Электромагнитная муфта – Электромагнитная муфта: принцип работы, устройство, характеристики

alexxlab | 18.02.2019 | 0 | Вопросы и ответы

Электромагнитная муфта: принцип работы, устройство, характеристики

Важным элементом различных конструкций можно назвать муфту. Современные технологические возможности позволили получить более сложные устройства, которые характеризуются более привлекательными эксплуатационными характеристиками. Электромагнитные муфты можно назвать современным предложением. Они устанавливаются на современных автомобилях и многих других устройствах. Довольно сложная конструкция и непростой принцип действия определяет то, что нужно четко разбираться в подобном устройстве для обеспечения его качественного обслуживания. Рассмотрим все особенности данного вопроса подробнее.

Что такое электромуфта?

Электромагнитная муфта представлена специальным устройством для решения самых различных задач, большинство из которых связано с соединением и разъединением пары, находящейся в зацеплении. Производятся электромагнитные муфты для станков и других узлов транспортных средств или тепловозов. При этом выделяют несколько основных разновидностей подобных конструкций:

  1. Механизмы фрикционного типа конусные и дисковые.
  2. Электромагнитная муфта зубчатого типа считается специфическим вариантом исполнения, так как рабочая часть представлена сочетанием различных зубьев.
  3. Порошковая электромагнитная муфта является современным вариантом исполнения, так как она обеспечивает осевое смещение при необходимости.

Электромуфта является промежуточным соединительным элементом. Принцип действия заключается в использовании основных свойств электрического тока для генерации электродвижущей силы.

При этом он может выполнять самые различные функции, к примеру, защиту основного устройства от перегрева или управление.

Принцип работы муфты электромагнитной

Электромагнитная муфта может обладать самой различной конструкцией, но также выделяют и классический вариант исполнения. Его особенности заключаются в следующем:

  1. Основными элементами можно назвать два ротора, один из которого представлен железным диском с тонким концевым выступом.
  2. Внутренняя часть оснащается полюсными наконечниками, которые обеспечивают радиальное смещение. Для передачи тока создается обмотка, она подключается к источнику питания через контактные кольца. Часть этого элемента располагается на валу.
  3. Рассматриваемая муфта магнитная имеет второй ротор, который представлен цилиндрическим валом со специальными пазами, расположены параллельно основной оси. Они создаются для того, чтобы можно было вставлять специальные бруски с полюсными наконечниками.

Рассматриваемая муфта на постоянных магнитах обладает довольно сложной конструкцией, за счет чего обеспечивается точная и надежная работа. Принцип действия устройства следующий:

  1. При появлении тока возникает электромагнитное поле, которое пересекается с проводником и начинает взаимодействовать.
  2. Подобное совмещение становится причиной возникновения электродвижущей силы. Ее может быть вполне достаточно для перемещения подвижного элемента с учетом преодоления определенного усилия.
  3. При изготовлении этой детали применяется брусок меди, который и обеспечивает замыкание цепи. По ним проходит ток, за счет которого и появляется электромагнитная сила.
  4. Возникающие поля обеспечивают ведомого ротора за ведущим, при этом запоздание несущественное.

Подобный принцип работы применяется при создании самых различных механизмов. При этом устройство станка позволяет прекращать передачу вращающего момента в течение нескольких долей секунды, что и определяет его распространение.

Размагничивание электромагнитной муфты происходит за счет отключение источника питания. При этом особые свойства материала определяют то, что магнитное поле пропадает практически сразу, за счет чего происходит обратное движение подвижного элемента. Используемые обмотки электромагнита рассчитаны на достаточно большое количество таков сцепления и расцепления ведущего элемента с ведомым.

При рассмотрении того, что такое электромагнитная муфта также нужно уделить внимание свойств применяемых материалов при ее изготовлении.

Только специальные сплавы обладают магнитными свойствами, которые обеспечивают требуемые условия эксплуатации.

Передача момента на муфту может проводится от электрического двигателя и других подобных элементов. Размеры всех габаритов в большинстве случаев стандартизируются, однако есть возможность заказать производство механизма под заказ. Классификация, как правило, проводится по области применения и многим другим признакам.

Классификация электромуфт

В большинстве случаев электромуфты классифицируются по тому, в какой области они применяются. Чаще всего применяется электромагнитная фрикционная муфта. Она обладает следующими свойствами:

  1. Устройство может применяться для снижения вероятности воздействия импульсных нагрузок.
  2. На холостом ходу конструктивные особенности определяют незначительные потери. Этот момент определяет то, что основные элементы не нагреваются при эксплуатации.
  3. Есть возможность провести быстрый пуск механизма даже в случае, если оно находится под большой нагрузкой.

Рассматриваемый тип механизма делится на несколько основных типов:

  1. Контактные.
  2. Тормозные.
  3. Бесконтактные.

Довольно част встречается муфта электромагнитная тормозная, которая может снизить количество оборотов при работе.

Вариант исполнения кондиционерного компрессора представлена в виде узла, который состоит из следующих элементов:

  1. Катушки электромагнитного типа. Она изготавливается при применении специальных сплавов, которые характеризуются определенными свойствами. Катушка требуется для непосредственной генерации электромагнитного поля.
  2. Пластин прижимного типа. Этот элемент конструкции должен характеризоваться высокой прочностью.
  3. Шкива, который передает усилие от электрического двигателя. Привод подобного типа получил довольно широкое распространение, так как он обеспечивает защиту устройства от перегрева при большой нагрузке. За счет смены шкивов есть возможность регулировать количество оборотов на выходе.

В рассматриваемом случае на катушку подается электричество, которое образует электромагнитное поле. За счет этого происходит притягивание прижимной пластины к шкиву. Подобное перемещение дает свободу валу, и механизм начинает работать.

Компрессорные установки получили весьма широкое распространение. Именно поэтому нужно уделять внимание следующим дефектам:

  1. Довольно часто встречается ситуация, когда подшипник шкива деформируется. В этом случае достаточно провести замену элемента.
  2. Прижимная пластина изготавливается из тонкого метала, поэтому на момент эксплуатации она может деформироваться. Кроме этого, проблема возникает в случае неправильной установки зазора.
  3. Встречается ситуация сгорания самой муфты. Она чаще всего связана с высоким напряжением, которое подается на катушку.

Развитие современных технологий определило то, что в автомобилях проводится установка электромагнитной муфты сцепления. Она делиться на несколько различных типов в зависимости от привода:

  1. Гидравлический. Этот вариант исполнения характеризуется тем, что передача усилия осуществляется за счет жидкости в системе. Масло и вода хорошо подходят для передачи усилия. Однако, гидравлический привод на сегодняшний день характеризуется относительно низкой надежностью.
  2. Механический. Подобное устройство характеризуется тем, что передача усилия проводится за счет сочетания различных элементов. Примером можно назвать звездочки, шестерни и другие детали.
  3. Муфта сцепления электромагнитная.

Наиболее распространен последний тип механизма. При этом он также классифицируется на несколько основных типов:

  1. По показателю трения выделяют мокрые и сухие. В последнее время большое распространение получили варианты исполнения, которые могут работать только при добавлении масла.
  2. Классификация проводится и по режиму включения: непостоянные и постоянные.
  3. Выделяют муфты с одним или несколькими ведомыми дисками. Выбор проводится в зависимости от того, какие требуются эксплуатационные характеристики.
  4. По виду управления также выделяют несколько основных видов механизма. Примером можно назвать механический, гидравлический и комбинированный.

В отдельную группу включены электромагнитные порошковые муфты. Они представлены сочетанием веществ, которые при взаимодействии могут обеспечивать прочную связь.

Этот современный вариант исполнения встречается в случае, когда нужно обеспечить смещение соединяемых элементов относительно друг друга на момент эксплуатации.

Элементы защиты, электромагнитные фрикционные многодисковые муфты

Подобная электромуфта чаще всего устанавливается на станках с блоком числового программного управления. К достоинствам отнесем следующие моменты:

  1. Компактность. За счет этого есть возможность проводить установку электромагнитной муфты в современные устройства. С каждым годом размеры устройства существенно уменьшаются, за счет чего расширяется область применения.
  2. Надежность. Этот параметр считается наиболее важным при выборе практически любой муфты. Применение специальных материалов и контроль качества на всех этапах производства позволяет достигнуть наиболее высокого показателя надежности.
  3. Малогабаритность. Этот параметр определяет легкость в транспортировке и многие другие положительные параметры.

Этот вариант исполнения характеризуется довольно высокими эксплуатационными характеристиками, за счет которой он получил широкое распространение. Основными частями конструкции можно назвать:

  1. Корпус. В большинстве случаев он изготавливается при применении стали, которая характеризуется повышенной устойчивостью к воздействию окружающей среды. Предназначение корпуса заключается в защите внутренних элементов.
  2. Катушка. Этот элемент предназначен для непосредственного создания электромагнитного поля, за счет которого и происходит смещение основных элементов. Катушка рассчитана на воздействие определенного электрического тока, слишком высокое напряжение оказывает негативное воздействие.
  3. Группа дисков фрикционного типа. При изготовлении пакета фрикционных дисков применяется специальный сплав, характеризующийся определенными магнитными свойствами.
  4. Поводок и нажимной диск.
  5. На корпусе есть насаженное кольцо, изготавливаемый из изоляционного материала.
  6. Ток подается при помощи контактной щетки. Именно она в большинстве случаев выходит из строя на момент эксплуатации механизма.

Исключить вероятность возникновения короткого замыкания можно при помощи вырезанных отверстий в дисках. На момент подачи электрического тока создается электромагнитное поле, которое замыкается при помощи фрикционного диска. Именно за счет этого создается притягивающая сила, за которой происходит смещение основной части.

Встречается несколько вариантов исполнения подобных конструкций. Примером можно назвать устройство с вынесенным и магнитопроводящим диском.

Преимущество соединений при помощи электромуфт

Рассматриваемое устройство получило весьма широкое распространение. Это можно связать с тем, что оно обладает достаточно большим количеством преимуществ, которые должны учитываться. Наиболее важными считаются приведенные ниже:

  1. Надежность. При подаче электрического тока устройство проводит разъединение отдельных элементов в течение короткого промежутка времени. При этом электромагнитное поле не подвержено воздействию окружающей среды, поэтому существенных проблем при работе, как правило, не возникает.
  2. Сохранение основных свойств на протяжении длительного периода. Важным критерием выбора подобных устройств можно назвать именно эксплуатационный срок. За счет применения специальных материалов этот показатель в рассматриваемом случае существенно расширен.
  3. Срабатывание в течение нескольких долей секунд. Подобный результат свойственен относительно небольшому количеству устройств рассматриваемой категории. Время срабатывания – параметр, который учитывается при выборе муфты.
  4. Возможность исполнения для достижения самых различных целей, к примеру, защиты устройства или дистанционное управление.
  5. Компактность и небольшой вес. Эти параметры считаются также довольно важными, так как слишком большой вес оказывает нагрузку на основную конструкцию. Компактность позволяет проводить встраивание устройства в самые различные конструкции.

Однако есть несколько существенных недостатков, которые должны учитываться. Примером можно назвать то, что устройство стоит достаточно дорого, а обслуживание должно проводится исключительно специалистом. Кроме этого, эксплуатация при несоблюдении основных рекомендаций может стать причиной повышенного износа. Не стоит забывать о том, что для работы устройства требуется электрический ток, который и обуславливает появление требуемого электромагнитного поля.

Область применения

Устройство получило весьма широкое применение, так как обеспечивает соединение нескольких элементов и их разъединения при необходимости. Область применения следующая:

  1. Автомобили и другие транспортные средства имеют узлы, которые снабжаются электромагнитной муфтой.
  2. В последнее время все чаще устройство устанавливается в станки с ЧПУ. Это связано с тем, что к их работе предъявляются требования по высокой точности работы.
  3. Было разработано несколько типов различных устройств, которые могут выступать в качестве промежуточного элемента. Применять муфты могут для достижения самых различных целей, к примеру, защиты устройства от перегрева путем отключения привода при срабатывании датчика.

В целом можно сказать, что использование электрического тока для генерации сигнала позволяет существенно расширить область применения устройства. Это связано с возможность передачи сигнала от различных датчиков.


В заключение отметим, что электромагнитные муфты выпускают самые различные организации. Рекомендуется уделять внимание продукции исключительно известных производителей, так как заявленные параметры соответствуют реальным. При изготовлении могут применяться самые различные материалы, уделяется внимание защите от воздействия окружающей среды.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Электромагнитные муфты, классификация, принцип работы

Электомагнитные муфты для своей работы используют свойства магнитного поля и электрический ток, то есть к ним обязательно подводится электричество. И это их принципиальное отличие от других видов, ниже написано что они могут передавать вращение и без тока, но тогда наоборот – она разъединяется при подаче электричества.

Разновидности электромагнитных муфт:

Зубчатые муфты:

Электромагнитные зубчатые муфты передают вращение при помощи пары зубчатых колец, сцепляемых и разъединяемых при помощи магнитного поля, генерируемого катушкой. Также существует исполнение муфт, которые передают вращение без электрического тока, при подаче напряжения магнитное поле разъединяет зубчатые венцы и момент не передается.
Зубчатые муфты могут передавать большие моменты.
В разъединенном состоянии зубчатые венцы не контактируют, это позволяет исключить остаточные моменты. В отличие от фрикционных муфт , зубчатые могут эксплуатироваться как в сухом так и во влажном окружении.

  • с постоянным полем

Работают на основе магнитной катушки, размещенной в центре муфты, два провода от катушки выводятся через паз на передней поверхности. Генерируемое поле соединяет зубчатые венцы. Между венцами установлены пружины,
которые сжимаются при подаче питания. При отключении питания пружины отжимают подвижное зубчатое кольцо, рассоединяя валы.
При “сухом” применении необходимо обеспечить хорошую вентиляцию. Если муфты используются в ограниченном объеме без вентиляции либо работают длительное время, тепло, вырабатываемое катушкой может повредить чувствительные к нагреву элементы механизма.

  • с токосъемными кольцами

Данный тип муфт представляет собой электромагнитные муфты с отрицательным проводом соединенным с “массой” механизма. Положительный провод подключается к муфте при помощи щетки через токосъемное кольцо. Катушка генерирует магнитное поле, которое притягивает друг к другу зубчатые венцы сжимая расположенные между ними пружины. При

отключении питания пружины отжимают подвижное зубчатое кольцо, рассоединяя валы.

  • разъединяющие муфты с закрепленным корпусом катушки

Передают вращение при отсутствии магнитного поля, т .е. при отключенной катушке, питание к ней подводится по двум проводам. Сжатие зубчатых венцов между собой осуществляется при помощи пружины. Для быстро и надежного срабатывания данного типа муфт рекомендуется в течение 1 секунду подавать напряжение в два раза превышающее номинальное. Для удержания в рассоединенном состоянии достаточно напряжения в 50% от номинального. Таким образом при длительном режиме работы снижается энергопотребление и тепловыделение.

  • разъединяющие с токосъемным кольцом и пружиной

Передают вращение при отключенной катушке. Сжатие зубчатых венцов между собой осуществляется при помощи пружины.
Отрицательный провод катушки соединен с “массой” механизма, положительный провод
подключен к токосъемному кольцу . Питание подается через щетку . При подаче питания зубчатые венцы рассоединяются, сжимается пружина между ними. Для надежного срабатывания данного типа муфт рекомендуется в течение 1 секунду подавать напряжение в
два раза превышающее номинальное. Для удержания муфты в рассоединенном состоянии
достаточно напряжения в 50% от номинального. Таким образом при длительном режиме
работы снижается энергопотребление и тепловыделение. (Схема А)

  • зубчатые тормоза (без токосъемного кольца, подключается к источнику питания по двум проводам)

По устройству сходны с муфтами с токосъемными кольцами, однако этих колец нет, муфта подключается к источнику питания по двум проводам. Правильное применение электромагнитных тормозов – удерживание в неподвижном сцепленном состоянии обеих частей муфты остановленных предварительно.

Многодисковые муфты и тормоза:

Передают крутящий момент через пакет дисков. Электромагнитная катушка генерирует магнитное поле, которое притягивает пластину ,
сжимающую пакет дисков. Пакет состоит из чередующихся внутренних и наружных дисков.
Внутренние диски имеют шлицы и установлены на шлицевом валу , внешние диски имеют
проточки, внешние диски установлены в шлицы корпуса муфты. Волнообразная форма
дисков облегчает рассоединение пакета при отключении муфты и уменьшает остаточный
момент . Многодисковые муфты требуют постоянной смазки.

  • с токосъемным кольцом

Вращение передается при подаче напряжения на катушку. Отрицательный провод питания подключается к “массе” механизма, положительный
провод подключается к щетке, передающей ток на токосъемное кольцо. Катушка создает магнитное поле стягивающее между собой диски муфты и притягивающее прижимное кольцо. Когда электричество выключается благодаря волнообразной форме диски рассоединяются.Устанавливаются на шлицевой вал или со шпонкой.

Многодисковые тормоза сходны по конструкции с муфтами с вращающейся катушкой, Подвод напряжения осуществляется по проводу, корпус крепится.

  • с закрепленным корпусом

Подключаются при помощи проводов, клемм, разъемов. Катушка генерирует поле, сжимающее пакет дисков. При сжатии диски становятся плоскими, однако при отключении питания диски снова становятся волнистыми, что облегчает рассоединение муфты.


Однодисковые муфты и тормоза

Разработаны для применения в сухих условиях. Фактически – они используют принцип трения, похожие на муфты сцепления в автомобилях. При подаче напряжения якорь притягивается к ротору поверхности трения
соприкасаются , обеспечивая передачу вращения. При отключении питания сжата пружина
разводит якорь и ротор, вращение не передается

Просмотров: 10452 | Дата публикации: Пятница, 01 ноября 2013 06:21 |

www.servomh.ru

Лекция № 18 Электромагнитные муфты управления

Для регулирования частоты вращения, вращающего момента на валу, для соединения и разъединения ведущего и ведомого валов применяются электрические аппараты в виде муфт с электрическим управлением. Эти муфты можно подразделить на

индукционные и электромагнитные.

Индукционные муфты (рис. 18.1) по принципу действия аналогичны асинхронному двигателю с короткозамкнутым ротором. Приводной двигатель соединяется со сплошным якорем 1, ведомый вал связан с индуктором 2. Катушка возбуждения 4 создает постоянный магнитный поток 5, замыкающийся по якорю 1. При вращении якоря магнитное поле катушки индуктора пересекает цилиндрическое тело якоря, и в нем наводятся вихревые токи. Взаимодействие этих токов с магнитным полем создает силу, которая увлекает индуктор в направлении вращения якоря. Материал якоря должен обладать малым удельным электрическим сопротивлением, что обеспечивает возникновение достаточно больших вихревых токов, и высокой магнитной проницаемостью для получения возможно больших значений магнитного потока.

Рис. 18.1. Индукционная муфта:

1 – якорь; 2 -индуктор; 3 – магнитная система;

4 – катушка возбуждения; 5 – магнитный поток

Регулируя ток возбуждения и тем самым меняя магнитное поле, можно плавно регулировать в широких пределах частоту вращения и передаваемый вращающий момент ведомого вала.

На рис. 18.2 показаны механические характеристики индукционной муфты.

Рис. 18.2. Механические характеристики индукционной

муфты при различном токе возбуждения

Механические характеристики индукционной муфты существенно зависят от нагрузки. Поэтому для стабилизации скорости применяются специальные регулирующие устройства.

Более широко применяются электромагнитные муфты, в которых используется электромагнитное усилие притяжения между ферромагнитными телами. Эти муфты удобны в эксплуатации, имеют малые габаритные размеры и небольшое время срабатывания, передают большие мощности на валу при сравнительно малой мощности управления.

Простейшая конструкция электромагнитной фрикционной муфты представлена на рис. 18.3.

а

б

Рис. 18.3. Электромагнитная фрикционная муфта:

а – разрез муфты; б – поверхность трения

Постоянное напряжение подводится к щеткам, скользящим по контактным кольцам 1, соединенным с выводами обмотки 2. Обмотка имеет цилиндрическую форму и окружена магнитопроводом ведущей части 3 муфты. Направляющая втулка 7 имеет выступ 6, который входит в паз 8 полумуфты 5, которая может перемещаться вдоль оси, оставаясь соединенной с валом 10.

В обесточенном состоянии пружина 9 упирается в направляющую втулку 7, жестко закрепленную на валу 10, и отодвигает подвижную часть полумуфты 5 вправо. При этом поверхности трения (диски 4) не соприкасаются и ведомый вал 10 разобщен с ведущим валом 11.

При подаче на обмотку управляющего напряжения возникает магнитный поток Ф. На полумуфты 3, 5, выполненные из магнитомягкого материала, начинает действовать электромагнитная сила, притягивающая их друг к другу. Таким образом, полумуфты и обмотка представляют собой электромагнит. Между дисками 4, жестко связанными с деталями 3 и 5, возникает сила нажатия, обеспечивающая необходимую силу трения и их надежное сцепление.

В ферропорошковой муфте барабанного типа (рис. 18.4) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3.

Рис. 18.4. Электромагнитная ферропорошковая муфта барабанного типа

Внутри цилиндра располагается электромагнит 4, связанный с ведомым валом 6. Обмотка 5 электромагнита питается через контактные кольца. Внутренняя полость 7 заполнена ферромагнитным порошком (чистое или карбонильное железо) с зернами размером от 4-6 до 20-50 мкм, смешанными с сухим (тальк, графит) или жидким (трансформаторное, кремнийорганические масла) наполнителем.

При обесточенной обмотке и вращении ведущей части (барабана) электромагнит и ведомый вал остаются неподвижными, т.к. ферромагнитные зерна наполнителя свободно перемещаются относительно друг друга.

При подаче напряжения на электромагнит зерна ферромагнитного порошка теряют свободу перемещения под воздействием магнитного поля обмотки. Вязкость среды в барабане резко возрастает. Увеличивается сила трения между барабаном и электромагнитом. На ведомом валу появляется вращающий момент.

При определенном значении тока возбуждения ферромагнитный порошок и наполнитель полностью затвердевают. Барабан и электромагнит становятся жестко связанными.

Сила трения, возникающая на единице внутренней поверхности барабана:

. (18.1)

где – эквивалентный коэффициент трения;

– удельное усилие, нормальное к ведущей поверхности,

оно создаётся магнитным потоком;

– индукция в зазоре;

– относительная магнитная проницаемость смеси.

Момент, передаваемый муфтой, равен:

, (18.2)

где R – радиус барабана;

L – его длина.

Если положить, что магнитное сопротивление барабана и электромагнита равны нулю и , то момент, передаваемый муфтой, пропорционален квадрату тока:

, (18. 3)

где – зазор между электромагнитом и барабаном;

– МДС электромагнита.

Рассмотрим характеристики муфты в статическом режиме. Во втором квадранте на рис. 18.5 изображена зависимость момента, передаваемого муфтой, от тока возбуждения .

В первом квадранте представлены механическая характеристика двигателя и характеристика нагрузкиПокамомент, передаваемый муфтой, меньше момента нагрузки прии ведомый вал неподвижен. Примуфта развивает моменти ведомый вал имеет скоростьпри скорости двигателя

Рис. 18.5. Характеристики муфты и приводного двигателя

Мощность, отдаваемая двигателем, а мощность, передаваемая в нагрузку,Потери в муфте за счёт скольжения:

. (18.4)

Потери расходуются на нагрев муфты и наряду с потерями мощности в обмотке электромагнита определяют её температуру.

При токе возбуждения ведомый и ведущий валы соединены жестко и вращаются с угловой скоростью, передаваемый момент равен, а потери

Пусть моменты линейно зависят от угловой скорости:

(18.5)

(18.6)

где – начальный момент нагрузки;

– коэффициенты пропорциональности;

– угловая скорость холостого хода двигателя.

Выразим потери через момент (18.5) и (18.6):

. (18.7)

При тогда максимальный момент муфты:

(18.8)

Для определения необходимо производнуюприравнять к нулю, тогда:

.

Охлаждающая поверхность муфты выбирается из условия:

(18.9)

где – мощность потерь в обмотке;

– коэффициент теплоотдачи с внешней поверхностью барабана;

– площадь внешней поверхности барабана;

– предельно допустимая температура поверхности барабана;

На зерна ферромагнитного порошка кроме электромагнитных сил действуют центробежные силы, пропорциональные квадрату угловой скорости. Для оценки влияния центробежных силвводится отношение.

Это отношение увеличивается с ростом диаметра муфты, угловой скорости и уменьшается с ростом индукции в зазоре.

Ферропорошковые муфты имеют большое быстродействие благодаря отсутствию якоря. В схемах автоматики порошковая муфта является инерционным звеном первого порядка. Большим преимуществом ферропорошковой муфты является отсутствие быстроизнашивающихся дисков трения.

Ферропорошковые муфты целесообразно применять там, где требуются высокое быстродействие, большая частота включения и плавное регулирование скорости ведомого вала.

Возможны два варианта исполнения гистерезисных муфт: в первом магнитное поле индуктора создается обмоткой, во втором – постоянными магнитами. Недостатком первого варианта является наличие контактной системы для передачи тока в индуктор, достоинством – возможность электрического управления муфтой. Муфты с постоянными магнитами (магнитогистерезисные) обладают высокой надежностью. Однако регулирование передаваемого момента в них затруднено.

В магнитогистерезисной муфте (рис. 18.6) постоянные магниты 1 с полюсными наконечниками 2 укреплены в магнитопроводе 3 индуктора, связанного с ведущим валом.

Рис. 18.6. Магнитогистерезисная муфта с радиальным рабочим зазором

На ось ведомого вала насажен ротор, состоящий из втулки 5 из немагнитного или магнитомягкого материала и колец 4 активного слоя. Кольца активного слоя изготовлены из материала с широкой петлёй гистерезиса, имеющей высокие значения остаточной индукции и коэрцитивной силы. Шихтованная структура активного слоя позволяет уменьшить вихревые токи и асинхронный вращающий момент.

Пусть ротор заторможен, а индуктор вращается приводным двигателем с угловой скоростью . Потери на гистерезис за один цикл перемагничивания определяются максимальным значением индукции в активном слое ротора. Частота перемагничивания активного слоя равна

, (18.10)

где – число пар полюсов индуктора.

Мощность, передаваемая активному слою через рабочий зазор, определяется:

, (18.11)

где удельные потери на гистерезис за один цикл перемагничивания;

объем активного слоя.

Взаимодействие поля постоянных магнитов индуктора с полем, образованным активным слоем, создает на роторе гистерезисный момент:

. (18.12)

Если ведомый вал не заторможен, то под действием момента ротор начнет вращаться в направлении вращения индуктора со скоростьюСкольжение ротора относительно индуктора равно:

(18.13)

Скольжение изменяется от 1 до 0.

При разгоне ротора частота перемагничивания меняется:

. (18.14)

и потери на гистерезис уменьшаются:

(18.15)

Полезная мощность, передаваемая на ведомый вал, определится:

(18.16)

Момент, передаваемый муфтой на ведомый вал, равен:

(18.17)

Таким образом, момент на ведомом валу не зависит от частоты его вращения. Если момент нагрузки то скоростьведомого вала увеличивается, пока не станет равной скоростиМуфта достигает синхронной скорости вращения. По мере увеличения нагрузки возрастает уголмежду векторами вращающегося поля индуктора и активного слоя, и приэтот угол достигает максимального значения, которое зависит от свойств материала активного гистерезисного слоя. Момент, развиваемый гистерезисной муфтой, равен:

(18.18)

где конструктивный фактор;

МДС индуктора;

магнитный поток в гистерезисном слое.

Угол при передаче момента нагрузкиравен:

. (18.19)

При дальнейшем возрастании момента нагрузки (МН>MГ) муфта переходит в асинхронный режим, когда частота вращения муфты меньше частоты вращения индуктора.

На рис. 18.7 приведены механические характеристики муфты, представляющие собой зависимости момента нагрузки и момента муфтыот скольжения.

Рис. 18.7. Механические характеристики гистерезисной муфты

Пока , ведомый вал вращается с синхронной скоростью при S=0 (кривая 1 на рис. 18.7). Если, то ведомый вал вращается со скольжением (кривая 2). Однако момент, передаваемый муфтой, остается постоянным и равным.

При уголостаётся неизменным. Если активный слой выполнен в виде литого цилиндра, то за счёт вихревых токов, кроме гистерезисного момента, появляется асинхронный момент (прямая 3), пропорциональный скольжению.

В этом режиме скольжение отлично от нуля, ротор отстает от вращающегося индуктора и в нем создается дополнительный момент, как в асинхронном двигателе.

Преимущество гистерезисной муфты заключается в постоянстве передаваемого момента. Если нагрузочный момент резко возрастает (неполадки, поломки механизма), то максимальный момент, передаваемый на приводной двигатель, ограничен величинойи гистерезисная муфта защищает двигатель от перегрузок. Постоянство момента муфты обеспечивает быструю остановку привода.

Гистерезисные муфты применяются для передачи момента в агрессивную среду, отделенную от окружающей среды металлической немагнитной оболочкой и находящуюся под высоким давлением. В этом случае применяются муфты с аксиальным рабочим зазором. Ведущая часть с индуктором отделена немагнитной стенкой от ведомой части с активным слоем в виде колец.

studfiles.net

Электромагнитные муфты | Детали машин

 

Электромагнитные фрикционные многодисковые муфты широко используют в приводах главного движения и подач станков с ЧПУ. Муфты различают по исполнению – контактные (ЭТМ … 2), бесконтактные (ЭТМ … 4) и тормозные (ЭТМ … 6) и по габариту (от 05 до 16). Муфты пятого габарита имеют наружный диаметр 80 мм, муфты шестнадцатого габарита имеют диаметр 270 мм. Соответственно с увеличением габарита увеличиваются основные силовые характеристики муфт. Примеры обозначения муфт: ЭТМ082 – муфта контактного исполнения 8-го габарита, ЭТМ 134 – муфта бесконтактного исполнения 13-го габарита.

Технические характеристики

Технические характеристики должны отражать следующие параметры:

Мн – номинальное значение передаваемого момента, Н×м;

Мв – вращающий (динамический) момент, развиваемый включенной муфтой при разгоне, торможении и реверсировании нагрузки, Н×м;

МO.В.-остаточный момент вращения, развиваемый отключенной муфтой при скольжении в дисках, Н-м;

МO.П.-остаточный момент покоя, Н×м;

nmах – максимально допустимая частота вращения, об/мин;

А1 – максимально допустимая энергия, рассеиваемая в муфте за один цикл (включение-отключение), кДж;

Рк – мощность, потребляемая катушкой муфты при температуре 20 °С, Вт;

Iн – номинальный ток катушки при температуре 20 °С, А.

Электропитание муфт осуществляется от любых источников постоянного тока напряжением 24 В.

Рис. 51. Муфта контактного, исполнения ЭТМ…2 (поводок в сдвинут вправо, выведен из зацепления с наружными дисками)

Муфты контактного исполнения

Муфты контактного исполнения (рис. 51) ЭТМ … 2 состоят из корпуса 1 с катушкой и токоподводящим кольцом 5, пакета фрикционных магнитопроводящих дисков 4, 5, работающих со смазкой, якоря 6 и общей втулки 7. Внутренние диски 4 расположены на шлицах (с эвольвентным профилем) втулки 7, наружные диски 5 имеют 6-8 пазов шириной 10-25 мм (в зависимости от габарита муфты) для зацепления с поводком 8 – соединительной деталью механизма, в котором используется муфта.

На катушку 2 с помощью щетки, контактирующей с токопод-водящим кольцом 3, подается напряжение, магнитный поток замыкается по контуру Ф, якорь и пакет дисков притягиваются к полюсам корпуса 1, и между сжатыми дисками возникает фрикционное сцепление. Крутящий момент передается по цепн« втулка 7 – внутренние диски 4 – наружные диски 5 – поводок 8.

Боковые поверхности нагруженных фрикционных дисков специально делают не совсем плоскими и снабжают спиральными маслораспределительными канавками, благодаря чему происходит быстрое и четкое расцепление дисков при отключении муфты. Такие диски обеспечивают малую величину остаточных моментов и высокое значение вращающего (динамического) момента при переходных процессах (разгоне, торможении, реверсировании).

Рис. 52. Муфта бесконтактного исполнения ЭТМ…4 (без поводка)

Рис. 53. Тормозная муфта ЭТМ…6

Муфты бесконтактного исполнения

Муфты бесконтактного исполнения ЭТМ … 4 (рис. 52) отличаются от муфт ЭТМ … 2 наличием составного магнитопроводз, образуемого неподвижным корпусом 2 и вращающимся катушко-держателем 1, разделенных так называемыми балластными зазорами. Исключен контакт в элементах токоподвода (щетки и то-коподводящего кольца). За счет наличия балластного зазора снижается теплопередача от фрикционных дисков к катушке, что обусловливает повышение эксплуатационной надежности муфт ЭТМ … 4 при тяжелых работах. Наблюдается предпочтительное использование в станках с ЧПУ муфт бесконтактного исполнения ЭТМ … 4 по сравнению с муфтами ЭТМ … 2.

Тормозная муфта ЭТМ … 6 (рис. 53) имеет фланцевой поводок 1 и охватывающий корпус 2. Якорь 6 подвешен на поводке с помощью кольца 7, закрепленного на поводке /. Наружные диски 5 сцеплены с неподвижным поводком. Внутренние диски 4 и шлицевая втулка 3, отделенная зазорами от корпуса и якоря, при отключенной муфте свободно вращаются вместе с валом.

При включении муфты к валу прикладывается тормозной момент, равный вращающему моменту муфты. Сила торможения замыкается на корпус механизма по цепи: втулка 3 – внутренние диски 4 – наружные диски 5 – фланец поводка 1-детали крепления. Поводок может быть прикреплен к стенке узла как плоскостью А, так и плоскостью Б.

Размеры посадочных мест едины для всех трех исполнений муфт. Смазка муфты осуществляется поливом струей, направленной по радиусу муфты.

Похожие материалы

www.metalcutting.ru

Электромагнитные муфты управления

 

Для регулирования частоты вращения, вращающего момента на валу, для соединения и разъединения ведущего и ведомого валов применяются электрические аппараты в виде муфт с электрическим управлением. Эти муфты можно подразделить на индукционные и электромагнитные.

Индукционные муфты (рис. 18.1) по принципу действия аналогичны асинхронному двигателю с короткозамкнутым ротором. Приводной двигатель соединяется со сплошным якорем 1, ведомый вал связан с индуктором 2. Катушка возбуждения 4 создает постоянный магнитный поток 5, замыкающийся по якорю 1. При вращении якоря магнитное поле катушки индуктора пересекает цилиндрическое тело якоря, и в нем наводятся вихревые токи. Взаимодействие этих токов с магнитным полем создает силу, которая увлекает индуктор в направлении вращения якоря. Материал якоря должен обладать малым удельным электрическим сопротивлением, что обеспечивает возникновение достаточно больших вихревых токов, и высокой магнитной проницаемостью для получения возможно больших значений магнитного потока.

Рис. 18.1. Индукционная муфта:

1 – якорь; 2 -индуктор; 3 – магнитная система;

4 – катушка возбуждения; 5 – магнитный поток

 

Регулируя ток возбуждения и тем самым меняя магнитное поле, можно плавно регулировать в широких пределах частоту вращения и передаваемый вращающий момент ведомого вала.

На рис. 18.2 показаны механические характеристики индукционной муфты.

Рис. 18.2. Механические характеристики индукционной

муфты при различном токе возбуждения

 

Механические характеристики индукционной муфты существенно зависят от нагрузки. Поэтому для стабилизации скорости применяются специальные регулирующие устройства.

Более широко применяются электромагнитные муфты, в которых используется электромагнитное усилие притяжения между ферромагнитными телами. Эти муфты удобны в эксплуатации, имеют малые габаритные размеры и небольшое время срабатывания, передают большие мощности на валу при сравнительно малой мощности управления.

Простейшая конструкция электромагнитной фрикционной муфты представлена на рис. 18.3.

Рис. 18.3. Электромагнитная фрикционная муфта:

а – разрез муфты; б – поверхность трения

 

Постоянное напряжение подводится к щеткам, скользящим по контактным кольцам 1, соединенным с выводами обмотки 2. Обмотка имеет цилиндрическую форму и окружена магнитопроводом ведущей части 3 муфты. Направляющая втулка 7 имеет выступ 6, который входит в паз 8 полумуфты 5, которая может перемещаться вдоль оси, оставаясь соединенной с валом 10.

В обесточенном состоянии пружина 9 упирается в направляющую втулку 7, жестко закрепленную на валу 10, и отодвигает подвижную часть полумуфты 5 вправо. При этом поверхности трения (диски 4) не соприкасаются и ведомый вал 10 разобщен с ведущим валом 11.

При подаче на обмотку управляющего напряжения возникает магнитный поток Ф. На полумуфты 3, 5, выполненные из магнитомягкого материала, начинает действовать электромагнитная сила, притягивающая их друг к другу. Таким образом, полумуфты и обмотка представляют собой электромагнит. Между дисками 4, жестко связанными с деталями 3 и 5, возникает сила нажатия, обеспечивающая необходимую силу трения и их надежное сцепление.

В ферропорошковой муфте барабанного типа (рис. 18.4) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3.

Рис. 18.4. Электромагнитная ферропорошковая муфта барабанного типа

 

Внутри цилиндра располагается электромагнит 4, связанный с ведомым валом 6. Обмотка 5 электромагнита питается через контактные кольца. Внутренняя полость 7 заполнена ферромагнитным порошком (чистое или карбонильное железо) с зернами размером от 4-6 до 20-50 мкм, смешанными с сухим (тальк, графит) или жидким (трансформаторное, кремнийорганические масла) наполнителем.

При обесточенной обмотке и вращении ведущей части (барабана) электромагнит и ведомый вал остаются неподвижными, т.к. ферромагнитные зерна наполнителя свободно перемещаются относительно друг друга.

При подаче напряжения на электромагнит зерна ферромагнитного порошка теряют свободу перемещения под воздействием магнитного поля обмотки. Вязкость среды в барабане резко возрастает. Увеличивается сила трения между барабаном и электромагнитом. На ведомом валу появляется вращающий момент.

При определенном значении тока возбуждения ферромагнитный порошок и наполнитель полностью затвердевают. Барабан и электромагнит становятся жестко связанными.

Сила трения, возникающая на единице внутренней поверхности барабана:

. (18.1)

где – эквивалентный коэффициент трения;

– удельное усилие, нормальное к ведущей поверхности,

оно создаётся магнитным потоком;

– индукция в зазоре;

– относительная магнитная проницаемость смеси.

Момент, передаваемый муфтой, равен:

, (18.2)

где R – радиус барабана;

L – его длина.

Если положить, что магнитное сопротивление барабана и электромагнита равны нулю и , то момент, передаваемый муфтой, пропорционален квадрату тока:

, (18. 3)

где – зазор между электромагнитом и барабаном;

– МДС электромагнита.

Рассмотрим характеристики муфты в статическом режиме. Во втором квадранте на рис. 18.5 изображена зависимость момента, передаваемого муфтой, от тока возбуждения .

В первом квадранте представлены механическая характеристика двигателя и характеристика нагрузки Пока момент, передаваемый муфтой, меньше момента нагрузки при и ведомый вал неподвижен. При муфта развивает момент и ведомый вал имеет скорость при скорости двигателя

Рис. 18.5. Характеристики муфты и приводного двигателя

 

Мощность, отдаваемая двигателем, а мощность, передаваемая в нагрузку, Потери в муфте за счёт скольжения:

. (18.4)

Потери расходуются на нагрев муфты и наряду с потерями мощности в обмотке электромагнита определяют её температуру.

При токе возбуждения ведомый и ведущий валы соединены жестко и вращаются с угловой скоростью , передаваемый момент равен , а потери

Пусть моменты линейно зависят от угловой скорости:

(18.5)

(18.6)

где – начальный момент нагрузки;

– коэффициенты пропорциональности;

– угловая скорость холостого хода двигателя.

Выразим потери через момент (18.5) и (18.6):

. (18.7)

При тогда максимальный момент муфты:

(18.8)

Для определения необходимо производную приравнять к нулю, тогда:

.

Охлаждающая поверхность муфты выбирается из условия:

(18.9)

где – мощность потерь в обмотке;

– коэффициент теплоотдачи с внешней поверхностью барабана;

– площадь внешней поверхности барабана;

– предельно допустимая температура поверхности барабана;

На зерна ферромагнитного порошка кроме электромагнитных сил действуют центробежные силы , пропорциональные квадрату угловой скорости. Для оценки влияния центробежных сил вводится отношение .

Это отношение увеличивается с ростом диаметра муфты, угловой скорости и уменьшается с ростом индукции в зазоре.

Ферропорошковые муфты имеют большое быстродействие благодаря отсутствию якоря. В схемах автоматики порошковая муфта является инерционным звеном первого порядка. Большим преимуществом ферропорошковой муфты является отсутствие быстроизнашивающихся дисков трения.

Ферропорошковые муфты целесообразно применять там, где требуются высокое быстродействие, большая частота включения и плавное регулирование скорости ведомого вала.

Возможны два варианта исполнения гистерезисных муфт: в первом магнитное поле индуктора создается обмоткой, во втором – постоянными магнитами. Недостатком первого варианта является наличие контактной системы для передачи тока в индуктор, достоинством – возможность электрического управления муфтой. Муфты с постоянными магнитами (магнитогистерезисные) обладают высокой надежностью. Однако регулирование передаваемого момента в них затруднено.

В магнитогистерезисной муфте (рис. 18.6) постоянные магниты 1 с полюсными наконечниками 2 укреплены в магнитопроводе 3 индуктора, связанного с ведущим валом.

Рис. 18.6. Магнитогистерезисная муфта с радиальным рабочим зазором

 

На ось ведомого вала насажен ротор, состоящий из втулки 5 из немагнитного или магнитомягкого материала и колец 4 активного слоя. Кольца активного слоя изготовлены из материала с широкой петлёй гистерезиса, имеющей высокие значения остаточной индукции и коэрцитивной силы. Шихтованная структура активного слоя позволяет уменьшить вихревые токи и асинхронный вращающий момент.

Пусть ротор заторможен, а индуктор вращается приводным двигателем с угловой скоростью . Потери на гистерезис за один цикл перемагничивания определяются максимальным значением индукции в активном слое ротора. Частота перемагничивания активного слоя равна

, (18.10)

где – число пар полюсов индуктора.

Мощность, передаваемая активному слою через рабочий зазор, определяется:

, (18.11)

где удельные потери на гистерезис за один цикл перемагничивания;

объем активного слоя.

Взаимодействие поля постоянных магнитов индуктора с полем, образованным активным слоем, создает на роторе гистерезисный момент:

. (18.12)

Если ведомый вал не заторможен, то под действием момента ротор начнет вращаться в направлении вращения индуктора со скоростью Скольжение ротора относительно индуктора равно:

(18.13)

Скольжение изменяется от 1 до 0.

При разгоне ротора частота перемагничивания меняется:

. (18.14)

и потери на гистерезис уменьшаются:

(18.15)

Полезная мощность, передаваемая на ведомый вал, определится:

(18.16)

Момент, передаваемый муфтой на ведомый вал, равен:

(18.17)

Таким образом, момент на ведомом валу не зависит от частоты его вращения. Если момент нагрузки то скорость ведомого вала увеличивается, пока не станет равной скорости Муфта достигает синхронной скорости вращения. По мере увеличения нагрузки возрастает угол между векторами вращающегося поля индуктора и активного слоя, и при этот угол достигает максимального значения , которое зависит от свойств материала активного гистерезисного слоя. Момент, развиваемый гистерезисной муфтой, равен:

(18.18)

где конструктивный фактор;

МДС индуктора;

магнитный поток в гистерезисном слое.

Угол при передаче момента нагрузки равен:

. (18.19)

При дальнейшем возрастании момента нагрузки (МН>MГ) муфта переходит в асинхронный режим, когда частота вращения муфты меньше частоты вращения индуктора.

На рис. 18.7 приведены механические характеристики муфты, представляющие собой зависимости момента нагрузки и момента муфты от скольжения.

Рис. 18.7. Механические характеристики гистерезисной муфты

 

Пока , ведомый вал вращается с синхронной скоростью при S=0 (кривая 1 на рис. 18.7). Если , то ведомый вал вращается со скольжением (кривая 2). Однако момент, передаваемый муфтой, остается постоянным и равным .

При угол остаётся неизменным. Если активный слой выполнен в виде литого цилиндра, то за счёт вихревых токов, кроме гистерезисного момента , появляется асинхронный момент (прямая 3), пропорциональный скольжению .

В этом режиме скольжение отлично от нуля, ротор отстает от вращающегося индуктора и в нем создается дополнительный момент, как в асинхронном двигателе.

Преимущество гистерезисной муфты заключается в постоянстве передаваемого момента. Если нагрузочный момент резко возрастает (неполадки, поломки механизма), то максимальный момент, передаваемый на приводной двигатель, ограничен величиной и гистерезисная муфта защищает двигатель от перегрузок. Постоянство момента муфты обеспечивает быструю остановку привода.

Гистерезисные муфты применяются для передачи момента в агрессивную среду, отделенную от окружающей среды металлической немагнитной оболочкой и находящуюся под высоким давлением. В этом случае применяются муфты с аксиальным рабочим зазором. Ведущая часть с индуктором отделена немагнитной стенкой от ведомой части с активным слоем в виде колец.

Лекция № 19


Похожие статьи:

poznayka.org

Принцип работы электромагнитной муфты

Электромагнитная муфта  — это устройство, соединяющее концы двух валов с целью передачи вращения.Электромагнитная асинхронная муфта устроена по принципу асинхронного двигателя и служит для соединения двух частей вала. На ведущей части вала  помещается полюсная система, представляющая собой систему явно выраженных полюсов с катушками возбуждения.

Принцип работы муфты аналогичен работе асинхронного двигателя, только вращающийся магнитный поток здесь создается механическим вращением полюсной системы. Вращающий момент от ведущей части вала к ведомой передается электромагнитным путем. Разъединение муфты производится отключением тока возбуждения.

Типичная электромагнитная муфта состоит из двух роторов. Один из них представляет собой железный диск с тонким кольцевым выступом на периферии. На внутренней поверхности выступа имеются радиально ориентированные полюсные наконечники, снабженные обмотками, по которым пропускается ток возбуждения от внешнего источника через контактные кольца  на валу. Другой ротор — это цилиндрический железный вал с пазами, параллельными оси. В пазы вставлены изолированные медные бруски, соединенные на концах кольцевым медным коллектором. Этот ротор может свободно вращаться внутри первого и полностью охватывается его полюсными наконечниками.

Когда ток возбуждения включен и один из роторов, скажем второй (что типично для судовой практики), вращается двигателем, силовые линии магнитного поля, созданного током возбуждения, пересекаются проводниками этого ротора (медными брусками) и в них наводится электродвижущая сила. Поскольку медные бруски образуют замкнутую цепь, по ним течет ток, созданный наведенной ЭДС, и этот ток порождает собственное магнитное поле. Взаимодействие полей роторов таково, что ведомый ротор увлекается за ведущим, правда, с небольшим запаздыванием. Описанный принцип действия электромагнитной муфты такой же, как у асинхронного электродвигателя с короткозамкнутным ротором.

Управление электрическим током позволяет осуществлять дистанционное управление муфтой (плавно сцеплять и расцеплять ее). Поэтому ее применяют в автоматике и телемеханике. Электромагнитная муфта имеет весьма широкую сферу применения. Так, используют деталь эту в тепловозах, металлорежущих станках и тому подобных механизмах. Однако, при этом, муфты во всех этих устройствах и механизмах применяются далеко не одинаковые. Так, даже электромагнитная муфта газели отличается от электромагнитной муфты камаза.

www.stroymens.ru

Электромагнитные муфты – HomeWork.net.ua

Электромагнитная муфта предназначена для передачи вращающего момента двигателя к рабочему механизму. Принцип их действия основан на электромагнитных свойствах связываемых элементов. Муфта состоит из двух частей: ведущей и ведомой, которые образуют замкнутую магнитную систему.

Ниже рассматриваются три вида электромагнитных муфт, получивших наибольшее применение в САУ: фрикционная (контактная и бесконтактная), порошковая и асинхронная (муфта скольжения).

В контактной электромагнитной фрикционной муфте передача вращающего момента с ведущей полумуфты на ведомую происходит за счет сил трения между контактирующими поверхностями фрикционных дисков, из которых один расположен на ведущей полумуфте, а другой – на ведомой.  Эти диски изготовлены из материала с высоким коэффициентом трения.

 Устройство электромагнитной фрикционной муфты показано на рисунке 1 через контактные кольца 2 и щетки 4 напряжение управления муфтой Uу подводится к катушке 5. Возникший при этом ток в катушке наводит в магнитной системе муфты поток Ф. Замыкаясь через якорь, роль которого выполняет ведущая полумуфта 9, этот поток создаст на нем тяговое усилие. Крепление якоря (ведущая полумуфта) на валу таково, что оно допускает небольшое осевое перемещение. В результате якорь 9, преодолев сопротивление возвратной пружины 7, упирающейся в кольцо 6, окажется притянутым к сердечнику 1(ведущая полумуфта) и поверхности фрикционных дисков 10 сомкнутся. При этом вращение с ведущего вала 8 передается на ведомый вал 3 за счет сил трения между фрикционными дисками.

 

Рисунок 1 Электромагнитная фрикционная муфт

При необходимости отключить муфту следует снять напряжение с контактных щеток. При этом под действием пружины 7 якорь сместиться в право, а поверхности фрикционных дисков разомкнутся и вращение ведомого вала прекратиться. Для увеличения передаваемого вращающего момента в некоторых конструкциях используют несколько пар фрикционных дисков, количество которых тем больше, чем больше передаваемый момент.

Основной недостаток рассмотренной муфты – наличие скользящего контакта «щетки – контактные кольца», что снижает надежность муфты.

Бесконтактная электромагнитная фрикционная муфта состоит из трех основных элементов, рисунок 2. Неподвижный элемент 2 с катушкой 3 посажен на ведомый вал через шарикоподшипник 1. Благодаря такой конструкции при передаче вращения на ведомый вал эта часть муфты остается неподвижной, что позволяет катушку 3 непосредственно включать в сеть, не применяя скользящих контактов, как это сделано в контактной фрикционной муфте, рисунок 1 Элемент 5 представляет собой ведущую полумуфту, посаженную на ведущий вал посредством шпонки 6. Конструкция этого элемента аналогична ведущей полумуфте контактной фрикционной муфты, т.е. он имеет возможность небольшого осевого перемещения, преодолевая сопротивление возвратной пружины. Элемент 4 рассматриваемой муфты является промежуточным способным благодаря шпонке 7 передать вращение на ведомый вал, т.е. этот элемент представляет собой ведомую полумуфту. При включении катушки 3 в сеть в магнитной системе муфты, составленной из трех элементов, возбуждается магнитный поток Ф, замыкающийся по контуру Ф и создающий на ведущей полумуфте 5, являющейся якорем электромагнита, тяговое усилие, которое смещает эту полумуфту влево вдоль ведущего вала. При этом фрикционные диски смыкаются, и вращающийся момент с ведущего вала передается на ведомый вал. Чтобы магнитный поток не замыкался в промежуточном элементе 4, что нарушило бы работу муфты, этот элемент имеет «окна» по периметру цилиндрической катушки 3. При снятии напряжения питания катушки 3 тяговое усилие исчезает и под действием возвратной пружины (не показана на рисунке) элемент 5 смещается вправо, при этом фрикционные диски размыкаются.

Для уменьшения магнитных потерь во вращающихся частях бесконтактной муфты эти части иногда делают шихтованными. Бесконтактная электромагнитная муфта сложнее и дороже контактной, но отсутствие в ней скользящего контакта делает ее более надежной.

Промышленность выпускает электромагнитные фрикционные муфты серии Э1ТМ. Муфты рассчитаны на включение в сеть постоянного тока напряжением 24 В и имеет степень защиты IP00.

Основные характеристики электромагнитных муфт: Мном – передаваемый вращающий момент; nном – номинальная частота вращения; nmax – предельно допустимая частота вращения; Р20 – мощность, потребляемая катушкой электромагнита в холодном состоянии (при температуре 20° С).

 

Рисунок 2 Бесконтактная электромагнитная фрикционная муфта

Мощность потребляемая бесконтактными муфтами больше, чем у контактных, что объясняется наличием двух воздушных зазоров в бесконтактных муфтах.

Принцип действия электромагнитной порошковой муфты основан на свойстве жидкого или порошкообразного ферромагнитного вещества (наполнителя муфты) под действием магнитного поля увеличивать свою вязкость и прочно прилипать к стенкам намагниченных элементов. В хакимов принципе порошковая муфта является фрикционной. Однако, в отличие от последней, передача вращающего момента от ведущей части муфты к ведомой в порошковой муфте происходит не за счет сил трения сжимаемых поверхностей, а за счет повышения вязкости ферромагнитного наполнителя муфты.  

На рисунке 3 показано устройство контактной порошковой муфты.

 

Рисунок 3 Электромагнитная порошковая муфта

Ведущая часть муфты состоит из зубчатого колеса 1, полого ферромагнитного стального цилиндра 3 и крышки 7. Ведомая часть муфты состоит из ведомого вала 9, на котором жестко закреплен ферромагнитный сердечник 2 с катушкой 4. Питание в катушку подается через контактные кольца 8 и щетки. Провода, соединяющие кольца 8 с катушкой 4, прокладывают по поверхности вала 9. При подаче напряжения на катушку магнитный поток Ф, замыкаясь в магнитопроводе, проходит через воздушный зазор, разделяющий ведущую и ведомую части муфты. Этот зазор заполнен смесью, содержащей порошкообразный ферромагнитный материал 5 .При отключенной катушке 4указанная смесь практически не создает связи между ведущей и ведомой частями муфты. Когда же в катушке появляется ток и в магнитопроводе возникает магнитный поток Ф, ферромагнитные частицы 5, заполняющие зазор, намагничиваются и создают жесткую связь между частями муфты. В итоге вращение с ведущей части муфты передается на ведомый вал 9. Уплотнители 6 необходимы для удержания наполнителя в рабочем объеме.

Обладая высоким быстродействием (ферромагнитная смесь практически безынерционная), что является достоинством порошковой муфты, эти муфты имеют недостаток, обусловленный сложностью конструкции: необходимость защиты подшипников от попадания в них порошка и периодической замены ферромагнитного наполнителя из-за постепенного его «старения» и утраты ферромагнитных свойств.

Электромагнитная асинхронная муфта состоит из индуктора 6 с катушкой возбуждения 3 на ведомом валу 5 и якоря 2 на ведущем валу 1, рисунок 4, а. Катушка питается от источника постоянного тока через контактные кольца (изолированные от вала и друг от друга) и щетки 4. якорь 2 вращается вместе с ведущим валом 1 в магнитном поле индуктора. При этом магнитное поле индуцирует в массивном якоре 2 вихревые токи. В результате взаимодействия этих токов с полем индуктора на индукторе возникает вращающий момент, направленный в сторону вращения якоря. Под действием этого момента индуктор приходит во вращение, т.е. вращение якоря передается на индуктор. Вращающий момент, переданный таким образом с якоря на индуктор, является асинхронным, т.е. в рассматриваемой муфте имеет место скольжения, а следовательно, частота вращения ведомого вала n2 всегда меньше частоты вращения ведущего вала n1, так как только при этом условии в якоре индуцируются вихревые токи.

Свойства рассмотренной электромагнитной муфты во многом схожи со свойствами асинхронного двигателя и определяются ее механической характеристикой рисунок 5.10, б. С увеличением статического нагрузочного момента Мс на ведомом валу частота вращения снижается. Механическая характеристика муфты мягкая и зависимость частоты вращения от нагрузки в асинхронной муфте более значительна, чем в асинхронном двигателе.

 

Рисунок 4 Электромагнитная асинхронная муфта

Изменяя ток в индукторе Iв можно менять частоту вращения ведомого вала. Если момент нагрузки приводного механизма оказывается больше максимального момента муфты, то происходит опрокидывание – вращение ведомой части прекращается. Благодаря способности к опрокидыванию муфта может защищать приводной двигатель от больших перегрузок. К достоинствам такого привода с муфтой относятся простота устройства и эксплуатации, низкая стоимость, высокая надежность. Но с увеличением скольжения растут потери мощности и КПД привода снижается.

В целях повышения КПД в некоторых конструкциях на якоре асинхронной муфты располагаю короткозамкнутую обмотку 2, аналогичную обмотке ротора асинхронного двигателя, а сердечники индуктора 1 и якоря делают шихтованными, рисунок 5.

Достоинства муфты: плавность передачи вращающего хакимов момента на ведомый вал; простота конструкции, возможность регулирования частоты вращения ведомого вала, отсутствие изнашиваемых элементов.

Недостатки муфты: низкий КПД из-за значительных потерь на вихревые токи, низкие габаритно-массовые показатели.

Рисунок 5 Асинхронная муфта с короткозамкнутой обмоткой

homework.net.ua

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *