предварительную примерку нового счетчика, приложив его в пределах периметра соприкосновения поверхности (стенки) крепления и самого корпуса электросчетчика. Тут важно, чтобы боковые крепежные отверстия обоих из них совпали.
Если предварительна проверка показала некоторые несоответствия, устраняем их, добавив подходящие крепежные отверстия, удлиняем провода, если клеммы нового счетчика оказались расположены немного дальше и т.д.
Теперь, когда все сходится, приступаем к подключению. Последовательность подключения такова (слева направо): первый провод — фаза А (вход), второй — ее выход; третий — вход, а четвертый — выход фазы В; аналогично — 5-й и 6-й провода, соответствующие входу и выходу фазы С, последние два — вход и выход нулевого проводника.
Дальнейший монтаж электросчетчика происходит согласно прилагающейся к нему инструкции.
Среди мер предосторожности, которых, взирая на серьезность последствий, следует строго придерживаться, главное место отводится табу на любого рода самодеятельность — создание непредусмотренных перемычек; действия, которые могут привести к нарушению нормального контакта и т.д. Необходимо тщательно следить, чтобы провода были хорошо протянутыми.
Следует помнить, что подключение счетчика может производить исключительно квалифицированный электрик, имеющий разрешение на проведение таких работ. После окончания установки счетчик будет опломбирован специалистом.
Видео о практике подключения трёхфазного счётчика
В завершение — тезисно о главных моментах
- Преимуществом однофазных счетчиков является простота их конструкции и монтажа, а также удобство пользования (снятия фазы и показаний)
- Но трехфазные обладают высшей точностью показаний, хоть и сложнее устроены, имеют большие габариты и требуют трехфазного ввода.
- Позволяют сэкономить. благодаря тарифам, таким как дневной и ночной, с 11 вечера до 7 утра можно израсходовать на до 50% меньше энергии, чем при аналогичной нагрузке, но в дневное время.
- Возможность выбора класса точности. Зависимо от того, покупаемая модель предназначена для эксплуатации в жилом помещении или на предприятии, имеются наименования с погрешностью от 0,2 до 2,5%
- Журнал событий позволяет нотировать изменения, касающиеся динамики напряжения, активной и реактивной энергии и прямо транслировать их на компьютер или соответствующий коммуникационный центр
- Наличие встроенного электросилового модема, с помощью которого происходит экспорт показателей по силовой сети.
Тенденции в трехфазном измерении энергии: новая инновационная архитектура изолированного АЦП позволяет использовать трехфазные счетчики энергии с шунтами
Краткое описание идеи
В традиционных трехфазных счетчиках энергии используются трансформаторы тока (ТТ) для измерения фазных и нейтральных токов. Одним из преимуществ трансформаторов тока является внутренняя электрическая изоляция, которую они обеспечивают между линией питания, работающей на сотни вольт, и заземлением счетчика, обычно подключенным к нейтрали. ТТ могут достигать хорошей линейности и иметь гибкость для измерения токов в широком диапазоне за счет регулировки передаточных чисел и нагрузочных резисторов.Однако у них есть и недостатки для использования в счетчиках электроэнергии. Во-первых, магнитопровод ТТ может быть насыщен внешними постоянными магнитными полями. Среднестатистическому домовладельцу теперь легко получить чрезвычайно мощные редкоземельные магниты постоянного тока и подать заявку на подделку счетчика. Во-вторых, трансформаторы тока могут быть насыщены силовым электронным оборудованием, таким как инверторы прямого подключения для распределенной солнечной генерации, которые создают в линии постоянные токи. Производители могут противодействовать этим двум эффектам с помощью экранирования и использования ТТ, устойчивых к постоянному току; однако это увеличивает стоимость, и некоторые предполагают, что для каждого такого трансформатора тока можно найти постоянный магнит, чтобы вмешаться в него.В-третьих, трансформаторы тока вводят фазовую задержку измерения, которая зависит от частоты линейных токов. Если интересует только основная составляющая линейного тока, эту задержку относительно легко компенсировать. Однако измерение содержания гармоник становится все более важным, и очень трудно компенсировать задержки основной гармоники и всех гармоник вместе взятых.
Другие датчики тока реже используются в трехфазных счетчиках, включая датчики di / dt, такие как катушки Роговского или датчики на эффекте Холла.Хотя они могут обеспечить преимущества в некоторых приложениях, у них есть свои проблемы. Например, катушки Роговского обладают превосходной линейностью и могут воспринимать очень высокие токи, но могут быть более сложными в изготовлении и более сложной задачей для достижения хорошей помехоустойчивости, необходимой для точных измерений малых токов. С точки зрения вскрытия они также могут быть восприимчивы к переменным магнитным полям. Датчики на эффекте Холла требуют активной компенсации смещения по температуре и по своей природе чувствительны к магнитным полям.
Шунты и трехфазный измеритель энергии
Использование резистивных шунтов в однофазных счетчиках быстро увеличилось в последние годы, что обусловлено экономией, магнитной стойкостью и размером. Во многих случаях эти однофазные счетчики привязаны к линейному напряжению и, таким образом, исключают необходимость в дополнительной изоляции. В трехфазных счетчиках необходимо решить проблему создания изолирующего барьера между каждым шунтом и сердечником счетчика. Проблемы с нагревом также становятся проблемой, обычно ограничивая использование шунтов счетчиками с максимальным током 120 А или меньше.
Давайте сначала рассмотрим фазу А трехфазной системы и ее нагрузку. Представьте, что для измерения фазного тока используется шунт (рисунок 1).
Рис. 1. Измерение тока и напряжения в фазе А при измерении фазного тока с помощью шунта.
Это точно однофазная конфигурация счетчика энергии: шунт помещается в линию электропередачи, а делитель напряжения определяет напряжение между фазой и нейтралью. Напряжения на шунте и делителе напряжения измеряются аналого-цифровым преобразователем (АЦП).Земля – это полюс шунта, общий с делителем напряжения. Однофазные счетчики в основном бывают бытовыми, и их максимальный ток обычно ниже 120 А. Этот предел и низкая стоимость делают шунты наиболее часто используемыми датчиками тока при измерении однофазной энергии.
Когда эта схема повторяется во всех трех фазах, каждый АЦП имеет собственное заземление (рисунок 2).
Рис. 2. Измерение трехфазного тока и напряжения при измерении фазных токов с помощью шунтов.
Поскольку микроконтроллер (MCU), который управляет всеми из них, находится на одном потенциале с нейтральной линией, для обеспечения связи между АЦП и MCU необходимо изолировать каналы данных. Тогда каждый АЦП должен иметь собственный изолированный источник питания (рисунок 3).
Рисунок 3. Трехфазный счетчик с шунтами, отдельными источниками питания и изолированной связью.
Эта архитектура измерителя уже используется: двухканальные АЦП последовательно передают информацию в MCU через изолирующий барьер с помощью оптопар или масштабных трансформаторов.Изолированные источники питания построены с использованием автономных компонентов или изолированных преобразователей постоянного тока с преобразователями на кристалле.
В идеале все фазные токи и напряжения должны измеряться одновременно, чтобы можно было использовать их мгновенные значения для всестороннего трехфазного анализа. Но показания АЦП на каждой фазе полностью независимы от других, поскольку нет синхронизации АЦП. Это первое ограничение этой архитектуры. Счетчики энергии, в которых используются трансформаторы тока или катушки Роговского, не имеют такой проблемы, поскольку они могут использовать измерительный аналоговый входной каскад (AFE), который считывает все фазные токи и напряжения одновременно.
Другой проблемой этой архитектуры является большое количество компонентов: микроконтроллер, три АЦП, три изолятора многоканальных данных и четыре источника питания. У счетчиков, в которых используются трансформаторы тока, такой проблемы нет, поскольку на печатной плате обычно есть MCU, измерительный AFE и один источник питания.
Тогда как можно создать измеритель, обладающий преимуществами шунтов, с наименьшим количеством компонентов для этой архитектуры (т. Е. Одним MCU, одним источником питания и тремя ADC) и одновременно измерять все фазные токи и напряжения?
Изолированная архитектура АЦП
Ответом на эту проблему является создание микросхемы, которая объединяет по крайней мере два АЦП, один изолированный преобразователь постоянного тока в постоянный и изоляцию данных и имеет технологию, которая позволяет АЦП, принадлежащим разным микросхемам, одновременно производить выборку данных (рисунок 4).Блок питания VDD микроконтроллера питает также этот чип. Изолированный преобразователь постоянного тока в постоянный, использующий технологию чипового трансформатора, обеспечивает изолированное питание для первого каскада АЦП. Один АЦП измеряет напряжение на шунте, а второй измеряет напряжение между фазой и нейтралью с помощью делителя напряжения. Земля, определяемая одним из полюсов шунта, является заземлением изолированной стороны микросхемы. АЦП являются сигма-дельта, и только первый каскад размещен на изолированной стороне микросхемы.Битовый поток, выходящий из первого каскада, проходит через преобразователи масштаба кристалла, которые составляют изолированные каналы передачи данных. Биты принимаются неизолированной стороной микросхемы, фильтруются, помещаются в 24-битные слова и передаются на последовательный порт SPI.
Рис. 4. Новая архитектура АЦП, включающая двухканальные АЦП, изоляцию данных и один изолированный преобразователь постоянного тока в постоянный.
Технология преобразователя в масштабе микросхемы является наиболее важным элементом этой новой архитектуры АЦП: запатентованные Analog Devices цифровые изоляторы i Coupler ® обладают большей надежностью по сравнению с оптопарами, меньшими размерами, меньшим энергопотреблением, более высокой скоростью связи и лучшими временными характеристиками. точность.Но этого недостаточно. Изолированные сигма-дельта модуляторы присутствуют на рынке в течение долгого времени, в них используются либо оптопары, либо трансформаторы на кристалле. Наиболее важным вкладом технологии преобразователя в масштабе микросхемы является сопутствующий изолированный преобразователь постоянного тока в постоянный ток iso Power ® , который может быть интегрирован с АЦП, цифровым блоком и изолированными каналами данных в одну и ту же поверхность. низкопрофильный пакет.
Поскольку ядром трансформаторов шкалы микросхем является воздух, цифровые изоляторы ответвителя i и преобразователь постоянного тока iso с силовой изоляцией не подвержены влиянию постоянных магнитов, что делает эту сторону измерителя энергии полностью невосприимчивой. к постоянному магнитному вмешательству.Трансформаторы также обладают высокой устойчивостью к переменным магнитным полям. Площадь катушек настолько мала, что для воздействия на поведение катушки iso Power необходимо создать магнитное поле 10 кГц и напряжением 2,8 Тл. Другими словами, нужно было бы создать ток 10 кГц силой 69 кА через провод и отвести этот провод на 5 мм от кристалла, чтобы повлиять на поведение трансформаторов масштаба кристалла.
Информация передается через изолирующий барьер с использованием очень высокочастотных импульсов ШИМ.Это создает высокочастотные токи, которые распространяются по печатной плате, вызывая краевое и дипольное излучение. Нагрузка изолированного преобразователя постоянного тока в постоянный составляет только первый каскад сигма-дельта АЦП, и ее величина хорошо известна. Таким образом, катушки были разработаны для известной нагрузки, что снижает излучение, обычно связанное с преобразователями постоянного тока, и устраняет необходимость в четырехслойных печатных платах. Производители счетчиков энергии могут использовать двухуровневые печатные платы и пройти требуемый стандарт CISPR 22 класса B при использовании ИС с этой архитектурой.
Чтобы сделать интерфейс с MCU как можно более простым, цифровой блок микросхемы выполняет фильтрацию битового потока, поступающего с первого каскада, и создает 24-битные выходы АЦП через простой подчиненный последовательный порт SPI. Поскольку счетчик энергии имеет по одному изолированному АЦП на каждой фазе, проблема получения когерентных выходных сигналов АЦП остается. Первый каскад АЦП может производить выборку в один и тот же точный момент на всех фазах, если они работают с одинаковыми часами. Это легко сделать, если сигнал CLKIN с рисунка 4 генерируется MCU.Альтернативой является использование одного кристалла для создания тактовой частоты для одной микросхемы и использование буферизованного сигнала CLKOUT для синхронизации всех остальных изолированных АЦП. Все изолированные АЦП управляются для генерации своих выходов АЦП в один и тот же точный момент. Теперь счетчик энергии может выполнять точный и всесторонний трехфазный анализ с использованием шунтов для измерения тока.
На рисунке 5 представлен трехфазный счетчик с тремя изолированными АЦП. Измеритель имеет только один источник питания, который питает MCU и изолированные АЦП.MCU использует интерфейс SPI для чтения выходных сигналов АЦП от каждой ИС.
Рисунок 5. Трехфазный счетчик с новыми изолированными АЦП.
Предыдущее описание предполагает использование внешнего MCU для выполнения метрологических расчетов. Для производителей счетчиков, которые предпочитают решение, включающее метрологию, можно подключить изолированные АЦП к ИС, которая выполняет все метрологические расчеты, как показано на рисунке 6.
Рисунок 6. Трехфазный счетчик с новыми изолированными АЦП и метрологической ИС.
Новые продукты на основе этой архитектуры
Эта архитектура уже реализована в новом семействе продуктов Analog Devices: ADE7913, ADE7912, ADE7933 и ADE7932. На рисунке 7 представлена блок-схема ADE7913. Он очень похож на рисунок 4, но имеет дополнительный канал АЦП, который воспринимает вспомогательное напряжение, объединенное с датчиком температуры. Вспомогательное напряжение может быть напряжением на выключателе, а датчик температуры может использоваться для корректировки изменения температуры шунта.ADE7912 – это вариант, в котором нет измерения вспомогательного напряжения, но есть датчик температуры.
Рисунок 7. Новый изолированный АЦП ADE7913 на основе этой архитектуры.
ADE7933 и ADE7932 заменяют интерфейс SPI интерфейсом битового потока и в остальном повторяют характеристики ADE7913 и ADE7912 соответственно. Это изолированные АЦП, представленные на рисунке 6. Метрологическая ИС, показанная на рисунке, реализована как ADE7978.
Заключение
Представлена новая архитектура изолированного АЦП.Он содержит преобразователь постоянного тока в постоянный ток iso с изоляцией питания, который использует питание микроконтроллера для питания первого каскада многоканального сигма-дельта-АЦП через изолирующий барьер. Потоки битов, выходящие из АЦП, проходят через изоляторы данных устройства сопряжения i и принимаются цифровым блоком. Этот блок фильтрует их и создает 24-битные выходы АЦП, которые можно читать с помощью простого интерфейса SPI. Один АЦП может измерять ток, проходящий через шунт, второй может измерять напряжение между фазой и нейтралью с помощью делителя напряжения, а третий может измерять вспомогательное напряжение или датчик температуры.Он позволяет использовать трехфазные счетчики энергии с использованием шунтов, обеспечивая полную невосприимчивость к постоянным и переменным магнитным полям и измерение тока без какого-либо фазового сдвига при одновременном снижении общей стоимости системы. Малый форм-фактор обеспечивает очень маленькую печатную плату с очень небольшим количеством компонентов для сборки. Интегрированные силовые трансформаторы iso Power разработаны для известной нагрузки АЦП для минимизации излучаемых помех и прошли испытания на соответствие стандарту CISPR 22 класса B с двухслойными печатными платами.
Конечно, измерение тока с помощью шунтов не ограничивается измерением энергии.Мониторинг качества электроэнергии, солнечные инверторы, мониторинг процессов и защитные устройства могут извлечь выгоду из этой новой архитектуры АЦП.
Счетчик энергии WM3x6 – Интеллектуальные счетчики электроэнергии
Файлы cookie на нашей веб-странице
Что такое cookie?
Файл cookie – это небольшой фрагмент данных, отправленный с веб-сайта и хранящийся в веб-браузере пользователя, пока пользователь просматривает веб-сайт. Когда пользователь будет просматривать тот же веб-сайт в будущем, данные, хранящиеся в файле cookie, могут быть извлечены веб-сайтом для уведомления веб-сайта о предыдущей активности пользователя.
Как мы используем файлы cookie?
Посещение этой страницы может генерировать следующие типы файлов cookie.
Строго необходимые файлы cookie
Эти файлы cookie необходимы для того, чтобы вы могли перемещаться по веб-сайту и использовать его функции, такие как доступ к защищенным областям веб-сайта. Без этих файлов cookie не могут быть предоставлены запрашиваемые вами услуги, такие как корзины покупок или электронное выставление счетов.
2. Производительные файлы cookie
Эти файлы cookie собирают информацию о том, как посетители используют веб-сайт, например, какие страницы посетители посещают чаще всего, и получают ли они сообщения об ошибках с веб-страниц.Эти файлы cookie не собирают информацию, позволяющую идентифицировать посетителя. Вся информация, собираемая этими файлами cookie, является агрегированной и, следовательно, анонимной. Он используется только для улучшения работы веб-сайта.
3. Функциональные файлы cookie.
Эти файлы cookie позволяют веб-сайту запоминать сделанный вами выбор (например, ваше имя пользователя, язык или регион, в котором вы находитесь) и предоставлять расширенные, более личные функции. Например, веб-сайт может предоставлять вам местные прогнозы погоды или новости о ситуации на дорогах, сохраняя в файле cookie регион, в котором вы в настоящее время находитесь.Эти файлы cookie также можно использовать для запоминания изменений, внесенных вами в размер текста, шрифты и другие части веб-страниц, которые вы можете настроить. Их также можно использовать для предоставлять запрашиваемые вами услуги, такие как просмотр видео или комментирование блога. Информация, собираемая этими файлами cookie, может быть анонимной, и они не могут отслеживать вашу активность на других веб-сайтах.
4. Целевые и рекламные файлы cookie.
Эти файлы cookie используются для доставки рекламы, более соответствующей вам и вашим интересам. Они также используются для ограничения количества раз, когда вы видите рекламу, а также для измерения эффективности рекламной кампании.Обычно они размещаются рекламными сетями с разрешения оператора веб-сайта. Они помнят, что вы посетили веб-сайт, и эта информация передается другим организациям, например рекламодателям. Довольно часто целевые или рекламные файлы cookie будут связаны к функциям сайта, предоставленным другой организацией.
Управление файлами cookie
Куки-файлами можно управлять через настройки веб-браузера. Пожалуйста, ознакомьтесь с помощью вашего браузера, как управлять файлами cookie.
На этом сайте вы всегда можете включить / выключить файлы cookie в пункте меню «Управление файлами cookie».
Управление сайтом
Этот сайт находится под управлением:
Искра д.д.
1. Электрические параметры | ||
---|---|---|
Класс точности | 0,05%, 0.1% | |
Дисплей | 6 ”TFT (640 × 480) | |
Блок питания | 220 В ± 10%, 50/60 Гц Литий-полимерный аккумулятор (размер (мм): 110x51x16, номинальное выходное напряжение: 7,2 В, емкость: 5000 мАч) Электропитание (U1, UN), 85-265 В, 50/60 Гц | |
Коммуникационный порт | RS232 | |
Испытательное напряжение | ||
Диапазон | Между фазой 0–480 В (между фазой 0–830 В) | |
Ошибка | ± 0.05% (30 В-480 В) ± 0,1% (5В-30В) | |
Температурный дрейф измерения напряжения | <8 x 10 E-6 / K | |
Дрейф относительной влажности при измерении напряжения | <8 x 10 E-6 / RH | |
Стабильность измерения напряжения | <50 x10 E-6 | |
Измерение напряжения долговременная стабильность | <80 x 10 E-6 / Год | |
Гармоника | 2-я-64-я | |
Испытательный ток | ||
Диапазон (прямое подключение) | 0-12A | |
Ошибка (прямое подключение) | ± 0.05% (100 мА-12 А) ± 0,1% (10 мА-100 мА) | |
Диапазон (зажим CT) | 10 мА-120 А | |
Зажим CT | Модель: Q13 Диапазон испытаний: 1 мА-120A Точность: 0,1% Передаточное число: 1000: 1 Внутренний диаметр: 13 мм Внешний диаметр: 33 мм Подводящий кабель: 2.5 мес. | |
Трехфазная цветная этикетка | L1 = красный, L2 = желтый, L3 = синий | |
Ошибка (лагерь КТ) | ± 0,1% (100 мА-120 А) | |
Текущий температурный дрейф при измерении | <8 x 10 E-6 / K при 10 мА-120A | |
Дрейф относительной влажности при измерении тока | <8 x 10 E-6 / RH @ 10 мА-120A | |
Стабильность измерения тока | <50 x10 E-6 | |
Измерение тока, долговременная стабильность | <80 x 10 E-6 / Год | |
Гармоника | 2-я-64-я | |
Ошибка измерения мощности и энергии | ||
Активная мощность (прямое подключение) | ± 0.05% (0,1A-12A) ± 0,1% (0,01A-0,1A) | |
Реактивная мощность (прямое подключение) | ± 0,1% (0,1A-12A) | |
Ошибка измерения энергии | ||
Активная энергия (прямое подключение) | ± 0,05% (0,1A-12A) ± 0,1% (0,01A-0,1A) | |
Реактивная энергия (прямое подключение) | ± 0,1% (0,1A-12A) | |
Температурный дрейф измерения мощности / энергии | <15 x 10 E-6 / K | |
Дрейф относительной влажности при измерении мощности / энергии | <12 x 10 E-6 / RH @ 10 мА-120A | |
Стабильность измерения мощности / энергии | <100 x10 E-6 | |
Измерение мощности / энергии, долговременная стабильность | <160 x 10 E-6 / Год | |
Отображение ошибки | 5 цифр с минимум тремя десятичными знаками XX.ХХХ% | |
Фазовый угол | ||
Диапазон | 0 ° -360 ° | |
Разрешение | 0,01 ° | |
Ошибка | ± 0,05 ° | |
Частота | ||
Диапазон | 40-70 Гц | |
Разрешение | 0.001 Гц | |
Ошибка | 0,002 Гц | |
Импульсный вход | ||
Входной канал | 2 | |
Входной уровень | 5-24В | |
Входная частота | Макс. 2 МГц | |
Импульсный выход | ||
Энергетическая константа | 180000 имп / кВтч, 1800 имп / кВтч, 180 имп / кВтч | |
Соотношение импульсов | 1: 1 | |
Выходной уровень | 5В | |
Частота импульсов | Стандартный 400 Гц – 1 кГц, настраиваемый максимум 10 кГц | |
Сканирующая головка | ||
Пробоотборник оснащен кронштейном, который можно закрепить / установить на проверяемые электронные и электромеханические измерители, а пробоотборник можно вставить в «отверстие / прорезь» в центре кронштейна. Есть 3 светодиодных индикатора состояния: [АВТО] – сканировать поворотную пластину счетчика энергии [MANU] – Импульсный ввод вручную [LED] – получение импульса энергии светодиода | ||
Функция | Чувствительность можно интеллектуально отрегулировать в соответствии с интенсивностью окружающего освещения для обеспечения точности измерения. | |
Функция | ||
Векторная диаграмма | Есть | |
Форма волны | Есть | |
Накопление энергии | Есть | |
Связь с ПК | Есть | |
Защита от перегрузки | Есть | |
2.Кабель и аксессуары | ||
Тестовый кабель | Кабель для проверки напряжения 1 комплект Длина кабеля: 2 м (R, Y, B, черный) Current test calbe 1SET Длина кабеля: 2 м (R, Y, B, черный) | |
Заглушка | Тип контактов 1 КОМПЛЕКТ (4 черных, 2 красных, 2 желтых, 2 зеленых) Тип U 1 КОМПЛЕКТ (4 черных, 2 красных, 2 желтых, 2 зеленых) Тип Ω 1 НАБОР (4 черных, 2 красных, 2 желтых, 2 зеленых) Крокодил типа 1 КОМПЛЕКТ (1 черный, 1 красный, 1 желтый, 1 зеленый) | |
Сумка для принадлежностей | Есть | |
3.Механические параметры | ||
Размеры прибора (Ш × В × Г) (мм) | 245 × 162 × 60 | |
Вес прибора (кг) | 1,8 | |
Размеры кейса (Ш × В × Г) (мм) | 450 × 320 × 185 | |
Чемодан (кг) | 10,6 | |
4. Условия окружающей среды | ||
Температура окружающей среды | от -10 ° C до 55 ° C | |
Относительная влажность | 15% -95% | |
Уровень охраны окружающей среды | IP51 | |
5.Стандарт | ||
lЗащита от изоляции | МЭК 61010-1: 2001 | |
Измерение энергии | МЭК 60736 | |
Ссылочный стандарт | МЭК 62052-11 IEC62053-21 IEC62053-22 и IEC62053-23 IEC61010-1: 2001 | |
6.Калибровка и обслуживание | ||
Гарантия | 5 лет | |
Калибровка | Бесплатная пожизненная калибровка | |
Рекомендуемый интервал калибровки | Каждые два года |
Трехфазные счетчики активной энергии Socomec Countis E44, для коммерческого использования,
Трехфазные счетчики активной энергии Socomec Countis E44, для коммерческого использования, | ID: 16163914962Спецификация продукта
Фаза | Три | |||||||||
Марка | Socomec | |||||||||
Название модели / номер | Countis E44 | |||||||||
От -10 до 55 градусов Цельсия | ||||||||||
Потребление на входе | 0.2 ВА на фазу | |||||||||
Пусковой ток | 10 мА | |||||||||
Диапазон измерения | от 230 до 400 В +/- 20% | |||||||||
Частота | 50/60 Гц | |||||||||
Температура хранения | от -20 до 70 градусов Цельсия | |||||||||
Относительная влажность | 85% | |||||||||
Размеры | 73 x 90 x 62,5 мм |
Описание продукта
Функция:- Countis E4x – это модульный счетчик активной и реактивной электроэнергии, отображающий энергию и потребляемую активную мощность (кВтч, кВАрч и кВт) непосредственно на ЖК-дисплее с подсветкой.Он предназначен для измерения трехфазной нагрузки с подключением через трансформатор тока и подходит для приложений до 6000 А (3000 А для MID). Countis E42, E44 и E46 сертифицированы MID.
Общие характеристики:
- Точность измерения: 1% / 0,5% (MID).
- ЖК-дисплей с подсветкой.
- Обнаруживает ошибки подключения.
Преимущества:
Связь RS485 (MODBUS или M-BUS) или импульсный выход
- Чтобы обеспечить удаленный отчет о потреблении энергии, Countis E4x снабжен либо импульсным выходом, либо выходом связи RS485, с Протокол Modbus или M-BUS.
- В дополнение к функциям отчетности, Countis E4x с RS485 можно настроить удаленно и обеспечить доступ к значениям нескольких измерений.
- Изделие защищено от инверсии фазы / нейтрали и обнаруживает ошибки подключения. Это упрощает установку и ввод в эксплуатацию, тем самым сокращая сопутствующие расходы, и гарантирует правильную работу устройства
Заинтересовались данным товаром? Получите последнюю цену у продавца
Связаться с продавцом
Изображение продукта
О компании
Год основания 2002
Юридический статус компании с ограниченной ответственностью (Ltd./Pvt.Ltd.)
Характер бизнеса Производитель
Количество сотрудников От 101 до 500 человек
Годовой оборот 500–1000 крор
Участник IndiaMART с апреля 2010 г.
GST33AAKCS3579h2Z1
Компания SOCOMEC, основанная в 1922 году , представляет собой независимую промышленную группу со штатом 3100 человек. Наш основной бизнес – доступность, контроль и безопасность низковольтных электрических сетей с повышенным вниманием к энергетическим характеристикам наших клиентов.Имея около 30 дочерних компаний, расположенных на всех пяти континентах, SOCOMEC стремится к международному развитию, ориентируясь на промышленные и сервисные приложения, где качество ее опыта имеет решающее значение.
SOCOMEC Четыре ключевых области применения: ноу-хау специалиста:
- Обеспечение доступности высококачественной энергии для критически важных приложений – Производитель онлайн-ИБП мощностью от 600 ВА до 5400 кВА.
- Управление мощностью и защита людей и имущества – специализированный производитель переключателей.
- Повышение энергоэффективности зданий и сооружений – Предлагает высокотехнологичный измерительный диапазон для измерения, мониторинга и анализа качества электроэнергии.
- Гарантия безопасности и долговечности фотоэлектрических (PV) объектов – Предлагает полный спектр солнечных фотоэлектрических выключателей, устройств защиты от перенапряжения и держателей предохранителей с фотоэлектрическими предохранителями.
Видео компании
Вернуться к началу 1 Есть потребность?
Получите лучшую цену
Есть потребность?
Получите лучшую цену
CS5463 | Cirrus Logic
CS5463 позволяет производителям цифровых измерителей мощности предлагать высокоточные и экономичные решения для расширенных измерений мощности.Эта ИС представляет собой интегрированное устройство измерения мощности, которое объединяет два дельта-сигма аналого-цифровых преобразователя, функции высокоскоростного расчета мощности и последовательный интерфейс на одном кристалле. Дополнительные функции включают калибровку переменного и постоянного тока, расширенную фазовую компенсацию и три настраиваемых вывода энергии. Разработанная для бытовых однофазных или промышленных трехфазных измерителей мощности, ИС точно измеряет мгновенный ток и напряжение при вычислении мгновенной мощности, I RMS и V RMS , активной мощности, полной мощности, реактивной мощности, основной мощности, мощность гармоник, коэффициент мощности и частота сети.CS5463 легко спроектировать в качестве совместимого по выводам обновления популярных CS5460A и CS5461A от Cirrus Logic. Он сохраняет все функциональные возможности своих предшественников, а также предоставляет дополнительные вычисления и функциональность. Для связи с микроконтроллером IC имеет двунаправленный последовательный интерфейс, который инициализируется и полностью функционирует после сброса. CS5463 может подключаться к недорогому шунтирующему резистору или трансформатору для измерения тока и к резистивному делителю или трансформатору напряжения для измерения напряжения.CS5463 обеспечивает точные измерения энергопотребления и идеально подходит для электронных измерителей мощности.
CIRRUS ROCKS ® ЦИРРУС ® РАЗРАБОТАНА ДЛЯ ROCK ® ИННОВАЦИИ, КОТОРЫЕ СОКРАЩАЮТСЯ ®
Характеристики
- Линейность энергетических данных: +0.1% показаний в динамическом диапазоне 1000: 1
- Встроенные функции:
- Мгновенное напряжение, ток и мощность, I RMS и V RMS , средняя активная / полная / реактивная мощность, основная мощность, мощность гармоник , преобразование энергии в импульс, коэффициент мощности, частота сети
- Соответствует требованиям по точности IEC, ANSI, JIS
- Низкое энергопотребление
- Регулируемый диапазон входного сигнала на канале тока
- Сигналы с привязкой к земле при однополярном питании
- Встроенный датчик температуры
- Встроенный 2.Опорное напряжение 5 В (тип. 25 ppm / ° C)
- Калибровка системы переменного / постоянного тока
- Фазовая компенсация
- Простой 3-проводной цифровой последовательный интерфейс
- Монитор источника питания
- Программируемая функция вывода энергии-импульса
- Возможность конфигурирования импульсные выходы для активной / полной / реактивной мощности
- Конфигурации источника питания:
- ВА + = +5 В; AGND = 0 В;
- VD + = +3,3 В до +5 В
- Корпус: 24-контактный SSOP; бессвинцовая сборка
Параметрические характеристики
Преобразователи АЦП | 2 |
Опции датчика тока | Шунтирующий резистор или трансформатор тока |
Опции датчика напряжения | Резисторный делитель или трансформатор |
Точность активной мощности | +/- 0.1% более 1000: 1 динамический диапазон |
Погрешность реактивной мощности | +/- 0,2% более 1000: 1 динамический диапазон |
Коэффициент мощности Точность | +/- 0,2% более 100: 1 динамический диапазон |
THD (дБ) | 94 |
Цифровые выходы | импульсов энергии |
Аналоговый источник питания (В) | 5 |
Цифровой источник питания (В) | 3.3-5 |
Потребляемая мощность (мВт) | 11,6–29 |
Упаковка | 24 SSOP |
DTS122 Трехфазный активный статический ваттметр (ЖК-дисплей)
DTS122 Трехфазный активный статический ваттметр (ЖК-дисплей)
Технические характеристики
Модель DTS122
Класс
Активный 1
Реактивный2
Дисплей LCD
Номинальное напряжение 357,7 / 100В 3220 / 380В
3100V3380V
Максимум 30.3 (1,2) A 31 (1,2) A31,5 (6) A
Номинальный ток 35 (6) A35 (10) A35 (20) A35 (30) A
310 (40) A315 (60) A320 (80) A
Потребляемая мощность
Цепь напряжения: 1,2 Вт / 6 ВА
Токовая цепь: 1 ВА
Диапазон температур -20 ~ 55
Предельный диапазон температур-35 ~ 65
Относительная влажность 85%
Диапазон напряжения 0,7Un ~ 1,3Un
Частота питания 50 Гц
Пусковой ток 0,004 фунта (прямое соединение)
0.002 In (работа ТТ)
Сдвиг часов 0,5 с / день (25)
Вес нетто Около 1,5 кг
Размер 239,5 мм 148 мм 72 мм
Основные функции
1. Измерительная функция, позволяющая точно измерять трехфазную активную электрическую энергию, накопленную в одном и том же направлении.
2. Измерение потери фазы и сигнализация: при обрыве в сети питания одной фазы (трехфазный трехпроводной) или двухфазной (трехфазной четырехпроводной) счетчик обычно может измерять энергию, подавать сигнал тревоги и показывать соответствующую фазу. имя не удалось, а также предложить запись потери фазы со ссылкой на требование пользователей.
3. Функция времени и функция блокировки в конце месяца (опционально): Встроенный календарь на сто лет с автоматическим определением и переключением високосного года и месяца. Счетчик может сохранять исторические данные об энергии за последние 2 месяца или более. Все данные об энергии можно прочитать через интерфейс связи RS485.
4. Коммуникационная функция (опция): Инфракрасный и коммуникационный интерфейс RS485 доступны и удобны для обслуживания объекта и удаленного сбора данных. Протокол связи соответствует IEC62056-21, его также можно настроить в соответствии с требованиями заказчика..
Основные характеристики
1. Соответствует IEC 62052-11, IEC62053-21.
2. Современные ASIC, высокая точность и чувствительность, высокая надежность, широкая нагрузка и т. Д.
3. ЖК-дисплей и светодиодный дисплей могут быть доступны по запросу клиентов. Элементы дисплея и интервал можно программировать.