Трубы применяемые при эксплуатации скважин – Как выбирают обсадные трубы для нефтяных скважин? Трубы применяемые при эксплуатации скважин

alexxlab | 18.02.2020 | 0 | Разное

Содержание

Эксплуатация нефтяных и газовых скважин

В современной добыче нефти и газа, необходимых для удовлетворения ряда человеческих потребностей, применяется бурение скважин, с помощью которых можно извлечь искомые вещества из их залежей в пластах. Эксплуатация нефтяной скважины может происходить различными способами, выбор которых зависит от характеристик горных пластов, в которых пробурена скважина, а также ее собственных свойств. На выбор способа эксплуатации может влиять состав нефти и газа, степень обводненности, напор жидкости в стволе скважины и ряд других факторов. Энергия пласта также играет немаловажную роль в выборе способа эксплуатации скважины, поэтому нефтяные и газовые продукты могут быть извлечены посредством фонтанного, насосного или газлифтного способа эксплуатации. Все эти разновидности способов известны под общим наименованием – механизированная добыча полезных ископаемых (нефти и газа).

Фонтанный способ

Данный способ эксплуатации нефтяной скважины подразумевает поднятие жидкостей от забоя наверх по всей скважине, стимулятором чего будет только энергия нефтяных пластов.

К преимуществам такого способа относится его высокая экономичность, поскольку подъем происходит естественным путем и не требует дополнительной траты сил и времени на это. Особое оборудование при этом способе эксплуатации также не требуется, и можно сэкономить как на его стоимости, так и на техническом обслуживании. Для обустройства фонтанирующей скважины потребуется головка для колонны, арматуры и линия выкидного типа из наземной техники, а также сама колонна из подземной. Трубы НКТ опускаются до верхних отверстий, образованных перфорацией. Трубы необходимы для обеспечения поднятия жидкости наверх по скважине, а также ряда других работ:

  • Регулировка режима функционирования.
  • Обеспечение работ по изучению скважины.
  • Устранение отложений смолы и парафинов.
  • Технологические мероприятия.
  • Защита скважинной колонны от воздействия коррозии.
  • Устранение пробок из песчаного материала.
  • Процесс глушения скважины, который проводится перед проведением ремонтных работ в стволе.
  • Защита от высокого давления и его перепадов.

Газлифтный способ

Рано или поздно энергия нефтяного пласта становится меньше, и поднятие жидкости или газа наверх становится невозможным. Для обеспечения дополнительной энергоподачи можно применять данный способ эксплуатации: газ с высоким коэффициентом давления позволяет увеличить приток. При этом способе подаваемый газ перемешивается с жидкостью в пластах, и смесь, которая получается от этого, имеет невысокую плотность. Снижение давления в забое позволяет увеличить приток нефти и газа и поднятие наверх по стволу скважины. Существует две разновидности газлифтного способа эксплуатации нефтяной скважины: с компрессорами и без них. К плюсам такого способа можно отнести следующие качества:
  • Техника для работы находится над землей, и ее проще обслуживать и проводить по мере надобности ремонтные работы.
  • Конструкция техники достаточно проста в эксплуатации.
  • Подъем жидкости можно производить в большом размере, и это не зависит от глубины ствола или ширины колонны.
  • Дебит нефтяного продукта можно контролировать и задавать самостоятельно, для чего потребуется менять объем газа для подачи в скважину.
  • С помощью газлифтового способа эксплуатации можно проводить эксплуатацию нефтяных или газовых скважин, которые были залиты водой или оказались пробурены в слоях с высоким содержанием песка.
  • Исследовательские мероприятия в скважинах проводятся быстрее и проще.
Конечно, данный способ эксплуатации нефтяных и газовых скважин имеет и ряд недочетов. Так, в процессе эксплуатации требуется регулярно менять трубы НКТ, подъемник, эксплуатируемый в работе, имеет невысокий коэффициент полезного действия. Кроме того, создание компрессорных систем обходится недешево, а на тонну добываемых ископаемых приходятся высокие затраты электричества.

Насосная эксплуатация скважин

При этом способе эксплуатация нефтяной скважины может производиться при помощи различных типов оборудования. Для этого способа эксплуатации могут применяться следующие виды:
  • Штанговое глубинное оборудование.
  • Центробежный насос с электроприводом.
  • Погружной штанговый либо насос с электроприводом.
  • Диафрагменное устройство.

Особенности эксплуатации с помощью штангового насоса

Чаще всего, чтобы добыть нефть и газ, используют штанговые насосы: они отличаются простой конструкцией, способны выкачивать большой объем жидкости и газа и довольно долговечны. Больше 50% всех современных нефтяных и газовых скважин обслуживается при помощи штанговых насосных станций. При этом способе эксплуатации такое оборудование можно отремонтировать в ходе эксплуатации, не отвозя его в специальный сервис, а для первичных моторов эксплуатируются все типы приводов. Штанговый насос может эксплуатироваться в сложных условиях, в том числе при наличии коррозийных жидкостей и песка. К минусам штангового оборудования можно отнести следующие свойства:
  • Невысокая подача.
  • Ограничение по спуску оборудования.
  • Ограничение по углу уклона ствола скважины.
При этом способе эксплуатации конструкция простого насоса состоит из цилиндра и плунжера с клапаном по типу шара-седла, благодаря которому обеспечивается подъем жидкости и исключается ее течение вниз. Также в конструкции может быть всасываюший клапан – он установлен ниже цилиндра. Штанговый насос работает посредством передвижений плунжера, на который воздействует привод. В насосе проходит верхняя штанга, она прикреплена к головке балансировочного элемента. Ключевые части штангового насоса:
  • Рама.
  • Четырехгранная пирамидообразная стойка.
  • Балансировочный элемент.
  • Траверса.
  • Редуктор с противовесными элементами.
  • Салазка поворотного типа.
Штанговый насос может быть вставного типа или невставного. Первые опускаются в ствол скважины в уже готовом виде, а до того по НКТ вниз погружается замок. Для замены оборудования не нужно несколько раз спускать или поднимать трубы. Что касается невставных разновидностей, то их можно спустить в наполовину готовом виде. Если такой насос требуется отремонтировать или поменять, нужно поднимать его по частям: сначала поднимается плунжер, а затем НКТ. Оба вида имеют и плюсы, и минусы, и выбор должен происходить с учетом конкретных условий предстоящей эксплуатации.

Особенности эксплуатации с помощью центробежного насоса с электроприводом

Центробежный насос с электрическим приводом – устройство, которое распространено не так хорошо, как предыдущая разновидность, однако отличается внушительными показателями по количеству получаемой нефти и газа. Свыше 80% общего объема добычи нефти и газа по стране приходится именно на скважины с таким оборудованием. Такой насос представляет собой удлиненную конструкцию небольшого диаметра, которая способна функционировать в агрессивных средах. В состав насоса входит погружной аппарат, линия кабеля, НКТ, оборудование, которое устанавливается для устья, а также наземная техника для управления. К ключевым узлам относятся следующие элементы:
  • Сам насос, который состоит из нескольких секций и ступеней, а также колес и стальной трубы.
  • Электрический мотор погружного типа, который заполняется маслом.
  • Защита от воздействия влажности: она находится между двумя предыдущими элементами, защищая электромотор и передавая вращательный момент на насос.
  • Кабель для подачи электричества от подстанции. Его структура должна быть защищена бронированным слоем, на земле до уровня спуска его сечение должно иметь круглую форму, а от погружного элемента – плоскую.
К дополнительному оборудованию, используемому в этом случае для эксплуатации нефтяных и газовых скважин, относятся следующие элементы:
  • Газовый сепаратор, который эксплуатируется с целью уменьшить объем поступающих газов в насосное оборудование. В случае, если понижать этот показатель нужды нет, то можно применять вместо сепаратора обычный модуль для подачи жидкости в насос.
  • Система термического типа с манометром (ТМС). Она сочетает функции измерения температурного режима и показателей давления внутри среды, в которой в настоящее время находится электронасос.
Данная установка должна монтироваться прямо в процессе спуска конструкции в ствол скважины. Сбор элементов производится в последовательном порядке, по направлению снизу наверх, в том числе и соединение кабеля с установкой и к трубам. Крепление осуществляется посредством металлических особых поясов; кабель, ведущий на поверхность, подключается к трансформатору и станции, которая выполняет функцию управления.
Кроме указанных элементов, колонна труб НКТ должна быть оснащена парой клапанов – сливным и обратного хода. Они установлены над насосом. Клапан обратного хода применяется в системе насоса для подачи жидкости в НКТ перед началом функционирования насосной станции. Этот клапан также не дает жидкости пролиться вниз из-за высокого давления. Что касается сливного клапана, то этот элемент устанавливается над предыдущим и применяется для слива жидкостей, который необходимо осуществить перед поднятием наверх оборудования. Достоинства электрических центробежных насосов достаточно обширны и выделяют их по сравнению с глубинными аналогами штангового типа:
  • Легкость конструкции наземной техники, а также упрощенная схема ее функционирования.
  • Возможность откачивать большие объемы жидкости из ствола нефтяной или газовой скважины.
  • Возможность успешной эксплуатации на большой глубине (более 3 км).
  • Длительное время эксплуатации и минимальные нужды в ремонте, а также долгие промежутки действия между плановыми ремонтными работами.
  • Исследования внутри нефтяной и газовой скважины могут быть осуществлены без поднятия оборудования на поверхность.
  • Повышенная легкость процесса удаления парафиновых отложений, которые оседают на стенках НКТ.

Эксплуатация электрических центробежных насосов погружного типа возможно в скважинах, которые имеют определенный угол наклона, а также горизонтальное строение. Кроме того, они могут эксплуатироваться в скважинах с высокой обводненностью, в скважине с высоким содержанием брома в воде, а также для откачки растворов на основе кислот и солей. На современном рынке существуют разновидности, которые могут функционировать в одной скважине на разных уровнях с обсадными колоннами. В ряде случаев центробежные погружные насосы могут эксплуатироваться и для откачки воды из пластов горной породы, чтобы поддержать нужный уровень давления в них. Таким образом, спектр эксплуатации электрических насосов погружного типа для обеспечения работы скважины представляет собой наиболее широкую область, и оборудование данного вида может эксплуатироваться наиболее эффективно.



Читайте также:

snkoil.com

Способы эксплуатации скважин » СтудИзба

Лекция № 14. Способы эксплуатации скважин.

   Если подъем жидкости или смеси с забоя на дневную поверхность происходит только за счет природной энергииWП (WИ=0), то такой способ будем называть естественно-фонтанным. Если давле­ние на устье скважины больше давления насыщенияу  >Рнас), то свободный газ в подъемнике отсутствует, а жидкость поднимается на поверхность только под действием собственной потенциальной энергии. Такой способ эксплуатации называется артезианским фонтанированием либо подъемом жидкости за счет гидростатического напора пласта. Следует заметить, что в настоящее время этот спо­соб имеет ограниченное распространение.

Если подъем продукции скважины на дневную поверхность про­исходит либо за счет природной и искусственной энергии, либо только за счет искусственной энергии, то такой способ эксплу­атации называется механизированным.

       Рис. 38-Классификация различных энергетических источников подъема

                 продукции скважин и способов эксплуатации. 

Механизированный спо­соб эксплуатации может осуществляться в двух вариантах:

1. Искусственная энергия вводится в добываемую продукцию цент­рализованно, а распределение ее между добывающими скважи­нами происходит непосредственно в залежи. Такой способ ввода энергии в залежь и ее распределение осуществляются при ис­пользовании методов поддержания пластового давления.

Если при этом каждая конкретная добывающая скважина оборудована только колонной насосно-компрессорных труб (отсутствуют механичес­кие приспособления для подъема продукции скважины), указан­ный способ будем называть искусственно-фонтанным. Искусст­венно-фонтанный способ эксплуатации добывающих скважин получил довольно широкое распространение, особенно в России.

2. Искусственная энергия вводится непосредственно в каждую конк­ретную добывающую скважину с помощью какого-либо механи­ческого, электрического или гидравлического устройства. Ввод искусственной энергии в скважину осуществляется различными способами: компримированным газом (воздухом) или специальными глубинными насосами. При первом способе ввода энергии в сква­жину мы имеем дело с компрессорным (газлифтным) способом эксплуатации, при втором — с глубиннонасосным способом.

Особое место занимают некоторые способы эксплуатации добываю­щих скважин, осуществляемые за счет использования природной энергии жидкости и газа с применением специального подземного (внутрискважинного) оборудования, не являющегося источником энер­гии. К ним относятся:

а) эксплуатация скважин бескомпрессорным (внутрискважинным) газлифтом, теоретические основы подъема продукции при ко­торой аналогичны таковым при фонтанно-компрессорной экс­плуатации. Разница заключается в том, что для подъема про­дукции используется газ высокого давления, отбираемый из газоносных пропластков в данной скважине либо из отдельной газовой залежи. В этом случае отпадает необходимость использо­вания компрессоров;

б) эксплуатация скважин плунжерным лифтом, при которой подъем продукции, происходит за счет природной энергии выделяюще­гося из нефти газа с применением специальных плунжеров. Таким образом, в общем, виде схему используемых энергетических источников для подъема продукции скважин (а, следовательно, и способов эксплуатации) можно представить, как показано на рис. 38.Совершенно очевидно, что представленная схема не претендует на абсолютную полноту, а должна рассматриваться только в качестве классификационной.

Способ эксплуатации скважин, при котором подъем жидкости на поверхность происходит под действием пластовой энергии, называется фонтанным.

Фонтанирование скважин происходит в том случае, если пе­репад давления между пластовым и забойным будет достаточ­ным для преодоления противодавления столба жидкости и по­терь давления на трение, т. е. фонтанирование происходит под действием гидростатического давления жидкости или энергии расширяющегося газа. Большинство скважин фонтанирует за счет энергии газа и гидростатического напора одновременно. 

Газ, находящийся в нефти, обладает подъемной силой, которая проявляется в форме давления на нефть. Чем больше газа раство­рено в нефти, тем меньше будет плотность смеси и тем выше под­нимается уровень жидкости. Достигнув устья, жидкость пере­ливается, и скважина начинает фонтанировать.

При фонтанной эксплуатации подъем газонефтяной смеси от забоя до устья скважины осуществляется по колонне насосно-компрессорных труб, которые спускают в скважину перед освое­нием. Необходимость их спуска вызвана рациональным исполь­зованием энергии газа, улучшением выноса песка, уменьшением потерь на скольжение газа и возможностью сохранить фонтаниро­вание при меньших пластовых давлениях.

На устье скважины монтируют фонтанную арматуру, которая представляет собой соединение различных тройников, крестови­ков и запорных устройств. Эта арматура предназначена для подвешивания насосно-компрессорных труб, герметизации затрубного пространства между трубами и обсадной колонной, контроля и регулирования работы фонтанной скважины.

Фонтанные арматуры изготовляют крестового и тройникового типов (рис.39) Состоит она из трубной головки и фонтанной елки. Трубная головка предназначается для подвески насосно-компрессорных   труб   и   герметизации   затрубного   пространства между ними и эксплуатационной колонной.

Фонтанная елка служит для направления продукции сква­жины в выкидные линии, а также для регулирования и контроля работы скважины. Фонтанная елка имеет две или три выкидные линии. Одна из них запасная. В тройниковой арматуре нижняя выкидная линия — запасная. На рабочей линии (верхней) за­порное устройство всегда должно быть открыто, а на запасной — закрыто.

Рис. 39-Фонтанная арматура:

        а — крестовая;   б — тройниковая

Стволовые запорные устройства должны быть откры­тыми. Запорное устройство, расположенное внизу ствола фонтан­ной арматуры, называется главным. В тройниковой арматуре выкидные линии направлены в одну сторону. При выборе типа фонтанной арматуры следует учитывать, что крестовины быстрее разъедаются песком, чем тройники.

В соответствии с ГОСТ 13846—74 фонтанные арматуры должны выпускаться на рабочее давление 70, 140, 210, 350, 700 и 1000 кгс/см2.

Запорные устройства на фонтанных арматурах могут быть двух типов: в виде задвижки или крана. Тип арматуры выбирают по максимальному давлению, ожидаемому на устье скважины.

На выкидных линиях после запорных устройств в некоторых случаях устанавливают приспособления (штуцеры) для регули­рования режима фонтанной скважины. Штуцер представляет собой болванку со сквозным отверстием.

Для контроля за работой фонтанной скважины на арматуре устанавливают два манометра: один — на буфере (верх ее), второй — на отводе крестовика трубной головки (для измерения затрубного давления).

Фонтанная арматура соединяется с групповыми установками выкидными линиями. Схемы обвязок фонтанных скважин в за­висимости от дебита, давления, содержания песка, парафина применяют различные.

Газлитный способ эксплуатации 

На рис.40редставлена принципиальная схема газлифтной сква­жины. Сущность процесса подъема продукции скважин при газ­лифтной эксплуатации заключается во введении в подъемник компримированного газа в объеме   Vг.

Физической сущностью газлифтной эксплуатации является сни­жение плотности образующейся при закачке газа в подъемник га­зожидкостной смеси до такой величины, чтобы давление на при­еме Рпр оказалось достаточным для преодоления всех сопротивле­ний в подъемнике.

Этот способ эксплуатации, являясь достаточно простым с техни­ческой и технологической точек зрения, в определенных условиях может оказаться экономически неэффективным. Для его реализа­ции необходимы, как правило, посторонний источник газа и стро­ительство дорогостоящих компрессорных станций, системы подго­товки газа и его распределения по добывающим скважинам.

Рис. 40-Газлифтная скважина

 1 — добываемый газ; 2 — закачиваемый газ.

Газлифтная эксплуатация характеризуется сравнительно невысо­ким коэффициентом полезного действия, и, кроме того, удель­ный расход газа на подъем единицы продукции из скважины уве­личивается (иногда существенно) при обводнении скважины. При определенной обводненности продукции удельный расход газа и низкий коэффициент полезного действия могут стать причинами экономически нерентабельной эксплуатации.

Бесштанговая эксплуатация

Эти установки относятся к классу бесштанговых, что делает их более привлекательными.

Во-первых, они предназначены для экс­плуатации средне- и высокодебитных скважин с достаточно боль­шим диапазоном высоты подъема продукции. Во-вторых, привод глубинного насоса осуществляется электродвигателем, расположен­ным в скважине.

Питание двигателя осуществляется по силовому электрическому кабелю. Схема установки представлена на рис.41.

Рис.41.УЭЦН

Установка состоит из погружного агрегата, включающего погружной электродвигатель (ПЭД) 1, протектор 2, многоступенчатый центробежный насос 3, спускаемого в скважину на колонне насосно-компрессорных труб 4. Электрический силовой кабель 5 закрепляется на трубах с помощью хомутов 6. Герметизация кабеля в устьевой арматуре осуществляется специальным сальником 7.

Наземное оборудование включает в себя кабельный барабан 8, трансформатор 9 и станцию управления 10. При необходимости установка комплектуется преобразователем частоты тока, позво­ляющим регулировать параметры погружного агрегата в широком диапазоне. Как погружной электродвигатель, так и погружной цен­тробежный насос отличаются от обычных и характеризуются не­большим диаметром и значительной длиной.

Характеристики погружного центробежного насоса показаны на рис.42.

Каждый типоразмер погружного насоса предназначен для добычи из скважины определенного количества жидкости, равно­го оптимальной подаче насоса , соответствующей максималь­ному значению КПД —. Это условие требует выпуска про­мышленностью огромного количества типоразмеров погружных насосов, что экономически является нерентабельным.

         Рис. 42-Характеристики погружного центробежного насоса

С целью расширения области работы каждою типоразмера насоса допускается его работа в определенном диапазоне по подаче (от Q1 доQ2) и напору (от H1 до H2 ), который определяется следующим образом(:

    .             (1)

Указанный диапазон на рис. 42 заштрихован.

 На работу погружного центробежного насоса определенное влия­ние оказывает свободный газ, выделяющийся из нефти при сни­жении давления ниже давления насыщения, что приводит к изме­нению характеристик погружного центробежного насоса, как это показано на рис. 42.

Изменение характеристик зависит от объемного расходного газо­содержания на входе в насос . Как видно из рис. 42 увеличение  резко снижает подачу, напор и КПД насоса, т.е. оказывает отрицательное воздействие на эффективность работы погружного цен центробежного насоса. С целью защиты погружного центробежного насоса от вредного влияния свободного газа на приеме насоса устанавливается специ­альное устройство — насосный газосепаратор.

В настоящее время наиболее эффективным является газосепаратор МН-ГСЛ, выпус­каемый в России и отвечающий мировому уровню. Рассмотренные установки обладают существенными преимущества­ми перед штанговыми насосными установками, главными из ко­торых являются:

  • более высокий КПД установки;
  • высокая степень автоматизации установки
  • высокая надежность работы при низких температурах воздуха
  • достаточно широкая область применения, как по дебиту, так и по высоте подъема;
  • компактность наземного оборудования.

; ;  

Как показали результаты широкомасштабного и длительного при­менения УЭЦН в России, этими установками могут эксплуатироваться скважины с вязкостью продукции в несколько десятков (а в отдельных случаях и несколько сотен) мПа·с.

Добыча нефти в России этими установками превышает 60% об­щей добычи.Установки ЭЦН являются наиболее подходящим техническим средством для эксплуатации скважин на Арктическом шельфе.

Эти установки, известные как установки с насосом типа MOINEAU, представляют значительный интерес для эксплуата­ции скважин на шельфе.

Глубинный винтовой насос (рис.44 состоит из ротора (рис.44а) в виде простой спирали (винта) с шагом  и статора (рис. 44 б) в виде двойной спирали с шагом , в два раза превышающим шаг ротора.

На рис. 44 в показана часть насоса в сборе. Основными параметрами винтового насоса являют­ся: диаметр ротора D, длина шага статора  и эксцентриситет е. Полости, сформированные между ротором и статором, разделены. При вращении ротора эти полости «перемещаются» как по радиу­су, так и по оси. «Перемещение» полостей приводит к проталкива­нию жидкости снизу вверх, поэтому иногда этот насос называют насосом с перемещающейся полостью.

Обычно винтовой ротор выполняется из высокопрочной стали с хромированным или иным покрытием против истирания. Статор изготавливается из пластического материала и располагается в кор­пусе. К материалу для статора предъявляются достаточно жесткие требования. Приводы для данного насоса могут быть глубинными (погружной электродвигатель)или поверхност-ными. При использовании погружного электродвигателя агрегат спускается в скважину на насосно-компрессорных трубах, а питание к электродвигателю под­водится по специальному кабелю (аналогично, как в УЭЦН).

 В случае использования наземного привода вращение ротору насо­са передается через колонну штанг. В качестве приводного двигате­ля служит электродвигатель, но могут использоваться и другие двигатели.

Рис. 44. Глубинный винтовой насос:

а — ротор; б — статор; в — насос в сборе; 1 — корпус насоса; 2 — полость между статором и ротором

Обычно используются электродвигатели с фиксирован­ной скоростью либо с изменяющейся. В качестве вариатора скоро­сти применяют частотный преобразователь тока.

Двигатели с фиксированной скоростью используют в скважинах с хорошей продуктивностью и небольшими динамическими уров­нями, в других случаях — предпочтительнее двигатели с изменя­ющейся скоростью.

Установки винтовых насосов имеют широкий диапазон по пара­метрам: подача от 20 до 240 м3/сут, напор до 2000 м и предназна­чены для эксплуатации скважин с осложненными условиями:

— вязкость нефти — до 20 Па·с,

— повышенное содержание механических примесей (до 1%)

— повышенное содержание свободного газа,

— большие отклонения скважины от вертикали (до 70%).

Кроме того, установки винтовых насосов характеризуются низки­ми капитальными вложениями, являются малогабаритными, име­ют низкий уровень шума и достаточно высокий КПД. Эти уста­новки являются хорошим средством добычи нефти на морских платформах.

       Новые средства добычи нефти

 Одним из новых и перспективных для нефтепромысловой практики видов оборудования являются установки струйного насоса (СН). Струйные аппараты нашли широкое применение в самых различных отраслях промышленности, что связано с простотой их конст­рукции, отсутствием движущихся частей, высокой надежностью и возможностью работать в очень сложных условиях: при высоком содержании механических примесей и свободного газа, в условиях повышенных температур, высокой вязкости нефти, агрессивности инжектируемой продукции и т.д.

В настоящее время основной прирост добычи нефти во многих странах идет за счет районов, характеризующихся сложными природно-климатическими условиями. Совершенно естественно, что при этом существенно повышаются требования к надежности погружного оборудования для эксплуатации добывающих скважин, к увеличению его межремонтного периода. Кроме того, погружное оборудование должно работать в области повышенных температур, в условиях откачки жидкостей с высоким содержанием свободно­го газа, а зачастую и механических примесей, откачивать из сква­жины вязкую и сверхвязкую жидкость. Использовать в этих усло­виях существующее, широко известное, оборудование не всегда представляется возможным.

Для эксплуатации отдаленных месторождений, где отсутствуют до­роги, линии электропередач и возможности бескомпрессорного газ­лифта, успешно применяются струйные установки. В этом случае приводом силовых наземных насосов служат газовые двигатели, работающие на попутном газе, поступающем из эксплуатируемых скважин.

В настоящее время учеными и специалистами России и США со­зданы различные компоновки струйных насосов: с погружным силовым приводом и с поверхностным, когда силовой насос уста­навливается на поверхности.

Поверхностное оборудование струйных установок выпускается как для одной скважины (индивидуальный привод), так и для группы скважин (групповой привод) и содержит, как правило, блок си­ловых насосов, емкость для рабочей жидкости и гидроциклонный аппарат для очистки рабочей жидкости от механических примесей. Сепарация газа из добываемой жидкости происходит либо в спе­циальной емкости (установка «Econodraulic» фирмы «Dresser Industries»), либо в емкости, совмещающей функции газосепара­тора и хранилища рабочей жидкости (фирма «Tricodraulic»). В пос­леднем случае в компоновку поверхностного оборудования входит подпорный насос, который осуществляет рециркуляцию очищен­ной рабочей жидкости через гидроциклон.

Погружное оборудование содержит стационарный или вставной струйный насос, однорядную колонну труб с пакером или двух­рядный лифт (с параллельной или концентричной подвеской труб). Устье скважины оборудуется 4-ходовым краном, позволяющим менять схему циркуляции рабочей жидкости в скважине при спус­ке или подъеме вставного струйного насоса.

Строго говоря, струйный насос не является насосом в обычном понимании, так как он не создает избыточного напора на выходе. В струйном насосе происходит двойное преобразование гидравлической энергии: сначала потенциальная энергия рабочей жидкости преобразуется в кинетическую энергию, за счет чего, в поток рабо­чей жидкости, подмешивав ген инжектируемый поток. Смешанный поток (рабочий и инжектируемый), проходя через камеру смеше­ния, поступает в диффузор, где происходит преобразование кине­тической энергии смешанного потока в потенциальную энергию.

Принципиальная схема струйного насоса представлена на рис.45 Насос состоит из следующих основных элементов: канала подвода рабочего агента 1, активного сопла 2, канала подвода инжектируемой жидкости 3 (в области сопла этот канал часто на­зывают приемной камерой), камеры смешения 4 и диффузора 5.

Принцип работы струйного насоса заключается в следующем: ра­бочий агент при значительной потенциальной энергии подводится к соплу, где происходит преобразование потенциальной энергии в кинетическую. Струя рабочего агента, вытекающая из сопла, по­нижает давление в приемной камере, вследствие чего часть ин­жектируемой жидкости (продукция скважины) смешивается со струей рабочего агента и поступает в камеру смешения.

Рис. 45-Струйный насос

В камере смешения рабочий агент и инжектируемая жидкость перемешива­ются, выравниваются их скорости и давления, и смешанный поток поступает в диффузор. В диффузоре происходит плав-ное снижение кинетической энергии смешанного потока и рост его потенциальной энергии. На выходе из диффузора смешанный поток обладает потенциальной энергией, достаточной для подъема на поверхность. Несмотря на достаточно известный и понятный принцип работы этого насоса, расчет его основных элементов является чрезвычай­но сложным, что связано со сложностью продукции скважины (инжектируемого потока). К настоящему времени преодолены прак­тически все трудности проектирования таких насосов, и они начи­нают широко использоваться при эксплуатации скважин с ослож­ненными условиями.

Осн.:  1. [93-151], 5. 185-208],

Контрольные вопросы:

1. Какие способы эксплуатации существуют на шельфе?

2. В каких вариантах осуществляется механизированный способ добычи?

3. На чем основывается работа струйного насоса?

4. За счет чего происходит подъем добычи углеводородов при фонтанном способе добычи?

         5. Принцип работы тандемной установки.

6. В каких случаях применяют винтовые насосы?

7. В чем преимущества использование погружного центробежного насоса по сравнению с  штанговыми насосами?

studizba.com

Обсадные трубы для нефтяных скважин: виды труб, обсадная колонна

Как выбирают обсадные трубы для нефтяных скважин?

При обустройстве скважин для добычи нефти и газа необходимо укрепление так называемой эксплуатационной трубной колонны, через которую добываемое сырье поступает на поверхность, а также максимально защитить её от коррозии и движения геологических пластов.

Это делают с помощью обсадных колонн, которые не только укрепляют основные добывающие стволы, но и дают возможность изолировать продуктивные горизонты в процессе эксплуатации скважин от непродуктивных слоев, что позволяет избежать перемешивания внутрипластовых жидкостей.

 Загрузка …

Для обустройства таких колонн применяются специальные обсадные трубы для нефтяных скважин, которые составляют в колонну с помощью их последовательного свинчивания или сваривания.

Обсадные трубы для нефтяных скважин

Какие трубы для этого применяются?

Для изготовления труб, применяемых для организации таких колонн в процессе бурения и последующего обустройства  газовых и нефтяных скважин, в основном использует такой материал, как сталь. Для их соединения между собой на обоих концах трубы нарезается резьба, с одной стороны навинчивается муфта.

Если планируется сварной способ соединения, то трубы делают  безмуфтовыми, с концами в виде раструбов.  Резьба, нарезаемая на таких трубах, может быть либо  конической, либо треугольной, либо со специальным профилем трапецеидального вида.

Для того, чтобы соединения были максимально  герметичными и позволяли выдерживать высокие значения давления добываемого газа и нефти (больше, чем 30-ть мегапаскаль), используются специальные уплотнительные элементы.

Отечественные трубы обсадного типа выпускаются со следующими наружними диаметрами – от 114-ти до 508-ми миллиметров. Их длина варьируется в пределах от  9,5 до 13-ти  метров. Толщина стенок зависит от диаметра и колеблется от пяти до шестнадцати миллиметров.

По своей прочности такие изделия делятся на семь групп, обозначаемых литерами Т, R, М, Л, Е, К и Д (в порядке убывания). Значения предела текучести находится в интервале от 379-ти до 1065-ти мегапаскаль.

Каждую трубу маркируют, указывая сведения о её диаметре, группе прочности, толщине стенки, а также дата производства изделия и его  индивидуальный номер.

Виды обсадных труб

Для изготовления этой продукции, которая используется  для укрепления нефтяных и газовых скважин в процессе бурения и последующей эксплуатации, в основном используются стали различных марок.

Такие трубы могут быть ниппельными и безниппельными.  Диаметры безниппельных труб варьируются от  33,5 до 89-ти миллиметров, а ниппельных изделий – в пределах от 25-ти до 146-ти миллиметров.

Например, в целях отбора керновых проб горных пород применяются только ниппельные виды этой продукции. Толщина стенок ниппельной продукции зависит от диаметра и составляет от трех до пяти миллиметров, а длина таких труб колеблется от полутора до шести метров.

Ниппельные изделия делаются трех групп прочности:  М, К и Д, обеспечивающие  предел текучести от 380-ти до 750-ти мегапаскалей.

В комплект поставки входят навинченные ниппели. Каждая труба маркируется в соответствии с требованиями государственного стандарта. Резьба от механических повреждений в процессе транспортировки защищена с помощью специальных  предохранительных ниппеле и кольцевых насадок.

Виды обсадных колонн

Такие колонны бывают трех видов (в зависимости от того, какую колонну скважины они укрепляют):

  • кондукторные;
  • промежуточные;
  • эксплуатационные.

Промежуточными колоннами укрепляются  стенки нижних скважинных  интервалов. Колонны кондукторного  и промежуточного типа, как правило,  цементируются, однако возможны и съёмные варианты их обустройства (к примеру, если их применяют при  бурении  скважин геологоразведочного типа  или при обустройстве скважин большой глубины, в целях борьбы с износом ранее спущенных промежуточных колонн).

Задача эксплуатационных защитных колонн –перекрытие  продуктивных горизонтов.

Через пробитые с помощью  перфорации  отверстия в таких колоннах  нефть и газ  посредством насосно-компрессорных труб (НКТ) поднимаются от забоя скважины по её стволу к устью.

Обсадная колонна нефтяной скважины постоянно испытывает  снаружи воздействия  давления пластовой жидкости и пластового  газа,  которые находятся в горных породах. Влияние этих воздействий особенно заметно  в соляных и глинистых пластах.

Также эта колонна подвергается   воздействиям, вызываемым  внутренним давлением газа и  нефти,  а также воздействиям, оказываемым изнутри буровым раствором, от собственной массы и от усилий натяжения колонн, что объясняется влиянием температурных значений и перепадов давления.

Количество, диаметры и длины таких колонн выбираются исходя из геологических условий, в которых проходит  бурение, к которым относятся:

  • градиент давления пластового гидравлического разрыва;
  • внутрипласт

neftok.ru

Глава 4 газлифтная эксплуатация нефтяных скважин

Глава 4

ГАЗЛИФТНАЯ ЭКСПЛУАТАЦИЯ НЕФТЯНЫХ СКВАЖИН

4.1. Область применения газлифтного способа добычи нефти

После прекращения фонтанирования из-за нехватки пластовой энергии переходят на механизированный способ эксплуатации скважин, при котором вводят дополнительную энергию извне (с поверхности). Одним из таких способов, при котором вводят энергию в виде сжатого газа, является газлифт.

Использование газлифтного способа эксплуатации скважин в общем виде определяется его преимуществами.

1.    Возможность отбора больших объемов жидкости практически при всех диаметрах эксплуатационных колонн и форсированного отбора сильнообводненных скважин.

2. Эксплуатация скважин с большим газовым фактором, т.е. использование энергии пластового газа, в том числе и скважин с забойным давлением ниже давления насыщения.

3. Малое влияние профиля ствола скважины на эффективность работы газлифта, что особенно важно для наклонно направленных скважин, т.е. для условий морских месторождений и районов освоения Севера и Сибири.

4. Отсутствие влияния высоких давлений и температуры продукции скважин, а также наличия в ней мехпримесей (песка) на работу скважин.

5. Гибкость и сравнительная простота регулирования режима работы скважин по дебиту.

6. Простота обслуживания и ремонта газлифтных скважин и большой межремонтный период их работы при использовании современного оборудования.

7.    Возможность применения одновременной раздельной эксплуатации, эффективной борьбы с коррозией, отложениями солей и парафина, а также простота исследования скважин.

Указанным преимуществам могут быть противопоставлены недостатки.

1. Большие начальные капитальные вложения в строительство компрессорных станций.

2.    Сравнительно низкий коэффициент полезного действия (КПД) газлифтной системы.

3.    Возможность образования стойких эмульсий в процессе подъема продукции скважин.

Исходя из указанного выше, газлифтный (компрессорный) способ эксплуатации скважин, в первую очередь, выгодно использовать на крупных месторождениях при наличии скважин с большими дебитами и высокими забойными давлениями после периода фонтанирования.

Далее он может быть применен в наклонно направленных скважинах и скважинах с большим содержанием мехпримесей в продукции, т.е. в условиях, когда за основу рациональной эксплуатации принимается межремонтный период (МРП) работы скважин.

При наличии вблизи газовых месторождений (или скважин) с достаточными запасами и необходимым давлением используют бескомпрессорный газлифт для добычи нефти.

Эта система может быть временной мерой – до окончания строительства компрессорной станции. В данном случае система газлифта остается практически одинаковой с компрессорным газлифтом и отличается только иным источником газа высокого давления.

Газлифтная эксплуатация может быть непрерывной или периодической. Периодический газлифт применяется на скважинах с дебитами до 40-60 т/сут или с низкими пластовыми давлениями. Высота подъема жидкости при газлифте зависит от возможного давления ввода газа и глубины погружения колонны НКТ под уровень жидкости.

В среднем диапазон применяемых значений давления ввода газа составляет 4,0-14,0 МПа. Диапазон производительности газлифтных скважин при непрерывном газлифте 602000 т/сут.

Технико-экономический анализ, проведенный при выборе способа эксплуатации, может определить приоритет использования газлифта в различных регионах страны с учетом местных условий. Так, большой МРП работы газлифтных скважин, сравнительная простота ремонта и возможность автоматизации предопределили создание больших газлифтных комплексов на Самотлорском, Федоровском, Правдинском месторождениях в Западной Сибири. Это дало возможность снизить необходимые трудовые ресурсы региона и создать необходимые инфраструктуры (жилье и т.д.) для рационального их использования.

4.2. Системы и конструкции газовых подъемников

Газлифт (эрлифт) – система, состоящая из эксплуатационной (обсадной) колонны труб и опущенных в нее НКТ, в которой подъем жидкости осуществляется с помощью сжатого газа (воздуха). Иногда эту систему называют газовый (воздушный) подъемник. Способ эксплуатации скважин при этом называется газлифтным.

По схеме подачи от вида источника рабочего агента – газа (воздуха) различают компрессорный и бескомпрессорный газлифт, а по схеме действия – непрерывный и периодический газлифт.

Схема работы газлифтного подъемника показана на рис. 4.1. В затрубное пространство нагнетают газ высокого давления, в результате чего уровень жидкости в нем будет понижаться, а в НКТ – повышаться. Когда уровень жидкости понизится до нижнего конца НКТ, сжатый газ начнет поступать в НКТ и перемешиваться с жидкостью. В результате плотность такой газожидкостной смеси становится ниже плотности жидкости, поступающей из пласта, а уровень в НКТ будет повышаться. Чем больше будет введено газа, тем меньше будет плотность смеси и тем на большую высоту она поднимется. При непрерывной подаче газа в скважину жидкость (смесь) поднимается до устья и изливается на поверхность, а из пласта постоянно поступает в скважину новая порция жидкости.

Дебит газлифтной скважины зависит от количества и давления нагнетания газа, глубины погружения НКТ в жидкость, их диаметра, вязкости жидкости и т.п.

Конструкции газлифтных подъемников определяются в зависимости от числа рядов насосно-компрессорных труб, спускаемых в скважину, и направления движения сжатого газа. По числу спускаемых рядов труб подъемники бывают одно- и двухрядными, а по направлению нагнетания газа – кольцевыми и центральными (см. рис. 4.1).

При однорядном подъемнике в скважину спускают один ряд НКТ. Сжатый газ нагнетается в кольцевое пространство между обсадной колонной и насосно-компрессорными трубами

www.neftemagnat.ru

Способы эксплуатации скважин.

 

В зависимости от величины пластового давления, глубины залегания пласта, физических свойств нефти, содержания в ней воды и газа, проницаемости пород пласта и.т.д. нефтяные скважины эксплуатируются различными способами.

Все известные способы эксплуатации скважин подразделяются на следующие группы:

· фонтанная, когда нефть извлекается из скважин самоизливом;

· газлифтная, когда нефть извлекается с помощью энергии сжатого газа, вводимого в скважину извне;

· насосная – извлечение нефти с помощью насосов различных типов.

 

Фонтанирование скважин обычно происходит на вновь открытых месторождениях нефти, когда запас пластовой энергии велик, т.е. давление на забоях скважин достаточно большое, чтобы преодолеть гидростатическое давление столба жидкости в скважине, противодавление на устье и давление, расходуемое на преодоление трения, связанное с движением этой жидкости.

В зависимости от режима работы залежи фонтанирование скважины может происходить за счет энергии гидростатического напора, за счет энергии расширения газа, растворенного в нефти.

Фонтанирование только за счет гидростатического давления пласта – явление довольно редкое в практике эксплуатации нефтяных скважин. В большинстве случаев главную роль в фонтанировании скважин играет газ, содержащийся вместе с нефтью в пласте.

 

Газлифтная эксплуатация нефтяных скважин является как бы продолжением фонтанного способа добычи с той разницей, что при фонтанировании источником энергии служит газ, поступающий вместе с нефтью из пласта, а при газлифтной эксплуатации подъем жидкости осуществляется при помощи сжатого газа, нагнетаемого в скважину с поверхности.

 

Разновидности газлифтной эксплуатации скважин:

1. Компрессорный (закачка газа компрессором высокого давления в поток добываемой продукции).

2. Безкомпрессорный(использование газа газовых скважин или магистрального газопровода).

3. Внутрискважинный (использование газа из пластов, расположенных выше или ниже эксплуатируемого нефтяного).

 

В зависимости от того, какой газ под давлением закачивается в скважину различают два способа компрессорной добычи нефти: газлифт (рабочий агент – природный газ) и эрлифт (рабочий агент – воздух).

 

Существует две системы подачи газа в газлифтную скважину (прямая и обратная закачка газа):

1) кольцевая система – подача газа осуществляется в затрубное пространство, подъём газожидкостной смеси осуществляется по колонне НКТ;

2) центральная система – подача газа осуществляется в НКТ, подъём газожидкостной смеси осуществляется по затрубному пространству.

 

Газлифт применяется в тех случаях, когда работа насосов осложнена высоким газосодержанием или температурой жидкости, наличием песка, отложениями парафина и солей, а также в кустовых и наклонно-направленных скважинах.

 

В настоящее время разработка нефтяных месторождений России ведется с поддержанием пластового давления (хотя это и не всегда целесообразно), а основная добыча нефти осуществляется механизированным способом, в основном, насосным, поэтому газлифтный способ не имеет широкого распространения. Это не означает, что газлифтная эксплуатация не имеет перспектив; этот способ может оказаться конкурентоспособным для разработки нефтяных оторочек газовых и газоконденсатных месторождений, а также для добычи нефти из шельфовых месторождений.

 

В мировой практике нефтедобычи получили распространение следующие глубиннонасосные установки:

1. Скважинные штанговые насосные установки (СШНУ).

2. Установки погружных центробежных насосов с электроприводом (УЭЦН).

3. Установки гидравлических поршневых насосов (УГПН).

4. Установки с винтовыми насосами и электроприводом (УЭВН).

5. Установки с диафрагменными насосами и электроприводом (УЭДН).

6. Установки со струйными насосами (УСН).

Не все из перечисленных глубиннонасосных установок играют одинаковую роль в добыче нефти.

В нашей стране наибольшее распространение по фонду добывающих скважин получили СШНУ, а по объему добычи — УЭЦН. Это связано с тем, что установки СШНУ предназначены для эксплуатации низко- и среднедебитных скважин, а установки УЭЦН — для эксплуатации средне- и высокодебитных скважин. Остальные установки (УГПН, УЭВН, УЭДН, УСН) ни по фонду добывающих скважин, ни по добыче нефти не могут пока конкурировать с СШНУ и УЭЦН и предназначены для определенных категорий скважин.

 


Похожие статьи:

poznayka.org

Насосный способ эксплуатации скважин » СтудИзба

4.3 насосный способ эксплуатации скважин

При насосном способе эксплуатации подъем нефти из сква­жин на поверхность осуществляется штанговыми и бесштанговыми насосами (погружные электроцентробежные насосы, винтовые насосы и др).

4.3.1 Эксплуатация скважин штанговыми насосами

Штанговые скважинные насосы (ШСН) обеспечивают откачку из скважин углеводородной жидкости, обводненностью до 99 % , абсолютной вязкостью до 100 мПа·с, содержанием твердых механических примесей до 0.5 %, свободного газа на приеме до 25 %, объемным содержанием сероводорода до 0.1 %, минерализацией воды до 10 г/л и температурой до 130 0С.

Две трети фонда (66 %) действующих скважин стран СНГ (примерно 16.3 % всего объема добычи нефти) эксплуатируются ШСНУ. Дебит скважин составляет от десятков килограммов в сутки до нескольких тонн. Насосы спускают на глубину от нескольких десятков метров до 3000 м., а в отдельных скважинах на 3200 ¸ 3400 м. ШСНУ включает:

Ø  Наземное оборудование: станок-качалка (СК), оборудование устья.

Ø  Подземное оборудование: насосно-компрессорные трубы (НКТ), насосные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Отличительная особенность ШСНУ обстоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг.

Штанговая глубинная насосная установка (Рисунок 4.4) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 насосно-компрессорных труб 3, подвешенных на планшайбе или в трубной подвеске 8, сальникового уплотнения 6, сальникового штока 7, станка-качалки 9, фундамента 10 и тройника 5. На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1.

Недостатками штанговых насосов является ограниченность глубины их подвески и малая подача нефти из скважин.

Рисунок 4.4 — Схема установки штангового скважинного насоса

Штанговые скважинные насосы

По способу крепления насосов к колонне НКТ различают вставные (НСВ) и не вставные (НСН) скважинные насосы (Рисунок 4.5, 4.6).

У не вставных (трубных) насосов цилиндр с седлом всасывающего клапана опускают в скважину на НКТ. Плунжер с нагнетательным и всасывающим клапаном опускают в скважину на штангах и вводят внутрь цилиндра. Плунжер с помощью специального штока соединен  с шариком всасывающего клапана. Недостаток НСН — сложность его сборки в скважине, сложность и длительность извлечения насоса на поверхность для устранения какой-либо неисправности.

Рисунок 4.5 — Насосы скважинные вставные

1 — впускной клапан; 2 — цилиндр; 3 — нагнетательный клапан; 4 — плунжер; 5 — штанга; 6 — замок.

Вставные насосы целиком собирают на поверхности земли и опускают в скважину внутрь НКТ на штангах. НСВ состоит из трех основных узлов: цилиндра, плунжера и  замковой опоры цилиндра.

В НСН для извлечения цилиндра из скважины необходим подъем всего оборудования (штанг с клапанами, плунжером и НКТ). В этом коренное отличие между НСН и НСВ. При использовании вставных насосов в 2 ¸ 2.5 раза ускоряются спускоподъемные операции при ремонте скважин, и существенно облегчается труд рабочих. Однако производительность вставного насоса при трубах данного диаметра всегда меньше производительности не вставного.

Рисунок 4.6 — Невставные скважинные насосы

1 — всасывающий клапан; 2 — цилиндр; 3 — нагнетательный клапан; 4 — плунжер; 5 — захватный шток; 6 — ловитель

Насос НСВ спускается на штангах. Крепление (уплотнение посадками) происходит на замковой опоре, которая предварительно опускается на НКТ. Насос извлекается из скважины при подъеме только колонны штанг. Поэтому НСВ целесообразно применять в скважинах с небольшим дебитом и при больших глубинах спуска.

Невставной (трубный) насос представляет собой цилиндр, присоединенный к НКТ и вместе с ними спускаемый в скважину, а плунжер спускают и поднимают на штангах. НСН целесообразны в скважинах с большим дебитом, небольшой глубиной спуска и большим межремонтным периодом.

Насосная штанга предназначена для передачи возвратно-поступательного движения плунжер насоса. Штанга представляет собой стержень круглого сечения с утолщенными головками на концах (Рисунок 4.7). Выпускаются штанги из легированных сталей диаметром (по телу) 16, 19, 22, 25 мм и длиной 8 м — для нормальных условий эксплуатации.

Рисунок 4.7 — Насосная штанга и соединительная муфта

Для регулирования длины колонн штанг с целью нормальной посадки плунжера в цилиндр насоса имеются также укороченные штанги (футовки) длиной 1; 1.2; 1.5; 2 и 3 м.

Штанги соединяются муфтами. Имеются также трубчатые (наружный диаметр 42 мм, толщина 3.5 мм).

Начали выпускать насосные штанги из стеклопластика, отличающиеся большей коррозионной стойкостью и позволяющие снизить энергопотребление до 20 %.

Применяются непрерывные штанги «Кород» (непрерывные на барабанах, сечение — полуэллипсное).

Особая штанга — устьевой шток, соединяющий колонну штанг с канатной подвеской. Поверхность его полирована (полированный шток). Он изготавливается без головок, а на концах имеет стандартную резьбу. Для защиты от коррозии осуществляют окраску, цинкование и т.п., а также применяют ингибиторы.

Устьевое оборудование насосных скважин предназначено для герметизации затрубного пространства, внутренней полости НКТ, отвода продукции скважин и подвешивания колонны НКТ (Рисунок 4.8).

Рисунок 4.8 — Типичное оборудование устья скважины для штанговой насосной установки

1 — колонный фланец; 2 — планшайба; 3 — НКТ; 4 — опорная муфта; 5 — тройник, 6 — корпус сальника, 7 — полированный шток, 8 — головка сальника, 9 — сальниковая набивка

Устьевое оборудование типа ОУ включает устьевой сальник, тройник, крестовину, запорные краны и обратные клапаны.

Устьевой сальник герметизирует выход устьевого штока с помощью сальниковой головки и обеспечивает отвод продукции через тройник. Тройник ввинчивается в муфту НКТ. Наличие шарового соединения обеспечивает самоустановку головки сальника при несоосности сальникового штока с осью НКТ, исключает односторонний износ уплотнительной набивки и облегчает смену набивки.

Станок-качалка (Рисунок 4.9) является индивидуальным приводом скважинного насоса.

Основные узлы станка-качалки — рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирноподвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной раме-салазках.

Рисунок 4.9 — Станок-качалка типа СКД

1 — подвеска устьевого штока; 2 — балансир с опорой; 3 — стойка; 4 — шатун; 5 — кривошип; 6 — редуктор; 7 — ведомый шкив; 8 — ремень; 9 — электродвигатель; 10 — ведущий шкив; 11 — ограждение; 12 — поворотная плита; 13 — рама; 14 —противовес; 15 — траверса; 16 — тормоз; 17 — канатная подвеска

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17. Она позволяет регулировать посадку плунжера в цилиндр насоса или выход плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока) регулируют путем изменения места сочленения кривошипа с шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие).

За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Выпускают СК с грузоподъемностью на головке балансира от 2 до 20 т.

4.3.2 Эксплуатация скважин погружными электроцентробежными насосами

На заключительной стадии эксплуатации вместе с нефтью из скважин поступает большое количество пластовой воды, применение штанговых насосов становится малоэффективным. Этих недостатков лишены установки погружных электронасосов УЭЦН.

Погружные центробежные электронасосы для откачки жидкости из скважины принципиально не отличаются от обычных центробежных насосов, используемых для перекачки жидкостей на поверхности земли. Однако малые радиальные размеры, обусловленные диаметром обсадных колонн, в которые спускаются центробежные насосы, практически неограниченные осевые размеры, необходимость преодоления высоких напоров и работа насоса в погруженном состоянии привели к созданию центробежных насосных агрегатов специфического конструктивного исполнения. Внешне они ничем не отличаются от трубы, но внутренняя полость такой трубы содержит большое число сложных деталей, требующих совершенной технологии изготовления.

Погружные центробежные электронасосы — это многоступенчатые центробежные насосы с числом ступеней в одном блоке до 120, приводимые во вращение погружным электродвигателем специальной конструкции). Электродвигатель питается с поверхности электроэнергией, подводимой по кабелю от повышающего автотрансформатора или трансформатора через станцию управления, в которой сосредоточена вся контрольно-измерительная аппаратура и автоматика. Погружные центробежные электронасосы  опускаются в скважину под расчетный динамический уровень обычно на 150 – 300 м. Жидкость подается по НКТ, к внешней стороне которых прикреплен специальными поясками электрокабель. В насосном агрегате между самим насосом и электродвигателем имеется промежуточное звено, называемое протектором или гидрозащитой. Установка погружного центробежного электронасоса (Рисунок 4.10) включает маслозаполненный электродвигатель ПЭД 1; звено гидрозащиты или протектор 2; приемную сетку насоса для забора жидкости 3; многоступенчатый центробежный насос ПЦЭН 4; НКТ 5; бронированный трехжильный электрокабель 6; пояски для крепления кабеля к НКТ 7; устьевую арматуру 8; барабан для намотки кабеля при спуско-подъемных работах и хранения некоторого запаса кабеля 9; трансформатор или автотрансформатор 10; станцию управления с автоматикой 11 и компенсатор 12.

Насос, протектор и электродвигатель являются отдельными узлами, соединяемыми болтовыми шпильками. Концы валов имеют шлицевые соединения, которые стыкуются при сборке всей установки. При необходимости подъема жидкости с больших глубин секции погружного центробежного электронасоса соединяются друг с другом так, что общее число ступеней достигает 400. Всасываемая насосом жидкость последовательно проходит все ступени и покидает насос с напором, равным внешнему гидравлическому сопротивлению. УЭЦН отличаются малой металлоемкостью, широким диапазоном рабочих характеристик, как по напору, так и по расходу, достаточно высоким к. п. д., возможностью откачки больших количеств жидкости и большим межремонтным периодом. Обеспечивают подачу 10 ÷ 1300 м3/сут и более напором 450 ÷ 2000 м вод.ст. (до 3000 м).

Следует напомнить, что средняя по России подача по жидкости одной УЭЦН составляет 114.7 т/сут, а УШСН — 14.1 т/сут.

Рисунок 4.10 — Общая схема оборудования скважины установкой погружного центробежного насоса

Все насосы делятся на две основные группы; обычного и износостойкого исполнения. Подавляющая часть действующего фонда насосов (около 95 %) — обычного исполнения.

Насосы износостойкого исполнения предназначены для работы в скважинах, в продукции которых имеется небольшое количество песка и других механических примесей (до 1 % по массе). По поперечным размерам все насосы делятся на 3 условные группы: 5; и 6, что означает номинальный диаметр обсадной колонны, (в дюймах), в которую может быть спущен данный насос. Группа 5 имеет наружный диаметр корпуса 92 мм, группа 5А — 103 мм и группа 6 — 114 мм.

Пример условного обозначения — УЭЦНМК5-50-1200, где У ‑ установка; Э ‑ привод от погружного электродвигателя; Ц ‑ центробежный; Н – насос; М ‑ модульный; К – коррозионно-стойкого исполнения; 5 – группа насоса; 50 ‑ подача, м3/сут; 1200 – напор, м.

Электродвигатели в установках применяются асинхронные, 3 фазные с короткозамкнутым ротором вертикального исполнения ПЭД40-103 — обозначает: погружной электродвигатель, мощностью 40 кВт, диаметром 103 мм. Двигатель заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим для охлаждения и смазки.

Для погружных электродвигателей напряжение составляет 380-2300 В, сила номинального тока 24,5÷86 А при частоте 50 Гц, частота вращения ротора 3000 мин–1, температура окружающей среды +50÷900С.

Модуль-секция насос — центробежный многоступенчатый, секционный. Число ступеней в насосном агрегате может составлять от 220 до 400.

При откачке электроцентробежными насосами пластовой жидкости, содержащей свободный газ, происходит падение их напо­ра, подачи и кпд, а возможен и полный срыв работы насоса. Поэтому, если содержание свободного газа в жидкости на входе в насос превышает 25 % по объему, то перед насосом устанавливают газосепаратор.

Конструктивно газосепаратор представляет собой корпус, в котором на валу, соединенном с валом насоса, вращаются шнек, рабочие колеса и камера сепаратора. Газожидкостная смесь закачивается с помощью шнека и рабочих колес в камеру сепаратора, где под действием центробежных сил жидкость, как более тяжелая, отбрасывается к периферии, а газ остается в центре. Затем газ через наклонные отверстия отводится в затрубное пространство, а жидкость — поступает по пазам переводника на прием насоса.

Применение газосепараторов позволяет откачивать центро­бежными насосами жидкости с содержанием свободного газа до 55 %.

Оборудование устья скважин, эксплуатируемых глубинными центробежными насосами

Типичная арматура устья скважины, оборудованной для эксплуатации УЭЦН (рисунок 4.11), состоит из крестовины 1, которая навинчивается на обсадную колонну.

В крестовине имеется разъемный вкладыш 2, воспринимающий нагрузку от НКТ. На вкладыш накладывается уплотнение из нефтестойкой резины 3, которое прижимается разъемным фланцем 5. Фланец 6 прижимается болтами к фланцу крестовины и герметизирует вывод кабеля 4.

Арматура предусматривает отвод затрубного газа через трубу 6 и обратный клапан 7. Арматура собирается из унифицированных узлов и запорных кранов. Она сравнительно просто перестраивается для оборудования устья при эксплуатации штанговыми насосами.

Рисунок 4.11 — Арматура устья скважины, оборудованной УЭЦН

studizba.com

Добыча

Технология эксплуатации скважин

Основной метод добычи газа и газового конденсата — фонтанный. А теперь более детально о том, что такое эксплуатация скважины.

1. Пуск и остановка

Пуск и остановка скважины проводятся вручную или автоматически при помощи открытия или закрытия задвижек на устье или УКПГ. До пуска скважины обязательно проверяют исправность оборудования и приборов технологической линии, в которую будет подаваться газ. Только убедившись в исправности, можно приступить к пуску скважины в работу.

При включении любой газовой линии соблюдают следующее правило: задвижки открывают последовательно по ходу движения газа, начиная с ближайшей к источнику газа. На скважине первой открывают коренную задвижку, затем межструнную, далее на верхней рабочей струне. Одновременно наблюдают за показаниями манометров и термометров. Через некоторое время показания стабилизируются и можно считать, что скважина выведена на режим эксплуатации.

При остановке скважины задвижки закрывают в строго обратной последовательности: на рабочей струне, межструнную и коренную. Коренную задвижку не всегда закрывают, поскольку для ее замены надо «задавливать» скважину, поэтому работать коренной задвижкой стремятся как можно реже.

2. Установление заданного режима и контроль

Это делается после пуска скважины при помощи регулируемых или нерегулируемых штуцеров, установленных на устье. После установления заданного режима скважина должна нормально работать.

Обычно при эксплуатации скважины все задвижки (коренная, межструнная, рабочая и резервная на рабочей струне) должны быть полностью открыты. Это необходимо, чтобы предохранить их от разрушения струёй газа, в которой всегда имеются твердые и жидкие частицы.

3. Нормальная работа в усложненных условиях

Коррозия оборудования, обводнение, вынос на забой твердых частиц, растепление вечномерзлых пород

4. Надежная работа контрольно-измерительных приборов и автоматики

Контроль за технологическим режимом (дебит, давления на устье и входе в УКПГ) осуществляется автоматически. Когда это необходимо, оператор, обслуживающий скважину, один или несколько раз за смену записывает показания расходомера и манометров в специальный журнал.

Всё это осуществляется с помощью наземного оборудования скважины – обвязки.

Эксплуатация скважин при условиях гидратообразования в стволе

gaz-prof.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *