В каких единицах измеряется модуль юнга: Модуль Юнга (модуль упругости): что это, таблица и формулы

alexxlab | 11.05.2023 | 0 | Разное

Модуль Юнга (модуль упругости): что это, таблица и формулы

Модуль Юнга (модуль упругости) — это физическая величина, которая характеризует свойства какого-либо материала сгибаться или растягиваться под воздействием силы; по сути именно от этого зависит жёсткость тела.

Это свойство любого материала, и оно зависит от температуры и оказываемого давления.

В физике упругость — это свойство твёрдых материалов возвращаться в свою первоначальную форму и размер после устранения сил, которые применялись при деформации.

Другими словами: когда тело деформируется, то появляется сила, которая стремится восстановить первоначальную форму и размер тела. Сила упругости является этой проявляющейся силой. Также она представляет собой следствие электромагнитного взаимодействия между частицами.

Низкое значение модуля Юнга означает, что изучаемое твёрдое тело является эластичным.

Высокое значение модуля Юнга означает, что изучаемое твёрдое тело является

неэластичным или жёстким.

Примеры значений модуля Юнга (упругости) для:

  • (т.е. для резины он в 5 раз меньше стали)

Таблица

Большинство материалов имеют значение E очень высокого порядка, поэтому они записываются при помощи “гигапаскалей” ([ГПа]; ).

Материал Модуль Юнга E, [ГПа]
Алмаз 1220
Алюминий 69
Дерево 10
Кадмий 50
Латунь 97
Медь 110
Никель 207
Резина 0,9 (≈ 1 МПа, мегапаскаль)
Сталь 200
Титан 107

Единица измерения и формулы

Единица измерения модуля Юнга в СИ — Ньютон на метр в квадрате (Н/м²), т.е. Паскаль (Па).

Формулы

Существует несколько формул, из которых можно вычислить модуль Юнга. Например, закон Гука.

Закон Гука

Можно вычислить модуль Юнга через эти формулы (мы это и сделаем на примере). Из-за этого закона существуют несколько интересных равенств, которые могут быть полезны для расчётов.

Закон Гука (этот описывает явления в теле, в дифференциальной форме):

Где:

  • σ — механическое напряжение
  • E — модуль Юнга (модуль упругости)
  • ε — относительное удлинение

Закон Гука (этот описывает явления в теле)

Где:

  • Fупр — сила упругости
  • k × Δl — удлинение тела

Где:

  • Fупр — сила упругости
  • E — модуль Юнга (модуль упругости)
  • S — площадь поперечного сечения
  • l — первоначальная длина тела
  • Δl — удлинение тела

Где:

  • Fупр/S — механическое напряжение, обозначается как σ
  • Δl/l — относительное удлинение, обозначается как ε

Следует заметить, что этот закон действует до той точки, когда материал необратимо деформируется и уже не возвращается в свою первоначальную форму.

В какой точке это происходит, уже зависит от материала. Если материал очень жёсткий (значит высокое показание модуля упругости), то эта точка может совпадать с разрывом/деформацией.

Другие формулы вычисления модуля Юнга (модуля упругости)

Где:

  • E — модуль Юнга (модуль упругости)
  • k — жёсткость тела
  • l — первоначальная длина стержня
  • S — площадь поперечного сечения

Либо можно выразить k (жёсткость тела):

Где:

  • k — жёсткость тела
  • E — модуль Юнга (модуль упругости)
  • S — площадь поперечного сечения
  • l — первоначальная длина стержня/тела
Пример решения задачи (через закон Гука):

Проволока длиной 2,5 метра и площадью поперечного сечения 2,5 миллиметра² удлинилась на 1 миллиметр под действием силы 50 ньютонов. Определить модуль Юнга.

Дано:

  • l = 2,5 м
  • F = 50 H
  • E = ?

Будем искать через закон Гука (σ = E × ε).

Помним из закона Гука:

σ = F / S (помните, что Fупр/S — механическое напряжение, обозначается как σ)

ε = Δl/l (а это относительное удлинение, обозначается как ε)

Подставляем в формулу (σ = E × ε):

Например, в нашей таблице такой модуль Юнга имеет кадмий.

Узнайте также про:

  • Напряжённость электрического поля
  • Законы Ньютона
  • Закон сохранения энергии

Дата обновления 22/06/2021.



Другие значения и понятия, которые могут вас заинтересовать

  • Закон сохранения энергии
  • Напряженность электрического поля
  • Сила Архимеда
  • Сансара
  • Гипербола в математике
  • Законы Ньютона
  • Ускорение свободного падения
  • Теория относительности
  • Уравнения Максвелла
  • Теория вероятностей

Узнай Что Такое: узнайте значения, понятия и определения.

ПоследниеПопулярныеКонтактыПолитика КонфиденциальностиО нас

2018 – 2023 © 7Graus

В каких единицах измеряется модуль упругости


Общие понятия

Модуль упругости (модуль Юнга) — это показатель механического свойства материала, характеризующий его сопротивляемость деформации растяжения. Иными словами, это значение пластичности материала. Чем выше значения модуля упругости, тем меньше будет какой-либо стержень растягиваться при иных равных нагрузках (площадь сечения, величина нагрузки и другие).

Модуль Юнга в теории упругости обозначается буквой Е. Он является составляющей закона Гука (о деформации упругих тел). Эта величина связывает возникающее в образце напряжение и его деформацию.

Измеряется эта величина согласно стандартной международной системе единиц в МПа (Мегапаскалях). Но инженеры на практике больше склоняются к применению размерности кгс/см2.

Опытным путём осуществляется определение этого показателя в научных лабораториях. Сутью этого метода является разрыв гантелеобразных образцов материала на специальном оборудовании. Узнав удлинение и натяжение, при которых образец разрушился, делят переменные данные друг на друга. Полученная величина и является модулем (Юнга) упругости.

Таким образом определяется только модуль Юнга материалов упругих: медь, сталь и прочее. А материалы хрупкие сжимают до того момента, пока не появятся трещины: бетон, чугун и им подобные.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. 2 .

  • И напоследок коэффициент Пуассона для стали равен значению 0,3
  • Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

    Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

    Механические свойства

    Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

    Читать также: Регулятор давления воды в системе водоснабжения устройство

    1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
    2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
    3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
    4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
    5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
    6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

    Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

    У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

    Модуль упругости — что это?

    Модулем упругости какого-либо материала называют совокупность физических величин, которые характеризуют способность какого-либо твёрдого тела упруго деформироваться в условиях приложения к нему силы. Выражается она буквой Е. Так она будет упомянута во всех таблицах, которые будут идти далее в статье.

    Невозможно утверждать, что существует только один способ выявления значения упругости. Различные подходы к изучению этой величины привели к тому, что существует сразу несколько разных подходов. Ниже будут приведены три основных способа расчёта показателей этой характеристики для разных материалов:

    • Модуль Юнга (Е) описывает сопротивление материала любому растяжению или сжатию при упругой деформации. Определяется вариант Юнга отношением напряжения к деформации сжатия. Обычно именно его называют просто модулем упругости.
    • Модуль сдвига (G), называемый также модулем жёсткости. Этот способ выявляет способность материала оказывать сопротивление любому изменению формы, но в условиях сохранения им своей нормы. Модуль сдвига выражается отношением напряжения сдвига к деформации сдвига, которая определяется в виде изменения прямого угла между имеющимися плоскостями, подвергающимися воздействию касательных напряжений. Модуль сдвига, кстати, является одной из составляющих такого явления, как вязкость.
    • Модуль объёмной упругости (К), которые также именуется модулем объёмного сжатия. Данный вариант обозначает способность объекта из какого-либо материала изменять свой объём в случае воздействия на него всестороннего нормального напряжения, являющимся одинаковым по всем своим направлениям. Выражается этот вариант отношением величины объёмного напряжения к величине относительного объёмного сжатия.
    • Существуют также и другие показатели упругости, которые измеряются в других величинах и выражаются другими отношениями. Другими ещё очень известными и популярными вариантами показателей упругости являются параметры Ламе или же коэффициент Пуассона.

    Что представляет собой медь

    Одним из наиболее распространенных цветных металлов, используемых в промышленности, является медь, ее название на латинском Cuprum, в честь острова Кипра, где ее добывали греки много тысяч лет назад. Это один из семи металлов, которые были известны еще в глубокой древности, из него делали украшения, посуду, деньги, орудия. Историками даже назван период (с IV по III тысячелетие до нашей эры) Медным Веком. Д. И. Менделеев поставил этот металл на 29-е место в своей таблице, после водорода, поскольку медь не вытесняет его из кислотной среды. Медь — цветной металл, который имеет уникальные физические, механический, химические свойства. Плотность меди в кг м³ является одной из важнейших характеристик, с ее помощью определяется вес будущего изделия.

    Области использования меди

    Благодаря своим механическим свойствам медь нашла широкое применение в разных отраслях промышленности, но наиболее часто ее можно встретить как составную часть электропровода, в системах отопления, а также охлаждения воздуха, в производстве компьютерной техники, теплообменниках.

    В промышленности используют тысячи тонн меди ежегодно

    В строительстве этот металл применяется при изготовлении различных конструкций, основным преимуществом здесь является небольшой объемный вес меди. Как уже было отмечено выше, широкое применение цветной металл нашел при кровельных работах, а также в изготовлении тр. Трубы получаются легковесные, поддающиеся трансформации, что особенно актуально при проектировании водопровода и канализации.

    Основная доля производства изделий из меди — проволока, используемая как жила для электрического или коммуникационного кабеля. Благодаря основной характеристике меди — электропроводности, она оказывает высокое сопротивление току, а также обладает уникальными магнитными качествами — в отличие от других металлов ее частицы не реагируют на магнит, что иногда затрудняет процесс ее очистки. Стоит отметить, что практически все производство изделий базируется на переработке вторичного сырья, руду используют крайне редко.

    Виды нагрузок

    При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.

    • Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.

    • Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.

    • Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.

    • Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.

    • Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.

    Как определяется плотность

    Плотность любого вещества — показатель отношения массы к общему объему. Наиболее распространенной системой измерения величины плотности является килограмм на кубический метр. Для меди этот показатель равен 8,93 кг/м³. Поскольку существуют различные марки металла, которые различаются в зависимости от примесей других веществ, общий показатель плотности может изменяться. В данном случае уместней использовать другую характеристику — удельный вес. В измерительных системах этот показатель выражается в разных величинах:

    Формула определения плотности вещества

    • система СГС — дин/см³;
    • система СИ — н/м³;
    • система МКСС — кг/м³

    При этом для перевода величин можно использовать следующую формулу:

    Удельный вес — важный показатель при производстве различных материалов, содержащих медь, особенно когда речь идет о ее сплавах. Это величина отношения массы меди в общем объеме сплава.

    Рассмотреть как применяется этот показатель на практике, можно на примере расчета веса 25 медных листов, размером 2000*1000 мм, толщиной 5 мм. Для начала определим объем листа — 5 мм * 2000 мм * 1000 мм = 10000000 мм3 или 10 000 см³.

    Удельный вес меди 8, 94 гр/см³

    Рассчитываем вес меди в одном листе — 10 000 * 8,94 = 89 400 гр или 89, 40 кг.

    Масса медного проката в общем количестве материала — 89, 40 * 25 = 2 235 кг.

    Эта схема расчета применяется и при переработке лома металла.

    Модуль Юнга | Описание, пример и факты

    Модуль Юнга

    См. все СМИ

    Связанные темы:
    модуль упругости

    См. все связанные материалы →

    Модуль Юнга , числовая константа, названная в честь английского врача и физика 18-го века Томаса Юнга, которая описывает упругие свойства твердого тела, подвергающегося растяжению или сжатию только в одном направлении, как в случае металлический стержень, который после растяжения или сжатия в продольном направлении возвращается к своей первоначальной длине. Модуль Юнга — это мера способности материала выдерживать изменения длины при продольном растяжении или сжатии. Иногда его называют модулем упругости. Модуль Юнга равен продольному напряжению, деленному на деформацию. Напряжение и деформация могут быть описаны следующим образом в случае металлического стержня под напряжением.

    Если металлический стержень с площадью поперечного сечения

    A тянуть с силой F за каждый конец, стержень растягивается от своей первоначальной длины L 0 до новой длины L n . (Одновременно уменьшается поперечное сечение.) Напряжение представляет собой отношение силы растяжения к площади поперечного сечения, или F / A . Деформация или относительная деформация – это изменение длины, L n L 0 , деленное на исходную длину, или ( L n L 0 0

    1 ) 25 0 . (Деформация безразмерна.) Таким образом, модуль Юнга может быть выражен математически как

    Модуль Юнга = напряжение/деформация = ( FL 0 )/ A ( L 0

    ).

    Это конкретная форма закона упругости Гука. Единицами модуля Юнга в английской системе являются фунты на квадратный дюйм (psi), а в метрической системе — ньютоны на квадратный метр (Н/м 2 ). Значение модуля Юнга для алюминия составляет около 1,0 × 10 7 фунтов на квадратный дюйм или 7,0 × 10 10 Н/м 2 . Значение для стали примерно в три раза больше, а это означает, что требуется в три раза больше силы, чтобы растянуть стальной стержень на ту же величину, что и алюминиевый стержень аналогичной формы.

    Модуль Юнга имеет смысл только в диапазоне, в котором напряжение пропорционально деформации, и материал возвращается к своим первоначальным размерам при снятии внешней силы. По мере увеличения напряжений материал может либо течь, подвергаясь остаточной деформации, либо окончательно разрушаться.

    Когда металлический стержень под напряжением удлиняется, его ширина немного уменьшается. Эта боковая усадка представляет собой поперечную деформацию, равную изменению ширины, деленному на первоначальную ширину. Отношение поперечной деформации к продольной называется коэффициентом Пуассона. Среднее значение коэффициента Пуассона для сталей равно 0,28, для алюминиевых сплавов — 0,33. Объем материалов с коэффициентом Пуассона менее 0,50 увеличивается при продольном растяжении и уменьшается при продольном сжатии.

    Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

    Редакция Британской энциклопедии Эта статья была недавно пересмотрена и обновлена ​​Эриком Грегерсеном.

    Напряжение, деформация и модуль Юнга

    30 декабря 2020 г. наука и математика

    Напряжение

    Напряжение (σ) – сила на единицу площади поперечного сечения, приложенная к объекту.

    Из этого определения получаем следующее уравнение:

    Где F — приложенная сила в ньютонах (Н), а A — площадь поперечного сечения объекта до приложения силы в квадратных метрах (м 2 ).

    Из определения мы знаем, что единицами измерения напряжения являются Нм -2 , в единицах СИ это то же самое, что и Паскали (Па).

    Сила может быть сжимающей или растягивающей и должна действовать перпендикулярно площади поперечного сечения, чтобы изменить длину.

    Деформация

    Деформация (ε) – растяжение (или сжатие) на единицу длины в результате приложенного напряжения.

    Деформация объекта может быть рассчитана с использованием следующего уравнения:

    Где L — длина объекта в растянутом/сжатом состоянии, а L 0 — первоначальная длина объекта, обе измеряются в метрах ( м).

    Поскольку деформация рассчитывается путем деления длины на длину, единицы измерения компенсируют друг друга, и деформация имеет нет шт.

    ПРИМЕЧАНИЕ: Пока все ваши длины указаны в одних и тех же единицах измерения, они не обязательно должны быть в метрах, так как они компенсируют друг друга. Например, все они могут быть в дюймах. Но если бы у вас было L в метрах и L 0 в дюймах, вам пришлось бы преобразовать их, чтобы они были одинаковыми.

    Модуль Юнга

    Когда упругие объекты подвергаются растягивающей или сжимающей силе, полезной величиной для описания их свойств является модуль Юнга (также называемый модулем упругости).

    Модуль Юнга – отношение напряжения к деформации, которому подвергается материал.

    Значение можно рассчитать по следующему уравнению:

    Поскольку деформации не имеют единиц измерения, единицы измерения модуля Юнга такие же, как единицы измерения напряжения – ньютоны на квадратный метр (Нм -2 ) или в единицах СИ паскалях. (Па).

    ВАЖНО: Модуль Юнга применяется только тогда, когда объект подвергается упругой деформации , НЕ пластической деформации.

    Значение говорит нам о жесткости материала. Чем больше значение, тем жестче материал. Материал с большим модулем Юнга требует большей силы для растяжения (или сжатия) на ту же величину, что и материал с меньшим модулем Юнга.

    Примеры работы
    Пример 1

    К проволоке приложена растягивающая сила

    20 Н . Рассчитайте площадь поперечного сечения провода, если напряжение в проводе равно 1,5 x 10 7 Па .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *