Жесткость пружины через массу формула: Как определить жесткость пружины используя колебания подвешенного к ней груза известной масссы

alexxlab | 23.02.2023 | 0 | Разное

Содержание

разбор и примеры решения (Ростов-на-Дону)

Из последних КИМов ЕГЭ по физике следует, что задание 2 относится к разделу «Динамика» и может содержать расчетные задачи по следующим темам: «Законы Ньютона, закон всемирного тяготения, закон Гука, сила трения».

Основные формулы, которые необходимо знать для успешного решения задания 2.

Сила тяжести

m – масса тела

g=10 м/с2ускорение свободного падения

Сила упругости

Δx – удлинение пружины

k – коэффициент жесткости пружины

Сила трения

µ – коэффициент трения

N – сила реакции опоры

Сила Архимеда (выталкивающая сила)

Vобъём погруженной части тела

g=10 м/с2ускорение свободного падения

Сила притяжения между телами (закон Всемирного тяготения)

G = 6,67*10-11 Н*м2/кг2 – гравитационная постоянная

m1 и m2 – массы взаимодействующих тел

r – расстояние между телами

Второй закон Ньютона

m – масса тела

R – равнодействующая всех сил, действующих на тело

a – ускорение, с которым движется тело под действием этих сил

Алгоритм решения

При решении задач из раздела «Динамика» желательно придерживаться следующего алгоритма решения:

1. Сделать рисунок, на котором указать вектора всех сил, действующих на тело.

2. Если тело двигается с ускорением, указать направление этого ускорения. Если тело покоится или двигается равномерно, его ускорение a=0.

3. Составить уравнение движения (второй закон Ньютона) для рассматриваемого тела в его векторном виде.

3. Выбрать систему координат и спроецировать полученное уравнение на выбранные оси координат.

4. Расшифровать неизвестные величины, вошедшие в уравнение движения.

5. Решить полученную систему уравнений.

Задание 2 – это расчётные задачи базового уровня сложности, и для решения некоторых из них этот алгоритм будет чересчур подробным и перегруженным, так как их можно решить и без вспомогательного рисунка или даже без записи второго закона Ньютона. Это касается, например, заданий, в которых на тело действует только одна сила. Но привычка решать задания по приведенному выше алгоритму поможет ученикам успешно справиться с расчетными задачами по разделу «Динамика» повышенного и высокого уровней сложности – такие задания могут стоять в ЕГЭ под номерами 25 и 29.

Ответом на задание 2 является число, именно его нужно вписать в бланк ответов 1, не указывая единицы измерения.

Примеры решения с разбором

Пример решения 2 задания по физике (ЕГЭ-2019)

Пружина жёсткостью 2*104 Н/м одним концом закреплена в штативе. На какую величину она растянется под действием силы 400 Н?

Ответ: ___________________________ см.

Решение:

Сделаем чертёж

Пружина под действием силы F привели в растянутое состояние. Кроме растягивающей силы F и силы упругости , стремящейся вернуть пружину в нерастянутое состояние, больше никакие силы на нее не действуют.

Запишем проекции сил на вертикальную ось Oy

F=Fупр

По закону Гука, сила упругости Fупр = kx, следовательно,

kкоэффициент жёсткости пружины,

Δxеё удлинение.

Выразим величину растяжения пружины

Ответ: 2

Пример решения 2 задания по физике (ЕГЭ – 2020.

Вариант 1 досрочного ЕГЭ)

Тело движется по горизонтальной плоскости. Нормальная составляющая силы воздействия тела на плоскость равна 40 Н, сила трения равна 10 Н. Определите коэффициент трения скольжения.

Ответ: _______ .

Решение:

Силу трения можно найти по формуле

Fтр= µN,

где N – сила реакции опоры, или по-другому нормальная составляющая силы воздействия тела на плоскость.

Ответ: 0,25.

Пример решения 2 задания по физике (ЕГЭ – 2020. Демонстрационный вариант)

Два одинаковых маленьких шарика массой m каждый, расстояние между центрами которых равно r, притягиваются друг к другу с силами, равными по модулю 0,2 пН. Каков модуль сил гравитационного притяжения двух других шариков, если масса каждого из них равна 2m, а расстояние между их центрами равно 2r?

Ответ: _______ пН.

Решение:

По закону Всемирного тяготения шары массами m1и m2, находящиеся друг от друга на расстоянии r, притягиваются друг к другу с силой

.

В первом случае

Во втором случае

Ответ: 0,2

Пример решения 2 задания по физике (ЕГЭ – 2019. Демонстрационный вариант)

По горизонтальному полу по прямой равномерно тянут ящик, приложив к нему горизонтальную силу 35 Н. Коэффициент трения скольжения между полом и ящиком равен 0,25. Чему равна масса ящика?

Ответ _______ кг.

Решение:

Сделаем чертёж, на котором обозначим все силы, действующие на тело.

По второму закону Ньютона, равнодействующая всех сил, действующих на тело, будет равна нулю, так как по условию задачи тело движется равномерно, то есть ускорение тела a=0.

Запишем это в проекциях на оси Ox и Oy

Ox: Fтр – F = 0,

Oy: N – m g=0.

Откуда N = mg, следовательно,

Fтр = µ N = µ mg.

Масса тела

Ответ: 14

Пример решения 2 задания по физике (ЕГЭ – 2018)

К пружине подвесили груз массой 150 г, вследствие чего пружина удлинилась на 1 см. Чему будет равно удлинение этой пружины, если к ней подвесить груз 450 г?

Ответ: __________ см.

Решение:

Переведём единицы измерения физических величин в систему СИ

m1 = 150 г = 0,15 кг, m2 = 450 г = 0,45 кг, Δx=1 см = 0,01 м.

Сделаем чертёж, на котором обозначим все силы, действующие на тело.

На тело действует сила тяжести (Fт = mg), направленная вертикально вниз, и сила упругости со стороны пружины (Fупр = k Δx), направленная вертикально вверх.

В проекции на вертикальную ось Oy.

Fт =Fупр

mg = kΔx (1)

k

коэффициент жёсткости пружины, Δxеё удлинение.

Найдём, чему равен коэффициент жёсткости пружины

Выразим из выражения (1) удлинение пружины во втором случае

Ответ: 3

Вернуться

Поделиться

Сила упругости пружины – формула по модулю

4. 7

Средняя оценка: 4.7

Всего получено оценок: 138.

4.7

Средняя оценка: 4.7

Всего получено оценок: 138.

Сил упругости возникает при деформации физического тела, то есть когда изменяются размеры и форма тела. Эта сила направлена в сторону, противоположную силе, создающей деформацию. На примере пружины выясним как сила упругости связана с величиной деформации. Рассмотрим также причины возникновения упругих сил.

Закон Гука

Пружину можно сжимать, растягивать, изгибать или скручивать. В каждом из этих случаев будут возникать силы упругости, стремящиеся вернуть форму и размеры пружины в начальное состояние. Для понимания основных закономерностей будем рассматривать только линейные сжатия и растяжения (вдоль оси

х). Для вычисления сил при деформациях изгибов и скручивании требуется применение более сложного математического аппарата.

Рис. 1. Деформации растяжения и сжатия пружины.

Если начальная длина, ненапряженной пружины, равна L0, то для малых деформаций выполняется закон Гука, открытый экспериментально:

$ F_уп = − k * Δх $ (1),

где, в формуле силы упругости пружины:

Fуп — сила упругости пружины, Н;

k — коэффициент жесткости пружины, Н/м;

Δх —величина деформации (дельта икс), м.

Величина малых деформаций должна быть намного меньше начальной длины пружины:

$ Δх

Рис. 2. Портрет Роберта Гука.

Этот фундаментальный закон был открыт английским ученым Робертом Гуком в 1660г. Кроме этого он сделал много других замечательных изобретений и экспериментов:

  • открыл эффект образования цветов тонких пленок, которое в оптике называется явлением интерференции;
  • предложил модель волнообразного распространения света;
  • сформулировал предположение о связи теплоты с движением частиц, из которых состоит тело;
  • изобрел спиральную пружину для регулировки часов, усовершенствовал барометр, гигрометр, анемометр.

Источник силы упругости

Происхождение сил упругости связано с электромагнитным взаимодействием молекул и атомов. Когда происходит увеличение размеров пружины (растяжении), то силы взаимного притяжения “пытаются” восстановить начальные размеры. При сжатии пружины начинают работать силы отталкивания. Когда тело не деформировано, расстояние между молекулами соответствует равенству сил притяжения и отталкивания.

Динамометры

Упругие свойства пружин используются в приборах для измерения силы. Обычно динамометр состоит из двух основных частей: пружины (упругий элемент) и шкалы устройства, на которой нанесены цифровые значения силы или массы, если этот прибор предназначен для бытового применения. Измеряемое усилие прикладывается к пружине, которая деформируется и сдвигает стрелку прибора вдоль отсчетной шкалы.

Рис. 3. Пружинные динамометры.

Хотя закон Гука и считается универсальным, но диапазон деформаций в котором он выполняется сильно отличается для разных тел. Например, в металлических проволоках (прямолинейных) и стержнях максимальная величина относительной деформации (отношение Δх к L0), для которой еще будет справедлив закон Гука, составляет не более 1%. При больших деформациях наступают необратимые разрушения материалов.

Что мы узнали?

Итак, мы узнали, что сила упругости пружины прямо пропорциональна величине деформации тела и направлена в сторону, обратную направлению сдвига пружины.

Силы упругости связаны с электромагнитным взаимодействием молекул и атомов. При сжатии включается механизм отталкивания электрических одноименных зарядов. При растяжении — начинает работать механизм притяжения разноименных зарядов.

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Александр Коновалов

    5/5

Оценка доклада

4.7

Средняя оценка: 4.7

Всего получено оценок: 138.


А какая ваша оценка?

Как рассчитать константу пружины с помощью закона Гука

Любой физик знает, что если объект прикладывает силу к пружине, то пружина прикладывает к объекту равную и противоположную силу. Закон Гука дает силу, с которой пружина действует на прикрепленный к ней объект, с помощью следующего уравнения:

F = – kx

Знак минус показывает, что эта сила направлена ​​в противоположную сторону от силы, которая растягивает или сжимает весна. Переменные уравнения F, , которое представляет силу, k, , которое называется жесткостью пружины и измеряет, насколько жесткой и прочной является пружина, и x, расстояние, на которое пружина растягивается или сжимается от своего положения равновесия или покоя.

Сила, действующая на пружину, называется возвращающей силой; он всегда действует, чтобы вернуть пружину к равновесию. В законе Гука отрицательный знак силы пружины означает, что сила, действующая на пружину, противодействует смещению пружины.

Понимание пружин и направления их действия

Направление силы пружины

На предыдущем рисунке показан шарик, прикрепленный к пружине. Вы можете видеть, что если пружина не растягивается и не сжимается, она не действует на шарик. Однако если вы нажмете на пружину, она оттолкнется назад, а если вы потянете пружину, она оттянется назад.

Закон Гука действителен до тех пор, пока эластичный материал, с которым вы имеете дело, остается эластичным, то есть он остается в пределах предела эластичности . Если вы потянете пружину слишком далеко, она потеряет способность растягиваться. Пока пружина остается в пределах своего предела упругости, можно сказать, что F = – kx . Когда пружина остается в пределах своего предела упругости и подчиняется закону Гука, пружина называется идеальной пружиной .

Как найти жесткость пружины (пример задачи)

Предположим, к вам в дверь стучится группа дизайнеров автомобилей и спрашивает, не могли бы вы помочь спроектировать систему подвески. «Конечно, — говорите вы. Вам сообщают, что машина будет иметь массу 1000 кг, и вам предстоит работать с четырьмя амортизаторами длиной по 0,5 метра каждый. Насколько сильными должны быть пружины? Если предположить, что в этих амортизаторах используются пружины, каждый из них должен выдерживать массу не менее 250 кг, что соответствует следующему весу:

F = мг = (250 кг)(9,8 м/с 2 ) = 2450 Н

где F равно силе, м равно массе 4 г и 9000 ускорение свободного падения, 9,8 метра в секунду 2 . Пружина в амортизаторе должна, как минимум, дать вам усилие в 2450 ньютонов при максимальном сжатии 0,5 метра. Что это означает, что жесткость пружины должна быть? Чтобы выяснить , как рассчитать жесткость пружины , мы должны помнить, что говорит закон Гука:

F = – kx

Теперь нам нужно переделать уравнение так, чтобы мы вычисляли недостающую метрику, которая является постоянной пружины, или k . Глядя только на величины и, следовательно, опуская отрицательный знак, вы получаете

Время подставить числа:

Пружины, используемые в амортизаторах, должны иметь жесткость не менее 4900 ньютонов на метр. Автомобильные дизайнеры выбегают в восторге, но вы кричите им вслед: «Не забывайте, вам нужно как минимум удвоить это, если вы действительно хотите, чтобы ваша машина могла преодолевать выбоины».

Об этой статье

Эта статья из книги:

  • Физика I для чайников,

Об авторе книги:

Доктор Стивен Хольцнер написал более 40 книг по физике и программированию. Он был редактором журнала PC Magazine и преподавал в Массачусетском технологическом институте и Корнелле. Он является автором книг для чайников, в том числе Physics For Dummies и Physics Essentials For Dummies. Доктор Хольцнер получил докторскую степень в Корнелле.

Эту статью можно найти в категории:

  • Физика ,

Как вычислить постоянную пружины

Обновлено 01 февраля 2020 г.

Когда вы сжимаете или растягиваете пружину, она прилагает силу, противоположную силе, которую вы прилагаете, пытаясь вернуться в положение равновесия. Величина силы характерна для пружины и представлена ​​жесткостью пружины, к . Согласно закону Гука соотношение между удлинением x и силой F равно:

F = -kx

Знак минус означает, что сила, действующая на пружину, направлена ​​в противоположную сторону относительно растяжения.

Связь между силой и растяжением является линейной, а это означает, что если вы построите график зависимости силы от растяжения, вы получите прямую линию. Он пройдет через начало координат ( x = 0; F = 0), а его наклон будет равен жесткости пружины k .

Преобразование в силу

Самый простой способ получить значения для графика закона Гука — это подвесить пружину к крюку и прикрепить к нему ряд грузов, значения которых известны. Однако вес обычно измеряется в граммах или килограммах, которые являются единицами массы. Однако их легко преобразовать в единицы силы.

Все, что вам нужно сделать, это умножить массу на ускорение свободного падения, которое в метрической системе МКС равно 9.8 м/с 2 и в системе СГС 980 см/с 2 . Если ваши веса откалиброваны в фунтах, умножьте их на 32 фут/с 2 , чтобы преобразовать их в фунты силы.

Вы по-прежнему можете получить график с прямой линией и экстраполировать значение к из наклона, даже если вы не делаете этих преобразований, но значение для к будет в неправильных единицах и будет значение, отличное от того, которое вы получите, если сделаете преобразование.

Постройте две точки или более

Чтобы построить прямую линию, вам нужны только две точки, а это значит, что вам нужно сделать только два измерения . Однако лучше сделать больше — хотя бы три или четыре. Дополнительные измерения являются страховкой. Если они не попадают на линию, созданную исходными двумя точками, что-то может быть не так с пружиной или с используемыми грузами.

Чтобы нанести точки, подвесьте пружину вертикально на крючок и запишите ее удлинение с помощью линейки. Прикрепите известный груз к свободному концу и запишите новое удлинение. Разница х . После того, как вы рассчитаете силу, действующую на вес, у вас будет первая точка ( x 1 ​​, F 1 ​​). Нанесите разные точки, изменив вес и записав новое расширение. Когда вы закончите рисовать точки, проведите линию через точки, которые ближе всех касаются их всех.

Измерение наклона графика расширения силы

Обычно наклон линии можно найти, выбрав две точки и образовав коэффициент подъема и пробега между этими двумя точками.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *