Что такое класс точности электроизмерительного прибора – » :

alexxlab | 05.10.2019 | 0 | Вопросы и ответы

Электроизмерительные Классы точности – Энциклопедия по машиностроению XXL

Особое внимание приобретает проблема защиты электроизмерительных и электронных приборов. Установлено, что внутри прибора с течением времени создается микроклимат, ускоряющий процесс разрушения металла. Данное явление вызвано тем, что в связи с применением в приборостроении полимерных материалов с течением времени, вследствие их старения в замкнутом пространстве прибора, накапливается большое количество агрессивных компонентов. Теплый влажный морской воздух вместе с морскими солями оказывает на полимерные материалы большее отрицательное влияние, чем сухой. Это подтверждается тем фактом, что значительная часть (около 12%) электроизмерительных приборов, испытанных на атмосферной станции в г. Батуми в течение 2 лет, вышла из строя из-за нарушения класса точности измерения.  [c.7]
Классы точности и системы электроизмерительных приборов приведены в табл. 46 и 47.  [c.370]

Классы точности электроизмерительных приборов  

[c.370]

СИ с несколькими диапазонами измерений одной и той же физической величины или предназначенным для измерений разных физических величин могут быть присвоены различные классы точности для каждого диапазона или для каждой измеряемой величины. Так, электроизмерительному прибору, предназначенному для измерений напряжения и сопротивления, могут быть присвоены два класса точности один — как вольтметру, другой — как омметру.  [c.153]

Для аналоговых электроизмерительных приборов установлены классы точности 0,05 0,1 0,2 0,5 1 1,5 2,5 и 4.  [c.92]

Ответ. Для электроизмерительных приборов классов точности 1 1,5 2,5 4 5 предел допускаемой дополнительной погрешности должен быть равен 0,5 предела допускаемой основной погрепшости прн изменении температуры окружающего воздуха от нормальной )хо любой температуры в пределах рабочих температур на каждые 10°С изменения температуры,  

[c.102]

Манганин – сплав на основе Си, легированный 3 % Ni и 12 % Мп, обладает стабильным удельным электрическим сопротивлением в интервале температур от -100 до + 100 С. Низкое значение термоЭДС в паре с медью и высокая стабильность электросопротивления во времени позволяют широко использовать манганин при изготовлении резисторов и электроизмерительных приборов высоких классов точности.  [c.126]

Регулировку напряжения следует производить только по показаниям электроизмерительных приборов. Регулировка на глаз, когда электрик-авторемонтник ориентируется на показания щитового амперметра или на зарядное состояние батареи, недопустима и может привести к нарушению работы всей системы электрооборудования автомобиля. Основным прибором, применяемым для проверки регулируемого напряжения, является вольтметр со шкалой до 20—30 В для 12-вольтовых регуляторов и до 40—50 В для 24-вольтовых. Класс точности вольтметра оказывает существенное влияние на результаты проверки. Это показывает следующий элементарный расчет. Допустимая погрешность электроизмерительного прибора класса 1,5 составляет 1,5% от предела измерения по шкале прибора. Следовательно, допустимая погрешность вольтметра класса 1,5 со шкалой на 20 В составляет 20-0,015=0,3 В. Допускаемое отклонение регулируемого напряжения от установленного среднего значения у большинства регуляторов равно 0,4 или  

[c.165]

Основной характеристикой электроизмерительного прибора является класс точности или погрешность. Класс точности — обобщенная характеристика средств измерений, определяющая пределы допустимых основных и дополнительных погрешностей, которые делятся на абсолютные и относительные. Чувствительность прибора определяется отношением перемещения конца стрелки к вызвавшему его изменению измеряемой величины. Способность прибора реагировать на минимальное изменение измеряемой величины — порог чувствительности этого прибора.  [c.306]

Пример к п. 1.3. Электроизмерительному прибору, предназначенному для измерений силы постоянного тока в диапазонах О—10, О—20 и О—50 А, могут быть для отдельных диапазонов присвоены различные классы точности.  

[c.215]

Пример к п. 1.4. Электроизмерительному прибору, предназначенному для измерений электрического напряжения и сопротивления, могут быть присвоены два класса точности один как вольтметру, другой — как омметру.  [c.215]

Класс точности — это обобщенная МХ, определяющая различные свойства СИ. Например, у показывающих электроизмерительных приборов класс точности помимо основной погрещности включает также вариацию показаний, а у мер электрических величин — величину нестабильности (процентное изменение значения меры в течение года). Класс точности СИ уже включает систематическую и случайную погрешности. Однако он не является непосредственной характеристикой точности измерений, выполняемых с помощью этих СИ, поскольку точность измерения зависит и от метода измерения, взаимодействия СИ с объектом, условий измерения и т.д.  

[c.122]

Важнейшая характеристика электроизмерительного прибора — точность его показаний. По степени точности электроизмерительные приборы разделяются на семь классов, обозначенных цифрами 0,1 0,2 0,5 1,0 1,5 2,5 4. Класс точности электроизмерительного прибора соответствует величине основной погрешности прибора и указывается на его шкале. Приборы классов точности 0,1 0,2 0,5 применяются в лабораториях для точных измерений, а для технических целей достаточную точность дают приборы классов точности 2,5 и 4.  [c.111]

Какого класса точности и для каких целей применяют электроизмерительные приборы на кранах  [c.120]

По роду тока электроизмерительные приборы делят на приборы переменного или постоянного тока, на приборы постоянного и переменного тока по принципу действия — на магнитоэлектрические, электромагнитные, электродинамические, тепловые, индукционные и вибрационные и др. По степени точности приборы делят на классы 0,02 0,05 0,1 0,2 0,5 1,5 1 2,5 4. Цифры обозначают процент допустимой погрешности, приборы классов  

[c.167]

Результат поверки приводится либо в специальном паспорте прибора, либо указанием класса точности, который определяется ГОСТом. Класс точности электроизмерительных приборов и манометров обозначается числом, указывающим максимальную погрешность прибора в процентах от верхнего предела измерений. Так, миллиамперметр, шкала которого изображена на рис. 3,а, дает погрешность в измерении силы тока не более 0.75 мА. Очевидно, что нет никакого смысла пытаться с помошью такого прибора измерять ток точнее, чем до 0.1 мА. (Если, конечно, для этого не применять каких-лпибо компенсационных схем, в которых наш миллиамперметр уже будет работать только как нуль-гальванометр, а не как измерительный прибор. В последнем случае погрешность измерений будет определяться чувствительностью миллиамперметра, которая численно равна минимальному току, вызывающему заметное отклонение стрелки прибора. Очевидно, что компенсационный метод измерения может снизить погрешность результата, сделав ее существенно меньшей, чем это следует из класса точности).  

[c.17]

Возникшее в годы довоенных пятилеток производство электроизмерительных приборов получило значительное развитие. Достаточно отметить, что в 1946 г. номенклатура выпускаемых электроизмерительных приборов составляла всего лишь 33 типа, в настоя-ш,ее же время изготовляется более 200 типов приборов, в частности организовано крупносерийное производство приборов общего применения (ш,итовые приборы, электросчетчики и др.) и серийное производство приборов постоянного и переменного тока высокого класса точности, что вызвано широким развитием научных исследований в различных областях физики и техники.  [c.14]

Основные затруднения при работе с термометрами сопротивления связаны с необходимостью иметь электроизмерительные приборы высокого класса точности (потенциометр или мост, гальванометры с высокой чувствительностью к напряжению и т. д.) и с необходимостью проведения довольно сложной градуировки термометра. Измерение температуры термометром сопротивления усложняется еще тем, что температура в этом случае (в отличие, например, от измерения ее ртутным термометром) не измеряется непосредственно, а должна быть вычислена по значению сопротивления. Однако, несмотря на это, термометры сопротивления, особенно в наиболее точных калориметрических работах, в последнее время используются все чаще. Этому немало способствует быстрое развитие промышленности электроизмерительных приборов, в связи с чем потенциометры высокого класса точнтости и высокочувствительные гальванометры получили весьма широкое распространение и стали не менее доступными приборами, чем высокочувствительные ртутные термометры и необходимые для их использования оптические трубы большого увеличения.  

[c.133]

Например, автоматизированная установка У358,предназначенная для высокопроизводительной поверки и градуировки аналоговых электроизмерительных приборов постоянного тока всех классов точности амперметров и ваттметров, а также цифровых приборов этого назначения, или автоматизированная установка высшей точности для аттестации и поверки магазинов затухания и аттенюаторов в диапазоне до 100 мГц,  [c.56]

Классы точности устанавливаются стандартами, содержащими технические требования к средствам измерений, подразделяемым по точности. Необходимость подразделения средств измерений по точности определяют при разработке стандартов. Для каждого класса точности в стандартах на средства измерений каждого конкретного вида устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающие уровень точности средств измерений этого класса. Для малоизменя-ющихся метрологических характеристик устанавливаются требования, единые для двух и более классов точности. Например, электроизмерительному прибору, предназначенному для измерения электрического напряжения и сопротивления, могут быть присвоены два класса точности один — как вольтметру, другой — как омметру.  

[c.108]

Все возрастающее применение сверхвысоких давлений, температур, скоростей, напряжений требовало создания аппаратуры более высокого класса в отношении точности и быстроты регулирования, безынерционности, непрерывности записи процессов и т. п. Производство оптико-механических и электроизмерительных приборов увеличилось в 1950 г. по сравнению с 1940 г. в 7 раз возросло производство фотоэлементов, реле, различного рода регуляторов, следящих систем, контрольных автоматов, автоматических измерительных устройств, сервомоторов, исполнительных механизмов и другой аппаратуры.  [c.243]

Датчик прибора устанавливается на опорные площадки вибратора так, чтобы его игла соприкасалась с плоской поверхностью верхнего конца колебательной системы вибратора- Через обмотку вибратора пропускается ток от электрического генератора синусоидальных колебаний, величина которого измеряется миллиамперметром, микроамперметром или каким-либо другим аналогичным прибором. Вибратор начинает колебать иглу датчика прибора, который дает показания по своей шкале. Величина показаний профилометра или профилографа зависит от амплитуды колебаний подвижной системы вибратора. Зная чувствительность вибратора, т. е. величину колебания в зависимости от силы тока, проходящего через него, и, что эта чувствительность с достаточным приближением постоянна в рабочем диапазоне колебаний, можно связать показания поверяемого прибора с показанием электроизмерительного прибора простым переводным множителем. Так как точность электроизмерительных приборов много выше, чем точность щуповых приборов, то имеется возможность отградуировать и проверить профилометры непосредственно по электроизмерительному прибору соответствующего класса. Частотные характеристики прибора, т. е. зависимость его показаний от скорости движения датчика по измеряемой поверхности, определяются на этой установке изменением частоты питающего тока амплитудные характеристики — изменением силы тока.  

[c.144]

Принцип устройства приборов. Для измерения электрических величин применяются электроизмерительные приборы, которые отличаются по ряду признаков. По роду тока различают приборы постоянного, переменного тока и приборы постоянного и переменного тока. По степени точности приборы делятся на семь классов — 0,1 0,2 0,5 1 1,5 2,5 и 4. Цифры указывают значение основной Приведенной погрешности в процентах. По принципу действия приборы подразделяются на магнитоэлектрические, электромагнитные, электродинамические (ферродинами-ческие), индукционные, тепловые, вибрационные, термоэлектрические, детекторные. По способу получения отсчета приборы могут быть с непосредственным отсчетом и самозаписью.  [c.37]

Наиболее существенными источниками погрещностей измерений разности температур калориметрическим термометром являются неизбежные ощибки, свяванные с ивмерением сопротивлений термометра и влияние термической инерции самого термометра. Применение электроизмерительной аппаратуры высокого класса и тщательное проведение измерений позволяют свести ощибки, обусловленные измерением сопротивлений, до тысячны.х долей градуса. Оценить порядок величины погрешности, обусловленной влиянием термической инерции термометра, не представляется возможным. Как бы мала ни была инерция калориметрического термометра, при значительной скорости протекания калориметрического опыта, ее влияние оказывается весьма ощутимым. Это обстоятельство кладет известный предел современной точности калориметрических измерений.. Многочисленные исследования, проведенные до сего времени с целью разработать методы учета влияния термической инерции при калориметрических измеррлниях, не привели к должным результатам. Сложность задачи заключается не столько в большой скорости калориметрического процесса, сколько в неопределенности вида кривой изменения температуры среды. Вид этой кривой зависит от многих факторов, и решить задачу в общем виде на основе современной теории теплообмена пока не удалось.  [c.118]

ДЕЛИТЕЛЬНЫЕ МАШИНЫ, приборы, служащие для нарезания (нанесения) делешш (штрихов) на линейках, стержнях, круговых лимбах, секторах и т. п. изделиях из металла, пластмассы и стекла. Д. м. применяются при изготовлении дифракционных решеток, эталонов мер длины и углов, приборов для измерения длин и углов, астрономических, оптических, геодезических, физических, электроизмерительных приборов и прочих измерительных инструментов лабораторного и промышленного типа. Д. м. по точности нанесения делений, к-рую от них можно получить, разделяются в настоящее время на 4 класса.  [c.229]


mash-xxl.info

§ 95. Назначение и типы электроизмерительных приборов

Назначение. Электроизмерительные приборы служат для контроля режима работы электрических установок, их испытания и учета расходуемой электрической энергии. В зависимости от назначения электроизмерительные приборы подразделяют на амперметры (измерители тока), вольтметры (измерители напряжения), ваттметры (измерители мощности), омметры (измерители сопротивления), частотомеры (измерители частоты переменного тока), счетчики электрической энергии и др. Различают две категории электроизмерительных приборов: рабочие — для контроля режима работы электрических установок в производственных условиях и образцовые — для градуировки и периодической проверки рабочих приборов. На железнодорожном транспорте электрические измерения получили широкое распространение при эксплуатации и ремонте э. п. с, тепловозов и устройств энергоснабжения железных дорог.

Типы приборов. В зависимости от способа отсчета электроизмерительные приборы разделяют на приборы непосредственной оценки и приборы сравнения.

Приборами непосредственной оценки, или показывающими, называются такие, которые позволяют производить отсчет измеряемой величины непосредственно на шкале. К ним относятся амперметры, вольтметры, ваттметры и др. Основной частью каждого такого прибора является измерительный механизм. При воздействии измеряемой электрической величины (тока, напряжения, мощности и др.) на измерительный механизм прибора подается соответствующий сигнал на отсчетное устройство, по которому определяют значение измеряемой величины.

По конструкции отсчетного устройства показывающие приборы делятся на приборы с механическим указателем (стрелочные), со световым указателем (зеркальные), с пишущим устройством (самопишущие) и электронные приборы со стрелочным или цифровым указателем отсчета. В стрелочных приборах измерительный механизм поворачивает стрелку на некоторый угол, который определяет значение измеряемой величины (шкала прибора проградуирована в соответствующих единицах: амперах, вольтах, ваттах и пр.).

В электроизмерительных приборах сравнения измерения осуществляются путем сравнения измеряемой величины с какой-либо образцовой мерой или эталоном. К ним относятся различные мосты для измерения сопротивлении и компенсационные измерительные устройства (потенциометры). Последние измеряют разность между измеряемым напряжением или э. д. с. и компенсирующим образцовым напряжением (э. д. с). В качестве сравнивающего прибора обычно используют гальванометр.

Действие электроизмерительных приборов непосредственной оценки основано на различных проявлениях электрического тока (магнитном, тепловом, электродинамическом и пр.), используя которые можно при помощи различных измерительных механизмов вызвать перемещение стрелки.

В зависимости от принципа действия, положенного в основу устройства измерительного механизма, электроизмерительные приборы относятся к различным системам: магнитоэлектрической, электромагнитной, электродинамической, тепловой, индукционной и др. Приборы каждой из этих систем имеют свои условные обозначения.

Приборы могут выполняться с противодействующей возвратной пружиной и без пружины. В последнем случае они называются логометрами.

Точность приборов. Каждый электроизмерительный прибор имеет некоторую погрешность, которая определяется трением в его осях, технологическими допусками отдельных его деталей, гистерезисом в магнитной системе и т. д. Для оценки точности измерений используют понятие относительная погрешность ?x%. Она представляет собой отношение абсолютной погрешности ?x, которая имеет место при измерениях (разность между измеренной величиной xиз и ее действительным значением хд), к действительному значению измеряемой величины в процентах:

?x% = (xиз— хд)/хд * 100 (91)

Эта погрешность различна при разных значениях измеряемой величины, т. е. для различных делений шкалы прибора. Поэтому точность электроизмерительных приборов оценивают по основной приведенной погрешности ?, которая равна отношению наибольшей абсолютной погрешности ?xmax для данного прибора к наибольшему (номинальному) значению хном той величины (тока, напряжения, мощности и пр.), которую может измерять прибор:

?% = ?xmaxном * 100 (92)

Основной приведенной погрешностью считается погрешность прибора при нормальных условиях его работы. При отклонении от этих условий возникают дополнительные погрешности: температурная (от изменения окружающей температуры), от влияния внешних магнитных полей, от изменения частоты переменного

Магнитоэлектрический прибор с подвижной рамкой

Магнитоэлектрический прибор с подвижным магнитом

Электродинамический прибор

Электромагнитный прибор

Ферродинамический прибор

Индукционный прибор

Электростатический прибор

Вибрационный (язычковый) прибор

Тепловой прибор (с нагреваемой проволокой)

Биметаллический прибор

Термоэлектрический прибор с магнитоэлектрическим измерительным механизмом

Выпрямительный прибор с магнитоэлектрическим измерительным механизмом

тока и пр. По степени точности электроизмерительные приборы непосредственной оценки подразделяются на восемь классов:

Класс прибора 0,05 0,1 0,2 0,5 1,0 1,5 2,5 4,0
Основная приведенная
погрешность,%
±0,05 ±0,1 ±0,2 ±0,5 ±1,0 ±1,5 ±2,5 ±4,0

К первым трем классам относят точные лабораторные приборы. Приборы классов 0,5; 1,0 и 1,5 используют для различных технических измерений. Они обычно переносные, подключаемые к электрическим установкам только во время измерений.

Приборы классов 2,5 и 4,0 устанавливают постоянно на щитах и панелях управления электрическими установками.

Ошибка в показаниях прибора определяется его классом точности. Например, амперметр класса 1,5 со шкалой на 100 А может дать погрешность (100*1,5)/100= 1,5А.

Погрешность прибора не следует смешивать с погрешностью измерений. Так как погрешность для рассматриваемого прибора, равная 1,5 А, задается независимо от измеряемого им тока, то при токе 50А погрешность измерений будет составлять 3%, а при токе 5А — 30%. Поэтому при измерениях рекомендуется так выбирать приборы, чтобы значения измеряемой величины не были существенно меньшими наибольшего ее значения, указанного на шкале прибора.
Обозначения на шкале. На шкале каждого прибора проставляют соответствующие условные обозначения, характеризующие назначение прибора (амперметр, вольтметр и т. д.), его класс точности, род тока, при котором он может применяться, систему прибора, нормальное его положение при измерениях, испытательное напряжение, при котором проверялась изоляция прибора, и пр. Для указания назначения прибора в его условное обозначение вписывают буквенные символы измеряемых величин, например А (амперметр), V (вольтметр), W (ваттметр).

electrono.ru

Классы точности средств измерений. Устройство и принцип действия электроизмерительных приборов.

Классы точности средств измерений. Устройство и принцип действия электроизмерительных приборов.

Задание: Изучить кассы точности электрических приборов. Используя рисунок 1 изучить устройство электроизмерительного прибора. Опишите область применения электроизмерительных приборов.

Класс точности — основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения.

 

Для стрелочных приборов принято указывать класс точности, записываемый в виде числа, например, 0,05 или 4,0. Это число дает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора. Так, для вольтметра, работающего в диапазоне измерений 0 — 30 В, класс точности 1,0 определяет, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Соответственно, среднее квадратичное отклонение s прибора составляет 0,1 В.

 

Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Как следствие, такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1 — 0,5 В.

 

Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора. Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления. Понятно, что при считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.

 

Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков. Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений. Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.

 

Чтобы легко получить необходимую информацию о приборе, ГОСТом 5365 83 установлена специальная система их маркировки. Согласно этому ГОСТу, на шкале прибора при помощи условных обозначений указаны: единица измеряемой величины; класс точности прибора; ГОСТ, по которому он изготовлен; род тока и число фаз; система прибора; категория защищенности прибора; испытательное напряжение прочности электрической изоляции токоведущих частей относительно корпуса прибора; год выпуска и заводской номер прибора

 

Рассмотрим на примере прибора, шкала которого изображена на рис.12, какую информацию можно получить о нем.



 

 

Рис. 1 Шкала измерительного прибора

 

 

1. Знак μА означает, что данный прибор является микроамперметром.

 

2. Максимальное значение шкалы равно 100. Это означает, что предел измерения данного прибора 100 мкА.

 

3. Определить цену деления можно, разделив номинальное (максимальное) значение шкалы (100 мкА) на количество делений шкалы (50): С = 100 мкА/50 = 2мкА/дел.

 

4. Знак «–» означает, что прибор предназначен для работы на постоянном токе.

 

5. Знак означает, что измерительный механизм прибора имеет магнитоэлектрическую систему.

 

6. Знак означает, что изоляция прибора испытана напряжением 2000 В.

 

7. Знак означает, что прибор устанавливается вертикально.

 

8. Число «1,5» определяет класс прибора. То есть относительная погрешность прибора составляет 1,5 %. Прибор соответствует 6 классу точности и относится к группе технических приборов.

 


Дата добавления: 2015-07-11; просмотров: 243 | Нарушение авторских прав


Меры и измерительные приборы делятся на образцовые и рабочие. | Погрешности измерений | Задание: изучить единицы и меры единиц электрических величин. Классификацию и системы обозначения измерительных приборов. Все условные обозначения зарисовать в конспект |
mybiblioteka.su – 2015-2019 год. (0.005 сек.)

mybiblioteka.su

Электроизмерительные приборы и их классификация

Измерение — это процесс определения физической величины с помощью технических средств.

Мера — это средство измерения физической величины заданного размера.

Измерительный прибор — это средство измерения, в котором вырабатывается сигнал, доступный для восприятия наблюдателем.

Меры и приборы подразделяются на образцовые и рабочие. Образцовые меры и приборы служат для поверки по ним рабочих средств измерений. Рабочие меры и приборы служат для практических измерений.

Классификация электроизмерительных приборов

Электроизмерительные приборы можно классифицировать по следующим признакам:

  • методу измерения;
  • роду измеряемой величины;
  • роду тока;
  • степени точности;
  • принципу действия.

Существует два метода измерения. Классификация электроизмерительных приборов по методу измерения:

  1. Метод непосредственной оценки, заключающийся в том, что в процессе измерения сразу оценивается измеряемая величин.
  2. Метод сравнения, или нулевой метод, служащий основой действия приборов сравнения: мостов, компенсаторов.

Классификация электроизмерительных приборов по роду измеряемой величины:

Классификация электроизмерительных приборов по роду тока:

Классификация электроизмерительных приборов по степени точности: по степени точности приборы подразделяются на следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; и 4,0. Класс точности не должен превышать приведенной относительной погрешности прибора, которая определяется по формуле:

где А — показания поверяемого прибора; А0 — показания образцового прибора; Amax — максимальное значение измеряемой величины (предел измерения).

Системы измерительных приборов

Классификация электроизмерительных приборов по принципу действия: различают системы электроизмерительных приборов. Приборы одной системы обладают одинаковым принципом действия. Существуют следующие основные системы измерительных приборов:

www.mtomd.info

Основные характеристики электроизмерительных приборов


⇐ ПредыдущаяСтр 6 из 9Следующая ⇒

Основными характеристиками электроизмерительных приборов являются: функция преобразования, чувствительность, порог чувствительности, диапазон измерений, область рабочих частот, класс точности, потребляемая мощность, быстродействие, входное сопротивление.

Чувствительность измерительного прибора определяется из уравнения преобразования и равна отношению изменения сигнала на выходе прибора к его изменению на входе:

.

Обратная чувствительности величина является ценой деления.

Порог чувствительности − минимальное значение входной величины, которое можно обнаружить с помощью данного прибора.

Диапазон измерений − область значений измеряемой величины, для которой показания прибора соответствуют его классу точности.

Диапазон измерений может состоять из нескольких поддиапазонов.

Область рабочих частот – полоса частот, в пределах которой погрешность измерительного прибора, вызванная изменением частоты, соответствует паспортному значению.

Класс точности − обобщенная характеристика, определяемая пределами допустимых основных и дополнительных погрешностей.

Класс точности − отношение абсолютной погрешности к предельному значению шкалы прибора :

.

Следует отличать класс точности прибора от его относительной погрешности, определяемой по формуле

,

где − среднее значение измеряемой величины.

Пример.

Пусть ток 50 мА измеряем миллиамперметром класса точности = 1 со шкалой = 150 мА. Это означает, что абсолютная погрешность прибора:

.

Следовательно, относительная погрешность нашего измерения:

,

а не 0,5 %, как если бы мы измеряли ток 150 мА.

Из данного примера видно, что для проведения измерения с выcокой точностью следует подобрать такой прибор (или предел на многопредельном приборе), чтобы измеряемая величина составляла 70-90 % предельного значения шкалы.

Основные параметры измерительного прибора указаны на шкале прибора (рис. 4.8) или приводятся в паспортных данных.

Рис. 4.8. Миллиамперметр четырехпредельный

 

Условные обозначения, нанесенные на его шкале, показывают, что прибор магнитоэлектрической системы для измерения постоянного тока (–) при горизонтальном расположении шкалы, предназначен для закрытых сухих неотапливаемых помещений (Б), относительная (приведенная) погрешность составляет 1% (класс точности 1), измеряемая цепь изолирована от прибора и испытана напряжением 2 кВ , отклонение стрелки происходит при пропускании тока 3 мА, модель прибора М45М, прибор изготовлен в 1968 г., заводской номер № 216478, в соответствии с ГОСТ 8711-60.

4.7. Определение цены деления многопредельных
приборов

Шкалы приборов имеют деления. Для перевода числа делений в единицы измеряемой величины необходимо отсчет по шкале умножить на цену деления шкалы для данного предела измерения.

Если прибор однопредельный, то цена деления прибора – неизменная величина. Если прибор многопредельный, то каждое переключение регулятора пределов вызывает изменение цены деления шкалы прибора.

Цена деления – это число единиц измеряемой величины, приходящееся на одно деление шкалы.

Чтобы определить цену деления шкалы, нужно предел измерения прибора (к которому подключен прибор) разделить на общее число делений шкалы:

,

где – предельное значение измеряемой величины;
– максимальное число делений шкалы.

Пример.

Пусть имеется четырехпредельный миллиамперметр рис. 4.8 со шкалой на = 75 делений и с пределами измерений, указанными в табл. 4.1. Если предельное значение силы тока = 150 мА, то в этом случае цена деления шкалы: =150/75 = 2 мА/дел.

Зная цену деления , можно легко пересчитать наблюдаемое отклонение стрелки прибора в измеряемую величину . Например, если = 2 mA/дел, а показание прибора = 63 деления шкалы, то измеряемый ток = 63·2 = 126 мА.

Таблица 4.1. Определение цены
деления многопредельных приборов

Диапазон Предел измерений , мА Цена деления
I 0 – 150 150/75 = 2
II 0 – 75 75/75 = 1
III 0 – 15 15/75 = 0,2
IV 0 – 3 3/75 = 0,04

 

Например, если упомянутый выше прибор переключили на предел измерения 0 – 75 мА, то цена деления уже составит 75/75 = 1 мА/дел. Режим самый удобный для измерений, но измерение тока на этом пределе в данном случае производить нельзя, т. к. величина тока 126 мА выше предельно допустимой 75 мА.

4.8. Маркировка электроизмерительных приборов,
наносимые условные обозначения

Тип электромеханических измерительных приборов (ИП) указывается на циферблате. Он состоит из прописной буквы и нескольких цифр, отражающих шифр завода – изготовителя и номер конструктивной разработки, например Д566. Буква, с которой начинается обозначение, указывает способ создания вращающего момента электромеханического измерительного прибора, определяющий его название (табл. 4.2):

М – магнитоэлектрический;

Э – электромагнитный;

Д – электро- и ферродинамический;

И – индукционный;

С – электростатический;

В – выпрямительный;

Т – термоэлектрический;

Н – самопишущий;

Р – меры и измерительные преобразователи.

Таблица 4.2. Обозначение типа измерительного механизма

 

 

Каждый прибор имеет следующие обозначения (на лицевой стороне, на корпусе и у зажимов): обозначение единиц измеряемой величины (для приборов с именованной шкалой) или наименование прибора; обозначение класса точности прибора, условное обозначение системы прибора и вспомогательной части, с которой градуировался прибор; условное обозначение испытательного напряжения изоляции измерительной цепи по отношению к корпусу; условное обозначение рабочего положения прибора, если это положение имеет значение; степени защищенности от влияния магнитных и электрических полей; товарный знак завода-поставщика; условное обозначение типа прибора; год выпуска; заводской номер (табл. 4.3-4.8).

Таблица 4.3. Обозначение единиц измерения

Наименование Условное обозначение на приборе
Килоампер kA
Ампер A
Миллиампер mA
Микроампер µA
Киловольт kV
Вольт V
Милливольт mV
Мегаватт MW
Киловатт kW
Ватт W
Герц Hz
Мегаом
Килоом
Ом Ω
Милливебер mWb

 

 

Таблица 4.4. Обозначение рода тока

Наименование Условное обозначение на приборе
Ток постоянный
Ток переменный (однофазный)
Ток постоянный и переменный
Ток трехфазный

Таблица 4.5. Безопасность

Наименование Условное обозначение на приборе
Испытательное напряжение 500 В
Измерительная цепь изолирована от корпуса и испытана напряжением, например, 2 кВ
Измерительный прибор, не подвергаемый испытанию высоким напряжением
Стрела, предупреждающая от опасности прикосновения

Таблица 4.6. Рабочее положение

Наименование Условное обозначение на приборе
Горизонтальное положение шкалы
Вертикальное положение шкалы
Наклонное положение шкалы под углом к горизонту, например, 60º

Таблица 4.7. Класс точности прибора

Наименование Условное обозначение на приборе
По приведенной погрешности 1,5
По нормированной погрешности в процентах от длины шкалы
По относительной погрешности

Таблица 4.8. Общие условные обозначения

4.9. Условные графические обозначения
в электрических схемах

Условные графические обозначения общего применения широко используются при выполнении различных структурных и принципиальных схем для повышения их информативности.

Принципиальные схемы выполняют две основные функции:

· Показывают, как воспроизвести схему.

· Дают общую информацию о принципах функционирования и составе схемы, что, безусловно, помогает понять принципы работы устройства.

В современных электрических схемах используются сотни различных символов. Все символы можно условно разделить на 4 категории:

· Простейшие схемотехнические символы: шасси и заземления, точки пересечения и соединения, входы и выходы.

· Электронные радиоэлементы: резисторы, диоды, транзисторы, катушки и конденсаторы.

· Логические элементы: элементы И, ИЛИ, И-НЕ и ИЛИ-НЕ, инверторы.

· Другие символы: ключи, лампы и другое оборудование.

Часто встречающиеся обозначения в электрических схемах физической лаборатории приведены в табл. 4.9. Рядом с условными обозначениями встречаются буквенные обозначения, используемые в радиотехнических схемах.

 

Таблица 4.9. Обозначения в электрических схемах

Продолжение

 

 

Продолжение


Рекомендуемые страницы:

lektsia.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *