Трубная и метрическая резьба отличия: Отличие резьбы метрической от трубной: талицы размеров резьб

alexxlab | 11.03.2020 | 0 | Разное

Содержание

Отличие резьбы метрической от трубной: талицы размеров резьб

Автор Монтажник На чтение 9 мин. Просмотров 6.2k. Обновлено

Резьбовые соединения являются одними из основных методов стыковки элементов трубопроводных магистралей, иногда при монтаже линий с трубами своими руками можно столкнуться с их различными типами. Поэтому при подборе материалов и комплектующих при самостоятельном устройстве трубопроводов, полезно знать отличие резьбы метрической от трубной.

По принятым стандартам трубную резьбу измеряют в специальных и обычных дюймах, она насчитывает несколько видов, которые в зависимости от назначения отличаются определенными параметрами. При самостоятельном ручном или механическом нарезании на токарных станках эти различия необходимо учитывать для того, чтобы правильно выбрать размеры, обеспечивающие наиболее качественные стыки для определенных условий эксплуатации.

Отличие резьбы метрической от трубнойОтличие резьбы метрической от трубной

Рис.1 Профильные размеры конусной резьбы

Почему в дюймах

Хотя в странах мира повсеместно распространена метрическая система измерений, и резьбовой шаг привязан к миллиметру, вся современная сантехника, насосное, отопительное оборудование и прочие системы с использованием трубопроводов рассчитаны на систему измерения в дюймах.

Связано это с тем, что неметрическая система вместе со всем оборудованием пришла к нам из развитых стран мира, где вся промышленность с 15 века были ориентирована на английский дюйм, приблизительно равный ширине большого пальца в 25,4 мм. Появившаяся значительно позднее в 19 веке система с основной размерной единицей в 1 метр используется везде, но так и не смогла вытеснить дюймы из измерений элементов оборудования, газовых и водопроводных магистралей.

Частично это произошло потому, что считать десятые доли миллиметров слишком неудобно и при этом страдает точность, в то время, как резьбовые элементы в полдюйма, три четверти, полтора и так далее проще обозначать и производить. При изготовлении бытовой сантехники стандартный дюймовый шаг составляет 1/4″ – это в 6 раз больше миллиметра и позволяет существенно уменьшить число типоразмеров соединительных патрубков сантехнической арматуры.

Цилиндрический профиль резьбыЦилиндрический профиль резьбы

Рис.2 Цилиндрический профиль и его размерные показатели

Параметры резьбы

Любая резьба определяется показателями:

  • Наружный диаметр. Соответствует расстоянию от вершин гребней на разных сторонах и равен окружности цилиндра, на который производится нарезание.
  • Внутренний диаметр. Расстояние между впадинами диаметрально расположенных профильных гребней.
  • Шаг или ход. Расстояние между вершинами профиля резьбы. В трубных накатках оно измеряется  витками на дюйм.
  • Профильный угол. Измеренный в градусах угол конусного гребня.
  • Глубина. Высота гребня от верха до его основания.

Трубные резьбы, применяемые в быту

Отечественными ГОСТ регламентируется два основных вида трубной резьбы: конические и цилиндрические, главное отличие которых состоит в профиле заготовки. В первом случае он конической формы (конусность 1 к 16), во втором типе основанием является цилиндрическая заготовка.

Также известны американские разновидности стандартов трубных дюймовых накаток NPSM и NPT, главное отличие которых – профильный угол в 60 градусов. Отечественный аналог американского стандарта NPT  – ГОСТ 6111-52 на коническую резьбу с углом конуса гребня в 60 градусов.

Таблица трубных резьбТаблица трубных резьб

Рис. 3 Таблица резьбы трубной конической

Коническая трубная резьба по ГОСТ 6211-81 и ее маркировка

Резьбовые соединения этого вида предназначены для работы в условиях высокого давления, применяются в гидравлических системах мобильного инструмента, приводящих в движение тяжелые механизмы (гидростанции), для подключения гибких рукавов и муфт, рассчитанных на давление 700 и более бар. Данный вид резьбового соединения имеет следующие особенности:

  • ГОСТ регламентирует не только максимальный наружный диаметр в 6″, но и длину нарезки, которая разбивается на полную длину и рабочую часть.
  • Уклон конуса имеет соотношение 1:16 по всей длине, ход резьбовой насечки включает в себя четыре позиции и привязан к внешнему диаметру.
  • Маркировка включает в себя номинальный диаметр резьбы в дюймах и тип изделия, который обозначается латинской буквой R с дополнительными символами C и Р, означающими внутреннюю коническую или внутреннюю цилиндрическую нарезку. Направление указывается для левостороннего исполнения, имеет символьное обозначение LH.

 

цилиндрическая дюймовая резьба таблицацилиндрическая дюймовая резьба таблица

Рис.4  Трубная цилиндрическая дюймовая резьба

Цилиндрическая трубная резьба по ГОСТ 6357-81 и ее обозначение

Применяют дюймовые резьбы цилиндрической формы для состыковки металлических трубопроводов водопроводных и газовых систем, внутренняя накатка согласуется с наружной конической по ГОСТ 6211-81. При ее изготовлении за основу была принята мелкая резьба Уитворта (европейская маркировка BSW), она совместима еще с одним евростандартом BSP, ее основные параметры следующие:

  • Как и в конической, максимальный размер окружности заготовок, на которые нарезается резьба, составляет 6 трубных дюймов.
  • Шаг имеет 4 типоразмера с количеством нитей 11, 14, 19, 29 на стандартный дюйм, он привязан к наружному диаметру.
  • Наружные диаметры разбиты на два ряда, которые при измерении принято обозначать номерами, при выборе размеров предпочтение отдается первому ряду. В отличие от конической, для цилиндрической длина не регламентируется.
  • Обозначение цилиндрической резьбы состоит из символа G, размера и класса точности, левое исполнение дополняется символами LH, в обозначении могут быть приведены данные о длине свинчивания L в миллиметрах, которые добавляются в конце. Например обозначение G1 1/2 LH – B – 50 указывает на цилиндрическую левостороннюю резьбу класса точности В диаметром 1/2″ и длиной 50 мм.

стандартов дюймовых резьб таблицастандартов дюймовых резьб таблица

Рис. 5 Таблица стандартов дюймовых конических резьб NPT и ГОСТ 6111-52

Отличие резьбы метрической от трубной

Основными показателями резьбовых накаток являются их диаметр и шаг, которые регламентируются соответствующими нормативами.

Широко распространенная метрическая резьба, применяемая во всех сферах промышленности, отличается от трубной по следующим параметрам:

Размеры. Трубная имеет наружный диаметр, кратный специальному фиксированному трубному дюйму (33,24 мм.) и его десятым долям, при этом дюйм не является величиной, кратно связанной с единицами измерения в миллиметрах. Понятно, что элемент с дюймовой нарезкой не может подойти по размерным показателям к изделию, выполненному по метрическим стандартам. В трубной резьбе шаг измеряется в количестве ниток на дюйм – из этого следует, шаг резьбы в миллиметрах не будет совпадать с дюймовым.

Все вышесказанное означает, что на практике метрическую гайку не накрутишь на болт с дюймовой накаткой – детали не совпадут по ходу и диаметру.

Профильный угол. Трубная нарезка, регламентированная отечественными ГОСТ 6211-81, 6357-81, имеет профиль равностороннего треугольника с углом конусного гребня в 55 град., в то время как в метрической этот показатель равен 60 град. Понятно, что помимо различного диаметра и шага, эти резьбовые соединения не смогут работать в паре по причине разного угла конусных гребней.

NTPS таблицаNTPS таблица

Рис. 6 Резьба NTPS

Накатка. Трубная резьбовая накатка проводится на заготовки с учетом толщины их стенок и внешних габаритов – это позволяет получить максимально прочную стыковку изделий, зависящую от их физических и механических характеристик заготовок. Трубная резьба отличается от метрической тем, что по стандарту для каждого диаметра установлен свой шаг – это позволяет при соблюдении нормативов обеспечить резьбовому стыку высокую и заранее рассчитанную прочность.

Маркировка и обозначение. В государственных стандартах основные трубные резьбовые размеры привязаны к дюйму (обозначается одной или двумя косыми чертами), в то время как метрические приведены в миллиметрах. Основная разница видов в указании хода – в дюймовом варианте указывается количество ниток на 1″.

метрическая коническая резьба таблицаметрическая коническая резьба таблица

Рис. 7 Таблица метрической конической резьбы

Нарезка трубной резьбы своими руками

Как и метрическая, трубная резьба бывает наружной и внутренней, выполняется ручными или механическими способами. Для создания нарезки ручным способом используют метчики (для внутренней насечки) и плашки (для нарезания внешних поверхностей).

Самостоятельная нарезка резьбы на трубе внутри и снаружи проводится в следующем порядке:

  1. Перед нарезанием стачивают внешнюю или внутреннюю кромки, делая небольшую фаску – это помогает установить режущий инструмент без перекосов. Также под рукой необходимо иметь машинное масло, которым будет смазываться поверхность трубы и режущий инструмент в процессе проведения работ.
  2. Труба надежно фиксируется в тисках и смазывается машинным маслом, плашка закрепляется в плашкодержателе, а метчик в воротке, после чего инструмент надевают или вставляют в трубу.
  3. Вращая плашку или метчик, вворачивают их в заготовку на необходимую глубину. Вращательные движения совершает в одну и другую сторону, при большой глубине нарезания плашку или метчик периодически извлекают и очищают от стружки вместе с поверхностью детали.

Нарезка резьбы своими рукамиНарезка резьбы своими руками

Рис.8 Ручной способ создания резьбы

Для качественного выполнения нарезаемой резьбы используются два типа плашек и метчиков: черновые и чистовые, первыми, более выработанными, проход совершают в начале, после чего проходку довершают чистовыми.

При наличии в домашнем хозяйстве токарного станка, применяют механический способ нарезания, при этом выполняемая работа состоит из следующих операций:

  1. Трубу фиксируют в патроне токарно-винтового станка, в его суппорт устанавливают специальный резец.
  2. Включают станок, выставляют заданные режимы скорости вращения шпинделя и движения суппорта с резцом, а также глубину погружения резца. Прорезание наружной трубной поверхности проводят с применением смазывающей охлаждающей жидкости или масла.
  3. В начале вырезают фаску, затем совершают проходы, с каждым постепенно увеличивая глубину погружения резца. Последний проход совершают с минимальным снятием металла на малых оборотах.

Нарезка резьбы на станкеНарезка резьбы на станке

Рис. 9 Изготовление резьбы на токарном станке

Определение размеров резьбы

Определение диаметра и хода дюймовой резьбы может понадобиться в случае подбора деталей по своим параметрам, аналогичным используемым.

Для установления данных значений используется инструменты, аналогичные метрическим – калибры, гребенчатые резьбомеры, штангенциркули. Еще одним бытовым вариантом получения необходимой информации является использование изделий, с известными характеристиками. В этом случае накручивание гайки с известным диаметром и шагом на болт или наоборот, если процесс прошел без затруднений и соединение плотно зафиксировано, помогает в определении искомых размеров.

Процесс определения диаметра при помощи штангенциркуля не вызовет затруднений даже у школьника, как и замер хода с помощью гребенчатого резьбомера. Для определения шага к нарезной поверхности прикладывают гребенчатые пластинки с порезанным профилем, при их взаимном совпадении шаг определяется по маркировке на гребенках.

Для точного определения внутреннего диаметра, шага и проверки качества выполнения изделия в промышленности используются специальные калибры. Определить резьбу на трубе с их помощью можно вкручиванием во внутренние или на внешние стенки изделия.

Определение размера резьбы своими рукамиОпределение размера резьбы своими руками

Рис.10 Инструмент для определения резьбового шага и диаметра

Параметров, по которым трубная резьба отличается метрической, довольно много: помимо того, что угол витка первой составляет 55 градусов, ее размерные показатели взаимосвязаны между собой (каждый диаметр имеет соответствующее количество витков) и привязаны к дюймам. При этом в ГОСТ для измерения диаметра указаны специальные трубные дюймы (соответствуют 33,24 мм.), а шаг определяется количеством витков на обычный дюйм (25,4 мм.) и включает четыре типоразмера.

Метрические и трубные резьбы – разница и применение

В нашем метрическом мире порой бывает трудно ориентироваться в других системах измерения. Мы порой удивляемся тому, как американцы или англичане могут пользоваться устаревшими мерами длины, массы, площади и т.п. А они, в свою очередь, не понимают нас —  живущих по законам единой Системы Измерений. Однако, как и в любом правиле, существуют определенные исключения, которые понятны всем – и жителям Америки, и Туманного Альбиона, и Европы, и России. Данная статья посвящена обзору трубных и метрических резьб, с разнообразием которых приходится довольно часто сталкиваться в повседневной жизни.

Метрические резьбы и их применение

Резьбовые соединения очень распространены в строительстве, технике, машиностроении, аэрокосмической промышленности и в повседневной жизни. Что такое винт и гайка знают даже дети в детском саду, так как занятия с конструктором не могут обойтись без этих деталей. Несмотря на то, что первый винт был придуман еще Архимедом, а наши древние предки широко использовали винтовые передачи в прессах для отжима масла из оливковых косточек и семян подсолнуха, а так же для подъема воды для орошения полей, идея создать настоящее винтовое соединение нашла свою реализацию только в 15 веке, когда один из швейцарских часовщиков впервые сумел при помощи простейших приспособлений выточить первый винт и гайку.

Вместе с тем, к разумной мысли о том, что резьба должна быть одинаковой во всех странах мира человечество пришло не скоро. Так, широко распространенная и привычная всем, кто хоть немного сталкивался с техникой, метрическая резьба появилась и была описана в стандартах лишь после введения единой Системы Измерений, основанной на эталонах метра, килограмма и секунды. Так что появление и широкое распространение метрической резьбы датируется концом 19 века. До того времени в мире господствовали дюймовые резьбы.

Главное отличие метрической резьбы от дюймовой состоит в том, что все её параметры привязаны к миллиметру, а за основу профиля самой резьбы взят равносторонний треугольник, так как все его угловые размеры одинаковы и равны 60 градусам. В стандартизации метрических резьбовых соединений важно, чтобы у гайки и болта совпадали не только угловые размеры резьбы, но и ее диаметр и шаг. Многие, особенно те, у кого имеются автомобили, сталкивались с непонятным явлением, когда винт и гайка имеют одинаковый диаметр, но винт вкрутить в гайку невозможно. Это говорит о том, что в данном месте используется резьба с меньшим шагом и для того чтобы винт вкрутился без проблем, его шаг резьбы должен быть тоже уменьшенным.

В стандартах, описывающих метрические резьбы, указано, что они должны обозначаться буквой M, а далее указывается диаметр резьбы и её шаг. Диапазон диаметров метрической резьбы лежит в пределах от одного до шестисот миллиметров. Разброс шага резьбы составляет от 0,075 до 3,5 мм. Резьбы с малым шагом применяют для измерительного инструмента, резьбы со средним шагом для нагруженных и работающих в условиях вибрации деталей и узлов, а резьбы с большим шагом применяют для крепления тяжелых несущих конструкций.

При создании стандартов метрических резьб были учтены различные допуски, которые задают степень округлости наружной кромки резьбы и отклонения от профиля, чтобы винт и гайка могли быть свободно закручены до момента упора при помощи руки.

Хоть метрические резьбы и не нашли широкого применения в уплотняемых соединениях, однако такая возможность заложена в стандарты. Так, резьба с обозначением MK применяется для самоуплотняемых соединений за счет конусности наружной и внутренней резьбы. Причем, для герметичного соединения необязательно чтобы винт и гайка были с конусной резьбой. Достаточно того, чтобы эта резьба была нарезана на винте.

Цилиндрическая метрическая резьба встречается достаточно редко. Её обозначение MJ. Главное отличие в винте, который имеет увеличенный радиус впадины на резьбе, что придает резьбовому соединению на основе цилиндрической метрической резьбы более высокие жаростойкие и усталостные качества. Такую резьбу применяют в аэрокосмической промышленности. Впрочем, в гайку с такой резьбой можно закрутить обычный метрический винт.

Несмотря на поголовное преобладание правой резьбы во всех устройствах и механизмах, все же бывает необходимо для реализации определенных функций применять левую резьбу. Метрическая левая резьба не отличается ничем от правой резьбы, кроме направления вращения, которое противоположно правым винтам. Если обычный винт закручивается по часовой стрелке, то левый в эту же сторону откручивается.

Также иногда можно встретиться с многозаходной метрической резьбой. Она отличается тем, что на болте и гайке одновременно нарезают не одну спираль, а две или даже три. Многозаходную резьбу часто применяют в высокоточном оборудовании, например, в фототехнике, чтобы однозначно позиционировать положение деталей при взаимном вращении. Такую резьбу можно отличить от обычной по двум или трем началам витков на торце.

Несмотря на очень широкое применение метрической резьбы, во многих развитых странах мира традиционно в большем ходу остаются так называемые дюймовые резьбы. А трубная резьба повсеместно измеряется в дюймах. И, несмотря на сильные отличия таких видов резьбы, сантехникам во всем мире на нужно объяснять отличия полудюймовой трубы от трехчетвертной.

Дюймовые резьбы и их применение

Отличия дюймовых резьб от метрических в том, что угол при вершине резьбы у них составляет 55 градусов, шаг резьбы вычисляется как соотношение числа витков резьбы на дюйм длины резьбы. Под дюймом понимают расстояние, равное 2,54 см. Что первоначально соответствовало длине первой фаланги большого пальца руки человека, которое практически у всех людей одинаково.

Так как угол при вершине иной, чем в метрических резьбах, то совместить метрические и дюймовые резьбы не представляется возможным. В странах с метрической системой применение находят только трубные дюймовые резьбы, которые обозначают буквой G. За буквой следует дробный или целый номинал, который обозначает не величину резьбы, а условный просвет трубы в дюймах или долях дюйма. Особенностью трубной резьбы является как раз тот факт, что она учитывает толщину стенок трубы, которые могут быть толще или тоньше в зависимости от материала изготовления и рабочего давления, на которое рассчитаны трубы. Поэтому дюймовый стандарт трубных резьб понятен и принят во всем мире как исключение из метрических правил.

Кроме простой цилиндрической трубной резьбы существует и коническая трубная резьба. Она имеет такие же характеристики, что и обычная трубная, за исключением конусности, которая позволяет создавать более герметичные соединения. Обозначается буквой R для наружной резьбы и Rc для внутренней. Левая резьба помечается дополнительно буквами LH, за которыми идет числовой номинал в целых и дробных долях дюйма.

Для применения в прочих соединениях, кроме сантехники, в США и Канаде применяют дюймовые резьбы с углом при вершине 60 градусов. Существует довольно широкий соратмент этих резьб, которые различаются диапазоном шага резьбы и прочими характеристиками. Стоит отметить, что некоторые резьбы из дюймового ряда совпадают с метрическими, что в некоторых случаях может быть на руку. Например, в фототехнике диаметр присоединительной резьбы, посредством которой фотокамера крепится к штативу, одинакова во всем мире вне зависимости от страны-производителя, так как характеристики этой резьбы одинаковы и для метрической, и для дюймовой резьбы.

Однако не стоит путать английскую дюймовую индустриальную резьбу, которая была одобрена еще в 1841 году, а разработкой её занимался сам Джозеф Витуорт. Эта резьба практически повторяет трубную, так как имеет величину угла у вершины 55 градусов. Винты и гайки с такой резьбой не сопрягаются с дюймовым крепежом из Америки и Канады.

Различия между трубной и метрической резьбой – Разговоры

Тут применяется приваривание резьб.

Это у наших ЖЭКов больная тема…. сварных, которые способны варить трубы, в природе практически не осталось…

5 лет назад ЖЭК пришел поменял все трубы на полипропилен, сказали что сварных в штате у них теперь нет, и варить трубы некому.

А до этого лет 5 ставили муфты и американки…

 

Блин… пришу, вспоминаю как “специалисты” меняли стояки – истерика до сих пор бьет… реально смех и слезы… смех от того что видел и слезы от того что эти люди нас обслуживают и я им еще и плачу и никуда не деться….

 

Все рассказывать не хочу… офтоп таки… но для примера, чтобы понимали всю глубину трагедии…

 

1. Отвинтили от разводски фиттинги. Махнули стояки. Стали собирать с разводкой. Фиттинг и так и так крутят… как прикрутить не понимают. Два работяги. На своем чета лапочут, плечами жмут… Я им говорю – тут же два фиттинга скручено, вот эту часть снимите и все встанет на место! нет, начальника, эта адын! Ну ккой “адын” – вот же тут в середке двое шлицов! Далее держа этот скромный дюймовый фиттинг голыми руками, второй голой рукой большим газовым ключем пытаются его развинтить. Ага… итальянский, десятилетний, лично мной скрученным! В общем никак… Опятьговорят – эта адын! тут приходит начальника. С русским у него получше, знает на два слова больше (которые тут нельзя произносить), смотрит на эту железку и говорит – нет, не адын, два! И дает совет взять второй газовый ключ. После чего уходит дальше по этажам. Эти двое работяг берут второй газовый ключ…. Каждому по одному. Один ключем хватает один конец мой железки, второй второй и…. начинают крутиться друг вокруг друга! Меня от картины одновременно ржачка и злось разбирала… ведь почти сутки без туалета и воды сидим… и видимо не предел… В общем отбираю я у них игрушки, одним ключем беру фиттинг, кладу на пол, прижимаю ногой. Сверху под углов второй ключ, нажимаю…. раскрутил. После чего меня очень зауважали 🙂

 

2. И вот уже почти конец… 2 часа ночи… собирают инструменты… Я говорю – э… народ! А разве стояки не надо к стенам крепить? Ща воду дадите они все вниз уедут, 14 этажей же! Не, начальника, оно тама крепка! Мы тами втроем на них висели оно держицца! Ну-ну…. Пока занимался уборкой, настало 3 часа ночи, подали воду…. И…. оба стояка, горячих и холодных поползли вниз на полметра и повисли на разводках, потянув все за собой… Что творилось на других этажах не видел. Но судя по тому что воду через час отключили опять… не всем повезло как мне и соседу сверху (у меня 13й этах, у соседа пооследний)… на следующий день прибежали работяги с ящиком хомутов и шпилек… В таком “опущеном” виде все и закрепили… Воду дали еще через сутки, видимо устраняли то что порвалось….

Резьба дюймовая трубная: основные параметры и различия с метрической нарезкой

Дюймовая трубная резьба применяется в металлических трубопроводах и пластмассовых и металлических фитингах разборного типа. Какими параметрами она характеризуется, как измеряется на внутренней и внешней поверхности конструкций и чем отличается от метрического варианта резьбового соединения, расскажет данная статья.

Параметры дюймовой резьбы

Все резьбы характеризуются следующими параметрами:

  • Шагом – расстоянием, на котором находятся вершины или основания соседних витков или ниток.
  • Глубиной – расстоянием между их вершиной и основанием.
  • Углом профиля. Так называется угол, который виден в плоскости разреза и расположен между сторонами соседних витков.
  • Наружным диаметром – расстоянием между вершинами противоположно расположенных витков.
  • Внутренним диаметром – расстоянием между впадинами противоположно расположенных зубцов (диаметр цилиндра, на который навертывается резьба).

Дюймовая резьба

Согласно ГОСТ 6357 профиль трубной дюймовой резьбы представляет равносторонний треугольник с углом при вершине 55° (резьба Витвора) или 60° (американские стандарты UNC и UN). Наружный диаметр здесь измеряется не в миллиметрах, а в дюймах. Основная характеристика – число витков, расположенных на одном дюймовом измерении. В американской системе применяется два типа шага – крупный (UNC) и мелкий (UNF).
Обратите внимание! Витки должны иметь одну и ту же величину шага. Если расстояние между ними будет разным, к резьбовому соединению невозможно подобрать соответствующий болт или гайку.

Параметры резьбовых соединений

Обычным дюймом (обозначается штрихом «), который равен 25,4 мм измеряют внутренний диаметр нарезки. Примечательно, что в данной ситуации прибегают к уникальной единице измерения – трубному дюйму величиной 33,249 мм. Здесь в размеры дюймовой трубной резьбы помимо внутреннего диаметра включается толщина двух стенок профиля.
Например, у стального трубопровода диаметром 5 дюймов изнутри величина нарезки равняется 127 мм, а снаружи – 166,245 мм.

На заметку! Исключением считается цилиндрическая трубная резьба 1/2 дюйма, у которой внешний диаметр составляет 21,25 мм.

Метрическая нарезка и ее отличия

Кроме дюймового измерения, применяемого в трубопроводах, существует метрическая резьба, которая используется в других сферах жизни. Она также характеризуется диаметром и шагом. Такая нарезка имеет профиль в виде равностороннего треугольника, угол, при вершине которого равен 60°. Нанесение нитей делается с крупным и мелким шагом. Первый маркируется буквой М с цифрой, указывающей на номинальный диаметр (например, М20). При мелкой нарезке добавляется шаг, поэтому обозначение имеет следующий вид — М20х1,5.
Отличие дюймовой резьбы от трубной метрической состоит в следующем.

Чертеж дюймовой нарезки

  • В метрическом варианте исчисление всех размеров производится в миллиметрах, а не в дюймах.

Это относится и к шагу резьбы, которая в дюймовом исполнении характеризуется количеством канавок, которые помещаются на одном дюймовом отрезке профиля. Например, в водопроводе используются лишь два варианта резьбового «шага» — на 11 ниток (равняется метрическому шагу 2,31 мм) и 14 витков (равняется метрическому шагу приблизительно 1,8 мм).

  • Изделия отличаются профилем резьбового гребня. В дюймовом варианте величина верхнего угла «треугольника» на 5 градусов меньше, чем в метрическом исполнении. Поэтому кончик витка более острый, и вершины зубчиков выглядят закругленными.
  • Изделия с метрическим типом нарезки винтов измеряются по вершинам, а дюймовые – только по впадинам (к сожалению, это правило часто игнорируется).
  • В ГОСТе указываются не только целые, но и дробные значения величин «трубного дюйма».

Обратите внимание! Для измерения шага резьбы пользуются специальным инструментом – резьбомером. В случае необходимости, его заменяют обыкновенной линейкой или другим доступным измерительным прибором.

Чтобы упростить определение соотношений этих двух измерений, в нормативных документах приводятся таблицы трубных дюймовых и метрических резьб для распространенных размеров.
Разница в этих отличающихся системах исчисления параметров нарезки винтов затрудняет определение некоторых величин, но при внимательном изучении, в них можно разобраться. Надеемся на положительный результат!

Понравилась статья? Поделитесь ей:

шаг, отличие от метрической, нарезка

Трубная резьба - способы нарезкиДюймовая трубная резьба нарезается только на металлических трубах или используется в производстве пластмассовых и металлических фитингов разборного типа. Во всех остальных резьбовых соединениях, используемых в «народном хозяйстве», практикуются иные разновидности резьбы. Словом, в наши дни (и в нашей стране) «дюймы» встречаются только в трубопроводах.    

И в данной статье мы познакомим наших читателей не только с параметрами, которыми характеризуется дюймовая резьба трубная, но и со способами «нарезки» такой резьбы на внутренней и внешней поверхности труб и фитингов. Кроме того, в материале будут перечислены отличия между дюймовым и трубным вариантами.

Характеристики дюймовой резьбы

Нормативный документ, в котором описывается цилиндрическая трубная дюймовая резьба – гост 6357-81 – настаивает на том, что главными характеристиками такой резьбы является ее диаметр и ее шаг. Причем под диаметром резьбы понимают либо расстояние между противоположными верхними точками, лежащими на вершинах резьбовых гребней (наружный диаметр), либо Характеристики резьбырасстояние между противоположными нижними точками, лежащими на впадинах резьбовой канавки (внутренний диаметр).  Разница этих диаметров определяет высоту профиля резьбы.

Следующая характеристика шаг трубной резьбы определятся, как расстоянием между двумя соседними впадинами или двумя соседними гребнями. Причем шаг у резьбы, всегда один и тот же, как его не меряй. Ведь расстояние между витками должно быть стабильным. Иначе мы не сможем подобрать пару (гайку или болт) под резьбовое соединение.

Метрическая и трубная резьба – в чем отличие?

Необходимо сказать, что формулируя ключевые характеристики метрической резьбы – шаг и диаметр – используют те же определения. Ведь отличий между метрической и дюймовой резьбой не так уж и много. Так, к наиболее заметным отличиям, выделяющим дюймовый вариант, относят еще и форму профиля резьбового гребня.

У дюймовой резьбы такой профиль выглядит более «острым» — верхний угол «исходного треугольника» резьбового профиля равняется 55 градусам.

Кроме того, помимо формы профиля, трубная резьба метрическая отличается от трубного варианта еще и исчислением размеров шага и диаметра. Ведь у метрического варианта все размеры исчисляются в миллиметрах. Ну, а шаг и диаметр трубного варианта вычисляется в дюймах. Причем совсем не в тех дюймах, которые соответствуют 2,54 сантиметра, а в особых, трубных дюймах, соответствующих 3,33 (а точнее 3,3249) сантиметра.

Размеры дюймовой резьбы

Размеры дюймовой резьбы

Причем на такой необычной системе исчисления размеров настаивает основной нормативный документ, которым описывается резьба дюймовая трубная – гост 6357-81. В этом сборнике стандартов указаны не только целые, но еще и дробные значения «трубных дюймов».  Например, один из сортаментов трубной резьбы обозначается, как ¾ дюйма, что соответствует почти 25 миллиметрам.

Шаг резьбы в «трубном» исполнении считают не в миллиметрах, а в нитках – количестве канавок, нарезанных на одном дюймовом мерном отрезке трубы. Например, у обычных водопроводов есть  всего два варианта «шага» резьбы: на 11 ниток (соответствует метрическому шагу в 2,31 мм.) и на 14 ниток (соответствует метрическому шагу около 1,8 мм).

Разумеется, такие причудливые системы исчисления шага и диаметра немного затрудняют процесс определения данных величин.

Определение шага трубной резьбы и промер ее диаметра

РезьбомерПри определении диаметра и промере шага трубной и метрической резьбы мы использует одни и те же инструменты: калибры, гребенки (резьбомеры) и механические измерители (штангенциркули, микрометры и так далее). Поэтому промер этих параметров будет реализован по тем же самым правилам и в «метрическом», и в «трубном» вариантах.

В качестве калибра можно использовать муфту или штуцер, на которых нарезана наружная или внутренняя резьба с известными параметрами. Промер шага осуществляется просто: болт  вкручивают  в резьбу и, если процесс не вызвал затруднений, а сам болт сидит в трубе плотно, то диаметр и шаг резьбы в трубе считается определенным. В ином случае процесс повторяют со следующим калибром. До тех пор, пока в  определении шага метрической резьбы или ее трубного аналога не будет поставлена финальная точка.

Резьбомер «работает» еще проще. Его измерительные пластины похожи на набор пилочек. И эти пилочки нужно приложить к резьбе, нарезанной на трубе (или на ее внутренней поверхности). Если профиль пилочки совпал с профилем трубы – их оценивают «на просвет» — то резьба соответствует значению, указанному на пластине резьбомера. Штангенциркулем можно измерить лишь внешний диаметр резьбы. Микрометр годится для такой же операции. Поэтому лучшим инструментом для определения шага и диаметра резьбы являются калибры и резьбомеры.

Способы нарезки дюймовой резьбы

И метрическая резьба, и ее трубный аналог нарезаются на внутренней или внешней поверхности всего двумя способами: механическим и ручным. Ручной способ нарезания резьбы предполагает использование таких инструментов, как метчик и плашка. Причем с помощью метчика нарезают внутреннюю резьбу, а с помощью плашки – наружную.

Технология нарезки резьбы вручную реализуется следующим образом:Технология нарезки резьбы

  • Труба фиксируется в тисках, метчик вставляется в вороток, а плашка – в плашкодержатель.
  • Далее, плашку надевают на трубу, а метчик вставляют в трубу. После чего, вращая рукояти воротка или плашкодержателя, ввинчивают или навинчивают метчик или плашку на трубу.
  • В случае необходимости операцию повторяют несколько раз, постепенно прорезая тело трубы на глубину, равную высоте профиля резьбы.

Разумеется, нарезание наружной и внутренней резьбы происходит не одновременно, а последовательно. Впрочем, чаще всего, пользователя интересуют детали с односторонней резьбовой поверхностью – либо внутренней, либо внешней.

Механический способ нарезки резьбы выгладит проще:

  • Трубу зажимают в патроне токарно-винторезного станка, в суппорте которого находится резьбовой резец.
  • Станок включают, в трубе (или на трубу) делают фаску.
  • После нарезки фаски к внешней или внутренней поверхности подводят резец и включают «резьбовую» подачу, предварительно настроив скорость перемещения суппорта.

Разумеется, и плашку, и метчик можно использовать и на станке, фиксируя инструменты или в передней или в задней бабке, но формирование резьбы резцом дает более качественный результат (при условии достаточной квалификации токаря).

Назначение и виды резьбовых соединений — классификация резьб

Автор статьи: pkmetiz.ru

Наиболее распространенным способом стыковки элементов различных конструкций является резьбовое соединение. Оно широко применяется в строительстве, при монтаже трубопроводов, в машиностроении и многих других отраслях. Популярность этого способа обусловлена следующими преимуществами:

  • высокая надежность и продолжительный срок службы;
  • создание разъемных соединений, простота монтажа и демонтажа при помощи общедоступных инструментов;
  • контроль силы затягивания при сборке;
  • малый вес и размеры крепежа, по сравнению с соединяемыми конструктивными элементами;
  • широкая доступность, большой выбор типоразмеров крепежа.

Для использования при изготовлении и монтаже деталей необходимо знать существующие виды и параметры резьбовых соединений.

Назначение и виды резьбовых соединений

Резьбовые соединения любых видов резьб выполняют несколько основных функций. Основным назначением является обеспечение плотного соединения стыкуемых деталей с достижением необходимого значения. Кроме того, обеспечивается фиксация деталей в заданном положении, предотвращается возможность их смещения при эксплуатации конструкции или механизма. Еще одним распространенным назначением резьбовых соединений является обеспечение заданного расстояния между деталями.

Классификация соединений этого типа осуществляется по нескольким параметрам. При этом она имеет большое значение, поскольку от вида резьбовых соединений зависит их область применения, особенности эксплуатации, нормы отбраковки.

В зависимости от способа исполнения различают соединения, которые выполняются посредством крепежных элементов и непосредственные соединения. В первом случае монтаж выполняется при помощи болтов, шпилек, гаек, винтов и других вспомогательных элементов. Непосредственное соединение монтируется путем скручивания друг с другом соединяемых элементов, например, труб с нарезанной резьбой.

В зависимости от формы поверхности различают цилиндрические и конические резьбы. Оба этих типа резьб могут быть наружными и внутренними. По направлению витков нарезка может быть левой или правой.

Ключевым параметром для классификации является тип профиля нарезки. По этому признаку выделяют следующие виды резьбовых соединений деталей:

  • метрическая;
  • дюймовая;
  • трубная цилиндрическая;
  • трапецеидальная;
  • упорная;
  • круглая.

Рассмотрим эти типы более подробно.

Метрическая резьба

Самым распространенным видом резьбовых соединений является метрическая резьба. Ее профиль выполняется в соответствии с ГОСТ 9150-81 в форме равностороннего треугольника с углом 60°. Шаг метрической резьбы может составлять 0,25-6 мм, а внешний диаметр — от 1 мм до 600 мм. Такой тип резьбового соединения применяется при изготовлении большинства крепежных деталей.

Кроме того, применяется коническая метрическая резьба с диаметром 6–60 мм конусностью 1:16. Этот тип нарезки позволяет выполнять герметичные соединения. При ее использовании достигается стопорение крепежа, что исключает необходимость применения стопорных гаек.

Дюймовая резьба

Дюймовая резьба имеет профиль в форме равнобедренного треугольника со значением угла 55°, что отличает ее от формы профиля метрической нарезки. Диаметры резьбы измеряются в дюймах. Шаг определяется в количестве витков на 1 дюйм длины резьбовой части изделия. В промышленности применяются резьбовые соединения с наружным диаметром от 3/16 до 4 дюймов с числом витков на один дюйм от 3 до 28. Этот тип нарезки широко применяется на деталях трубопроводов, а также на крепеже производства США, Великобритании и ряда других стран.

Также выпускаются изделия с конической дюймовой резьбой. Благодаря конической форме достигается улучшенная герметичность соединения, что позволяет не использовать уплотнительные элементы. Коническая дюймовая нарезка широко применяется при прокладке напорных трубопроводов малого диаметра в гидравлических системах.

Трубная резьба

Трубная цилиндрическая резьба выполняется по ГОСТ 6357-81. Она имеет профиль в форме равнобедренного треугольника, угол наклона гребней составляет 55°. Верхние грани гребней скруглены. Благодаря этому устраняются дополнительные зазоры в зоне выступов и впадин, что обеспечивает повышенную герметичность соединения. Трубная резьба относится к дюймовым. Ее диаметр составляет от 1/16 до 6 дюймов, а шаг — от 11 до 28 витков.

По сравнению с другими видами дюймовых резьб шаг трубной резьбы сокращен. Уменьшенный шаг позволяет не допустить критического сокращения толщины стенки трубы, что необходимо для сохранения прочностных характеристик трубопровода.

Трубная резьба может быть цилиндрической и конической. В последнем случае ее конусность определяется соотношением 1:16.

Трапецеидальная

К резьбовым соединениям этого вида относятся чаще всего соединения типа винт-гайка. Трапецеидальная резьба выполняется в соответствии с ГОСТ 9481-81. Ее форма представляет собой равнобокую трапецию. Угол наклона граней составляет 30°. Для резьбы крепежных элементов, применяемых в червячных передачах, предусмотрен угол наклона 40°.

Трапецеидальный профиль резьбы позволяет достичь повышенной прочности соединения. Благодаря этому ее применяют для соединения деталей механизмов, работающих под воздействием динамических нагрузок, например, в ходовых гайках, которыми фиксируются штоки задвижек и т. д.

Упорная резьба

Упорная резьба в соответствии с ГОСТ 10177-82 имеет профиль в виде неравнобокой трапеции. Угол наклона одной грани гребня составляет 3°, а второй грани — 30°. Этот тип применяют для крепежных элементов диаметром от 10 мм до 600 мм. Шаг резьбы составляет 2–25 мм. Этот вид резьбового соединения используется для крепления деталей, которые в процессе эксплуатации испытывают значительные осевые нагрузки в одном направлении. Профиль нарезки позволяет эффективно противостоять таким нагрузкам.

Круглая резьба «Эдисона»

Круглая резьба, выполняемая в соответствии с ГОСТ 6042-83, имеет профиль, формируемый дугами. Угол наклона сторон составляет 60°. Благодаря такой форме профиля круглая резьба обладает высокой стойкостью к механическому износу. Это позволяет применять ее в деталях конструкций и механизмов, которые подвержены регулярным переменным нагрузкам, например, в деталях трубопроводной арматуры.

Различия метрической и дюймовой резьбы

Автор статьи: pkmetiz.ru

Резьбовое соединение — наиболее распространенный способ сопряжения деталей при сборке механизмов, машин, конструкций, промышленного оборудования, различных изделий. Одной из важных характеристик резьбы является применяемая единица измерения ее параметров. По этой характеристики они бывают метрическими и дюймовыми.

Различия между ними не ограничиваются единицами измерения, но затрагивают и конструктивные характеристики. Это приводит к несовместимости крепежных элементов и деталей с резьбой разных типов, даже если внешне они кажутся идентичными. Поэтому необходимо иметь представление о том, чем отличается метрическая резьба от дюймовой.

Распространение дюймовой резьбы

Несмотря на распространение метрической системы в большинстве стран мира, применение дюймовой резьбы остается очень широким. Она используется для соединения деталей трубопроводов и всего связанного оборудования, включая насосы, арматуру, сантехнику. Поэтому дюймовую резьбу часто называют трубной. Также ее применяют для изготовления многих крепежных элементов, деталей техники. Поэтому сегодня существует множество отраслей, где используется дюймовая резьба.

Одной из причин такого положения вещей является то, что промышленная революция берет свое начало из Англии, где дюйм и по сей день остается одной из основных единиц измерения длины. Сегодня неметрическая система, в которой используются дюймы, применяется в США, Великобритании, ряде других крупных промышленных стран.

Кроме того, распространение дюймовой резьбы связано и с удобством ее использования. Измерение десятых долей миллиметра может быть затруднительным и ухудшает точность. Дюймовая резьба измеряется с шагом в 1/4 дюйма. Это значительно упрощает обозначение и точность замеров резьбовых элементов, а также сокращает количество типоразмеров.

Основные отличия резьб

Любая резьба характеризуется следующими основными параметрами:

  • Наружный диаметр — расстояние между вершинами двух диаметрально расположенных гребней. Равняется диаметру окружности цилиндра, по которому выполнялась нарезка.
  • Внутренний диаметр — расстояние между впадинами двух диаметрально расположенных гребней.
  • Шаг резьбы — расстояние между двумя соседними вершинами профильных гребней или количество витков на единицу длины нарезанной резьбы.
  • Угол профиля — угол гребня в градусах.
  • Глубина резьбы — расстояние между впадиной и вершиной профильного гребня.

Разница резьбы метрической и дюймовой заключается в измерении этих основных параметров. Так, диаметры метрической резьбы указываются в миллиметрах, а дюймовой — дюймах (2,54 см). Дюймы указываются в целых и дробных долях, например, 1 1/4″. Существенные отличия есть и в принципах измерения шага. Для метрической резьбы он представляет собой расстояние между вершинами соседних профильных гребней, выраженное в миллиметрах. Шаг дюймовой резьбы — это количество витков (ниток) на один дюйм длины.

В отличие от метрической, у трубной резьбы по стандарту для каждого диаметра устанавливается свое значение шага. Это позволяет учитывать толщину стенок труб и их прочностные характеристики для образования наиболее надежного резьбового соединения, устойчивого к переменным нагрузкам и повышенному внутреннему давлению в трубопроводе.

Важным конструктивным отличием является профильный угол. Более того, по этому параметру можно отличить метрическую резьбу от дюймовой. В соответствии с нормами ГОСТ 6211-81 и 6357-81 гребни резьбы должны иметь профиль равностороннего треугольника. При этом угол наклона профильного гребня у метрической равняется 60°, а у трубной — 55°. Поэтому для специалиста доступно определение дюймовой резьбы визуально по данному параметру.

Эти отличия делают детали с разными видами резьб несовместимыми друг с другом. Они не подходят в связи с разными значениями диаметра и шага. Даже если эти параметры будут приблизительно совпадать, разный профильный угол не позволит создать рабочее резьбовое соединение.

Измерения

Несмотря на отличия метрической и дюймовой резьбы, их измерение выполняется одинаковыми инструментами:

  • калибрами;
  • резьбомерами;
  • механическими измерителями — микрометрами, штангенциркулями.

Механические измерители могут применяться только для измерения внешнего диаметра. Поэтому такие инструменты используются только для предварительных измерений.

Удобным способом определить шаг дюймовой резьбы, является использование калибра. Этот же метод может применяться и для метрической нарезки. Калибром выступает штуцер или муфта, на которых нарезана соответственно внутренняя или наружная резьба, параметры которой точно соответствую стандарту. Деталь с измеряемой резьбой вкручивается в калибр или накручивается на него.

Если при этом не возникает затруднений, и образуется плотное соединение, значит, измеряемый шаг соответствует стандартному значению, указанному на калибре. Если же выполнить соединение не удалось, нужно взять калибр с другими параметрами и повторить попытку. Для проведения таких измерений калибры используются с учетом различия метрической и дюймовой резьбы.

Резьбомер еще более упрощает процесс промеров. Он представляет собой комплект пластинок с гребенками, размеры которых соответствуют стандартным размерам резьб. Пластинку прикладывают к резьбе гребенкой. Ее профиль должен точно совпасть с профилем резьбы. Это позволяет говорить, что параметры последней соответствуют стандартным значениям, которые указаны на пластинке резьбомера.

Разница между процессом и резьбой

Ключевое отличие : Поток и процесс – два тесно связанных термина в многопоточности. Основное различие между этими двумя терминами заключается в том, что потоки являются частью процесса, то есть процесс может содержать один или несколько потоков, но поток не может содержать процесс.

В программировании есть две основные единицы выполнения: процессы и потоки. Оба они выполняют ряд инструкций. Оба инициируются программой или операционной системой.Эта статья помогает различать эти две единицы.

Процесс – это экземпляр выполняемой программы. Он содержит программный код и его текущую активность. В зависимости от операционной системы процесс может состоять из нескольких потоков выполнения, которые выполняют инструкции одновременно. Программа – это набор инструкций; процесс – это фактическое выполнение этих инструкций.

Процесс имеет автономную среду выполнения. Он имеет полный набор частных основных ресурсов времени выполнения; в частности, каждый процесс имеет собственное пространство памяти.Процессы часто считаются похожими на другие программы или приложения. Однако на самом деле выполнение одного приложения может быть набором взаимодействующих процессов. Для облегчения связи между процессами большинство операционных систем используют ресурсы межпроцессного взаимодействия (IPC), такие как каналы и сокеты. Ресурсы IPC также могут использоваться для связи между процессами в разных системах. Большинство приложений на виртуальной машине работают как единый процесс. Однако он может создавать дополнительные процессы с помощью объекта построителя процессов.

В компьютерах поток может выполнять даже самую маленькую последовательность запрограммированных инструкций, которыми может управлять независимо операционная система. Приложения потоков и процессов различаются от одной операционной системы к другой. Однако потоки состоят из процесса и существуют внутри него; у каждого процесса есть хотя бы один. В процессе также может существовать несколько потоков и совместно использоваться ресурсы, что помогает в effi

.

Разница между процессом и потоком (со сравнительной таблицей)

process vs thread Процесс и поток по существу связаны. Процесс – это выполнение программы, тогда как поток – это выполнение программы, управляемой средой процесса.

Еще один важный момент, который отличает процесс от потока, заключается в том, что процессы изолированы друг от друга, тогда как потоки совместно используют память или ресурсы друг с другом.

Содержание: процесс против потока

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Заключение

Таблица сравнения

Основа для сравнения Процесс Резьба
Базовая Программа выполняется. Легкий процесс или его часть.
Совместное использование памяти Полностью изолирована и не разделяет память. Совместно используют память друг с другом.
Потребление ресурсов Больше Меньше
Эффективность Менее эффективен по сравнению с процессом в контексте коммуникации. Повышает эффективность в контексте общения.
Время, необходимое для создания Больше
Меньше
Время переключения контекста Требуется больше времени. Занимает меньше времени.
Неуверенное завершение Приводит к потере процесса. Резьба может быть восстановлена.
Время, необходимое для увольнения Больше Меньше

Определение процесса

Процесс – это выполнение программы и выполняет соответствующие действия, указанные в программе, или это исполнительный блок, в котором выполняется программа. Операционная система создает, планирует и завершает процессы использования ЦП.Другие процессы, созданные основным процессом, называются дочерними процессами.

Операции процесса, управляемые с помощью PCB (Блок управления процессом), можно рассматривать как мозг процесса, который содержит всю важную информацию, касающуюся процесса, такую ​​как идентификатор процесса, приоритет, состояние, PWS и содержимое ЦП. регистр.

PCB также является структурой данных на основе ядра, которая использует три вида функций: планирование, диспетчеризацию и сохранение контекста.

  • Планирование: Это метод выбора последовательности процесса простыми словами: выбирает процесс, который должен быть выполнен первым в ЦП.
  • Dispatching: Устанавливает среду для выполнения процесса.
  • Сохранение контекста: Эта функция сохраняет информацию о процессе, когда он возобновляется или блокируется.

В жизненный цикл процесса включены определенные состояния, такие как готовность, работа, блокировка и завершение.Состояния процесса используются для мгновенного отслеживания активности процесса.

С точки зрения программиста, процессы – это среда для достижения одновременного выполнения программы. Главный процесс параллельной программы создает дочерний процесс. Главный процесс и дочерний процесс должны взаимодействовать друг с другом для достижения общей цели.

Операции чередования процессов повышают скорость вычислений, когда операции ввода-вывода в одном процессе перекрываются с вычислительной деятельностью в другом процессе.

Свойства процесса
  • Создание каждого процесса включает системные вызовы для каждого процесса отдельно.
  • Процесс является изолированным исполняемым объектом и не разделяет данные и информацию.
  • Процессы используют механизм IPC (межпроцессное взаимодействие) для связи, что значительно увеличивает количество системных вызовов.
  • Управление процессами требует больше системных вызовов.
  • Каждый процесс имеет свой собственный стек и динамическую память, инструкции, данные и карту памяти.

Определение резьбы

Поток – это выполнение программы, использующее ресурсы процесса для выполнения задачи. Все потоки внутри одной программы логически содержатся внутри процесса. Ядро выделяет стек и блок управления потоками (TCB) каждому потоку. Операционная система сохраняет только указатель стека и состояние процессора во время переключения между потоками одного и того же процесса.

Потоки реализуются тремя разными способами; это потоки уровня ядра, потоки уровня пользователя, гибридные потоки.У потоков может быть три состояния: готово и заблокировано; он включает только вычислительное состояние, но не распределение ресурсов и состояние связи, что снижает накладные расходы на переключение. Это увеличивает параллелизм (параллелизм), следовательно, увеличивается и скорость.

Многопоточность также имеет недостатки. Многопоточность не создает сложности, но взаимодействие между ними создает.

У потока должно быть свойство приоритета, когда несколько активных потоков. Время, которое он получает для выполнения относительно других активных потоков в том же процессе, определяется приоритетом потока.

Свойства резьбы
  • Только один системный вызов может создать более одного потока (облегченный процесс).
  • Потоки обмениваются данными и информацией.
  • Threads разделяет инструкции, глобальную область и область кучи, но имеет свой собственный индивидуальный стек и регистры.
  • Управление потоками не использует системные вызовы или использует меньше системных вызовов, поскольку связь между потоками может осуществляться с использованием общей памяти.
  • Изоляция процесса увеличивает накладные расходы с точки зрения потребления ресурсов.

Ключевые различия между процессом и резьбой

  1. Все потоки программы логически содержатся внутри процесса.
  2. Процесс тяжелый, а поток легкий.
  3. Программа представляет собой изолированную исполнительную единицу, в то время как поток не изолирован и разделяет память.
  4. Нить не может существовать индивидуально; он привязан к процессу. С другой стороны, процесс может существовать индивидуально.
  5. Во время истечения срока действия потока связанный с ним стек может быть восстановлен, поскольку каждый поток имеет свой собственный стек.Напротив, если процесс умирает, умирают все потоки, включая процесс.

Заключение

Процессы используются для одновременного и последовательного выполнения программ. Хотя поток – это блок выполнения программы, который использует среду процесса, когда многие потоки используют среду одного и того же процесса, они должны совместно использовать его код, данные и ресурсы. Операционная система использует этот факт для уменьшения накладных расходов и улучшения вычислений.

.

Разница между трубным ниппелем и трубной муфтой

Разница между трубным ниппелем и трубной муфтой

Что такое трубный ниппель?

Трубный ниппель – это отрезок прямой трубы с наружной резьбой на обоих концах. Это одна из самых популярных категорий трубопроводной арматуры. Это соединитель или муфта с резьбой на обоих концах. Ниппели для труб используются для подключения водопровода к водонагревателю или другому водопроводу.Они используются для подсоединения шланга или трубы с прямым концом. Комбинация трубных ниппелей рекомендуется для нагнетания и всасывания при низком давлении различных совместимых жидкостей, но не для сжимаемых продуктов, таких как воздух, азот или пар.

20170531105516 35182 - The difference between pipe nipple and pipe coupling
Длина трубного ниппеля обычно определяется общей длиной с резьбой. Он может иметь шестиугольное сечение в центре для захвата гаечным ключом (иногда называемый «шестигранный ниппель»), или он может быть просто изготовлен из короткого отрезка трубы (иногда называемого «цилиндрическим ниппелем» или «трубкой»). сосок »).«Закрытый сосок» не имеет области без резьбы; при плотном завинчивании между двумя фитингами с внутренней резьбой очень небольшая часть ниппеля остается открытой. Закрытый ниппель можно отвинтить, только зажав один резьбовой конец трубным ключом, который повредит резьбу и потребует замены ниппеля, или с помощью специального инструмента, известного как ниппельный ключ (или известного как внутренний трубный ключ), который зажимает резьбу. внутри трубы, не повреждая резьбу. Когда концы имеют два разных размера, это называется переходником или неравномерным ниппелем.

На ниппелях используется резьба BSP, BSPT, NPT, NPSM и метрическая.

Что такое муфта для труб?

Муфта (или муфта) (используемая в трубопроводе или водопроводе) – это очень короткий отрезок трубы или трубки с муфтой на одном или обоих концах, которая позволяет соединять, сваривать (стальные), паять или паять две трубы или трубки. (медь, латунь и т. д.) вместе.
20170531105852 27297 - The difference between pipe nipple and pipe coupling
В качестве альтернативы это короткая труба с двумя внутренними трубными резьбами National pipe (NPT) (в условиях Северной Америки муфта – это двойная внутренняя резьба, а ниппель – двойная наружная) или две наружные или внутренние трубные резьбы британского стандарта.
Если два конца муфты различны (например, один с резьбой BSP и один с резьбой NPT), то его обычно называют переходником. Другой вариант – одно простое гнездо и одно резьбовое гнездо. Еще один вариант – от 3/4 дюйма до 1/2 дюйма.
Если на двух концах используется один и тот же способ соединения, но разный размер, используются термины «уменьшающая муфта» или «редуктор».

Трубная муфта – это любой фитинг или устройство, используемое для соединения двух или более труб таким образом, чтобы между ними сохранялась непрерывность.Корпус трубной муфты обычно изготавливается из тех же или подобных материалов, что и те, которые используются для изготовления труб, которые она соединяет. Они могут быть жесткими или гибкими в зависимости от величины движения, которому подвергается труба, и могут быть постоянными или съемными приспособлениями. Трубная муфта может быть ступенчатой ​​или уменьшенной по внутреннему диаметру, чтобы принимать трубы разных размеров, иметь Т-образную или крестообразную форму для соединения более двух труб или наклонную для образования изгибов. Муфты для труб могут также включать периферийные элементы или оборудование, такие как смотровые отверстия, расходомеры или клапаны.

Для большинства трубопроводов требуется, чтобы трубы нескольких отрезков были соединены вместе или отрезаны, чтобы облегчить изменение направления и пересечение препятствий. Для этого требуется довольно быстрый метод соединения секций с сохранением целостности труб в процессе. Эти муфты могут быть стационарными по своей природе или, если желательна разборка, съемной конструкции. Постоянные соединения труб обычно используют пайку или пайку в случае стальных или медных труб или клея в случае труб из ПВХ.Эти неразъемные соединения, если они установлены правильно, обладают отличными характеристиками жесткости и герметичности, когда в будущем не предвидится никаких изменений в трубопроводе.

Съемные трубные муфты чаще всего имеют резьбовую конструкцию, что позволяет их навинчивать на соединяемые трубы. Самым простым из них является сечение основной трубы, немного превышающее длину соединяемых труб, и нарезание внутренней резьбы. Концы труб также имеют резьбу, а муфту просто заклеивают пенькой или уплотнительной лентой и навинчивают на обе трубы.Более сложные съемные трубные муфты состоят из двух частей, где одна часть прикрепляется к каждой трубе, а затем скрепляется винтами для завершения соединения. Эти типы муфт часто используются на медных газовых трубах высокого давления и гибких гидравлических или пневматических шлангах.

Муфта для труб также часто используется для облегчения изменения маршрута трубопровода, пересечения препятствий и проникновения в стены. Эти муфты обычно имеют угловую или U-образную форму, но могут иметь несколько вариантов с разными углами отклонения.Для соединения труб разных размеров используются понижающие или переходные трубные муфты с разными диаметрами концов. Переходные фитинги также могут использоваться для соединения труб из разных материалов и иметь отдельные концевые фитинги, подходящие для обоих материалов. Если необходимо соединить более двух труб, часто используются Y-, T-образные или крестообразные муфты.

Трубные муфты могут также включать в себя другие функции, такие как точки доступа для осмотра или обслуживания. Обычно это навинчивающиеся колпачки, которые позволяют проводить визуальный осмотр или вставлять стержни, используемые для удаления засоров.Расходомеры и другие аналитические приспособления часто встраиваются в трубную муфту для облегчения установки. Муфты для труб могут также включать такие механизмы, как запорные клапаны и клапаны сброса давления.

Почему трубные ниппели называются ниппелями?

В трубопроводе ниппель представляет собой фитинг, состоящий из короткого отрезка трубы, обычно с наружной трубной резьбой на каждом конце, для соединения двух других фитингов с внутренней резьбой или труб.Ниппели для труб обычно используются в качестве переходников от одного типа соединения к другому. Ниппели для труб в основном используются в системах трубопроводов низкого давления.
Трубные ниппели изготавливаются путем отрезания трубы определенной длины и применения необходимых торцевых соединений. Размеры и материал трубного ниппеля указаны в технических характеристиках трубы. Подобно трубам, трубные ниппели также бывают бесшовными или сварными.

Как заказать трубные ниппели?

При заказе трубных ниппелей необходимо указать следующие характеристики:
Диаметр
Длина
Спецификация
Материал
Торцевые соединения

Длина трубного ниппеля обычно определяется общей длиной, включая резьбу.Ниппели для труб могут иметь любую заданную длину, но чаще всего в диапазоне от 12 дюймов. Закрытый патрубок – это самый короткий отрезок трубы, необходимый для полностью резьбовых торцевых соединений, когда между резьбами нет гладкой поверхности.

Сколько типов трубных ниппелей широко используются?

Обычно используются несколько различных типов трубных ниппелей.Краткий список включает:
Закрытый ниппель / ходовой ниппель
Шестигранный ниппель
Редукционный ниппель / неравномерный ниппель
Шланговый ниппель
Сварной ниппель

Закрывающий ниппель / ходовой ниппель
В самом простом виде, трубный ниппель представляет собой короткую длину трубы с наружной трубной резьбой на обоих концах для подключения других фитингов. Обычно между двумя концами с резьбой остается небольшое расстояние между двумя концами с резьбой, в зависимости от того, на каком расстоянии должны находиться присоединенные фитинги. Когда между двумя соединительными концами нет трубы без резьбы, трубный ниппель называется «закрывающий ниппель » или «ходовой ниппель » .В этом случае соединенные фитинги вплотную соприкасаются друг с другом, и ниппель виден очень мало.
С закрытыми сосками трудно работать. Закрытый ниппель можно отвинтить, только зажав один конец с резьбой трубным ключом, который повредит резьбу и потребует замены ниппеля, или с помощью специального инструмента, известного как ниппельный ключ, который захватывает внутреннюю часть трубы, не повреждая резьбу .
Шестигранный ниппель
В трубных ниппелях, где есть небольшое пространство между обоими резьбовыми концами, может быть шестигранная часть в центре для гаечного ключа, чтобы захватить ниппель.Эти ниппели называются «шестигранный ниппель» . Эта шестигранная часть в середине функционирует как гайка, которую можно захватить обычным гаечным ключом, обеспечивая большее механическое преимущество, чем обычный закругленный патрубок. Шестигранный ниппель с большим расстоянием между резьбовыми концами называется «длинный шестигранный ниппель» .
Переходной ниппель / Неравномерный ниппель
Для систем ping, в которых требуется изменение размера трубы, используется «переходной ниппель» или «неравномерный ниппель» .В переходной штуцер входит фитинг с внутренней резьбой с большим соединением и присоединяется к меньшему. При использовании этих деталей следует соблюдать осторожность, поскольку уменьшение диаметра трубы может означать большее давление и больший расход в меньшей трубе / фитинге.
Ниппель для шланга
Для трубопроводных систем, требующих соединения трубы с трубкой, используется «ниппель для шланга» . Ниппель шланга имеет резьбовое соединение с наружной резьбой на одном конце и заусенец на другом конце. Заусенец шланга может быть того же размера, что и трубное соединение, или может быть меньшего размера.
Сварочный ниппель
Для трубопроводных систем, которые необходимо подсоединять к сварным трубам или фитингам, используется «сварочный ниппель». Сварочный ниппель имеет резьбовое соединение на одном конце и обычную трубу на другом конце. Конец трубы без резьбы обеспечивает большую площадь поверхности для использования сварочных материалов для более прочного соединения. Одно из основных преимуществ приварного ниппеля заключается в том, что после подсоединения конца без резьбы присоединение труб или других фитингов к концу с резьбой становится намного проще.

Сколько типов существует для соединения концов трубных ниппелей?

Торцевые соединения трубных ниппелей также должны уточняться заказчиком;
Плоский оба конца (PBE), оба конца с резьбой (TBE), оба конца со скошенной кромкой (BBE), один конец с резьбой (TOE), один конец со скошенной кромкой (BOE), простой конец (POE) или их комбинация, в зависимости от концы трубопроводной системы, в которую будет вставлен патрубок.
Ниппель для гладкой трубы с обоими концами (PBE), имеет оба конца в виде гладких концов, без резьбы, обычно используется для соединения с муфтой под приварку.
Трубный ниппель с двухсторонней резьбой (TBE) имеет оба конца как резьбовые концы и используется для фитингов с внутренней резьбой.
Трубный ниппель со скошенной кромкой на обоих концах (BBE) имеет оба конца как конические концы и используется для сварки аналогично фитингу для стыковой сварки.

.Таблица трубной резьбы

| Продукты и поставщики

Engineering360 Logo

Продукты и услуги

  • Все
  • Новости и аналитика
  • Продукты и услуги
  • Библиотека стандартов
  • Справочная библиотека
  • Сообщество

ЗАРЕГИСТРИРОВАТЬСЯ

АВТОРИЗОВАТЬСЯ

Я забыл свой пароль.

Нет учетной записи?

Зарегистрируйтесь здесь. Домой Новости и аналитика Последние новости и аналитика Аэрокосмическая промышленность и оборона Автомобильная промышленность Строительство и Строительство Потребитель Электроника Энергия и природные ресурсы Окружающая среда, здоровье и безопасность Еда и напитки Естественные науки Морской Материалы и химикаты Цепочка поставок Пульс360 AWS Мы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *