Характеристики титановые сплавы – .

alexxlab | 23.07.2020 | 0 | Разное

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

%PDF-1.6 % 937 0 obj >]/Pages 898 0 R/QITE_DocInfo 934 0 R/Type/Catalog>> endobj 654 0 obj >stream 2015-01-14T13:32:09+06:00Microsoft® Word 20102015-01-15T10:17:22+06:002015-01-15T10:17:22+06:00application/pdf

  • МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ
  • Масленникова
  • uuid:d6ba2bb9-d09d-4b1f-80d5-66f0938c5659uuid:f492cf2b-2371-4541-b605-08ba316641aedefault1
  • converteduuid:b7212e7b-a6f2-4716-ba3f-47e407b8b731converted to PDF/A-1aPreflight2015-01-15T10:17:22+06:00
  • Microsoft® Word 20101A
  • http://ns.adobe.com/pdf/1.3/pdfAdobe PDF Schema
  • internalA name object indicating whether the document has been modified to include trapping informationTrappedText
  • http://ns.adobe.com/xap/1.0/mm/xmpMMXMP Media Management Schema
  • internalUUID based identifier for specific incarnation of a documentInstanceIDURI
  • internalThe common identifier for all versions and renditions of a document.OriginalDocumentIDURI
  • http://www.aiim.org/pdfa/ns/id/pdfaidPDF/A ID Schema
  • internalPart of PDF/A standardpartInteger
  • internalAmendment of PDF/A standardamdText
  • internalConformance level of PDF/A standardconformanceText
  • endstream endobj 959 0 obj > endobj 1879 0 obj > endobj 898 0 obj > endobj 934 0 obj > endobj 653 0 obj >stream HUn@}WxS} ؈XjpɥhkOa_@ү@֚93{v٥Gdi2hY”iȓŠu?q[䒞’7DZ

    ck20TFfv%P=”5zE~74Yj-`(e@?

    elar.urfu.ru

    Механические свойства титановых сплавов таблица. Титан и титановые сплавы

    Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатками титана являются его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости. Титан плохо обрабатывается резанием, удовлетворительно – давлением, сваривается в защитной атмосфере. Широко распространено вакуумное литье.

    Титан имеет две модификации: низкотемпературную (до 882 С) – β титан с ГПУ решеткой, высокотемпературную -β-титан с ОЦК решеткой.

    Легирующие элементы влияют на эксплуатационные свойства титана следующим образом:

    Fe, Аl,Mn,Cr,Sn,V,Si– повышают его проность, но снижают пластичность и вязкость;

    Al,Zr,Mo– увеличивают жаропрочность;

    Mo,Zr,Nb,Ta,Pb– увеличивают коррозионную стойкость.

    Классификация титановых сплавов

    . Структура промышленных сплавов титана – это твердые растворы легирующих элементов вαи β модификациях титана. Сплавы титана в зависимости от их стабильной структуры (после отжига) при комнатной температуре подразделяют на три основные группы:α– сплавы; (α+β)-сплавы и β-сплавы.

    Титановые сплавы классифицируют также по технологии производства (деформируемые, литейные, порошковые), по физико-химическим, в том числе механическим, свойствам (высокопрочные, обычной прочности, высокопластичные, жаропрочные, коррозионностойкие).

    Деформируемые титановые сплавы . Большинство титановых сплавов легировано алюминием, повышающим жесткость, прочность, жаропрочность и жаростойкость материала.

    α – титановые сплавы термической обработкой не упрочняются. Широкое применение нашел сплав ВТ5-1, обладающий хорошей свариваемостью, жаропрочностью, кислотостойкостью, пластичностью при криогенных температурах. Обрабатывается давлением в горячем состоянии, термически стабилен до 450 С. Добавки олова в сплав улучшают его технологичесмкие и механические свойства.

    Из сплава ВТ5-1 изготавливают листы, поковки, трубы, проволоку, профили.

    (α+ β)- титановые сплавы упрочняются термической обработкой, состоящей из закалки и старения. Они хуже свариваются.

    Типичным представителем этой группы является сплав ВТ6, характеризующийся оптимальным сочетанием технологических и механических свойств. Уменьшение содержания алюминия и ванадия в сплаве (модификация ВТ6С) позволяет его использовать в сварных конструкциях.

    Сплав ВТ14 системы Ti-Al-Mo-Vобладает высокой технологичностью в закаленном состоянии и высокой прочностью – в состаренном; он удовлетворительно сваривается всеми видами сварки. Этот сплав способен длительно работать при 400 С, кратковременно до 500 С.

    Сплав ВТ8 относится к жаропрочным сплава. Он предназначен для длительной работы при 450…500 С под нагрузкой. Сплав хорошо деформируется в горячем состоянии но плохо сваривается. Из него изготавливают поковки, штамповки, прутки.

    Псевдо – β – титановые сплавы характеризуются высоким содержанием β – стабилизаторов и вследствие этого – отсутствием мартенситного превращения.

    Сплавы характеризуются высокой пластичностью в закаленном состоянии и высокой прочностью – в состаренном. Они удовлетворительно свариваются аргонодуговой сваркой.

    Широкое распространение получил сплав ВТ15 обладающий высой пластичностью и невысокой прочностью в закаленном состоянии. Однако после старения при 450 С его прочность достигает 1500 МПа. Сплав ВТ15 предназначен для работы при температурах до 350 С. Из него изгот

    cityshin.ru

    Особенности титановых сплавов.

    Одним из важных преимуществ титановых сплавов перед алюминиевыми и магниевыми сплавами является жаропрочность, которая в условиях практического применения с избытком компенсирует разницу в плотности (магний 1,8, алюминий 2,7, титан 4,5). Превосходство титановых сплавов над алюминиевыми и магниевыми сплавами особенно резко проявляется при температурах выше 300°С. Так как при повышении температуры прочность алюминиевых и магниевых сплавов сильно уменьшается, а прочность титановых сплавов остается высокой.

    Титановые сплавы по удельной прочности (прочности, отнесенной к плотности) превосходят большинство нержавеющих и теплостойких сталей при температурах до 400°С – 500°С. Если учесть к тому же, что в большинстве случаев в реальных конструкциях не удается полностью использовать прочность сталей из-за необходимости сохранения жесткости или определенной аэродинамической формы изделия (например, профиль лопатки компрессора), то окажется, что при замене стальных деталей титановыми можно получить значительную экономию в массе.

    Еще сравнительно недавно основным критерием при разработке жаропрочных сплавов была величина кратковременной и длительной прочности при определенной температуре. В настоящее время можно сформулировать целый комплекс требований к жаропрочным титановым сплавам, по крайней мере для деталей авиационных двигателей.

    В зависимости от условий работы обращается внимание на то или иное определяющее свойство, величина которого должна быть максимальной, однако сплав должен обеспечивать необходимый минимум и других свойств, как указано ниже.

    1. Высокая кратковременная и длительная прочность во всем интервале рабочих температур. Минимальные требования: предел прочности при комнатной температуре 100·Па; кратковременная и 100-ч прочность при 400° С – 75·

    Па. Максимальные требования: предел прочности при комнатной температуре 120·Па, 100-ч прочность при 500° С – 65·Па.

    2. Удовлетворительные пластические свойства при комнатной температуре: относительное удлинение 10%, поперечное сужение 30%, ударная вязкость 3·Па·м. Эти требования могут быть для некоторых деталей и ниже, например для лопаток направляющих аппаратов, корпусов подшипников и деталей, не подверженных динамическим нагрузкам.

    3. Термическая стабильность. Сплав должен сохранять свои пластические свойства после длительного воздействия высоких температур и напряжений. Минимальные требования: сплав не должен охрупчиваться после 100-ч нагрева при любой температуре в интервале 20 – 500°С. Максимальные требования: сплав не должен охрупчиваться после воздействия температур и напряжений в условиях, заданных конструктором, в течение времени, соответствующего максимальному заданному ресурсу работы двигателя.

    4. Высокое сопротивление усталости при комнатной и высоких температурах. Предел выносливости гладких образцов при комнатной температуре должен составлять не менее 45% предела прочности, а при 400° С – не менее 50% предела прочности при соответствующих температурах. Эта характеристика особенно важна для деталей, подверженных вибрациям в процессе работы, как, например, лопатки компрессоров.

    5. Высокое сопротивление ползучести. Минимальные требования: при температуре 400° С и напряжении 50·Па остаточная деформация за 100 ч не должна превосходить 0,2%. Максимальным требованием можно считать тот же предел при температуре 500° С за 100 ч. Эта характеристика особенно важна для деталей, подверженных в процессе работы значительным растягивающим напряжениям, как, например, диски компрессоров.

    Однако со значительным увеличение ресурса работы двигателей правильнее будет базироваться на продолжительности испытания не 100 ч, а значительно больше – примерно 2000 – 6000 ч.

    Несмотря на высокую стоимость производства и обработки титановых деталей, применение их оказывается выгодным благодаря главным образом повышению коррозионной стойкости деталей, их ресурса и экономии массы.

    Стоимость титанового компрессора значительно выше, чем стального. Но в связи с уменьшением массы стоимость одного тонно-километра в случае применения титана будет меньше, что позволяет очень быстро окупить стоимость титанового компрессора и получить большую экономию.

    studfiles.net

    8.1.3. Титан и его сплавы

    Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатками титана являются его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости. Титан плохо обрабатывается резанием, удовлетворительно – давлением, сваривается в защитной атмосфере. Широко распространено вакуумное литье.

    Титан имеет две модификации: низкотемпературную (до 882 С) – β титан с ГПУ решеткой, высокотемпературную -β-титан с ОЦК решеткой.

    Легирующие элементы влияют на эксплуатационные свойства титана следующим образом:

    Fe, Аl,Mn,Cr,Sn,V,Si– повышают его проность, но снижают пластичность и вязкость;

    Al,Zr,Mo– увеличивают жаропрочность;

    Mo,Zr,Nb,Ta,Pb– увеличивают коррозионную стойкость.

    Классификация титановых сплавов. Структура промышленных сплавов титана – это твердые растворы легирующих элементов вαи β модификациях титана. Сплавы титана в зависимости от их стабильной структуры (после отжига) при комнатной температуре подразделяют на три основные группы:α– сплавы; (α+β)-сплавы и β-сплавы.

    Титановые сплавы классифицируют также по технологии производства (деформируемые, литейные, порошковые), по физико-химическим , в том числе механическим, свойствам ( высокопрочные, обычной прочности, высокопластичные, жаропрочные, коррозионностойкие).

    Деформируемые титановые сплавы. Большинство титановых сплавов легировано алюминием, повышающим жесткость, прочность, жаропрочность и жаростойкость материала.

    α – титановые сплавы термической обработкой не упрочняются. Широкое применение нашел сплав ВТ5-1, обладающий хорошей свариваемостью, жаропрочностью, кислотостойкостью, пластичностью при криогенных температурах. Обрабатывается давлением в горячем состоянии, термически стабилен до 450 С. Добавки олова в сплав улучшают его технологичесмкие и механические свойства.

    Из сплава ВТ5-1 изготавливают листы, поковки, трубы, проволоку, профили.

    (α+β)- титановые сплавыупрочняются термической обработкой, состоящей из закалки и старения. Они хуже свариваются.

    Типичным представителем этой группы является сплав ВТ6, характеризующийся оптимальным сочетанием технологических и механических свойств. Уменьшение содержания алюминия и ванадия в сплаве (модификация ВТ6С) позволяет его использовать в сварных конструкциях.

    Сплав ВТ14 системы Ti-Al-Mo-Vобладает высокой технологичностью в закаленном состоянии и высокой прочностью – в состаренном; он удовлетворительно сваривается всеми видами сварки. Этот сплав способен длительно работать при 400 С, кратковременно до 500 С.

    Сплав ВТ8 относится к жаропрочным сплава. Он предназначен для длительной работы при 450…500 С под нагрузкой. Сплав хорошо деформируется в горячем состоянии но плохо сваривается. Из него изготавливают поковки, штамповки, прутки.

    Псевдо – β – титановые сплавыхарактеризуются высоким содержанием β – стабилизаторов и вследствие этого – отсутствием мартенситного превращения.

    Сплавы характеризуются высокой пластичностью в закаленном состоянии и высокой прочностью – в состаренном. Они удовлетворительно свариваются аргонодуговой сваркой.

    Широкое распространение получил сплав ВТ15 обладающий высой пластичностью и невысокой прочностью в закаленном состоянии. Однако после старения при 450 С его прочность достигает 1500 МПа. Сплав ВТ15 предназначен для работы при температурах до 350 С. Из него изготавливают прутки, поковки, полосы, листы.

    Литейные титановые сплавы. По сравнению с деформируемыми имеют меньшую прочность, пластичность и выносливость. Сложность литья титановых сплавов обусловлена активным взаимодействием титана с газами и формовочными материалами.

    Высокими технологическими свойствами обладает сплав ВТ5Л: он пластичен, не склонен к образованию трещин при литье, хорошо сваривается. Работает до 400 C. Недостатком – невысокая прочность (800 МПа).

    Двухфазный литейный сплав ВТ14Л подвергают отжигу при 850 вместо упрочняющей термической обработки, резко снижающей пластичность отливок. ВТ14Л по литейным свойствам уступает ВТ5Л, но превосходит его по прочности (950 МПа).

    Применение сплавов титана. Из сплавов титана изготавливают: обшивку самолетов, морских судов, подводных лодок; корпуса ракет и двигателей; диски и лопатки стационарных турбин и компрессоров авиационных двигателей; гребные винты; баллоны для сжиженных газов; емкости для агрессивных химических сред.

    studfiles.net

    Свойства и применение титана и его сплавов, технические характеристики

    Титан занимает 4-е место по распространению в производстве, но эффективная технология его извлечения была разработана только в 40-х гг прошлого века. Это металл серебристого цвета, характеризующийся небольшой удельной массой и уникальными характеристиками. Для анализа степени распространения в промышленности и других сферах необходимо озвучить свойства титана и области применения его сплавов.

    Основные характеристики

    Металл обладает малой удельной массой – всего 4.5 г/см³. Антикоррозийные качества обусловлены устойчивой оксидной пленкой, образующейся на поверхности. Благодаря этому качеству титан не изменяет своих свойств при длительном нахождении в воде, соляной кислоте. Не возникают поврежденные участки из-за воздействия напряжения, что является основной проблемой стали.

    В чистом виде титан обладает следующими качествами и характеристиками:

    • номинальная температура плавления — 1 660°С;
    • при термическом воздействии +3 227°С закипает;
    • предел прочности при растяжении – до 450 МПа;
    • характеризуется небольшим показателем упругости – до 110,25 ГПа;
    • по шкале НВ твердость составляет 103;
    • предел текучести один из самых оптимальных среди металлов – до 380 Мпа;
    • теплопроводность чистого титана без добавок – 16,791 Вт/м*С;
    • минимальный коэффициент термического расширения;
    • этот элемент является парамагнитом.

    Для сравнения, прочность этого материала в 2 раза больше, чем у чистого железа и в 4 раза такого же показателя алюминия. Также титан имеет две полиморфные фазы – низкотемпературную и высокотемпературную.

    Для производственных нужд чистый титан не применяется из-за его дороговизны и требуемых эксплуатационных качеств. Для повышения жесткости в состав добавляют оксиды, гибриды и нитриды. Реже изменяют характеристики материала для улучшения стойкости к коррозии. Основные виды добавок для получения сплавов: сталь, никель, алюминий. В некоторых случаях он выполняет функции дополнительного компонента.

    О технологии сварки титана читайте здесь.

    Области применения

    Благодаря небольшой удельной массе и прочностным параметрам титан широко используется в авиационной и космической промышленности. Его применяют в качестве основного конструкционного материала в чистом виде. В особых случаях за счет уменьшения жаропрочности делают более дешевые сплавы. При этом его сопротивление коррозии и механическая прочность остаются неизменными.

    Кроме этого, материал с добавками титана нашел применение в следующих областях:

    • Химическая промышленность. Его стойкость практически ко всем агрессивным средам, кроме органических кислот, позволяет изготавливать сложное оборудование с хорошими показателями безремонтного срока службы.
    • Производство транспортных средств. Причина – небольшая удельная масса и механическая прочность. Из него делают каркасы или несущие элементы конструкций.
    • Медицина. Для особых целей применяется специальный сплав нитинол (титан и никель). Его отличительное свойство – память формы. Для уменьшения нагрузки пациентов и минимизации вероятности негативного воздействия на организм многие медицинские шины и подобные им устройства делают из титана.
    • В промышленности металл применяется для изготовления корпусов и отдельных элементов оборудования.
    • Ювелирные украшения из титана обладают уникальным внешним видом и качествами.

    В большинстве случаев материал обрабатывается в заводских условиях. Но есть ряд исключений – зная свойства этого материала, часть работ по изменению внешнего вида изделия и его характеристик можно выполнять в домашней мастерской.

    Особенности обработки

    Для придания изделию нужной формы необходимо использовать специальное оборудование – токарный и фрезерный станок. Ручное резание или фрезеровка титана невозможна из-за его твердости. Помимо выбора мощности и других характеристик оборудования необходимо правильно подобрать режущие инструменты: фрезы, резцы, развертки, сверла и т.д.

    ismith.ru

    47. Титан и его сплавы. Материаловедение. Шпаргалка

    47. Титан и его сплавы

    Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.

    Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно – давлением, сваривается в защитной атмосфере. Широкое распространение получило вакуумное литье, в том числе вакуумно-дуговой переплав с расходуемым электродом.

    Аллотропические модификации титана: низкотемпературная и высокотемпературная.

    Различают две основные группы легирующих элементов в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °C): б-стабилизаторы (элементы, расширяющие область существования б-фазы и повышающие температуру превращения – А1, Оа, С) и в-стабилизаторы (элементы, суживающие б-область и снижающие температуру полиморфного превращения, – V, Мо, Сг).

    Легирующие элементы делятся на две основные группы: элементы с большой (в пределе – неограниченной) и ограниченной растворимостью в титане. Элементы с ограниченной растворимостью вместе с титаном могут образовывать интерметаллиды, силициды и фазы внедрения.

    Легирующие элементы влияют на эксплуатационные свойства титана (Ре, А1, Мп, Сг), повышают его прочность, но снижают эластичность и вязкость; А1, Zr увеличивают жаропрочность, а Мо, Zr, Та – коррозионную стойкость.

    Классификация титановых сплавов. Структура промышленных сплавов титана – это твердые растворы легирующих элементов в б– и в-модификациях титана.

    Виды термической обработки титановых сплавов.

    Рекристаллизационный (простой) отжиг холоднодеформированных сплавов (650–850 °C).

    Изотермический отжиг (нагрев до 780–980 °C с последующим охлаждением в печи до 530–680 °C, выдержка при этой температуре и охлаждение на воздухе), обеспечивающий высокую пластичность и термическую стабильность сплавов.

    Двойной ступенчатый отжиг (отличается от изотермического тем, что переход от первой ступени ко второй осуществляется охлаждением сплава на воздухе с последующим повторным нагревом до температуры второй ступени), приводящий к упрочнению сплава и снижению пластичности за счет частичного протекания процессов закалки и старения.

    Неполный отжиг при 500–680 °C с целью снятия возникающих при механической обработке остаточных напряжений.

    Упрочняющая термическая обработка. Большинство титановых сплавов легировано алюминием, повышающим жесткость, прочность, жаропрочность и жаростойкость материала, а также снижающим его плотность.

    ?-титановые сплавы термической обработкой не упрочняются; их упрочнение достигается посредством легирования твердого раствора и пластической деформацией.

    (? + ?) – титановые сплавы характеризуются смешанной структурой и упрочняются термической обработкой, состоящей из закалки и старения.

    Псевдо-?-титановые сплавы характеризуются высоким содержанием ?-стабилизаторов и вызванным этим отсутствием мартенситного превращения. Сплавы характеризуются высокой пластичностью в закаленном состоянии и высокой прочностью в состаренном; они удовлетворительно свариваются аргонодуговой сваркой.

    Литейные титановые сплавы. По сравнению с деформируемыми литейные сплавы имеют меньшую прочность, пластичность и выносливость, но более дешевы. Сложность литья титановых сплавов обусловлена активным взаимодействием титана с газами и формовочными материалами. Литейные сплавы ВТ5Л, ВТ14Л и ВТЗ-1Л по составу в основном совпадают с аналогичными деформируемыми сплавами (в то же время сплав ВТ14Л дополнительно содержит железо и хром).

    Высокими технологическими свойствами обладает сплав ВТ5Л: он пластичен, не склонен к образованию трещин при литье, хорошо сваривается. Фасонные отливки из сплава ВТ5Л работают при температурах до 400 °C. Недостатком сплава является его невысокая прочность (800 МПа). двухфазный литейный сплав ВТ14Л подвергают отжигу при 850 °C вместо упрочняющей термической обработки, резко снижающей пластичность отливок.

    Порошковые сплавы титана. Применение методов порошковой металлургии для производства титановых сплавов позволяет при тех же эксплуатационных свойствах, что и у литого или деформируемого материала, добиться снижения до 50 % стоимости и времени изготовления изделий. Титановый порошковый сплав ВТ6, полученный горячим изостатическим прессованием (ГИП), обладает теми же механическими свойствами, что и деформируемый сплав после отжига. Закаленному и состаренному деформируемому сплаву ВТ6 порошковый сплав уступает в прочности, но превосходит в пластичности.

    Применение сплавов титана: обшивки самолетов, морских судов, подводных лодок; корпусов ракет и двигателей; дисков и лопаток стационарных турбин и компрессоров авиационных двигателей; гребных винтов; баллонов для сжиженных газов; емкостей для агрессивных химических сред и др.

    Поделитесь на страничке

    Следующая глава >

    tech.wikireading.ru

    Титановые сплавы и их свойства

    Расширяющееся применение титановых сплавов в промышленности объясняется сочетанием у них ряда ценных свойств: малой плотности (4,43—4,6 г/см3), большой удельной прочности, необычайно высокой коррозионной стойкости, значительной прочности при повышенных температурах. Титановые сплавы по прочности не уступают сталям и в несколько раз прочнее алюминиевых и магниевых сплавов. Удельная прочность титановых сплавов является наивысшей среди применяемых в промышленности сплавов. Они являются особо ценными материалами в тех отраслях техники, где выигрыш в массе имеет определяющее значение, в частности в ракетостроении и авиации. Титановые сплавы в промышленном масштабе впервые были использованы в конструкциях авиационных реактивных двигателей, что позволило уменьшить их массу на 10—25%.

    Благодаря высокой коррозионной стойкости ко многим химически активным средам титановые сплавы используют в химическом машиностроении, в цветной металлургии, в судостроении и медицинской промышленности. Однако распространение их в технике сдерживается высокой стоимостью и дефицитностью титана. К недостаткам их следует отнести трудную обрабатываемость режущим инструментом, плохие антифрикционные свойства.

    Литейные свойства титановых сплавов определяются прежде всего двумя особенностями: малым температурным интервалом кристаллизации и исключительно высокой реакционной способностью в расплавленном состоянии по отношению к формовочным материалам, огнеупорам, газам, содержащимся в атмосфере.

    Поэтому получение отливок из титановых сплавов связано со значительными технологическими трудностями.

    Для фасонных отливок применяют титан и его сплавы: ВТ1Л, ВТ5Л, ВТ6Л, ВТЗ-1Л, ВТ9Л, ВТ14Л. Наиболее широко используют сплав ВТ5Л с 5% А1, отличающийся хорошими литейными свойствами, технологичностью, недефицитностью легирующих элементов, удовлетворительной пластичностью и прочностью (σв = 700 МПа и 900 МПа соответственно). Предназначены сплавы для отливок, длительно работающих при температурах до 400°С.

    Сплав титана с алюминием, молибденом и хромом BT3-1Л — наиболее прочный из литейных сплавов. Его прочность (σв = 1050 МПа) приближается к прочности деформируемого сплава. Но его литейные свойства и пластичность ниже, чем у сплава ВТ5Л. Сплав отличается высокой жаропрочностью, отливки из него могут длительно работать при температуре до 450°С.

    Сплав титана с алюминием, молибденом и цирконием ВТ9Л обладает повышенной жаропрочностью и предназначен для изготовления литых деталей, работающих при температурах 500—550°С.

    Контрольные вопросы
    1.       Что такое литейные сплавы и как они классифицируются?

    2.       Какие требования предъявляются к свойствам литейных сплавов?

    3.       Что такое литейные свойства сплавов и как они влияют на качество отливок?

    4.       В чем особенности состава, структуры и свойств чугунов для фасонного литья?

    5.       Чем отличаются высокопрочные чугуны по структуре и свойствам от обычных серых?

    6.       Как получают ковкий чугун?

    7.       Как классифицируются литейные стали и каково их назначение?

    8.       Какие литейные сплавы относятся к цветным?

    9.       Назовите литейные сплавы на медной основе, получившие наиболее широкое промышленное применение.

    10.     Какими достоинствами обладают алюминиевые литейные сплавы?

    11.     Из каких компонентов состоят магниевые литейные сплавы и в каких областях техники эти сплавы нашли наибольшее применение?

    12.     В чем состоят особенности свойств титановых литейных сплавов, каковы их состав и свойства?

    www.stroitelstvo-new.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *