Твердость после улучшения стали: Улучшение стали: процесс, технология, улучшаемые стали

alexxlab | 12.11.1971 | 0 | Разное

Содержание

Закалка стали 45 (термообработка) – твердость

Слово «термообработка» для обывателей не ново. Все прекрасно понимают, для чего она необходима. Повышение прочности стали. Но почему так происходит? Какие процессы протекают в металле в этот момент? Большинство пожимает плечами. Если Вы хотите понять, что такое термообработка, узнать в чем разница между отжигом и отпуском, и почему закалка стали 45 производится в масле, а не в воде, то тогда эта статья для Вас.

 

Общие сведения о термической обработке

Термообработка – это последовательность процессов нагревания, выдержки и охлаждения, направленных на изменение сталью механических свойств.

Улучшения свойств металла происходит за счет трансформации внутренней структуры. После осуществления термической обработки сталь может находиться в 2-х состояниях: устойчивом и неустойчивом.

Устойчивое состояние характеризуется полным завершением всех протекающих процессов в стали. Неустойчивое, соответственно, наоборот, когда на сталь еще воздействуют факторы, мешающие стабилизации внутренних напряжений. Ярким примером является химическая неоднородность закаленной стали.

Повышение теплового движения молекул способствует ускорению выхода стали из неустойчивого состояния. Достигается это путем нагрева.

Для большего понимания процессов, происходящих в стали во время термообработки, введем несколько понятий о структуре металла. Под этим понимается размер внутренних зерен и их положение относительно друг друга. Каждой структуре соответствует определенная температура и определенное содержание углерода.

Основные их виды и свойства, которыми они обладают:

  • Феррит – твердый раствор железа с углеродом и небольшой долей других химических элементов. Ферромагнитен. Ферритная сталь обладает высокой тепло- и электропроводимостью. Пластична. Твердость порядка 70-140 единиц по шкале Бринелля.
  • Цементит – неустойчивое соединение углерода с железом. Очень тверд и хрупок (НВ 790-810). Не поддается намагничиванию.
  • Перлит – фазовый раствор феррита и цементита. На его механические свойства в первую очередь оказывает влияние расстояние между фазами. Чем они ближе, тем сталь прочнее. Твердость находится в пределах 160-230 НВ, при относительном удлинении 9-12%.
  • Мартенсит – перенасыщенная физико-химическая смесь углерода и железа. Значение его механических характеристик зависит от количества углерода в составе. Мартенситная сталь с концентрацией 0,2% С обладает твердостью около 35 HRC. При 0,6% твердость составляет 60 HRC.
  • Аустенит – твердый раствор углерода в железе. Аустенитная сталь парамагнитна и пластична. Относительное удлинение составляет 42%.

Сам процесс термообработки включает в себя:

  • Закалка.
  • Отжиг.
  • Нормализация.
  • Отпуск.

Отжиг

Процесс отжига состоит из нагревания, выдержки и медленного охлаждения в печной среде.

Существует две его основные разновидности:

  • Отжиг первого рода, при котором структура в сталях не претерпевает изменений.
  • Отжиг второго рода, сопровождающийся трансформациями структурных зон.

Каждая из представленных видов термообработки имеет определенное назначение.

 

 

Отжиг первого рода выполняет следующие технологические задачи:

  • Выравнивание химсостава стали. При обработке металла давлением ликвация становится причиной образования изломов и микротрещин. Для уменьшения их вероятности появления сталь нагревают до 1250 ºС и выдерживают ее при такой температуре на протяжении 8-15 ч.
  • Увеличение обрабатываемости стали давлением. Термообработка проходит при 670 ºС с выдержкой 40-120 мин. Отжиг увеличивает зерна феррита, что положительно влияет на пластичность.
  • Уменьшение остаточных напряжений, возникших после технологической обработки сталей: резание, сварка и прочее. Для этого сталь выдерживают при 500-620 ºС на протяжении двух часов.

Отжиг второго рода измельчает зерна стали и способствует образованию структуры феррит+перлит. Как результат, происходит увеличение механических свойств. Температура нагрева для стали 45 составляет 780-830 ºС.

Отжиг второго рода считается подготовительной термообработкой. Его проводят перед операциями резания для повышения обрабатываемости металла.

Нормализация

Это процесс нагревания стали и последующее охлаждение на воздухе, в результате которого происходит измельчение крупнозернистой структуры.

Если сравнивать с отжигом, то нормализация дает в среднем на 10% выше показатель вязкости и прочности. Причина этого кроется в охлаждении на воздухе, которое способствует разложению аустенитных фаз в нижней зоне температур. Как следствие, наблюдается увеличение перлита, что и является причиной повышения механических свойств.

Нормализация – альтернатива закалке и высокому отпуску. Конечно, на выходе механические свойства получаются ниже, но и сама нормализация менее трудоемка. К тому же, по сравнению с закалкой она вызывает меньшие тепловые деформации детали.

Отпуск

Это термообработка, которая всегда проводится на заключительном этапе. Она включает в себя нагревание закалённой стали до температурной точки трансформации перлита в аустенит и дальнейшее ее охлаждение. С его помощью механические характеристики сталей доводятся до требуемых значений.

Помимо этого, в задачу отпуска входит снятие напряжений, оставшихся после закалки.

Отпуск подразделяется на 3 типа по температуре нагрева:

  • Низкий отпуск. Проводится при 230-260 ºС. Способствует упрочнению с одновременным снижением внутренней напряженности. Закаленная сталь 45 после низкого отпуска обладает твердостью 55-60 HRC.
  • Средний отпуск. Температура нагревания 340-550 ºС. Позволяет достичь наиболее высокого значения упругих свойств. Из-за этого в основном применяется при изготовлении пружин. Твердость находится на уровне 45-52 HRC.
  • Высокий отпуск. Выполняется при 550 ºС. Снимает внутренние напряжения после закаливания.

Механические свойства уменьшаются, но значение их при этом не меньше, чем после нормализации и отжига. Также происходит увеличение ударной вязкости. Самой оптимальной термообработкой с точки зрения соотношения вязкости и прочности считается закалить сталь, а после провести высокий отпуск.

Закалка

Представляет собой процесс нагрева  до температуры на 20-40 ºС выше точки растворения феррита в аустените и последующее быстрое охлаждение в воде или масле.

Образование значительных внутренних напряжений при закалке не позволяет ей быть окончательной термообработкой. Обычно за ней следует отпуск или нормализация.

 

 

В результате нагрева сталь получает аустенитную структуру, которая, охлаждаясь, переходит в мелкоигольчатый мартенсит.

Закалка стали 45 осуществляется при 840-860 ºС.

Если сталь закалить, не достигнув значения требуемой температуры, то в результате останутся ферритные зоны, чье присутствие значительно снижает прочность металла.

Если сталь 45 закалить при температуре выше 1000 ºС, это спровоцирует увеличение зерна мартенсита, что влечет за собой ухудшение вязкости и повышение риска образования трещин.

Нагрев сталей под закалку осуществляется в электропечах периодического или непрерывного действия.

Время нагрева зависит от:

  • Химсостава стали.
  • Формы и габаритов деталей.

Чем больше размеры и содержание углерода, тем большее количество времени необходимо для нагрева стали.

После нагревания стали идет ее выдержка при заданной температуре. Это необходимо для выравнивания неоднородности аустенита.

При сильном перегреве сталь начинает вступать в реакцию с печными газами. Это может повести за собой процессы окисления и обезуглероживания.

Окисление – химический процесс взаимодействия кислорода с железом. Оно отрицательно сказывается на свойствах стали, является причиной снижения качества поверхности и окалин.

Обезуглероживание возникает как следствие химической реакции углерода с водородом и кислородом. Как следствие, образуя такие соединения как угарный газ и метан. Полученные газы уносят вместе с собой с поверхности стали молекулы углерода, вызывая тем самым резкое снижение прочности.

Защитой стали от окисления и обезуглероживания служит осуществление нагревания в вакууме или расплавленной соли.

В качестве закалочных сред применяется вода или масло.

Вода обладает большой скоростью охлаждения, но она резко падает при увеличении температуры. Также недостатком воды является возникновение значительных напряжений и, соответственно, коробление деталей.

Масло в этом плане охлаждает более равномерно, что уменьшает риск образования микротрещин при закалке. Среди ее недостатков стоит отметить низкую температуру воспламенения и загустение, что уменьшает ее закалочные свойства.

Разная сталь имеет разную закаливаемость, т.е. способность увеличивать прочность посредством закалки. Как правило, чем выше концентрация углерода, тем выше закалочные свойства.

Закалка ТВЧ

Если сталь закалить таким образом, то она будет лучше справляться с переменной и ударной нагрузкой. Закалка ТВЧ считается разновидностью поверхностной закалки, основная задача которой получение более прочного наружного слоя, сохраняя при этом вязкость сердцевины. 

Нагрев под закалку ТВЧ осуществляют в индукционных печах, используя ток высокой частоты. Принцип данной термообработки заключается в неравномерном нагреве сечения изделия. Плотность тока на наружней части стали значительно выше в сравнении с сердцевиной. Основная часть тепла приходится на поверхность, соответственно, именно в этой зоне и происходит упрочнение.

Охлаждение осуществляется непосредственно в печи специальными распрыскивающими устройствами. После закалки обычно требуется отпуск для выравнивания тепловых напряжений.

Структура стали в результате всех этих операций получается неоднородной. Верхний закалённый слой полностью состоит из мартенсита, а нетронутая сердцевина из феррита. Прочность глубинного слоя повышается предварительным проведением нормализации.

Преимущества закалки ТВЧ:

  • Повышенная производительность.
  • Сталь изолирована от влияния окисления и обезуглероживания.
  • Возможность регулировать толщину закаленного слоя. Чем частота токов выше, тем глубина закалки меньше.
  • Автоматизация процесса.
Оцените статью:

Рейтинг: 5/5 – 3 голосов

Режимы термообработки стали – 40х, 45, 20

№ п/п Марка стали Твёрдость (HRCэ) Температ. закалки, град.С Температ. отпуска, град.С Температ. зак. ТВЧ, град.С Температ. цемент., град.С Температ. отжига, град.С Закал. среда Прим.
1 2 3 4 5 6 7 8 9 10
1 Сталь 20 57…63 790…820 160…200   920…950   Вода  
2 Сталь 35 30…34 830…840 490…510       Вода  
33…35 450…500        
42…48 180…200 860…880      
3 Сталь 45 20…25 820…840 550…600       Вода  
20…28 550…580        
24…28 500…550        
30…34 490…520        
42…51 180…220       Сеч. до 40 мм
49…57 200…220 840…880      
<= 22         780…820   С печью
4 Сталь 65Г 28…33 790…810 550…580       Масло Сеч. до 60 мм
43…49 340…380       Сеч. до 10 мм (пружины)
55…61 160…220       Сеч. до 30 мм
5 Сталь 20Х 57…63 800…820 160…200   900…950   Масло  
59…63   180…220 850…870 900…950   Водный раствор 0,2…0,7% поли-акриланида
“–         840…860    
6 Сталь 40Х 24…28 840…860 500…550       Масло  
30…34 490…520        
47…51 180…200       Сеч. до 30 мм
47…57   860…900     Водный раствор 0,2…0,7% поли-акриланида
48…54           Азотирование
<= 22         840…860    
7 Сталь 50Х 25…32 830…850 550…620       Масло Сеч. до 100 мм
49…55 180…200       Сеч. до 45 мм
53…59 180…200 880…900     Водный раствор 0,2…0,7% поли-акриланида
< 20         860…880    
8 Сталь 12ХН3А 57…63 780…800 180…200   900…920   Масло  
50…63   180…200 850…870   Водный раствор 0,2…0,7% поли-акриланида
<= 22         840…870   С печью до 550…650
9 Сталь 38Х2МЮА 23…29 930…950 650…670       Масло Сеч. до 100 мм
<= 22   650…670         Нормализация 930…970
HV > 670             Азотирование
10 Сталь 7ХГ2ВМ <= 25         770…790   С печью до 550
28…30 860…875 560…580       Воздух Сеч. до 200 мм
58…61 210…230       Сеч. до 120 мм
11 Сталь 60С2А <= 22         840…860   С печью
44…51 850…870 420…480       Масло Сеч. до 20 мм
12 Сталь 35ХГС <= 22         880…900   С печью до 500…650
50…53 870…890 180…200       Масло  
13 Сталь 50ХФА 25…33 850…880 580…600       Масло  
51…56 850…870 180…200       Сеч. до 30 мм
53…59   180…220 880…940     Водный раствор 0,2…0,7% поли-акриланида
14 Сталь ШХ15 <= 18         790…810   С печью до 600
59…63 840…850 160…180       Масло Сеч. до 20 мм
51…57 300…400      
42…51 400…500      
15 Сталь У7, У7А НВ <= 187         740…760   С печью до 600
44…51 800…830 300…400       Вода  до 250, масло Сеч. до 18 мм
55…61 200…300      
61…64 160…200      
61…64 160…200       Масло Сеч. до 5 мм
16 Сталь  У8, У8А НВ <= 187         740…760   С печью до 600
37…46 790…820 400…500       Вода      до 250, масло Сеч. до 60 мм
61…65 160…200      
61…65 160…200       Масло Сеч. до 8 мм
61…65   160…180 880…900     Водный раствор 0,2…0,7% поли-акриланида
17
    
Сталь У10, У10А
    
НВ <= 197         750…770    
40…48 770…800 400…500       Вода  до 250, масло Сеч. до 60 мм
50…63 160…200      
61…65 160…200       Масло Сеч. до 8 мм
59…65   160…180 880…900     Водный раствор 0,2…0,7% поли-акриланида
18 Сталь  9ХС <= 24         790…810   С печью до 600
45…55 860…880 450…500       Масло Сеч. до 30 мм
40…48 500…600      
59…63 180…240       Сеч. до 40 мм
19 Сталь  ХВГ <= 25         780…800   С печью до 650
59…63 820…850 180…220       Масло Сеч. до 60 мм
36…47 500…600      
55…57 280…340       Сеч. до 70 мм
20 Сталь Х12М 61…63 1000…1030 190…210       Масло Сеч. до 140 мм
57…58 320…350      
21 Сталь Р6М5 18…23         800…830   С печью до 600
64…66 1210…1230 560…570 3-х кратн.       Масло, воздух В масле до 300…450 град., воздух до 20
26…29 780…800         Выдержка 2…3 часа, воздух
22 Сталь  Р18 18…26         860…880   С печью до 600
62…65 1260…1280 560…570 3-х кратн.       Масло, воздух В масле до 150…200 град., воздух до 20
23 Пружин. сталь  Кл. II     250…320         После холодной навивки пружин 30-ть минут
24 Сталь 5ХНМ, 5ХНВ >= 57 840…860 460…520       Масло Сеч. до 100 мм
42…46       Сеч. 100..200 мм
39…43       Сеч. 200..300 мм
37…42       Сеч. 300..500 мм
НV >= 450       Азотирование. Сеч. св. 70 мм
25 Сталь 30ХГСА 19…27 890…910 660…680       Масло  
27…34 580…600        
34…39 500…540        
“–         770…790   С печью до 650
26 Сталь 12Х18Н9Т <= 18 1100…1150         Вода  
27 Сталь 40ХН2МА, 40ХН2ВА 30…36 840…860 600…650       Масло  
34…39 550…600        
28 Сталь ЭИ961Ш 27…33 1000…1010 660…690       Масло 13Х11Н2В2НФ
34…39 560…590       При t>6 мм вода
29 Сталь 20Х13 27…35 1050 550…600       Воздух  
43,5…50,5 200        
30 Сталь 40Х13 49,5…56 1000…1050 200…300       Масло  

Термическая обработка (термообработка) стали, сплавов, металлов.

 

Термическая обработка (термообработка)  — это технологический процесс  изменения структуры сталей, сплавов  и  цветных металлов  посредством широкого диапазона температур: поэтапных нагреваний  и охлаждении с определенной скоростью. Такая обработка очень сильно изменяет свойства сталей, сплавов, металлов в сторону улучшения показателей, но при этом не изменяя их химический состав.  Можно сказать, что основная цель термической обработки – это улучшение свойств и характеристик изделий из него.

Виды (стадии) термической обработки стали

Отжиг — термическая обработка (термообработка) металла, представляющая собой процесс нагревания до заданной температуры, а затем процесс медленного охлаждения. Отжиг бывает разных видов в зависимости от уровня температур и скорости процесса.

Нормализация — термообработка, принципиально похожая на отжиг. Основное отличие в том, что процесс отжига предполагает печь, а при нормализации охлаждение стали проходит на воздухе.

Закалка — этап термообработки, основанный на нагревании сырья до такого уровня температуры, который является выше критического (перекристаллизация стали). После выдержки в такой температуре в заданном интервале времени происходит охлаждение, быстрое, с заданной скоростью. Закаленной стали (сплавам) свойственна неравновесная структура и  поэтому применяется такой вид термообработки как отпуск.

Отпуск — стадия термообработки, необходимая для снятия в стали и сплавах остаточного напряжения или максимального его снижения. Снижает хрупкость и твёрдость металла, увеличивает вязкость. Проводится после стадии закалки.

Старение — иначе еще называется дисперсионное твердение. После стадии отжига металл опять нагревают, но до более низкого уровня температур и с медленной скоростью остужают. Цель такой термообработки в получении особенных частиц упрочняющей фазы.

От степени необходимой глубины обработки различают термообработку поверхностную, которая затрагивает лишь поверхность изделий, и объемную, когда термическому воздействию подвергается весь объем сырья. 

В отраслевой промышленности, в частности – в машиностроении, термическую обработку  чаще всего проходит сталь следующих марок:

– сталь 45 (замещаемость  40Х, 50, 50Г2)

– сталь 40Х (замещаемость  38ХА, 40ХР, 45Х, 40ХС, 40ХФ, 40ХН)

– сталь 20 (замещаемость  15, 25)

– сталь 30ХГСА (замещаемость  40ХФА, 35ХМ, 40ХН, 25ХГСА, 35ХГСА)

– сталь 65Г

– сталь 40ХН

– сталь 35

– сталь 20Х13

Термообработка стали 45

Конструкционная углеродистая. Этап предварительной термической обработки называется  нормализация, проходит на воздухе, а не в печи.  довольно легко проходит механическую обработку. Точение, фрезеровку и т. д. Получают детали, например, типа вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки.  

После закалки, которая является конечной стадией термообработки,  детали достигают высокого уровня прочности и отличных показателей износостойкости. Подвергаются шлифовке. Высокое содержание углерода (0,45%) обеспечивает хорошую закаливаемость и, соответственно, высокую твёрдость поверхности и прочность изделия. Сталь 45 калят «на воду», когда после калки деталь охлаждают в воде. После охлаждения деталь подвергается низкотемпературному отпуску при температуре 200-300 градусов  по Цельсия. При такой термообработке стали 45 достигает твердость порядка 50 HRC.

Изделия: Кулачки станочных патронов, согласно указаниям ГОСТ, изготовляют из сталей 45 и 40Х. Твёрдость Rc = 45 -50. В кулачках четырёх-кулачных патронов твёрдость резьбы должна быть в пределах Rс = 35-42. Отпуск кулачков из стали 45 производится при температуре 220-280°, из стали 40Х при 380-450° в течение 30-40 мин.

Расшифровка марки стали 45: марка 45 означает, что в стали содержится 0,45% углерода,C 0,42 – 0,5; Si 0,17 – 0,37;Mn 0,5 – 0,8; Ni до 0,25; S до 0,04; P до 0,035; Cr до 0,25; Cu до 0,25; As до 0,08.

Термообработка стали 40Х

Легированная конструкционная сталь. Для деталей повышенной прочности такие как оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, зубчатые венцы, болты, полуоси, втулки и прочих деталей повышенной прочности. Сталь 40Х также часто используется для производства поковок, штампованных заготовок и деталей трубопроводной арматуры. Однако последние перечисленные детали нуждаются в дополнительной термической обработке, заключающейся в закалке через воду в масле или просто в масле с последующим отпуском в масле или на воздухе.

Расшифровка марки стали 40Х. Цифра 40 указывает на то, что углерод в стали содержится в объеме 0,4 %. Хрома содержится менее 1,5 %. Помимо обычных примесей в своем составе имеет в определенных количествах специально вводимые элементы, которые призваны обеспечить специально заданные свойства. В качестве легирующего элемента в данном случае используется хром, о чем говорит соответствующая маркировка.

Термообработка стали 20

Термообработка стали 20 – сталь конструкционная углеродистая качественная. Широкое применение в котлостроении, для труб и нагревательных трубопроводов различного назначения, кроме того промышленность выпускает пруток, лист. В качестве заменителя стали 20 применяют стали 15 и 25.
 

По требованиям к механическим свойствам выделяют пять категорий.

–  I категория: сталь всех видов обработки без испытания на ударную вязкость и растяжение.

– II категория: образцы из нормализованной стали всех видов обработки размером 25 мм проходят испытания на ударную вязкость и растяжение.

– III категория: испытания на растяжение проводят на образцах из нормализованной стали, размером 26-100 мм.

– IV категория: образцы для испытаний на растяжение и ударную вязкость изготавливают из термически обработанных заготовок размером не более 100 мм. Требования третьей и четвертой категории предъявляют к калиброванной, горячекатаной и кованной качественной стали.

– V категория. Испытания механических свойств на растяжение проводят на образцах из калиброванных термически обработанных (высокоотпущенных или отожженных) или нагартованных сталей.

Химический состав стали 20:  углерод (C) – 0.17-0.24 %, кремний (Si) – 0,17-0,37%, марганец (Mn) – 0,35-0,65 %;содержание меди (Cu) и никеля (Ni) допускается не более 0,25%, мышьяка (As) – не более 0,08%, серы (S) – не более 0,4%, фосфора (Р) – 0,035%.
Структура стали 20 представляет собой смесь перлита и феррита. Термическая обработка стали 20 позволяет получать структуру реечного (пакетного) мартенсита. При таких структурных преобразованиях прочность возрастает, и пластичность уменьшается. После термического упрочнения прокат из стали 20 можно использовать для изготовления метизной продукции (класс прочности 8.8).

Технологические свойства стали 20: Температура начала ковки стали 20 составляет 1280° С, окончания – 750° С, охлаждение поковки – воздушное. Сталь 20 нефлокеночувствительна и не склонна к отпускной способности. Свариваемость стали 20 не ограничена, исключая детали, подвергавшиеся химико-термической обработке. Рекомендованы способы сварки АДС, КТС, РДС, под газовой защитой и флюсом.

Сталь 20 применяют для производства малонагруженных деталей ( пальцы, оси, копиры, упоры, шестерни) , цементуемых деталей для длительной и весьма длительной службы (эксплуатация при температуре не выше 350° С) , тонких деталей, работающих на истирание. Сталь 20 без термической обработки или после нормализации используется для производства крюков кранов, вкладышей подшипников и прочих деталей для эксплуатации под давлением в температурном диапазоне от -40 до 450°С . Сталь 20 после химико-термической обработки идет на производство деталей, которым требуется высокая поверхностная прочность ( червяки, червячные пары, шестерни) . Широко применяют сталь 20 для производства трубопроводной арматуры, труб, предназначенных для паропроводов с критическими и сверхкритическими параметрами пара, бесшовных труб высокого давления, сварных профилей прямоугольного и квадратного сечения и т. д.

Термообработка стали 30ХГСА

Относится к среднелегированной конструкционной стали. Сталь 30ХГСА проходит улучшение – закалку с последующим высоким отпуском при 550-600 °С, поэтому применяется при создании улучшаемых деталей (кроме авиационных деталей это могут быть различные корпуса обшивки, оси и валы, лопатки компрессорных машин, которые эксплуатируются при 400°С, и многое другое), рычаги, толкатели, ответственные сварные конструкции, работающие при знакопеременных нагрузках, крепежные детали, работающие при низких температурах.

Сталь 30ХГСА обладает хорошей выносливостью, отличными показателями ударной вязкости, высокой прочностью. Она также отличается замечательной свариваемостью.

Сварка стали 30ХГСАтоже имеет свои особенности. Она осуществляется с предварительным подогревом материала до 250-300 °С с последующим медленным охлаждением. Данная процедура очень важна, поскольку могут появиться трещины из-за чувствительности стали к резким перепадам температуры после сварки. Поэтому по завершении сварных работ горелка должна отводиться медленно, при этом осуществляя подогрев материала на расстоянии 20-40 мм от места сварки. Также, не более, чем спустя 8 часов по завершении сварки сварные узлы стали 30ХГСА нуждаются в закалке с нагревом до 880 °С с последующим высоким отпуском. Далее изделие охлаждается в масле при 20-50 °С. Отпуск осуществляется нагревом до 400 – 600 °С и охлаждением в горячей воде. Сварку же необходимо выполнять максимально быстро, дабы избежать выгорания легирующих элементов.

После прохождения термомеханической низкотемпературной обработки сталь 30ХГСА приобретает предел прочности до 2800 МПа, ударная вязкость повышается в два раза (в отличии от обычной термообработки стали 30хгса), пластичность увеличивается.

Термообработка стали 65Г

Сталь конструкционная рессорно-пружинная. Используют в промышленности пружины, рессоры, упорные шайбы, тормозные ленты, фрикционные диски, шестерни, фланцы, корпусы подшипников, зажимные и подающие цанги и другие детали, к которым предъявляются требования повышенной износостойкости, и детали, работающие без ударных нагрузок. (заменители: 70, У8А, 70Г, 60С2А, 9ХС, 50ХФА, 60С2, 55С2).

Термообработка стали 40

Сталь конструкционная углеродистая качественная. Использование в промышленности: трубы, поковки, крепежные детали, валы, диски, роторы, фланцы, зубчатые колеса, втулки для длительной и весьма длительной службы при температурах до 425 град.

Термообработка стали 40ХН

Сталь конструкционная легированная Используется в отраслевой в промышленности: оси, валы, шатуны, зубчатые колеса, валы экскаваторов, муфты, валы-шестерни, шпиндели, болты, рычаги, штоки, цилиндры и другие ответственные нагруженные детали, подвергающиеся вибрационным и динамическим нагрузкам, с предъявляемыми  требованиями  повышенной прочности и вязкости. Валки рельсобалочных и крупносортных станов для горячей прокатки металла.

Термообработка сталь 35

Сталь конструкционная углеродистая качественная. Используется  в отраслевой промышленности. Это детали невысокой прочности, подвергающиеся невысокому уровню напряжения: оси, цилиндры, коленчатые валы, шатуны, шпиндели, звездочки, тяги, ободы, траверсы, валы, бандажи, диски и другие детали.

Термообработка стали 20Х13

Сталь коррозионно-стойкая жаропрочная. Используется в  энергетическом машиностроении и печестроении; турбинные лопатки, болты, гайки, арматура крекинг-установок с длительным сроком службы при температурах до 500 град; сталь мартенситного класса Сталь марки 20Х13 и другие стали мартенситного класса: жаропрочные хромистые стали мартенситного класса применяют в различных энергетических установках, они работают при температуре до 600° С. Из них изготовляют роторы, диски и лопатки турбин, в последнее время их используют для кольцевых деталей больших толщин. Существует большое количество марок сталей данного класса. Общим для всех является пониженное содержание хрома, наличие молибдена, ванадия и вольфрама. Они эффективно упрочняются обычными методами термообработки, которая основана на у – a-превращении и предусматривает получение в структуре мартенсита с последующим улучшением в зависимости от требований технических условий. (заменители: 12Х13, 14Х17Н2)  

Пресс-служба группы компаний ВоКа

17 сентября 2016г

Этапы термообработки стали. | Блог ТС «Профиль»

Термообработкой стали называется совокупность этапов нагрева, выдержки и охлаждения твёрдых металлических сплавов. В результате в металле происходят изменения внутреннего строения и структуры, что в свою очередь приводит к получению заданных свойств стали. Твердость металла после термообработки измеряется по шкале Роквелла, подробно описанной в нашей статье “Методы определения твердости”.

 

Процесс термической обработки стали включает в себя нагрев заготовки до требуемой температуры с определенной скоростью, выдержки при этой температуре в течении требуемого времени и охлаждение с заданной скоростью. В рамках этих процессов, можно выделить такие этапы, как: отжиг, нормализация, закалка, отпуск, обработка холодом. При изготовлении ножей из кованной стали термообработка занимает большее количество этапов: ковка, отжиг, шлифовка, повторный отжиг, правка остаточных искривлений, закалка, отпуск. В данной статье мы коснемся общих понятий процесса термообработки стали, выпущенной промышленным методом, когда заготовка клинка вырезается из уже готовой полосы металла.


1. Отжиг

Отжиг применяется для заготовок из углеродистой и легированной стали с целью снижения твердости или уменьшения внутренних напряжений. Отжиг также готовит структуру к последующей термообработке и улучшению неоднородности. Технологически отжиг представляет из себя медленное охлаждение раскаленной заготовки. Может применятся и так называемый изотермический отжиг при 760 ºС с быстрым охлаждением до 635 ºС, нахождением заготовки при этой температуре в течении 4-6 часов и дальнейшим охлаждением на воздухе.


2. Нормализация

Нормализация отличается от полного отжига способом охлаждения, которой после выдержки заготовки при температуре процесса производится на воздухе. При этом изменяется структура стали, она приобретает более высокую твердость и мелкозернистую структуру, чем при отжиге. Нормализация стали представляет собой нагрев до температур, на 50 °C выше точки завершения превращения избыточного цементита в аустенит. Нагревание ведется до полной перекристаллизации. Охлаждение производится в воздушной среде, чаще всего просто на месте термообработки. В результате сталь приобретает мелкозернистую, однородную структуру. Характеристики твердости и прочности стали после нормализации увеличиваются 10-15 %, чем после отжига. В так называемых заэвтектоидных инструментальных сталях, с содержанием углерода более 0,8% (именно такие стали в основном применяются в ножах), разрушается цементитная сетка, окружающая перлитные зерна. Это снижает хрупкость стали, подготавливает ее к закалке.


3. Закалка стали — это этап термообработки, который заключается в нагреве стали выше критической температуры с последующим резким охлаждением в жидких средах. Критической в данном случае будет температура, при которой произойдет изменение типа кристаллической решетки, то есть осуществится полиморфное превращение. Технологически закалка представляет собой форсированное охлаждение раскаленной стали. Она уменьшает структуру зерна, повышает твердость, прочность, износоустойчивость. Закалка состоит из нагрева стали до температуры выше или в интервале превращений, выдержки при этой температуре и последующего охлаждения обычно с большой скоростью (в водных растворах солей гидроксида натрия или хлорида натрия в воде, масле, в расплавленных солях, на воздухе). В процессе закалки сталь нагревается до высокой температуры порядка 750–1150 °C с последующим резким охлаждением, чтобы произошедшие фазовые превращения не успели вернуться к исходному состоянию.


Закалка делится на несколько видов:

1) Ступенчатая закалка

В некоторых случаях, для небольших заготовок, применяют закалку ступенчатым методом. Изделия нагревают, а затем помещают в щелочной расплав (от 3500 до 4000 С). Заготовку выдерживают определённый период времени, достаточный для выравнивания температуры внутри изделия. Легированные стали охлаждают в масле, нелегированные в воде. Данный способ обеспечивает необходимую твердость, а вероятность появления трещин и напряжений будет резко сокращаться.

2) Изотермическая закалка

Изотермическая закалка проходит в режиме ступенчатой, но при этом металл выдерживается в щелочи до тех пор, пока полностью не освободится от напряжений. После изометрической закалки не требуется проводить отпуск. Метод пригоден для обработки сложных деталей, подверженных деформациям и трещинам.

3) Закалка в одном охладителе

Закалка в одном охладителе применяется при работе с заготовками из углеродистых и легированных сталей. Обычно это достаточно «простые» ножевые стали, не требующие сложной обрабоки.  

4) Прерывистая закалка в двух средах

Прерывистая закалка в двух средах применяется для обработки высокоуглеродистых сталей, при котором первоначально происходит быстрое охлаждение в воде, а затем медленное охлаждение в масле.

5) Струйчатая закалка

Струйчатая закалка– метод применяется при частичной (зонной) закалке изделия, реализуется в установках ТВЧ (установка нагрева токами высокой частоты) и индукторах обрызгиванием детали мощной струей воды.


Закалка является критически важным этапом термообработки. При нарушении технологии закалки могут возникнуть следующие дефекты:  

1) Недостаточная твердость закаленной детали, в следствии низкой температуры нагрева, малой выдержки при рабочей температуре или недостаточной скорости охлаждения.

2) Перегрев, связаный с нагревом изделия до температуры, значительно превышающей необходимую температуру нагрева под закалку. Перегрев сопровождается образованием крупнозернистой структуры, в результате чего повышается хрупкость стали.

3) Пережог возникает при нагреве стали до весьма высоких температур, близких к температуре плавления (1200—1300° С) в окислительной атмосфере. Кислород проникает внутрь стали, и по границам зерен образуются окислы. После этого сталь приобретает высокую хрупкость и становится не пригодной к использованию под большими нагрузками, в первую очередь поперечными.

4) Окисление и обезуглероживание стали характеризуются образованием окалины (окислов) на поверхности деталей и выгоранием углерода в поверхностных слоях. Такая сталь может стать полностью непригодной к эксплуатации на клинке ножа.

5) На поверхности заготовки могут образовываться коробления и трещины, что бывает связано с возникновением внутренних напряжений. Во время нагрева и охлаждения стали происходят объемные изменения, зависящие от температуры и структурных превращений. Естественно, такие изменения приводят к полной непригодности заготовки.

Таким образом именно нарушения технологии на этапе закалки могут приводить к излишней хрупкости клинка, обычно называемой «перекалом», или же наоборот недостаточная твердость – «недокал».  А также к скрытым внутренним напряжениям, из-за которых клинки ломаются под нагрузкой. Для улучшения рабочих качеств стали после закалки применяется так называемый «отпуск». 

 4. Отпуск

Отпуском стали называется процесс термообработки предварительно закаленной стали, способствующий повышению равновесия ее структуры. Отпуск применяется после закалки стальных заготовок, при этом повышаются вязкие свойства, уменьшается хрупкость и внутреннее напряжение.

Отпуск производится немедленно после закалки, путем нагрева стали до температуры 150–550 °C (в зависимости от марки стали) и охлаждения в воздушной среде, либо в воде или масле. Высокоуглеродистые стали отпускают в воде, при этом происходит достаточно быстрое охлаждение. Если оно будет замедленным, это может привести к «недокалу», сталь не приобретет необходимых прочностных свойств.  Легированные нержавеющие стали отпускают в масле, в котором процесс охлаждения происходит медленней. К таким сталям, в частности, относятся современные порошки S30V, S35VN, Elmax, и т.п. Чаще всего отпуск таких сталей происходит при температурах от 175 до 220 градусов.  Использование масла в данном случае обязательно, так как при увеличении скорости охлаждения, легированная сталь может растрескаться и станет не пригодной к использованию. Также большую роль в охлаждении играет и разновидность масла, в частности степень его плотности и текучести. Для некоторых марок высоколегированных сталей вместо масла применяется охлаждение воздушной струей после предварительного нагрева до 1050–1100 °C.

Очень важным фактором качественного отпуска является   траектория движения и угол погружения клинка в охлаждающую среду. Нарушение технологии может привести к искривлению клинка. Важную роль здесь играет качественный отжиг, который и необходим для снятия внутренних напряжений, приводящих к искривлениям клинка.


Чаще всего для ножевых изделий используется низкотемпературный отпуск (до 2500 С). Он позволяет добиться повышения прочности и вязкости при сохранении твердости сплава (HRC остается в пределах от 58 до 63).

Для определения температуры при отпуске изделия, используется визуальное наблюдение цветов побежалости. В частности, ослепительно бело-голубой цвет заготовки, соответствует температуре порядка 1600 °С, желто-белый – 1200 °С, ярко-красный – 500 °С и т.п. Цвета побежалости одинаково проявляются и на сырой, и на закаленной стали.

 

5) Криообработка

Достаточно часто последним этапом термообработки клинков ножей становится криогенная обработка. Криообработка — это процесс обработки металлических заготовок при сверхнизких температурах (ниже −153°С (-243,4 °F)). Она производится в целях снятия остаточных напряжений и повышения износостойкости деталей. Она также способствует увеличению твёрдости, износостойкости, прочности и пластичности металлов. В среднем улучшение этих характеристик происходит в пределах 20 %, но такие показатели относятся в основном к хорошим легированным сталям, в том числе и порошковым быстрорезам.  Среди них может быть качественная американская D2, а также ELMAX, VANADIS 10, K340. Специальное оборудование для проведения криогенной обработки называется «криогенный процессор». Он представляет собой низкотемпературную камеру, оснащенную системой управления процессом криогенной обработки.   Общий цикл обработки в современных криопроцессорах происходит в течение трех суток: 24 часа происходит промораживание до минимальной температуры, 24 часа идёт выдержка заготовки при этой температуре и 24 часа происходит нагрев до изначальной температуры. В некоторых криопроцессорах существует технологическая возможность для нагнетания температуры до 200 градусов по Цельсию и это дает возможность производить отпуск металла.

 

Термообработка стали на клинке является одним из важнейших факторов, отвечающих за рабочие качества ножа и его эффективность в работе. Только при максимальной точности технологических процессов возможно получить максимальное качество закаленной стали. В свою очередь качество термической обработки сильно влияет на заточку ножа. Любые проблемы, возникавшие в этом процессе, обязательно проявят себя при заточке и не позволят качественно заточить нож. Только на ножах с отличной «термичкой» мы можем достичь максимального уровня остроты.  


Повышение – твердость – сталь

Повышение – твердость – сталь

Cтраница 1


Повышение твердости стали приводит к резкому снижению усадки стружки и ширины контакта стружки с передней поверхностью резца.  [2]

Повышение твердости стали при закалке называется закаливаемостью, которая тем больше, чем больше твердость стали после закалки. Твердость определяется содержанием в стали углерода.  [4]

Повышение твердости сталей в целом благоприятно сказывается на сопротивлении изнашиванию, однако одновременно повышается опасность хрупкого разрушения. Износостойкость коррозионно-стойких сталей 9Х18Н10Т, 40X13, 12Х18Н10Т повышается с увеличением содержания углерода.  [5]

Повышение твердости сталей может быть достигнуто как подбором оптимального состава и структуры металла детали в целом, так и путем придания особой твердости поверхностному слою.  [7]

Такое повышение твердости стали должно продолжаться до тех пор, пока при нагреве не будет достигнута температура Ас, В этом случае сталь при нагреве получает полностью аустенит-ную структуру, а при охлаждении – структуру мартенсита.  [9]

Однако повышение твердости стали только за счет изменения химического состава недостаточно для обеспечения требуемой износостойкости деталей.  [11]

Закалка применяется для повышения твердости стали и состоит из нагрева до определенной температуры и последующего быстрого охлаждения. Для получения качественной закалки нагрев и охлаждение должны быть равномерными, а температура – точно соответствовать сорту стали. Чем больше в стали углерода, тем ниже должна быть температура ( для углеродистой стали – в пределах 750 – 850), тем медленее должен быть нагрев н тем быстрее охлаждение.  [12]

Закалка применяется для повышения твердости стали и заключается в нагреве до определенной температуры и последующем быстром охлаждении. Способность стали закаливаться зависит от содержания в ней углерода. Для получения качественной закалки нагрев и охлаждение должны быть равномерными, а температура нагрева – точно соответствовать сорту стали.  [13]

Закалка применяется для повышения твердости стали, ее проч ности, износоустойчивости и коррозионной стойкости, а также для изменения других свойств. После закалки вязкость стали уменьшается.  [14]

Существенное влияние на повышение твердости сталей оказывает увеличение процентного содержания таких элементов как углерод ( обычно до 1 %), марганец ( до 15 %), хром, молибден, вольфрам, фосфор и др. 5, по данным работ Н. Ф. Болховитина, иллюстрирует круторастущую зависимость износоустойчивости от твердости стали. Наибольший прирост износоустойчивости приходится на область высокой твердости ( Нв – 400), характерную для закалки на мартенсит и для некоторых аус-тенитных форм.  [15]

Страницы:      1    2    3

Особенности термической обработки быстрорежущих сталей

Инструментальные стали по праву относят к одним из наиболее сложных сплавов в связи с характером протекающих в них превращений, структурой и разнообразием свойств, а также условиями термической обработки.

Выбор соответствующего материала является только одним из условий изготовления высококачественного инструмента. Конструкция, качество изготовления и не в последнюю очередь термическая обработка с поверхностным упрочнением решающим образом влияют на срок службы инструмента, а следовательно, и на объем его производства. Термообработка может в широких пределах изменить структуру, и свойства будущего инструмента.

Быстрорежущие стали

Быстрорежущие стали (ГОСТ 19265–73) содержат 0,7–1,5% С, до 18% W, являющегося основным легирующим элементом, до 4,5% Сr, до 5% Мо, до 10% Со. В обозначении марок стоит буква Ρ от слова «рапид» — скорость, цифры за этой буквой показывают среднее содержание вольфрама (Р18, Р9 и т.д.).

По сравнению с инструментальными сталями, не отличающимися высокой теплостойкостью, быстрорежущие стали обеспечивают большие скорости резания, при этом стойкость режущей кромки возрастает в 10–30 раз.

Быстрорежущая сталь используется в качестве инструментального материала для изготовления практически всех видов режущего инструмента. Кроме того, быстрорежущая сталь применяется для ряда деталей, работающих при повышенных температурах (подшипники качения, штампы и др.). Это связано с тем, что быстрорежущая сталь, как ни один другой инструментальный материал, сочетает в себе высокие физико-механические, технологические и эксплуатационные свойства.

   

Качество инструмента в значительной степени зависит от правильного выбора марки стали для соответствующего режущего инструмента с учетом основных свойств стали. Например, для инструментов простой формы при непрерывном точении срок службы лимитируется вторичной твердостью, теплостойкостью и износостойкостью. Для инструментов сложной формы, а также для инструментов, используемых при прерывистом точении, большое значение приобретают прочность и вязкость стали. Повышение того или иного свойства достигается за счет изменения химического состава и технологии производства стали, а также режимов ее термической обработки.

Цель термической обработки инструментальных сталей состоит в том, чтобы создать в стали определенного состава структуру, обеспечивающую такие физико-механические свойства, в которых имеется необходимость во время эксплуатации данного инструмента.

Термическая обработка оказывает непосредственное влияние на долговечность инструмента, так как свойства материала, из которого изготовлен инструмент, формируемые во время обработки, становятся окончательными.

Термическая обработка в соляных ваннах

Классическая термическая обработка инструментальных сталей проводится в соляных ваннах. Преимущество соляных ванн проявляется не только в быстром нагреве, быстрой передаче тепла, эффективному удалению тепла, экономичности и возможности регулирования температуры, но и в удовлетворительной защите поверхности от вредного воздействия загрязнений.

В интервале температур 1000–1350°С применяют соль, содержащую BaCl2, либо соль, содержащую BaCl2 и буру. Первая в значительной степени обезуглероживает сталь, а кроме того она плохо смывается с деталей. Соли являются практически нейтральными, но при увеличении загрязненности ванны может произойти процесс обезуглероживания.

   

Обезуглероживание можно ослабить или совсем избежать с помощью введения цианистого натрия или нейтральных (инертных) веществ (феррокремний, карбиды кремния, бура). Такая соль смывается с деталей гораздо проще.

В интервале температур 700–950°С используют соль содержащую NaCl и Na2CO3, которая также обладает свойством обезуглероживания. Процесс обезуглероживания в этом случае также можно уменьшить добавлением цианистого натрия. Такая соль легко смывается.

При 500–700°С можно использовать соль содержащую BaCl2, NaCl и CaCl2. Из-за присутствия хлорида кальция эта соль сильно поглощает влагу и вызывает коррозию.

Содержащие селитру соли используют в интервалах температур 170–500°С. Наличие в составе этих солей NaNO3 вблизи верхней границы температурного интервала делает их взрывоопасными. Стали, нагреваемые выше 950°С в соляной ванне, охлаждать в селитре нецелесообразно из-за ее сильного окисляющего действия на сталь: состояние поверхности изделий будет ухудшаться, сталь начинает частично расплавляться. Эти соли легко смываются с поверхности. Их используют для охлаждения и главным образом для отпуска.


Однако изделия из ванны, содержащей соль с концентрацией цианистого натрия более чем 10%, нельзя непосредственно помещать в соляную ванну, содержащую селитру. В такие ванны строго запрещено подмешивать органические вещества и особенно цианистые соединения, так как такие смеси являются взрывоопасными.

Большинство солей, применяемых для нагрева деталей, содержит различные отравляющие вещества.

Если на поверхность изделия наносится износостойкое покрытие, то технологический процесс должен предусматривать операцию окончательной подготовки поверхности, которая включает в себя:

  • предварительное обезжиривание с использованием высокотоксичных трихлорэтилена или четыреххлористого углерода;
  • ультразвуковую очистку с использованием соды и фосфорнокислого натрия;
  • промывку в питьевой и дистиллированной воде;
  • промывку в спирте с ацетоном.

Из вышесказанного следует, что технологический процесс термической обработки в соляных ваннах исключительно сложен, трудоемок и характеризуется высокой токсичностью.

Кроме того, повышенная скорость нагрева изделий в смеси солей приводит к возникновению высокого градиента температур между поверхностью и сердцевиной, что в свою очередь определяет высокий уровень термических напряжений и, как следствие, — деформацию изделий. Высокая скорость нагрева обуславливает также разнозернистость структуры при аустенизации и последующей закалке. При обработке изделий в смеси солей практически невозможно избежать обезуглероживания и потери легирующих элементов в поверхностных слоях.


Структура участка инструмента с сильным обезуглероживанием поверхностного слоя и ярко выраженной разнозернистостью (светлая область).

Размеры печей с соляными ванными строго ограничены. Поэтому современная термическая обработка во избежание образования окалины и обезуглероживания инструментов большого размера сегодня уже не может обойтись без вакуумных устройств для термической обработки, либо использующих различные газообразные защитные среды.

Термическая обработка в вакуумных печах

К настоящему времени совершенствование и автоматизация вакуумного оборудования произвели, по существу, революцию в термической обработке.

Перечислим основные преимущества термической обработки в вакууме по сравнению с традиционными методами обработки:

  • высокая стабильность свойств обрабатываемых деталей от партии к партии, от детали к детали;
  • отсутствие обезуглероженного и обезлегированного слоя;
  • уменьшение деформаций;
  • отсутствие загрязнений окружающей среды и улучшение условий труда;
  • упрощение контроля и управления технологическим процессом;
  • высокая прослеживаемость параметров процесса.

Существенный недостаток один — высокие капиталовложения при закупке и вводе вакуумного оборудования в эксплуатацию.

В настоящее время термическая обработка инструмента из быстрорежущей стали осуществляется в основном в однокамерных горизонтальных вакуумных печах с закалкой в потоке инертного газа, в том числе под избыточным давлением.

Наибольшей популярностью у мелких и средних предприятий машиностроительного комплекса пользуются конструкции однокамерных печей, в которых можно осуществлять полный цикл термической обработки в автоматическом режиме без промежуточного извлечения садки из рабочей камеры. Это вакуумные печи с конвекционным нагревом и высоконапорным газовым охлаждением.

Термическая обработка в вакууме полностью защищает от окисления и обезуглероживания поверхность изделия и вызывает дегазацию садки. Прежде чем начинать предварительное нагревание и аустенизацию, целесообразно вакуумировать садку с деталями до 10-4–10-5 мбар, это позволит удалить оксидные пленки и защитит поверхность заготовок. При аустенизации же не рекомендуется высокий вакуум, так как это может способствовать испарению отдельных компонентов. Парциальное давление паров отдельных компонентов является значительным при термической обработке в обычном интервале температур. Давление паров таких компонентов, как Mn, Cr, Co при 1000°С составляет 10-2–10-4 мбар, что совпадает с используемыми в практике значениями давления вакуумных устройств. В таких условиях приходится считаться с возможностью испарения отдельных компонентов или при более высоких температурах сохранять вакуум в диапазоне 10-1–10-0 мбар.

При термической обработке в вакуумных печах необходимо очень строго соблюдать чистоту деталей. Детали перед термической обработкой следует тщательно очищать от загрязнений. Так, например, 1 мг масляных загрязнений при комнатной температуре и 10-5 мбар превращается в 14 м3 масляных паров, которые необходимо удалить из вакуумного пространства. Очень вредным является также наличие воды и прочих примесей (прилипшие частички алюминия, пластмасс, остатки кислот) — они могут причинить существенный вред.

Компрессионные вакуумные печи позволяют осуществлять нагрев изделий в вакууме, а закалку проводить в среде инертного газа под избыточным давлением, что позволяет:

  1. расширить возможности использования вакуумного оборудования для термической обработки изделий, изготовляемых из менее легированных сталей;
  2. проводя закалку в инертном газе под давлением обеспечивать чистую, неокисленную поверхность изделий, что в свою очередь дает возможность наносить защитные и упрочняющие покрытия без предварительной подготовки поверхности;
  3. за счет изменения давления автоматически регулировать скорость охлаждения садки, снижая величину деформаций изделий, обеспечивая оптимальные условия для структурных превращений.

За счет применения самых современных изоляционных материалов нагревательных элементов процесс обработки отличается высокой температурной однородностью и стабильностью.

В рабочей камере применяется конвективный нагрев, что также качественным образом оказывает влияние на равномерность и однородность нагрева. Нагретый газовый поток, проходя через садку, отдает ей тепло и обеспечивает быстрый и в тоже время равномерный нагрев в области низких температур.


В вакуумных печах с конвекционным нагревом и многоцелевой системой газового охлаждения предусмотрено использование добавочных термоэлементов, располагаемых в критических точках садки, для обеспечения автоматического контроля охлаждения выравниванием температуры по сечению перед мартенситным превращением. Укажем преимущества конвекционного нагрева перед нагревом без конвекции:

  • повышение на 30% скорости нагрева садки в интервале температур 20–800°С, что позволяет сокращать цикл термической обработки и экономить электроэнергию;
  • сокращение порядка 50% времени термической обработки изделий из быстрорежущей и штамповочной сталей;
  • уменьшение градиента температур между поверхностью изделия и сердцевиной;
  • снижение образование трещин, что связано с равномерностью прогрева изделия по сечению и снижением уровня термических напряжений;
  • возможность загрузки садки с минимальным расстоянием между деталями;
  • возможность проведения полного цикла термической обработки изделий без выгрузки садки из печи.

На конечный результат важную роль играет правильное формирование садки. Тонкостенные, нежесткие детали, которые в значительной степени восприимчивы к неравномерности нагревания и охлаждения, следует правильно размещать в рабочем пространстве печи. Необходимо избегать расположения таких деталей в непосредственной близости к нагревательным элементам и охлаждающим форсункам. В тоже время предпочтительнее вертикальное расположение деталей. Лучший эффект достигается путем вывешивания деталей, однако это решение не всегда приемлемо.

   

Условия аустенизации в вакуумной печи отличаются от условий аустенизации в соляных ваннах. Медленный и равномерный нагрев в вакуумных печах создает благоприятные условия для более полного растворения первичных карбидов и повышения легированности аустенита, при этом верхний предел закалочных температур можно понизить на 20–30°С и на 15–20% уменьшить разнозернистость в структуре быстрорежущей стали по сравнению с нагревом в соляной ванне. Продолжительность аустенизации в вакуумных печах, как правило, не превышает 25 минут в зависимости от поперечного сечения и плотности упаковки садки (выдержка выбирается из расчета 40–60 секунд на 1 мм сечения). В случае, когда инструмент нагревается в приспособлениях, время увеличивают на 15–20%.

Микроструктура закаленной быстрорежущей стали состоит из мартенсита, остаточного аустенита (до 30%) и большого количества первичных карбидов. Количество остаточного аустенита и положение точек начала и конца мартенситного превращения зависят от температуры перед закалкой.

Остаточный аустенит резко ухудшает режущие свойства, поэтому закаленный инструмент подвергают отпуску. После трехкратного отпуска при 560°С с выдержкой в течение часа количество остаточного аустенита уменьшается до 2–3% и ожидаемый уровень твердости 64–65 HRC.

   

Микроструктура быстрорежущей стали Р6М5 после полного цикла термической обработки в вакуумной печи

При термической обработке быстрорежущих сталей широко применяют обработку холодом. Закаленную сталь охлаждают до температур ниже точки конца мартенситного превращения этой стали, обычно это от минус 80 до минус 100°С. После обработки холодом, для снятия внутренних напряжений сталь подвергают однократному отпуску при температуре 560°С в течение часа. Обработку холодом следует проводить сразу после закалки, иначе произойдет стабилизация остаточного аустенита и последующий процесс трансформации будет либо затруднен, либо невозможен.

Аустенитная фаза в интервале температур 625-350°С чрезвычайно устойчива и в течение длительного времени не претерпевает изменений. Выдержка при охлаждении в этом интервале температур не изменяет положение точки начала мартенситного превращения и при последующем охлаждении устойчивость аустенита не отличается от обычной. Это обстоятельство позволяет проводить ступенчатую изотермическую закалку.


Кривая изотермического превращения аустенита

Применение изотермической закалки позволяет существенно уменьшить геометрические изменения деталей и возможность появления трещин, поскольку при этой закалке удается устранить возникшие ранее тепловые напряжения к моменту превращения аустенита, вследствие неравномерного охлаждения изделий по сечению, а резкое бездиффузионное мартенситное превращение заменяется более медленным диффузионным превращением в игольчатый троостит и частично в мартенсит.

До относительно недавнего времени эти процессы можно было реализовать при закалке в соленых ваннах. На сегодняшних день вакуумные технологии успешно применяются при обработке широкого спектра материалов, в том числе при термообработке матриц больших размеров и сечений, изготавливаемых из инструментальной стали и предназначенных для работы при высоких температурах.

Современные интерфейсы управления значительно облегчает работу на термообрабатывающем оборудовании. Контроль процесса охлаждения изделий позволяет управлять формированием микроструктуры, повышать их надежность и эксплуатационную стойкость. Вся информация о ходе процесса и состояния печи изображается на мониторе компьютера. Оператор имеет в своем распоряжении сведения, которые позволяют ему оперативно влиять на ход обработки, внося необходимые корректировки в технологический процесс.

Задавая программу, можно проводить полный цикл термической обработки в автоматическом режиме без промежуточного извлечения садки из нагревательной камеры. Например: ступенчатый нагрев → выдержка → изотермическая закалка → трехкратный отпуск.


Панель оператора вакуумной печи в рабочем режиме

При необходимости после извлечения садки из печи изделия можно сразу без подготовки поверхности помещать в установку для нанесения упрочняющих покрытий.

Выделим преимущества вакуумной термической обработки по сравнению с соляными ваннами:

  • отсутствие загрязнения окружающей среды;
  • повышение качества термической обработки за счет: получения высоких стабильных свойств; более равномерного прогрева изделий по сечению, что снижает термические напряжения и уменьшает величину деформаций; медленного нагрева в интервале аустенитного превращения, что создает условия для повышения легированности аустенита из-за более полного растворения карбидов, препятствует образованию разнозернистости и снижает верхний предел закалочных температур; отсутствия обезуглероженности и обезлерирования; получения чистой и светлой поверхности изделий;
  • снижение стоимости термической обработки за счет: устранения затрат, связанных с очисткой и промывкой изделий, а также с подготовкой поверхности для нанесения упрочняющих покрытий; экономии электроэнергии; автоматизации процесса; существенного улучшение условий труда; минимизации или полностью отсутствия влияния человеческого фактора; большей гибкости в эксплуатации (возможность использования оборудования для различных технологических процессов термической обработки, при необходимости совмещая операцию отпуска с нанесением упрочняющих покрытий или например, проведение после закалки криогенной обработкой с последующим отпуском).

Значимость вакуумной термической обработки и необходимого для нее оборудования непрерывно повышается. Качественная термообработка современного инструмента имеет ключевое значение в обрабатывающей промышленности. На сегодняшний день вакуумные газонапорные печи по скорости охлаждения не уступают скорости масляной закалки, делая процесс обработки экологически чистым, экономически эффективным. Вакуумные газонапорные печи являются значимой альтернативой по отношению к большинству атмосферных технологий термообработки и масляной закалки.


Интенсивность охлаждения закалочных сред

Автор статьи
Новиков Денис Владимирович
Специалист по термическому оборудованию ГК «Финвал»

Улучшение стали 40х твердость

Физические свойства материалов могут быть изменены посредством температурной обработки при высокой степени нагрева и последующего охлаждения. Это в первую очередь касается металлов, которые подвергают закалке. Чтобы правильно закалить сталь, нужно знать ее марку: она отражает полный химический состав твердого вещества. Так, проведение термообработки стали 40х имеет свои нюансы, связанные с разновидностью примесей, находящихся в ней.

Если брать точное определение типа стали, к которой относится 40х, то это классический вид легированного материала, где процентное содержание углерода уступает процентному содержанию примеси хрома. Этих элементов здесь от 0.44 до 0.36 и от 1.1 до 0.8 соответственно. Хром в металле способствует его стойкости к агрессивной окисляющей среде и придает ему способность не ржаветь. Кроме этого, хром влияет на механические показатели стали 40х, переводя ее в разряд конструкционных.

Особенности процесса закалки стали 40х

Особенности стали 40х, как указано выше, определяются богатым содержанием в ней примесей. Среди них, кроме основных рассмотренных, есть медь, марганец, никель, кремний, сера и фосфор. Все эти элементы в некотором смысле усложняют обработку такого металла, в том числе и термическую. Так, чтобы достичь нужной пластичности при закалке стали 40х, необходимо обеспечить сильный прогрев ее в муфельной печи до заданных температур. Остужать материал также нужно в определенном режиме для достижения необходимой твердости структуры.

Так как сталь 40х используется при изготовлении деталей ответственных механизмов: шестерней, валов, реек, осей, втулок и болтов, – точности процесса ее закалки уделяют особое внимание.

Что нужно знать о материале, подбирая конкретный режим термообработки:

  1. Твердость металла в исходном состоянии, выраженная в мегапаскалях — HB 10-1 = 217.
  2. Температура так называемых точек критического значения. Это показатели нагрева до определенных градусов, после чего сталь 40х может потерять свои положительные качества: Ar1 = 693, Ar3(Arcm) = 730, Ac3(Acm) = 815, c1 = 743.
  3. Если температуру отпуска принять равной 200 градусов по Цельсию, то показатель твердости HB будет равен 552 МПа.

Закалка стали 40х однозначно ведет к увеличению ее твердости и снижению показателя пластичности. Но процентное соотношение этих показателей для такого металла будет зависеть от следующих факторов:

  1. Время, за которое будет нагрета деталь до заданной температуры, влияет на общие показатели скорости термической обработки.
  2. Интервал выдержки металла в разогретом состоянии. От этого показателя зависит равномерность прогрева всей структуры металла и приведение каждого звена кристаллической решетки в подвижное состояние.
  3. Скорость, с которой заготовка подвергается охлаждению. Важный параметр при формировании новой кристаллической решетки.

Оптимальный режим термической обработки

Существуют специальные таблицы, где указаны рекомендуемые температуры термической обработки стали 40х для достижения тех или иных свойств металла относительно его твердости и пластичности, ударной вязкости и других показателей. Если проводить операцию закалки не в производственных, а в домашних условиях, то здесь оптимальными режимами процесса будут следующие:

  1. Электропечь прогревают до температуры, близкой к 860 градусам по Цельсию. При стандартной мощности печи по времени это занимает около 40 минут.
  2. Время выдержки заготовки в камере принимают равным 10–15 минутам. Визуально цвет стали 40х должен приобрести однородный желтый оттенок.
  3. Для охлаждения чаще используют масляную среду, реже — воду.

Более точно рассчитать время нагрева изделия из металла можно, используя правило: на каждый кубический миллиметр нужно давать от 1.5 до 2 минут пребывания детали внутри камеры электропечи.

Как показала практика, для стали 40х наиболее эффективный способ закаливания — при разогревании металла токами высокой частоты (ТВЧ). Такой прогрев характеризуется быстрым достижением заданной температуры, а также улучшенными показателями прочности изделия при эксплуатации.

Отпуск и нормализация

Чтобы в структуре стали не образовывались микротрещины, технологией процесса предусмотрена операция отпуска после закалки. На этом этапе изделие разогревают до температуры, которая имеет более низкое значение, чем температура критической точки. Здесь также происходит выдержка материала в течение определенного интервала времени в таком состоянии. Далее следует охлаждение изделия. Все внутренние напряжения после проведения этих мероприятий нейтрализуются, структура кристаллической решетки улучшается, пластичность увеличивается.

Для марки стали 40х можно применить три вида отпуска:

  1. Отпуск на низких температурах предполагает прогрев детали до предела 250 градусов по Цельсию с выдержкой. Остужают заготовку на открытом воздухе. Термообработка такого характера способствует нейтрализации напряжений при минимальном увеличении пластичности без влияния на твердость. Используется метод редко, так как велика вероятность образования хрупкой структуры.
  2. Отпуск на средних температурах. Прогрев здесь идет до 500 градусов по Цельсию. За счет более высокой температуры возрастает вязкость изделия с пропорциональным снижением твердости. Метод подходит для изготовления автомобильных рессор, пружин, другого специфического инструмента.
  3. Отпуск на высоких температурах с увеличением прогрева до 600 градусов по Цельсию. В этом случае внутри кристаллической решетки распадается мартенсит, образуя при этом сорбит. На практике это лучший вариант пропорционального соотношения пластичности и твердости. Ударная вязкость при этом также возрастает. Детали, полученные таким образом, можно применять в механизмах, подверженных воздействию ударных нагрузок.

Чтобы избежать повышенной хрупкости при отпуске, охлаждение при этом процессе следует делать быстро в специальной вакуумной камере с системой продувки аргоном. Последние два условия помогут избежать возникновения внутренних дефектов в структуре материала, а именно образования раковин, полостей и деформаций.

Если после закаливания сталь 40х разогреть до критической точки, выдержать и охладить на воздухе, то внутренняя структура получит мелкозернистое строение – этот процесс носит наименование нормализация. Ее задача — повысить ударную вязкость металла и его пластичность.

Свойства стали после закалки

Если термическая обработка стали 40х (закалка и отпуск) проведены правильно, в соответствии с ГОСТ 4543–71, который регламентирует такие работы, то металл приобретает следующие свойства:

  1. Твердость повышенного характера с показателями НВ около 217.
  2. Прочность с пределом при разрыве 980 Н/м².
  3. Вязкость ударную 59 Дж/см².

Кроме всего прочего, закаленный металл лучше поддается ручной сварке при помощи дуги и электрошлаковой сварке.

Уважаемые посетители сайта: специалисты – технологи по закалке металла и все, кто не понаслышке сталкивался с вопросом термообработки стали 40х, – поделитесь своими знаниями в комментариях, поддержите тему! Всегда важно знать мнение профессионалов!

Запрос «улучшение» перенаправляется сюда, возможно, следует где-либо изложить более общее значение этого слова. См. также слово «улучшение» в Викисловаре.

Улучше́ние — комплексная термическая обработка металлов, включающая в себя закалку и последующий высокий отпуск.

Описание [ править | править код ]

В результате закалки сталей чаще всего получают структуру мартенсита с некоторым количеством остаточного аустенита, иногда — структуру сорбита, троостита или бейнита. Мартенсит имеет высокую прочность, твёрдость, низкую пластичность, при обработке разрушается из-за хрупкости. Структура мартенсита неравновесная, имеются остаточные напряжения. Высокий отпуск (нагрев до температуры на 20—40° ниже точки Ас1 диаграммы «Железо-цементит») и выдержка при температуре 450..700 [1] °C приводят к уменьшению внутренних напряжений за счёт распада мартенсита закалки и образования сорбита отпуска. В результате отпуска снижаются твёрдость 270…320 HB [1] и прочность; повышаются пластичность и ударная вязкость. При отсутствии требований к ударной вязкости и пластичности, применяется более экономичный способ термической обработки — нормализация.

Машиностроение, приборостроение, станкостроение и другие области промышленности в процессе производства используют огромное количество материалов как классических, известных десятки и сотни лет, так и совершенно новых, современных. К числу классических и широко распространенных материалов относится сталь. Классификация сталей по химическому составу предусматривает их разделение на легированные (с введением легирующих элементов, обеспечивающих сплаву необходимые механические и физические свойства) и углеродистые.

Сталь 40х относится к конструкционным легированным сплавам. Слово «конструкционная» указывает на то, что материал используется для изготовления разнообразных механизмов, конструкций и деталей, применяемых в машиностроении и строительстве, и обладает определенным набором химических, физических и механических свойств.

Химический состав

Цифра 40 в маркировке свидетельствует о том, что процентное содержание углерода в сплаве колеблется в пределах от 0.36 до 0.44, а буквенное обозначение х указывает на наличие легирующего элемента хрома в количестве не менее 0.8 и не более 1.1 процента. Легирование стали хромом придает ей свойство устойчивости к коррозии в окислительной среде и атмосфере. Говоря другими словами, сталь приобретает нержавеющие свойства. Кроме того, хром определяет структуру сплава, его технологические и механические характеристики.

Остальные химические элементы входят в состав стали х 40 в следующем количестве:

  • не более 97% железа;
  • 0,5 – 0,8% марганца;
  • 0,17 – 0,37% кремния;
  • не более 0,3% меди;
  • не более 0,3% никеля;
  • не более 0,035% фосфора;
  • не более 0,035% серы.

Физические характеристики

Почти все физические свойства металлов прямо или обратно пропорционально зависят от температуры. Такие показатели, как удельное сопротивление, коэффициент линейного расширения и удельная теплоемкость возрастают с ростом температуры, а плотность стали, ее модуль упругости и коэффициент теплопроводности, наоборот, падают при увеличении температуры.

Еще одна физическая характеристика, называемая массой, не зависит практически ни от чего. Образец можно подвергать термической обработке, охлаждать, обрабатывать, придавать ему различную форму, а масса при этом будет оставаться величиной неизменной.

Физические показатели всех известных марок отечественных сталей и сплавов, в том числе и описываемой марки, сведены в таблицы и размещены в справочниках по металловедению.

Влияние термической обработки на качество

Сталь в исходном состоянии представляет собой довольно пластичную массу и поддается обработке путём деформирования. Ее можно ковать, штамповать, вальцевать.

Для изменения механических свойств и достижения необходимых качеств применяется термическая обработка металла. Суть термической или тепловой обработки заключается в применении совокупности операций по нагреву, выдержке и охлаждению твердых металлических сплавов. В результате такой обработки сплав изменяет свою внутреннюю структуру и приобретает определенные, необходимые производителю и потребителю, свойства.

Критические точки

Критические точки — это температуры, при которых изменяется структура стали и ее фазовое состояние. Вычислены в 1868 году русским металлургом и изобретателем Дмитрием Константиновичем Черновым, поэтому иногда их называют точками Чернова.

Обозначают такие точки буквой А. Нижняя точка А1 соответствует температуре, при которой аустенит превращается в перлит при охлаждении или перлит в аустенит при нагреве. Точка А3 — верхняя критическая точка, соответствующая температуре, при которой начинается выделение феррита при охлаждении или заканчивается его растворение при нагреве.

Если критическая точка определяется при нагреве, то к букве «А» добавляется индекс «с», а при охлаждении — индекс «r».

Для данной стали определена следующая температура критических точек:

Алгоритм термообработки стали и сплавов:

  • отжиг:
  • закалка;
  • отпуск;
  • нормализация;
  • старение;
  • криогенная обработка.

Термообработка для стали 40х. Характеристика температурного режима в соответствии с требованиями ГОСТ 4543–71:

  • закалка стали 40х в масляной среде при температуре 860*С;
  • отпуск в воде или масле при температуре 500*С.

В результате такой термической обработки данная сталь приобретает повышенную твердость (число твердости НВ не более 217), высокий предел прочности при разрыве (980 Н/м2) и ударную вязкость 59 Дж/см2.

Предел текучести

Говоря о механических свойствах, нужно обязательно упомянуть о такой важной характеристике, как предел текучести. Если приложенная нагрузка слишком велика, то конструкция или ее детали начинают деформироваться и в металле возникают не упругие (полностью исчезающие, обратимые), а пластические (необратимые остаточные) деформации. Говоря другими словами, металл «течет».

Предел текучести — это граница между упругими и упругопластическими деформациями. Значение предела текучести зависит от множества факторов: режима термической обработки, наличия примесей и легирующих элементов в стали, микроструктуры и типа кристаллической решетки, температуры.

В металловедении различают понятия физического и условного предела текучести.

Физический предел текучести — это такое значение напряжения, при котором деформация испытываемого образца увеличивается без увеличения приложенной нагрузки. В справочниках эта величина обозначается σт и для марки 40х ее значение не менее 785 Н/мм2 или 80 КГС/мм2.

Следует отметить, что пластические (необратимые) деформации появляются в металле не мгновенно, а нарастают постепенно, с увеличением приложенной нагрузки. Поэтому, с точки зрения технологии, уместнее применение термина «условный (технический) предел текучести».

Условным (или техническим) пределом текучести называется напряжение, при котором опытный образец получает пластическое (необратимое) удлинение своей расчетной длины на 0.2%. В таблицах эта величина обозначается как σ 0,2 и для стали 40х составляет:

  • при температуре от 101 до 200*С — 490 МПа;
  • при температуре от 201 до 300*С — 440 МПа;
  • при температуре от 301 до 500*С — 345 МПа.

Технологические характеристики

Подводя итог, можно охарактеризовать сталь 40х как твердый и прочный материал, выдерживающий большие нагрузки без разрушений. ПК числе положительных свойств относятся:

  • устойчивость к температурным колебаниям;
  • отличные коррозионные свойства;
  • высокие показатели прочности.

Наряду с этими качествами, у данного материала есть, к сожалению, и недостатки. К ним относятся:

  • трудности при сваривании;
  • склонность к отпускной хрупкости;
  • чувствительность к образованию флокенов.

После подогрева с последующей термообработкой описываемая сталь поддается ручной дуговой сварке (РДС) и электрошлаковой сварке (ЭШС). Если применяется контактная точечная сварка (КТС), то необходима последующая термическая обработка.

Медленное охлаждение конструкционной легированной стали 40х после отпуска приводит к ее хрупкости. Этот недостаток отсутствует при быстром охлаждении, но в этом случае могут возникнуть внутренние напряжения, вызывающие деформацию.

Флокеночувствительность — это склонность металла к образованию внутренних дефектов (полостей и трещин), так называемых флокенов. Для устранения этого недостатка сплав вакуумируют в ковше с одновременной продувкой аргоном и электродуговым подогревом.

Сталь 40х производится и поставляется на рынок в следующем виде:

  • сортовой прокат (в том числе фасонный) по ГОСТам 4543−71, 2591−2006, 2590−2006, 10702−78 и 2879−2006;
  • серебрянка и шлифованный пруток по ГОСТу 14955−77;
  • пруток калиброванный по ГОСТам 8559−75, 7417−75, 1051−73 и 8560−78;
  • полоса по ГОСТам 82−70, 103−2006 и 1577−93;
  • трубы по ГОСТам 13663−86, 8731−74, 8733−74;
  • поковки по ГОСТу 8479−70;
  • лист толстый по ГОСТам 19903−74и1577−93.

Известно достаточное количество отечественных (40ХР, 40ХС, 40ХН, 40ХФ, 38ХА, 45Х) и зарубежных аналогов описываемой марки стали.

Область применения

Благодаря своим свойствам сталь 40х широко применяется в различных областях промышленности. Ее используют при изготовлении кулачковых и коленчатых валов, осей и полуосей, штоков, плунжеров, вал-шестерней, шпинделей, колец, оправок, болтов, реек, втулок и других деталей, к прочности которых предъявляются повышенные требования. Также используется эта сталь для изготовления конструкций, эксплуатируемых в условиях низких температур внешней среды, например, при сооружении авто- и железнодорожных мостов в северных широтах.

Закалка, закалка, отпуск в Metlab of Wyndmoor PA.

(нажмите на миниатюру, чтобы увеличить)

Закалка металла / Закалка металла / Закалка металла

Три больших комплекта подшипников извлекаются из печи Metlab диаметром 180 дюймов и высокой науглероживанием 156 дюймов после температуры закалки (1550 ° F) для последующей закалки в горячее масло с перемешиванием. Детали были науглерожены до глубины корпуса более 0,200 дюймов ECD. Вес приспособления и компонентов составляет около 40 000 фунтов.

Закалка металлов | Закалка металлов | Закалка металлов | Удобства

Закалка металла

Использование этой обработки приведет к улучшению механических свойств, а также к повышению уровня твердости, в результате чего изделие станет более жестким и долговечным. Сплавы нагреваются выше критической температуры превращения материала, затем охлаждают достаточно быстро, чтобы мягкий исходный материал превратился в гораздо более твердую и прочную структуру.Сплавы могут охлаждаться на воздухе или охлаждаться закалкой в ​​масле, воде или другой жидкости, в зависимости от количества легирующих элементов в материале. Затвердевшие материалы обычно подвергаются отпуску или снятию напряжений для улучшения их размерной стабильности и ударной вязкости.

Стальные детали часто требуют термической обработки для получения улучшенных механических свойств, таких как повышение твердости или прочности. Процесс закалки состоит из нагрева компонентов выше критической (нормализационной) температуры, выдержки при этой температуре в течение одного часа на дюйм толщины, охлаждения со скоростью, достаточно быстрой, чтобы позволить материалу преобразоваться в гораздо более твердую и прочную структуру, а затем отпуск. .Сталь по существу представляет собой сплав железа и углерода; другие стальные сплавы содержат в растворе другие металлические элементы. Нагревание материала выше критической температуры приводит к переходу углерода и других элементов в твердый раствор. Закалка «замораживает» микроструктуру, вызывая напряжения. Затем детали подвергаются отпуску для преобразования микроструктуры, достижения соответствующей твердости и устранения напряжений.


Закалка металла

Материал нагревается до подходящей температуры, а затем закаливается в воде или масле для затвердевания до полной твердости в зависимости от типа стали.

Материал нагревают до температуры, подходящей для затвердевания, затем быстро охлаждают, погружая горячую часть в воду, масло или другую подходящую жидкость, чтобы преобразовать материал в полностью затвердевшую структуру. Закаленные детали обычно должны быть выдержаны, отпущены или сняты напряжения для достижения надлежащей ударной вязкости, окончательной твердости и стабильности размеров.

Сплавы могут охлаждаться на воздухе или охлаждаться закалкой в ​​масле, воде или другой жидкости, в зависимости от количества легирующих элементов в материале и конечных механических свойств, которые должны быть достигнуты.Закаленные материалы подвергаются отпуску для повышения их размерной стабильности и прочности.


Закалка металла

Отпуск проводится для достижения требуемого сочетания твердости, прочности и вязкости или для уменьшения хрупкости полностью закаленных сталей. Стали никогда не используются в закаленном состоянии. Комбинация закалки и отпуска важна для изготовления прочных деталей.

Эта обработка следует за закалкой или охлаждением на воздухе.Отпуск обычно считается эффективным для снятия напряжений, вызванных закалкой, в дополнение к снижению твердости до определенного диапазона или соблюдению определенных требований к механическим свойствам.

Отпуск – это процесс повторного нагрева стали при относительно низкой температуре, приводящий к выделению и сфероидизации карбидов, присутствующих в микроструктуре. Температура и время отпуска обычно контролируются для получения конечных свойств, требуемых от стали.В результате получается компонент с соответствующим сочетанием твердости, прочности и вязкости для предполагаемого применения. Отпуск также эффективен для снятия напряжений, вызванных закалкой.


Сооружения

Открытая или закрытая печь – закалка, отжиг, нормализация, обработка раствором и т. Д. До 2200 ° F

  • Шахтная печь – диаметр 144 дюйма, высота 96 дюймов
  • Шахтная печь – диаметр 180 дюймов, высота 156 дюймов
  • Шахтная печь (2) – диаметр 54 дюйма, высота 180 дюймов
  • Колокольные печи (4) – диаметр 72 дюйма на высоту 84 дюйма
  • Интегральные закалочные печи в масле – 24 x 36 x 24 дюйма в высоту, 18 x 24 x 18 дюймов в высоту
  • Печь с вращающимся подом и закалка под прессом – Детали диаметром до 16 дюймов
  • Вакуумная печь – 24 “О.D. x глубина 24 дюйма

наверх

Металлургия: повышение прочности стали

Когда мы приступим к изменению прочности и твердости стали, имейте в виду пару вещей. Во-первых, не путайте твердость с твердостью. Максимальная твердость стали зависит от содержания в ней углерода: больше углерода, больше твердость. С другой стороны, закаливаемость относится к количеству мартенсита, который образуется в микроструктуре во время охлаждения.

Во-вторых, стали с низкой закаливаемой способностью требуют быстрого охлаждения для преобразования мартенсита, в то время как стали с высокой закалкой образуют мартенсит при охлаждении на воздухе. Эти характеристики прокаливаемости важны, потому что они помогают определить, насколько сталь затвердеет во время сварки.

Мартенсит при отпуске

Мартенсит в состоянии «после закалки» обычно чрезвычайно хрупок и поэтому никому не подходит. Но отпускная термообработка может эффективно повысить пластичность и ударную вязкость при лишь незначительном или умеренном снижении прочности.

Вообще говоря, отпуск включает повторный нагрев закаленной стали до определенной температуры и выдержку при такой температуре в течение короткого времени перед охлаждением. Это увеличивает ударную вязкость (устойчивость к ударам или ударным нагрузкам) и снижает хрупкость, позволяя углю осаждаться на мельчайшие частицы карбида. Полученная микроструктура называется отпущенным мартенситом.

Соотношение между полученной твердостью и ударной вязкостью на самом деле является компромиссом, который контролируется с помощью определенного времени отпуска и температуры.Чем выше температура, тем мягче и жестче сталь. Я расскажу об этом более подробно позже в этой статье. Закалка и отпуск улучшают качество конструкционных сталей, сосудов под давлением и даже машин. Когда низколегированные стали подвергаются закалке и отпуску, результатом является высокий предел прочности на растяжение и предел текучести, а также улучшенная ударная вязкость, особенно по сравнению с горячекатаной, нормализованной или отожженной сталью.

Упрочнение металлов

Есть четыре способа увеличить прочность металла:

  1. Холодная обработка
  2. Закалка твердым раствором
  3. Трансформационное упрочнение
  4. Осадочное упрочнение

В то время как дисперсионное упрочнение является эффективным способом развития высокой прочности и твердость некоторых сталей, это чаще всего применение алюминиевого сплава и немного сложнее, чем другие, поэтому я расскажу об этом в следующей статье.

Холодная обработка металла деформирует и напрягает его кристаллические структуры, вызывая деформационное упрочнение металла. Сталеплавильные заводы производят холодную обработку стали, пропуская ее вперед и назад через ролики со сталью при температуре ниже пластического состояния. Это искажает зернистую структуру стали, что увеличивает ее твердость и предел прочности при одновременном снижении пластичности. Этим занимаются и производители листового металла и молоткообразователи. После того, как кусок закаленного листового металла или алюминия некоторое время обрабатывается молотком, он начинает становиться твердым и хрупким, поэтому вам может потребоваться снова закалить его, чтобы иметь возможность продолжать работу без трещин и расколов.

Закалка в твердом растворе воздействует на кристаллическую структуру металла за счет добавления легирующих металлов, которые с трудом вписываются в кристаллическую решетку основного металла. Это дополнительное напряжение увеличивает прочность на разрыв и снижает пластичность.

Трансформационное упрочнение – это цикл термообработки с закалкой и отпуском, о котором говорилось ранее в этой статье. Он используется для регулировки прочности и пластичности в соответствии с требованиями конкретного применения. Существует три этапа трансформационного упрочнения:

  1. Заставить сталь стать полностью аустенитной, нагревая ее на 50-100 градусов по Фаренгейту выше температуры превращения A 3 -A см (из диаграммы железо-углерод этой стали).Это называется аустенизацией.
  2. Закалка стали; то есть охладить его так быстро, чтобы равновесные материалы перлит и феррит (или перлит и цементит) не могли образоваться, и единственное, что осталось, – это мартенсит переходной структуры. Идея состоит в том, чтобы получить 100-процентный мартенсит.
  3. Уменьшите хрупкость за счет отпуска мартенситной стали, что требует ее нагрева, но при этом поддерживает температуру ниже A1. Обычно это означает, что температура составляет от 400 до 1300 градусов по Фаренгейту, что позволяет некоторой части мартенсита превращаться в перлит и цементит.Затем дайте изделию медленно остыть на воздухе.

При правильной термообработке и выборе стали с нужным количеством углерода вы можете получить практически любую комбинацию твердости и пластичности, отвечающую конкретным требованиям. Помните, что чем больше образуется перлита и цементита, тем более пластичной и менее хрупкой будет сталь. И наоборот, большее количество мартенсита означает меньшую пластичность, но большую твердость.

Одна тема, которую я до сих пор игнорировал, – это изменения структуры зерен во время дисперсионного твердения.Размер зерна стали зависит от температуры аустенизации. Когда сталь, которая будет превращаться, нагревается до температуры, немного превышающей ее A 3 , а затем охлаждается до комнатной температуры, происходит измельчение зерна. Мелкий размер зерна обеспечивает лучшую вязкость и пластичность.

Температуры аустенизации выше 1800 градусов по Фаренгейту обычно вызывают крупнозернистую структуру аустенитного зерна, и эти крупнозернистые стали обычно уступают мелкозернистым сталям с точки зрения прочности, пластичности и ударной вязкости.Стальные поковки и отливки часто нормализуют специально для улучшения структуры их зерен.

Как сварка влияет на упрочнение

Должно быть очевидно, что иногда для правильного упрочнения металла требуется очень много. Итак, насколько сильно вы влияете на всю эту работу, когда свариваете вместе два куска закаленной стали? Это зависит.

Во-первых, осознайте, что не только сварное соединение, но и вся зона термического влияния (HAZ) подвержена влиянию тепла при сварке.Определяемая как часть основного металла, механические свойства или микроструктура которой были изменены теплом сварки, пайки, пайки или термической резки, ЗТВ иногда может быть довольно большой.

Во-вторых, это зависит от того, какая форма усиления была использована. Например, механически упрочненные металлы рекристаллизуются и существенно размягчаются в ЗТВ. Металлы, закаленные на твердый раствор, будут иметь небольшой рост зерна рядом с линией плавления, но обычно это всего несколько зерен в ширину и мало влияет на свойства металла.

Трансформационно-упрочненные сплавы с достаточной способностью к упрочнению для образования мартенсита или с образованием мартенсита во время предыдущей термообработки реагируют так же, как твердый металл, упрочненный на твердый раствор: по сравнению с другими методами упрочнения ЗТВ мало изменяется, за исключением небольшого роста зерен при плавлении. линия. Металлы, упрочненные осадком, претерпевают некоторые сложные изменения, но результат аналогичен металлам, подвергнутым механической закалке: основной металл в ЗТВ проходит цикл отжига и размягчается.

Это охватывает основы методов упрочнения металла и их влияние на микроструктуру металла.В следующий раз мы подробнее рассмотрим, как сварка влияет на закаленные металлы и что вы можете сделать, чтобы уменьшить эти эффекты, а затем мы перейдем к сварке в металлургии.

3.7.1.2 Упрочняющие обработки стали

Упрочняющие обработки можно сгруппировать в три категории, как показано в таблице 3-6.

Таблица 3-6 Обработка стали для закалки

Назначение

Процесс Процесс
Повысить твердость по всей поверхности Поковка со сквозной закалкой Нагреть до аустенитной фазы и закалить всю поковку
Только закаленная поверхность Локальная индукционная закалка Контроль нагрева так, чтобы аустенитной была только поверхность, и закалка
Только закаленная поверхность Цементная закалка Сфероидизация: нагревание чуть ниже критической точки или чуть выше и медленное охлаждение (5.5 ° C или 10 ° F в час) через критическую точку.

Ниже приводится краткое описание шести обычно используемых процессов термообработки углеродистых и легированных сталей. Следует проконсультироваться с квалифицированным поставщиком термообработки, чтобы определить подходящий оптимальный процесс термообработки для каждого применения.

  • Закалка и отпуск: закалка в подходящей среде от температуры аустенизации, обычно от 845 до 925 ° C (от 1550 до 1700 ° F), и повторный нагрев для достижения желаемой твердости.
    Науглероживание: добавление углерода к поверхности стали в печи с контролируемой атмосферой для увеличения предельной твердости, обычно до глубины от 0,5 до 1,0 мм (от 0,020 до 0,040 дюйма). Процесс сопровождается закалкой и отпуском.
  • Азотирование: добавление азота в печи с контролируемой атмосферой для образования нитридов в стали, которая развивает очень высокую твердость и превосходную износостойкость. Глубина корпуса обычно составляет несколько сотых миллиметра (несколько тысячных долей дюйма).За процессом следует закалка, а иногда и отпуск.
    Карбонитрирование: добавление углерода и азота в печи с контролируемой атмосферой для оптимизации свойств до глубины, аналогичной науглероживанию. Процесс сопровождается закалкой и отпуском.
  • Аустенизация: нагрев до температуры аустенизации и охлаждение в контролируемых условиях для достижения сочетания пластичности и твердости с максимальной ударной вязкостью. Обычно применяется к довольно высоколегированным сталям.
    Закалка: нагрев до температуры аустенизации и закалка в расплаве соли. Процесс приводит к минимальному напряжению трансформации и применяется только к довольно высоколегированным сталям. За процессом следует закалка.

Вернуться к содержанию

множество ( ‘#markup’ => ‘

Закаливающие обработки можно сгруппировать в три категории, как показано в Таблице 3-6.

Таблица 3-6 Обработка стали для закалки

Назначение

Процесс Процесс
Повысить твердость по всей поверхности Поковка со сквозной закалкой Нагреть до аустенитной фазы и закалить всю поковку
Только закаленная поверхность Локальная индукционная закалка Контроль нагрева так, чтобы аустенитной была только поверхность, и закалка
Только закаленная поверхность Цементная закалка Сфероидизация: нагревание чуть ниже критической точки или чуть выше и медленное охлаждение (5.5 ° C или 10 ° F в час) через критическую точку.

Ниже приводится краткое описание шести обычно используемых процессов термообработки углеродистых и легированных сталей. Следует проконсультироваться с квалифицированным поставщиком термообработки, чтобы определить подходящий оптимальный процесс термообработки для каждого применения.

  • Закалка и отпуск: закалка в подходящей среде от температуры аустенизации, обычно от 845 до 925 ° C (от 1550 до 1700 ° F), и повторный нагрев для достижения желаемой твердости.
    Науглероживание: добавление углерода к поверхности стали в печи с контролируемой атмосферой для увеличения предельной твердости, обычно до глубины от 0,5 до 1,0 мм (от 0,020 до 0,040 дюйма). Процесс сопровождается закалкой и отпуском.
  • Азотирование: добавление азота в печи с контролируемой атмосферой для образования нитридов в стали, которая развивает очень высокую твердость и превосходную износостойкость. Глубина корпуса обычно составляет несколько сотых миллиметра (несколько тысячных долей дюйма).За процессом следует закалка, а иногда и отпуск.
    Карбонитрирование: добавление углерода и азота в печи с контролируемой атмосферой для оптимизации свойств до глубины, аналогичной науглероживанию. Процесс сопровождается закалкой и отпуском.
  • Аустенизация: нагрев до температуры аустенизации и охлаждение в контролируемых условиях для достижения сочетания пластичности и твердости с максимальной ударной вязкостью. Обычно применяется к довольно высоколегированным сталям.
    Закалка: нагрев до температуры аустенизации и закалка в расплаве соли. Процесс приводит к минимальному напряжению трансформации и применяется только к довольно высоколегированным сталям. За процессом следует закалка.

Вернуться к содержанию

‘, ‘#printed’ => правда, ‘#type’ => ‘разметка’, ‘#pre_render’ => множество ( 0 => ‘drupal_pre_render_markup’, 1 => ‘ctools_dependent_pre_render’, ), ‘#children’ => ‘

Закаливающие средства можно сгруппировать в три категории, как показано в Таблице 3-6.

Таблица 3-6 Обработка стали для закалки

Назначение

Процесс Процесс
Повысить твердость по всей поверхности Поковка со сквозной закалкой Нагреть до аустенитной фазы и закалить всю поковку
Только закаленная поверхность Локальная индукционная закалка Контроль нагрева так, чтобы аустенитной была только поверхность, и закалка
Только закаленная поверхность Цементная закалка Сфероидизация: нагревание чуть ниже критической точки или чуть выше и медленное охлаждение (5.5 ° C или 10 ° F в час) через критическую точку.

Ниже приводится краткое описание шести обычно используемых процессов термообработки углеродистых и легированных сталей. Следует проконсультироваться с квалифицированным поставщиком термообработки, чтобы определить подходящий оптимальный процесс термообработки для каждого применения.

  • Закалка и отпуск: закалка в подходящей среде от температуры аустенизации, обычно от 845 до 925 ° C (от 1550 до 1700 ° F), и повторный нагрев для достижения желаемой твердости.
    Науглероживание: добавление углерода к поверхности стали в печи с контролируемой атмосферой для увеличения предельной твердости, обычно до глубины от 0,5 до 1,0 мм (от 0,020 до 0,040 дюйма). Процесс сопровождается закалкой и отпуском.
  • Азотирование: добавление азота в печи с контролируемой атмосферой для образования нитридов в стали, которая развивает очень высокую твердость и превосходную износостойкость. Глубина корпуса обычно составляет несколько сотых миллиметра (несколько тысячных долей дюйма).За процессом следует закалка, а иногда и отпуск.
    Карбонитрирование: добавление углерода и азота в печи с контролируемой атмосферой для оптимизации свойств до глубины, аналогичной науглероживанию. Процесс сопровождается закалкой и отпуском.
  • Аустенизация: нагрев до температуры аустенизации и охлаждение в контролируемых условиях для достижения сочетания пластичности и твердости с максимальной ударной вязкостью. Обычно применяется к довольно высоколегированным сталям.
    Закалка: нагрев до температуры аустенизации и закалка в расплаве соли. Процесс приводит к минимальному напряжению трансформации и применяется только к довольно высоколегированным сталям. За процессом следует закалка.

Вернуться к содержанию

‘, )

4 типа термической обработки стали

В нашем последнем сообщении в блоге мы рассмотрели три этапа термообработки, которые включают нагрев металла до заданной температуры (этап нагрева), поддержание его при этой температуре в течение определенной длины. времени (стадия выдержки) и охлаждения до комнатной температуры с помощью метода, который зависит от типа металла и желаемых свойств (стадия охлаждения).В этом посте мы рассмотрим четыре основных типа термической обработки стали, которой сегодня подвергается: отжиг, нормализация, закалка и отпуск.

Позвольте нам удовлетворить ваши потребности в термообработке

Kloeckner работает с рядом партнеров по термообработке стали, чтобы предоставить нашим клиентам качественные детали, соответствующие их спецификациям. Мы предлагаем термически обработанные изделия под ключ из нашего общенационального склада листового, пруткового и листового проката.

Сталь для термической обработки: отжиг

Целью отжига является обратное закалке.Вы отжигаете металлы, чтобы снять напряжение, смягчить металл, повысить пластичность и улучшить структуру их зерен.

Без соответствующей стадии предварительного нагрева сварка может привести к получению металла с неравномерной температурой, даже с расплавленными участками рядом с участками, имеющими комнатную температуру. В таких условиях сварка может сделать металл более слабым: по мере охлаждения сварного шва, наряду с твердыми и хрупкими пятнами, возникают внутренние напряжения. Отжиг – это один из способов решения таких распространенных проблем и снятия внутренних напряжений.

Отжиг стали

Для отжига сталей и других черных металлов для получения наивысшего уровня пластичности необходимо медленно нагреть металл до соответствующей температуры, замочить его, а затем дать ему медленно остыть, либо закопав его в какой-либо изоляционного материала или просто выключив печь и давая печи и детали медленно остыть вместе.

Время, в течение которого металл впитается, зависит как от его типа, так и от его массы. Если это низкоуглеродистая сталь, для нее потребуется максимально возможная температура отжига, а по мере увеличения содержания углерода температура отжига будет снижаться.Для получения дополнительной информации об отжиге вы можете просмотреть наше руководство по отжигу для более подробного объяснения.

Сталь для термической обработки: нормализация

Целью нормализации является удаление любых внутренних напряжений в результате термической обработки, механической обработки, ковки, формовки, сварки или литья. Разрушение металла может быть результатом неконтролируемого напряжения, поэтому нормализация стали перед закалкой может помочь обеспечить успех проектов.

В чем разница между отжигом и нормализацией?

Нормализация применяется только к черным металлам, таким как сталь.Но есть еще одно ключевое отличие в процессе термообработки: при нормализации, после того как металл нагревается до более высокой температуры, он охлаждается воздухом после извлечения из печи.

Нормализованная сталь прочнее отожженной стали. Обладая высокой прочностью и высокой пластичностью, она прочнее, чем отожженная сталь. Если металлическая деталь должна выдерживать удар или иметь максимальную ударную вязкость, чтобы противостоять внешним воздействиям, обычно рекомендуется нормализовать ее, а не отжигать.

Поскольку нормализованные металлы охлаждаются воздухом, масса металла является ключевым фактором, определяющим скорость охлаждения и полученный уровень твердости детали.Во время нормализации более тонкие кусочки будут быстрее остывать на воздухе и станут тверже, чем более толстые. Но при отжиге и его печном охлаждении твердость как толстых, так и тонких деталей будет сопоставимой.

Термообработка Сталь: Закалка

Закалка предназначена не только для закалки стали, но и для ее повышения. К сожалению, закаливание имеет не только плюсы. Хотя закалка действительно увеличивает прочность, она также снижает пластичность, делая металл более хрупким.После закалки металл может потребоваться отпустить, чтобы удалить часть хрупкости.

Для упрочнения большинства сталей вы должны использовать первые две стадии термообработки (медленное нагревание с последующей выдержкой в ​​течение определенного времени до однородной температуры), третий этап отличается. Когда вы закаливаете металлы, вы быстро охлаждаете их, погружая в воду, масло или рассол. Большинству сталей для закалки требуется быстрое охлаждение, называемое закалкой, но есть некоторые, которые можно успешно охлаждать на воздухе.

По мере добавления сплавов к стали скорость охлаждения, необходимая для ее упрочнения, снижается. В этом есть положительный момент: более низкая скорость охлаждения снижает риск растрескивания или деформации. Твердость углеродистой стали зависит от содержания в ней углерода: до 0,80% углерода способность к упрочнению увеличивается вместе с содержанием углерода. При превышении 0,8% вы можете повысить износостойкость за счет образования твердого цементита, но не можете повысить твердость.

Когда вы добавляете в сталь сплавы для повышения ее твердости, вы также увеличиваете способность углерода к упрочнению и упрочнению.Это означает, что содержание углерода, необходимое для получения наивысшего уровня твердости, в легированных сталях ниже, чем в простых углеродистых сталях. В результате легированные стали обычно обладают лучшими характеристиками, чем простые углеродистые стали. .

При закалке углеродистой стали ее необходимо охладить до температуры ниже 1000 ° F менее чем за одну секунду. Но как только вы добавляете в сталь сплавы и увеличиваете эффективность углерода, вы увеличиваете этот временной предел более чем на одну секунду. Это позволяет вам выбрать более медленную закалочную среду, чтобы получить заданную твердость.

Обычно углеродистые стали закаливают в рассоле или воде, а легированные стали закаливают в масле. К сожалению, закалка – это процесс, при котором возникает высокое внутреннее напряжение, и для разгрузки стали одним из вариантов является ее отпуск. Непосредственно перед тем, как деталь остынет, вы вынимаете ее из закалочной ванны при температуре 200 ° F и даете остыть на воздухе. Диапазон температур от комнатной до 200 ° F называется «диапазоном растрескивания», и вы не хотите, чтобы сталь в закалочной среде проходила через него.Читайте дальше, чтобы узнать больше о темперировании.

Сталь для термообработки: закалка

После закалки металла, будь то корпус или пламя, и создания внутренних напряжений после быстрого охлаждения, присущего процессу, сталь часто оказывается тверже, чем необходимо, и слишком хрупкой. Ответ может заключаться в отпуске стали для уменьшения хрупкости и снятия или снятия внутренних напряжений.

Во время отпуска вы:

  • Нагреваете сталь до заданной температуры ниже ее температуры закалки
  • Удерживаете сталь при этой температуре в течение определенного периода
  • Охлаждаете сталь, обычно на неподвижном воздухе

Если это звучит знакомо, ты прав! Закалка состоит из тех же трех этапов, что и термообработка.Основное отличие – это температура отпуска и ее влияние на твердость, прочность и, конечно же, пластичность.

При отпуске стальной детали снижается твердость, вызванная закалкой, и развиваются определенные физические свойства. Отпуск всегда следует за закалкой, и, хотя он снижает хрупкость, он также смягчает сталь. К сожалению, смягчение стали при отпуске неизбежно. Но степень потери твердости можно регулировать в зависимости от температуры во время отпуска.

В то время как другие процессы термообработки, такие как отжиг, нормализация и закалка, всегда включают температуры выше верхней критической точки металла, отпуск всегда проводится при температурах ниже ее.

При повторном нагреве закаленной стали вы начинаете отпуск при 212 ° F и продолжаете до тех пор, пока не достигнете критической точки. Чтобы выбрать желаемую твердость и прочность, вы можете установить температуру отпуска. Минимальная продолжительность отпуска должна составлять один час, если толщина детали меньше одного дюйма; если его толщина превышает один дюйм, вы можете добавить еще час на каждый дополнительный дюйм толщины.

Скорость охлаждения после отпуска не влияет на большинство сталей. После извлечения стальной детали из закалочной печи ее обычно охлаждают на неподвижном воздухе, как и в процессе нормализации. Но, как и во всех других процессах термообработки, есть некоторые отличия, которые выходят за рамки этого сообщения в блоге.

Если вас интересует отпуск, просто знайте, что отпуск снимает внутренние напряжения, возникающие при закалке, снижает хрупкость и твердость и может фактически повысить предел прочности закаленной стали при отпуске до температуры 450 ° F; при температуре выше 450 ° F прочность на разрыв снижается.

Kloeckner работает с рядом партнеров по термообработке стали, чтобы предоставить нашим клиентам качественные детали, соответствующие их спецификациям. Мы предлагаем термически обработанные изделия под ключ из нашего общенационального склада листового, пруткового и листового проката. Пожалуйста, свяжитесь с Kloeckner Louisville или позвоните по телефону (678) 259-8800 для получения информации о термообработке.

Позвольте нам удовлетворить ваши потребности в термообработке

Kloeckner работает с рядом партнеров по термообработке стали, чтобы предоставить нашим клиентам качественные детали, соответствующие их спецификациям.Мы предлагаем термически обработанные изделия под ключ из нашего общенационального склада листового, пруткового и листового проката.

Зачем закалять через закаленную сталь

Представьте, что вы воин средневековья и пора обзавестись новым мечом. Итак, вы идете к кузнецу, чтобы купить острый блестящий длинный меч. Несколько недель спустя вы участвуете в битве, сражаясь у стены щитов. Вы наносите огромный удар по врагу, который встречает ваш удар своим мечом, и ваш меч разваливается на несколько частей.К несчастью для вас, ваш кузнец передал партию мечей кузнецу на другом конце города, у которого не было времени закалить мечи. В результате мечи были крепкими, но хрупкими. Их недостаточная прочность означала, что они не могли поглотить большую часть удара до разрушения.

См. Курсы и вебинары по металлургии
Нужна помощь с вашим продуктом?

Результаты анализа отказов Закаленный мартенсит

Отпуск используется для повышения вязкости стали, подвергнутой сквозной закалке, путем ее нагрева до образования аустенита и последующей закалки до образования мартенсита.В процессе отпуска сталь нагревается до температуры от 125 ° C (255 ° F) до 700 ° C (1292 ° F). При этих температурах мартенсит разлагается с образованием частиц карбида железа. Чем выше температура, тем быстрее разложение в течение любого заданного периода времени. На микрофотографии показана сталь после значительного отпуска. Черные частицы представляют собой карбид железа.

Незакаленный мартенсит – прочный, твердый, хрупкий материал. Чем он прочнее и тверже, тем он хрупче.Прочность и твердость обусловлены упругой деформацией внутри мартенсита, которая является результатом слишком большого количества атомов углерода, находящихся в промежутках между атомами железа в мартенсите. По мере увеличения количества углерода в стали (примерно до 0,8 мас.% Углерода) прочность и твердость мартенсита возрастают.

В процессе отпуска атомы углерода выходят из пространств между атомами железа в мартенсите, образуя частицы карбида железа. Напряжение внутри мартенсита снимается, когда атомы углерода перемещаются между атомами железа в мартенсите.Это приводит к повышению ударной вязкости стали за счет снижения прочности.

Требуемый отпуск зависит от конкретного применения, в котором будет использоваться сталь. В некоторых случаях прочность не имеет значения, поэтому отпуск при низкой температуре в течение короткого периода времени является приемлемым. В случаях, когда требуется очень прочная и вязкая сталь, может использоваться высокоуглеродистая сталь, отпущенная при высокой температуре.

Более подробную информацию о термообработке стали можно найти в наших онлайн-курсах по запросу «Принципы металлургии или Металлургия термообработки стали». Книга Джорджа Краусса «Сталь: обработка, структура и характеристики» дает всестороннее обсуждение термической обработки стали.

Быстрая термическая обработка для повышения вязкости стали

Мартенситная сталь после закалки прочная, но часто очень хрупкая. Чтобы повысить пластичность и вязкость, мартенсит подвергается термообработке с помощью процесса, называемого отпуском 1,2,3 . Прочность обычно снижается с увеличением температуры и времени отпуска, и ожидается соответствующее увеличение ударной вязкости.Однако установлено снижение ударной вязкости среднеуглеродистых низколегированных сталей при времени отпуска 1 час при повышении температуры от 200 до 400 ° C 2,4,5,6,7,8,9,10,11 , 12,13 . Это явление, известное как охрупчивание мартенсита при отпуске (TME), объясняется множеством механизмов, включая термическое и механическое разложение остаточного аустенита 6,12 , образование хрупкого цементита между пластинами 6 и рост частиц цементита 7,13 .Тяжесть TME часто характеризуется степенью наблюдаемой потери ударной вязкости. Охрупчивание закаленного мартенсита побуждает производителей стали и конечных пользователей избегать отпуска в затронутом температурно-временном режиме, тем самым устраняя определенные комбинации прочности и вязкости, которые были бы желательны, если бы можно было разработать подходящую термообработку.

Кратковременный отпуск при высоких температурах (от 500 до 700 ° C) недавно был предложен для улучшения ударной вязкости за счет измельчения карбида (цементита). 14,15,16,17 .Считается, что продолжительность этих термических обработок с быстрым отпуском ограничивает восстановление дислокаций, тем самым обеспечивая увеличенные центры зародышеобразования для образования мелких, диспергированных частиц цементита. Здесь мы исследуем эффекты кратковременного отпуска в более низком диапазоне температур отпуска. TME не только активен в исследуемом режиме отпуска, но и ожидается, что различные механизмы будут определять развитие микроструктуры и, следовательно, ударную вязкость по сравнению с высокотемпературным отпуском 18,19,20 .В более ранних работах 21,22,23 началось изучение быстрого отпуска в режиме TME; однако текущее исследование показывает новое открытие повышенной ударной вязкости для данного уровня прочности по сравнению с обычными процедурами отпуска.

На рис. 1 показано влияние кратковременного отпуска на ударную вязкость в зависимости от параметра отпуска (рис. 1a) и предела прочности при растяжении, или UTS (рис. 1b). Параметр отпуска (TP) – это показатель, который часто используется в промышленности для приравнивания термических обработок, использующих разное время работы и температуры, где термические обработки считаются эквивалентными, если они имеют одинаковое значение параметра отпуска.На рис. 1а показано заметное улучшение показателей прочности и вязкости, достигаемое за счет быстрого отпуска в контексте широкого диапазона сталей 4340, прошедших традиционный отпуск, 11,24,25,26,27 . Показано, что использование кратковременного отпуска улучшает ударную вязкость более чем на 43% при уровне прочности 1,7 ГПа и увеличивает прочность более чем на 0,5 ГПа при постоянной вязкости 30 Дж. Кроме того, при обычных условиях отпуска в течение 1 часа наблюдается классический TME за счет значительного снижения ударной вязкости в диапазоне TP от 9000 до 11000, в то время как «впадина» TME уменьшается при кратковременном отпуске.Рисунок 1b дополнительно иллюстрирует взаимосвязь между прочностью и ударной вязкостью для кратковременных условий и условий с обычным отпуском. В целом, в течение всего режима TME наблюдается последовательное улучшение ударной вязкости и снижение TME при кратковременном отпуске.

Рисунок 1

Сравнение энергии удара при комнатной температуре (Дж) для обычных (1 ч) и кратковременных (1 с) условий отпуска в зависимости от ( a ) параметра отпуска (TP) и ( b ) ) предел прочности при растяжении, или UTS (ГПа).Все значения UTS ( a ) округлены с точностью до 0,1 ГПа. Справочные данные соответствуют закаленной и отпущенной стали 4340.

Для более глубокого понимания была измерена ударная вязкость по Шарпи при различных температурах. На рис. 2а и б показано поведение при отпуске в течение 1 часа и 1 с при различных температурах испытаний. На рис. 2а показана ударная вязкость для двух временных условий при TP 11000, что соответствует 1 часу при обычной закалке при 300 ° C.Прочность не только улучшается в кратковременных условиях при комнатной температуре, но также постоянно улучшается во всем диапазоне температур испытаний. Температура, коррелирующая с энергией разрушения 20 Дж (C v 20), использовалась в качестве критерия для сравнения температуры перехода из пластичного в хрупкое состояние (DBTT) удара Шарпи с V-образным надрезом (C v ). Результаты по вязкости для исследованных TP, где более низкая температура C v 20 указывает на превосходную вязкость. На рис. 2b показаны результаты сравнения кратковременных и обычных температур C v 20.Проявление TME четко наблюдается для условий отпуска в течение 1 часа через повышение температуры C v 20 с 9000 до 11000 TP, что согласуется с данными по вязкости при комнатной температуре (рис. 1a). И наоборот, кратковременный отпуск приводит к общему снижению температуры C v 20 и более линейному снижению температуры C v 20 с увеличением TP, что означает значительное улучшение ударной вязкости. Небольшое плато наблюдается от 10 000 до 11 000 TP, что свидетельствует об уменьшении впадины TME.

Рисунок 2

Поведение ударной вязкости в условиях отпуска в течение 1 с и 1 ч при температурах испытаний от –200 до 200 ° C. ( a ) Кривые перехода от вязкого к хрупкому состоянию для условия 11000 TP, сравнивая обработку отпуска в течение 1 с и 1 ч для различных температур испытаний. ( b ) Индекс температуры, C V 20, для обычных и кратковременных условий отпуска в диапазоне параметров отпуска. Более низкие значения C V 20 представляют превосходную вязкость.

Многие из настоящих результатов были представлены с точки зрения параметра отпуска. Как уже упоминалось, две обработки при отпуске с разным временем и температурой считаются эквивалентными, если производится одно и то же значение параметра отпуска (и твердости). Эта концепция была впервые предложена Холломоном и Яффе с параметром отпуска, представленным как 28 :

$$ {\ rm {TP}} = {\ rm {T}} [\ mathrm {log} ({\ rm { t}}) + {\ rm {c}}] $$

(1)

где T – абсолютная температура, t – время отпуска, а c – постоянная величина, которая изменяется для обрабатываемой стали.Параметр отпуска стал повсеместным в области металлургии стали, и в настоящее время широко признано, что эквивалентные значения твердости после отпуска для данной стали подразумевают эквивалентную степень отпуска и аналогичное механическое поведение. Условия отпуска, оцененные в этом исследовании, были разработаны таким образом, чтобы получить такое же значение твердости для заданной степени отпуска в среднеуглеродистой низколегированной стали, как показано на рис. 3. На основе параметра отпуска Холломона-Яффе величина 1 Предполагается, что обработка с отпуском в течение s и 1 часа обеспечивает одинаковую степень отпуска для данного параметра отпуска, и поэтому ожидается, что они будут демонстрировать сравнимые механические свойства.Однако, как показано на рис. 1 и 2, эти два временных условия демонстрируют заметно различающееся поведение вязкости для данного параметра отпуска. Хотя параметр отпуска является приемлемым методом для производства закаленных сталей с эквивалентными значениями твердости, ясно, что он не охватывает и не точно уравнивает микроструктурные процессы и результирующие характеристики ударной вязкости и прочности, которые возникают во время отпуска.

Рисунок 3

Твердость (шкала Роквелла) при отпуске в течение 1 и 1 с для эквивалентных параметров отпуска (TPs).

Представленные здесь механические свойства демонстрируют значительные преимущества, связанные с кратковременной термической обработкой. Кроме того, предполагается, что давно принятый параметр отпуска Холломона-Яффе, основанный на эквивалентной твердости, не является исчерпывающим методом для приравнивания процессов отпуска, особенно когда рассматривается краткосрочный отпуск. Необходима дополнительная работа для выяснения микроструктурных механизмов, ответственных за влияние быстрого отпуска на TME и ударную вязкость, которые необходимо будет включить в новую модель для прогнозирования степени отпуска.Ранняя стадия этих усилий показана на рис. 4, где различия в содержании остаточного аустенита между кратковременными и обычными условиями отпуска подчеркивают различные микроструктуры с эквивалентными TP и уровнями твердости. Пониженная восприимчивость условий кратковременного отпуска к TME и более высокое наблюдаемое количество остаточного аустенита согласуется с гипотезой о том, что TME вызывается разложением аустенита на феррит и межпластинчатый цементит во время отпуска. Механизмы, способствующие общему повышению ударной вязкости при кратковременном отпуске, также могут быть связаны с деталями, связанными с разложением аустенита, но для получения полного понимания требуется дополнительная оценка.

Рис. 4

Сравнение содержания остаточного аустенита в течение 1 с и 1 ч TP, измеренных с помощью дифракции рентгеновских лучей.

Наблюдения за твердостью и микроструктурой (остаточного аустенита) в настоящей работе демонстрируют, что различные механизмы отпуска влияют на твердость и вязкость, и эти механизмы не подчиняются одинаковым отношениям для эквивалентности времени и температуры. Такие механизмы включают диффузию углерода в (объемно-центрированный кубический или тетрагональный) мартенсит, диффузию углерода в (гранецентрированный кубический) аустенит и самодиффузию железа.Недавно было указано 29 , что эти фундаментальные механизмы не включены в обычно используемый параметр отпуска Холломона-Яффе. Настоящие результаты подтверждают критическую актуальность этой проблемы, а также возможность разработки новых фундаментальных кинетических моделей для разложения остаточного аустенита и отпуска мартенсита.

Хотя при обработке стали исторически избегали температур отпуска от 200 до 400 ° C из-за получения худших характеристик ударной вязкости, краткосрочный отпуск обеспечивает путь к отпуску в этом режиме прочности для достижения желаемых комбинаций механических свойств.Эти результаты представляют собой прорыв в области обработки, который не только снижает ТМЭ, но также существенно улучшает ударную вязкость сталей, отпущенных в ранее избегаемом режиме ТМЭ. Кроме того, быстрый отпуск может быть достигнут с помощью уже установленных методов обработки; например, индукционный нагрев может значительно сэкономить время и энергию 30 , при этом производя стали с превосходными свойствами по сравнению со сталями с обычным отпуском. Применение кратковременного отпуска при относительно низких температурах отпуска для достижения улучшенных механических характеристик за счет улучшенного микроструктурного дизайна дает возможность значительно повлиять на производство стали и сообщества пользователей, принося пользу всему человечеству за счет производства высококачественной стальной продукции для повседневного и высокопроизводительного применения. с меньшими затратами на окружающую среду.

(PDF) Влияние термообработки на твердость и ударные свойства среднеуглеродистой стали

5. Ссылки

[1] Ашиш Бхатеджа, Адитья Варма, Ашиш Кашьяп, Бхупиндер Сингх, 2012 г. »Исследование влияния на

твердость трех образцов инструментальной стали после процесса термообработки », International

Journal of Engineering And Science (IJES), том 1, выпуск 2, страницы 253-259,

[2] Alawode, AJ, 2002 , Влияние холодной обработки и цикла отжига для снятия напряжений на механические свойства

и остаточные напряжения холоднотянутого стержня из мягкой стали.M. Eng. Диссертация, механика

Инженерный факультет, Илоринский университет, Нигерия.

[3] А. Н. Исфахани, Х. Сагхафиан и Г. Борхани, «Влияние термической обработки на механические свойства

и коррозионное поведение мартенситной нержавеющей стали AISI420», Journal of Alloys

and Compounds, Vol. 509, No. 9, 2011.

[4] Аднан, Калик 2009. Влияние скорости охлаждения на твердость и микроструктуру сталей AISI 1020, AISI

1040 и AISI 1060.Int J of Physics Sciences, т. 4 (9), pp. 514 – 518.

[5] BSMotagi, Ramesh Bhosle 2012, «Влияние термической обработки на микроструктуру и механические свойства

среднеуглеродистой стали», International Journal of Engineering

Исследования и разработки , Том 2, Выпуск 1, июль.

[6] Д.А. Фадаре, Т.Г. Фадара, О.Ю. Аканби, 2011 Влияние термической обработки на механические свойства

и микроструктуру стали NST 37-2, Journal of Minerals & Materials Characterization &

Engineering, Vol.10, No. 3, pp.299-308,

[7] Эрик О., Сиджанин Л., Мискович З. l 2004 Микроструктура и ударная вязкость меди

Ковкий чугун после закалки; материалы письма, том 58, страницы 2707–2711.

[8] EF Strobel, NA Mariano, K. Strobel и MF Dionízio, 2012 «Влияние термообработки

на коррозионную стойкость мартинситовой нержавеющей стали CA6NM», 2-е издание, Mercosur

Конгресс по химической инженерии.

[9] Ф. М. Ф. Аль-Коран и Х. И. Аль-Итауи, 2010 г. «Влияние термической обработки на коррозионную стойкость

и микротвердость легированной стали», Европейский журнал научных исследований, Vol. 39, № 2, г.

[10] Харприт Сингх, Er.B.S.Ubhi, Er. Харвиндер Лал. 2013 «Улучшение скорости коррозии и

механических свойств низкоуглеродистой стали за счет глубокой криогенной обработки», журнал International

, том 2.

iMEC-APCOMS 2015 IOP Publishing

IOP Conf. Серия: Материаловедение и инженерия 114 (2016) 012108 DOI: 10.

Добавить комментарий

Ваш адрес email не будет опубликован.