Гармонические колебания пружинного маятника – .., .. .

alexxlab | 01.06.2020 | 0 | Вопросы и ответы

Содержание

Вопрос 35 Гармонические колебания. Дифференциальное уравнение гармонических колебаний. Пружинный, математический и физический маятники.

Периодические колебания называются гармоническими, если колеблющаяся величина меняется с течением времени по закону косинуса или синуса:

.

Здесь - циклическая частота колебаний,A – максимальное отклонение колеблющейся величины от положения равновесия (амплитуда колебаний), φ(t) = ωt+φ0фаза колебаний, φ0начальная фаза.

График гармонических колебаний представлен на рисунке 1.

Рисунок 1 – График гармонических колебаний

При гармонических колебаниях полная энергия системы с течением времени не изменяется. Можно показать, что полная энергия механической колебательной системы при гармонических колебаниях равна:

.

Гармонически колеблющаяся величина s(t) подчиняется дифференциальному уравнению:

, (1)

которое называется дифференциальным уравнением гармонических колебаний.

Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести.

- период кодебаний

Физический маятник.

Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной.

При небольших углах отклонения α (рис. 7.4) физический маятник так же совершает гармонические колебания. Будем считать, что вес физического маятника приложен к его центру тяжести в точке С. Силой, которая возвращает маятник в положение равновесия, в данном случае будет составляющая силы тяжести – сила F.

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

. Момент силы: определить в явном виде нельзя. С учетом всех величин, входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид:

(7.10)

(7.11)

Решение этого уравнения

Определим длину l математического маятника, при которой период его колебаний равен периоду колебаний физического маятника, т.е.  или

. Из этого соотношения определяем

Данная формула определяет приведенную длину физического маятника, т.е. длину такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

Пружинный маятник

Это груз, прикрепленный к пружине, массой которой можно пренебречь.

Пока пружина не деформирована, сила упругостина тело не действует. В пружинном маятнике колебания совершаются под действием силы упругости.

Вопрос 36 Энергия гармонических колебаний

При гармонических колебаниях полная энергия системы с течением времени не изменяется. Можно показать, что полная энергия механической колебательной системы при гармонических колебаниях равна:

.

Потенциальная энергия U тела, смещенного на расстояние х от положения равновесия, измеряется той работой, которую произведет возвращающая сила  , перемещая тело в положение равновесия.

            

Кинетическая энергия

      Заменив в (1.5.2)   и сложив почленно уравнения кинетической и потенциальной энергии, получим выражение для полной энергии:

      Полная механическая энергия гармонически колеблющегося тела пропорциональна квадрату амплитуды колебания.

studfiles.net

Пружинный маятник

Пружинный маятник представляет собой материальную точку массой , прикрепленную к абсолютно упругой невесомой пружине с жесткостью

. Различают два наиболее простых случая: горизонтальный (рис.15,а) и вертикальный (рис.15, б) маятники.

а) Горизонтальный маятник (рис. 15,а). При смещении груза из положения равновесия на величину на него действует в горизонтальном направлениивозвращающая упругая сила(закон Гука).

Предполагается, что горизонтальная опора, по которой скользит груз при своих колебаниях, абсолютно гладкая (трения нет).

б) Вертикальный маятник (рис.15, б). Положение равновесия в этом случае характеризуется условием:

где

- величина упругой силы, действующей на груз при статическом растяжении пружины на под действием силы тяжести груза.

а

Рис.15. Пружинный маятник: а – горизонтальный и б – вертикальный

Если растянуть пружину и отпустить груз, то он начнет совершать вертикальные колебания. Если смещение в какой-то момент времени будет , то сила упругости запишется теперь как .

В обоих рассмотренных случаях пружинный маятник совершает гармонические колебания с периодом

(27)

и циклической частотой

. (28)

На примере рассмотрения пружинного маятника можно сделать вывод о том, что гармонические колебания – это движение, вызванное силой, возрастающей пропорционально смещению . Таким образом, если возвращающая сила по виду напоминает закон Гука (она получила название квазиупругой силы), то система должна совершать гармонические колебания. В момент прохождения положения равновесия на тело не действует возвращающая сила, однако, тело по инерции проскакивает положение равновесия и возвращающая сила меняет направление на противоположное.

Математический маятник

Рис.16. Математический маятник

Математический маятник представляет собой идеализированную систему в виде материальной точки, подвешенной на невесомой нерастяжимой нити длиной , которая совершает малые колебания под действием силы тяжести (рис. 16).

Колебания такого маятника при малых углах отклонения (не превышающих 5º) можно считать гармоническими, и циклическая частота математического маятника:

, (29)

а период:

. (30)

2.3. Энергия тела при гармонических колебаниях

Энергия, сообщенная колебательной системе при начальном толчке, будет периодически преобразовываться: потенциальная энергия деформированной пружины будет переходить в кинетическую энергию движущегося груза и обратно.

Пусть пружинный маятник совершает гармонические колебания с начальной фазой , т.е.(рис.17).

Рис.17. Закон сохранения механической энергии

при колебаниях пружинного маятника

При максимальном отклонении груза от положения равновесия полная механическая энергия маятника (энергия деформированной пружины с жесткостью ) равна . При прохождении положения равновесия () потенциальная энергия пружины станет равной нулю, и полная механическая энергия колебательной системы определится как .

На рис.18 представлены графики зависимостей кинетической, потенциальной и полной энергии в случаях, когда гармонические колебания описываются тригонометрическими функциями синуса (пунктирная линия) или косинуса (сплошная линия).

Рис.18. Графики временной зависимости кинетической

и потенциальной энергии при гармонических колебаниях

Из графиков (рис.18) следует, что частота изменения кинетической и потенциальной энергии в два раза выше собственной частоты гармонических колебаний.

studfiles.net

период и амплитуда колебани1, формула, жесткость

Работа большинства механизмов основана на простейших законах физики и математики. Довольно большое распространение получило понятие пружинного маятника. Подобный механизм получил весьма широкое распространение, так как пружина обеспечивает требуемую функциональность, может быть элементом автоматических устройств. Рассмотрим подробнее подобное устройство, принцип действия и многие другие моменты подробнее.

 

Определения пружинного маятника

Как ранее было отмечено, пружинный маятник получил весьма широкое распространение. Среди особенностей можно отметить следующее:

  1. Устройство представлено сочетанием груза и пружины, масса которой может не учитываться. В качестве груза может выступать самый различный объект. При этом на него может оказываться воздействие со стороны внешней силы. Распространенным примером можно назвать создание предохранительного клапана, который устанавливается в системе трубопровода. Крепление груза к пружине проводится самым различным образом. При этом используется исключительно классический винтовой вариант исполнения, который получил наиболее широкое распространение. Основные свойства во многом зависят от типа применяемого материала при изготовлении, диаметра витка, правильности центровки и многих других моментов. Крайние витки часто изготавливаются таким образом, чтобы могли воспринимать большую нагрузку при эксплуатации.
  2. До начала деформации полная механическая энергия отсутствует. При этом на тело не влияет сила упругости. Каждая пружина имеет исходное положение, которое она сохраняет на протяжении длительного периода. Однако, за счет определенной жесткости происходит фиксация тела в начальном положении. Имеет значение то, каким образом прикладывается усилие. Примером назовем то, что она должна быть направлена вдоль оси пружины, так как в противном случае есть вероятность появления деформации и многих других проблем. У каждой пружины есть свои определенный придел сжатия и растяжения. При этом максимальное сжатие представлено отсутствием зазора между отдельными витками, при растяжении есть момент, когда происходит невозвратная деформация изделия. При слишком сильном удлинении проволоки происходит изменение основных свойств, после чего изделие не возвращается в свое первоначальное положение.
  3. В рассматриваемом случае колебания совершаются за счет действия силы упругости. Она характеризуется довольно большим количество особенностей, которые должны учитываться. Воздействие упругости достигается за счет определенного расположения витков и типа применяемого материала при изготовлении. При этом сила упругости может действовать в обе стороны. Чаще всего происходит сжатие, но также может проводится растяжение – все зависит от особенностей конкретного случая.
  4. Скорость перемещения тела может варьировать в достаточно большом диапазоне, все зависит от того, какое оказывается воздействие. К примеру, пружинный маятник может перемещать подвешенный груз в горизонтальной и вертикальной плоскости. Действие направленного усилия во многом зависит от вертикальной или горизонтальной установки.

В целом можно сказать, что пружинный маятник определение довольно обобщенное. При этом скорость перемещения объекта зависит от различных параметров, к примеру, величины приложенного усилия и других моментов. Перед непосредственным проведением расчетов проводится создание схемы:

  1. Указывается опора, к которой крепится пружина. Зачастую для ее отображения рисуется линия с обратной штриховкой.
  2. Схематически отображается пружина. Она часта представлена волнистой линией. При схематическом отображении не имеет значение длина и диаметральный показатель.
  3. Также изображается тело. Оно не должно соответствовать размерам, однако имеет значение место непосредственного крепления.

Схема требуется для схематического отображения всех сил, которые оказывают влияние на устройство. Только в этом случае можно учесть все, что влияет на скорость перемещения, инерцию и многие другие моменты.

Пружинные маятники применяются не только при расчетах ил решении различных задач, но также и на практике. Однако, не все свойства подобного механизма применимы.

Примером можно назвать случай, когда колебательные движения не требуются:

  1. Создание запорных элементов.
  2. Пружинные механизмы, связанные с транспортировкой различных материалов и объектов.

Проводимые расчеты пружинного маятника позволяют подобрать наиболее подходящий вес тела, а также тип пружины. Она характеризуется следующими особенностями:

  1. Диаметр витков. Он может быть самым различным. От показателя диаметра во многом зависит то, сколько требуется материала для производства. Диаметр витков также определяет то, какое усилие должно прикладываться для полного сжатия или частичного растяжения. Однако, увеличение размеров может создать существенные трудности с установкой изделия.
  2. Диаметр проволоки. Еще одним важным параметром можно назвать диаметральный размер проволоки. Он может варьировать в широком диапазоне, зависит прочность и степень упругости.
  3. Длина изделия. Этот показатель определяет то, какое усилие требуется для полного сжатия, а также какой упругостью может обладать изделие.
  4. Тип применяемого материала также определяет основные свойства. Чаще всего пружина изготавливается при применении специального сплава, который обладает соответствующие свойствами.

При математических расчетах многие моменты не учитываются. Усилие упругости и многие другие показатели выявляются путем расчета.

Виды пружинного маятника

Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:

  1. Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
  2. Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.

Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:

  1. Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
  2. Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.

Распространены оба варианта исполнения. При этом важно уделить внимание тому, чтобы сила прикладывалась параллельно оси. В противном случае есть вероятность смещения витков, что становится причиной возникновения серьезных проблем, к примеру, деформации.

Сила упругости в пружинном маятнике

Следует учитывать тот момент, что до деформирования пружины она находится в положении равновесия. Приложенная сила может приводить к ее растягиванию и сжиманию. Сила упругости в пружинном маятнике рассчитывается в соответствии с тем, как воздействует закон сохранения энергии. Согласно принятым нормам возникающая упругость пропорциональна смещению тела. В этом случае кинетическая энергия рассчитывается по формуле: F=-kx. В данном случае применяется коэффициент жесткости пружины.

Выделяют довольно большое количество особенностей воздействия силы упругости в пружинном маятнике. Среди особенностей отметим:

  1. Максимальная сила упругости возникает на момент, когда тело находится на максимальном расстоянии от положения равновесия. При этом в подобном положении отмечается максимальное значение ускорение тела. Не следует забывать о том, что может проводится растягивание и сжатие пружины, оба варианта несколько отличается. При сжатии минимальная длина изделия ограничивается. Как правило, она имеет длину, равную диаметру витка умноженное на количество. Слишком большое усилие может стать причиной смещения витков, а также деформации проволоки. При растяжении есть момент удлинения, после которого происходит деформация. Сильное удлинение приводит к тому, что возникающей силы упругости недостаточно для возврата изделия в первоначальное состояние.
  2. При сближении тела к месту равновесия происходит существенное уменьшение длины пружины. За счет этого наблюдается постоянное снижение показателя ускорения. Все это происходит за счет воздействия усилия упругости, которая связано с типом применяемого материала при изготовлении пружины и ее особенностями. Длина уменьшается за счет того, что расстояние между витками снижается. Особенностью можно назвать равномерное распределение витков, лишь только в случае дефектов есть вероятность нарушения подобного правила.
  3. На момент достижения точки равновесия сила упругости снижается до нуля. Однако, скорость не снижается, так как тело движется по инерции. Точка равновесия характеризуется тем, что длина изделия в ней сохраняется на протяжении длительного периода при условии отсутствия внешнего деформирующего усилия. Точка равновесия определяется в случае построения схемы.
  4. После достижения точки равновесия возникающая упругость начинает снижать скорость перемещения тела. Она действует в противоположном направлении. При этом возникает усилие, которое направлено в обратную сторону.
  5. Дойдя крайней точки тело начинает двигаться в противоположную сторону. В зависимости от жесткости установленной пружины подобное действие будет повторятся неоднократно. Протяженность этого цикла зависит от самых различных моментов. Примером можно назвать массу тела, а также максимальное приложенное усилие для возникновения деформации. В некоторых случаях колебательные движения практически незаметны, но они все же возникают.

Приведенная выше информация указывает на то, что колебательные движения совершаются за счет воздействия упругости. Деформация происходит за счет приложенного усилия, которое может варьировать в достаточно большом диапазоне, все зависит от конкретного случая.

Уравнения колебаний пружинного маятника

Колебания пружинного маятника совершаются по гармоническому закону. Формула, по которой проводится расчет, выглядит следующим образом: F(t)=ma(t)=-mw2x(t).

В приведенной выше формуле указывается (w) радиальная частота гармонического колебания. Она свойственна силе, которая распространяется в границах применимости закона Гука. Уравнение движения может существенно отличаться, все зависит от конкретного случая.

Если рассматривать колебательное движение, то следует уделить внимание следующим моментам:

  1. Колебательные движения наблюдаются только в конце перемещения тела. Изначально оно прямолинейное до полного освобождения усилия. При этом сила упругости сохраняется на протяжении всего времени, пока тело находится в максимально отдаленном положении от нуля координат.
  2. После растяжения тело возвращается в исходное положение. Возникающая инерция становится причиной, по которой может оказываться воздействие на пружину. Инерция во многом зависит от массы тела, развитой скорости и многих других моментов.

В результате этого возникает колебание, которое может длиться в течение длительного периода. Приведенная выше формула позволяет провести расчет с учетом всех моментов.

Формулы периода и частоты колебаний пружинного маятника

При проектировании и вычислении основных показателей также уделяется довольно много внимания частоте и периоду колебания. Косинус – периодическая функция, в которой применяется значение, неизменяемое через определенный промежуток времени. Именно этот показатель называют период колебаний пружинного маятника. Для обозначения этого показателя применяется буква Т, также часто используется понятие, характеризующее значение, обратное периоду колебания (v). В большинстве случаев при расчетах применяется формула T=1/v.

Период колебаний вычисляется по несколько усложненной формуле. Она следующая: T=2п√m/k. Для определения частоты колебания используется формула: v=1/2п√k/m.

Рассматриваемая циклическая частота колебаний пружинного маятника зависит от следующих моментов:

  1. Масса груза, который прикреплен к пружине. Этот показатель считается наиболее важным, так как оказывает влияние на самые различные параметры. От массы зависит сила инерции, скорость и многие другие показатели. Кроме этого, масса груза – величина, с измерением которой не возникает проблем из-за наличия специального измерительного оборудования.
  2. Коэффициент упругости. Для каждой пружины этот показатель существенно отличается. Коэффициент упругости указывается для определения основных параметров пружины. Зависит этот параметр от количества витков, длины изделия, расстояние между витками, их диаметра и многого другого. Определяется он самым различным образом, зачастую при применении специального оборудования.

Не стоит забывать о том, что при сильном растяжении пружины закон Гука прекращает действовать. При этом период пружинного колебания начинает зависеть от амплитуды.

Для измерения периода применяется всемирная единица времени, в большинстве случаев секунды. В большинстве случаев амплитуда колебаний вычисляется при решении самых различных задач. Для упрощения процесса проводится построение упрощенной схемы, на которой отображаются основные силы.

Формулы амплитуды и начальной фазы пружинного маятника

Определившись с особенностями проходимых процессов и зная уравнение колебаний пружинного маятника, а также начальные значения можно провести расчет амплитуды и начальной фазы пружинного маятника. Для определения начальной фазы применяется значение f, амплитуда обозначается символом A.

Для определения амплитуды может использоваться формула: А=√x2+v2/w2. Начальная фаза высчитывается по формуле: tgf=-v/xw.

Применяя эти формулы можно провести определение основных параметров, которые применяются при расчетах.

Энергия колебаний пружинного маятника

Рассматривая колебание груза на пружине нужно учитывать тот момент, что при движение маятника может описываться двумя точками, то есть оно носит прямолинейный характер. Этот момент определяет выполнение условий, касающихся рассматриваемой силы. Можно сказать, что полная энергия потенциальная.

Провести расчет энергии колебаний пружинного маятника можно при учете всех особенностей. Основными моментами назовем следующее:

  1. Колебания могут проходить в горизонтальной и вертикальной плоскости.
  2. Ноль потенциальной энергии выбирается в качестве положения равновесия. Именно в этом месте устанавливается начало координат. Как правило, в этом положении пружина сохраняет свою форму при условии отсутствия деформирующей силы.
  3. В рассматриваемом случае рассчитываемая энергия пружинного маятника не учитывает силу трения. При вертикальном расположении груза сила трения несущественна, при горизонтальном тело находится на поверхности и при движении может возникнуть трение.
  4. Для расчета энергии колебания применяется следующая формула: E=-dF/dx.

Приведенная выше информация указывают на то, что закон сохранения энергии выглядит следующим образом: mx2/2+mw2x2/2=const. Применяемая формула говорит о следующем:

  1. Максимальная кинетическая энергия установленного маятника прямо пропорциональна максимальному значению потенциальной.
  2. На момент осциллятора среднее значение обоих сил равны.

Провести определение энергии колебания пружинного маятника можно при решении самых различных задач.

Свободные колебания пружинного маятника

Рассматривая то, чем вызваны свободные колебания пружинного маятника следует уделить внимание действию внутренних сил. Они начинают формироваться практически сразу после того, как телу было передано движение. Особенности гармонических колебаний заключаются в нижеприведенных моментах:

  1. Могут также возникать и другие типы сил воздействующего характера, который удовлетворяют все нормы закона, называются квазиупругими.
  2. Основными причинами действия закона могут быть внутренние силы, которые формируются непосредственно на момент изменения положения тела в пространстве. При этом груз обладает определенной массой, усилие создается за счет фиксации одного конца за неподвижный объект с достаточной прочностью, второго за сам груз. При условии отсутствия трения тело может совершать колебательные движения. В этом случае закрепленный груз называется линейным.

Не стоит забывать о том, что существует просто огромное количество различных видов систем, в которых осуществляется движение колебательного характера. В них также возникает упругая деформация, которая становится причиной применения для выполнения какой-либо работы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Пружинный маятник, формулы и примеры

Определения и формулы пружинного маятника

Рис.1. Пружинный маятник: а) в положении равновесия; б) в состоянии колебаний

Когда пружина не деформирована, тело находится в положении равновесия (рис.1,а). Если растянув или сжав пружину, вывести тело из положения равновесия, на него будет действовать сила упругости со стороны деформированной пружины. Эта сила направлена к положению равновесия и в данном случае является возвращающей силой.

Сила упругости в пружинном маятнике

Сила упругости пропорциональна смещению тела (удлинению пружины):

   

здесь — коэффициент жесткости пружины.

В положении, соответствующем максимальному отклонению тела от положения равновесия (смещение тела равно амплитуде колебаний) сила упругости максимальна, поэтому максимально и ускорение тела. По мере приближения тела к положению равновесия удлинение пружины уменьшается, и, следовательно, уменьшается ускорение тела, которое обусловлено силой упругости. Достигнув положения равновесия, тело не остановится, хотя в этот момент сила упругости равна нулю. Скорость тела в момент прохождения им положения равновесия имеет максимальное значение, и тело по инерции будет двигаться дальше, растягивая пружину. Возникающая при этом сила упругости будет тормозить тело, так как теперь она направлена в сторону, противоположную движению тела. Дойдя до крайнего положения, тело остановится и начнет движение в противоположном направлении. Движение тела будет повторяться в описанной последовательности.

Таким образом, причинами свободных колебаний пружинного маятника является сила упругости деформированной пружины (возвращающая сила) и инертность тела.

Период свободных колебаний пружинного маятника

Период свободных колебаний пружинного маятника определяется по формуле:

   

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

§141. Механические гармонические колебания

Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается уравнением, аналогичным уравнению (140.1), где s=x:

х=Аcos(0t+). (141.1)

Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны

Сила F=ma, действующая на колеблющуюся материальную точку массой т, с учетом (141.1) и (141.2) равна

F= -m20x.

Следовательно, сила пропорциональна смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия).

Кинетическая энергия материальной точки, совершающей прямолинейные гармонические колебания, равна

Потенциальная энергия материальной точки, совершающей гармонические колебания под действием упругой силы F, равна

Сложив (141.3) и (141.5), получим формулу для полной энергии:

Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна.

Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 20, т. е. с частотой, которая в два раза превышает частоту гармонического колебания.

222

На рис. 200 представлены графики зависимости х, Т и П от времени. Так как <sin2>= <cos2a>=1/2, то из формул (141.3), (141.5) и (141.7) следует, что <Т> = <П>=1/2E.

§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники

Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (140.6):

Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).

1. Пружинный маятник — это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы F=-kx, где k коэффициент упругости, в случае пружины называемый жесткостью. Уравнение движения маятника

Из выражений (142.1) и (140.1) следует, что пружинный маятник совершает гармонические колебания по закону х=Acos(0t+) с циклической частотой

0=k/m (142.2) и периодом

T=2m/k. (142.3)

Формула (142.3) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (см. (21.3)), т. е. когда масса пружины мала по сравнению с массой тела.

Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна

П=kх2/2.

2. Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр масс тела (рис.201).

Если маятник отклонен из положения равновесия на некоторый угол а, то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент М возвращающей силы можно

223

записать в виде

где У — момент инерции маятника относительно оси, проходящей через точку О, l расстояние между точкой подвеса и центром масс маятника, F=-mgsinmg — возвращающая сила (знак минус обусловлен тем, что направления F и  всегда противоположны; sin соответствует малым колебаниям маятника, т. е. малым отклонениям маятника из положения равновесия).

Уравнение (142.4) можно записать в виде

Принимая

0=mgl/J. (142.5) получим уравнение

идентичное с (142.1), решение которого (140.1) известно:

=0cos(0t+). (142.6)

Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой 0 (см (142.5)) и периодом

Т = 2/0=2J/(mgl)=2L/g.

(142.7)

где L = J/(ml) приведенная длина физического маятника.

Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим

т. е. ОО' всегда больше ОС. Точка подвеса О и центр качаний О' обладают свойством взаимозаменяемости: если ось подвеса перенести в центр качаний, то точка О прежней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится.

3, Математический маятник— это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити.

Момент инерции математического маятника J=ml2, (142.8)

где l — длина маятника.

Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим выражение для периода малых колебаний математического маятника

T=2l/g. (142.9)

Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то их периоды колебаний одинаковы. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.

studfiles.net

§141. Механические гармонические колебания

Пусть материальная точка совершает пря­молинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало коорди­нат. Тогда зависимость координаты х от времени t задается уравнением, аналогич­ным уравнению (140.1), где s=x:

х=Аcos(0t+). (141.1)

Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны

Сила F=ma, действующая на колеблю­щуюся материальную точку массой т, с учетом (141.1) и (141.2) равна

F= -m20x.

Следовательно, сила пропорциональна смещению материальной точки из положе­ния равновесия и направлена в противопо­ложную сторону (к положению равнове­сия).

Кинетическая энергия материальной точки, совершающей прямолинейные гар­монические колебания, равна

Потенциальная энергия материальной точки, совершающей гармонические коле­бания под действием упругой силы F, равна

Сложив (141.3) и (141.5), получим форму­лу для полной энергии:

Полная энергия остается постоянной, так как при гармонических колебаниях спра­ведлив закон сохранения механической энергии, поскольку упругая сила консер­вативна.

Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 20, т. е. с частотой, которая в два раза превы­шает частоту гармонического колебания.

222

На рис. 200 представлены графики зави­симости х, Т и П от времени. Так как <sin2>= <cos2a>=1/2, то из формул (141.3), (141.5) и (141.7) следует, что <Т> = <П>=1/2E.

§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники

Гармоническим осциллятором называется система, совершающая колебания, описы­ваемые уравнением вида (140.6):

Колебания гармонического осциллятора являются важным примером периодиче­ского движения и служат точной или при­ближенной моделью во многих задачах классической и квантовой физики. При­мерами гармонического осциллятора яв­ляются пружинный, физический и матема­тический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).

1. Пружинный маятник — это груз мас­сой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы F=-kx, где k коэффициент упругости, в случае пружины называемый жесткостью. Уравнение движения маятника

Из выражений (142.1) и (140.1) следует, что пружинный маятник совершает гармо­нические колебания по закону х=Acos(0t+) с циклической частотой

0=k/m (142.2) и периодом

T=2m/k. (142.3)

Формула (142.3) справедлива для упругих колебаний в пределах, в которых выпол­няется закон Гука (см. (21.3)), т. е. когда масса пружины мала по сравнению с мас­сой тела.

Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна

П=kх2/2.

2. Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходя­щей через центр масс тела (рис.201).

Если маятник отклонен из положения равновесия на некоторый угол а, то в со­ответствии с уравнением динамики враща­тельного движения твердого тела (18.3) момент М возвращающей силы можно

223

записать в виде

где У — момент инерции маятника относи­тельно оси, проходящей через точку О, l расстояние между точкой подвеса и цент­ром масс маятника, F=-mgsinmg — возвращающая сила (знак минус обусловлен тем, что направления F и  всегда противоположны; sin соответствует малым колебаниям маятни­ка, т. е. малым отклонениям маятника из положения равновесия).

Уравнение (142.4) можно записать в виде

Принимая

0=mgl/J. (142.5) получим уравнение

идентичное с (142.1), решение которого (140.1) известно:

=0cos(0t+). (142.6)

Из выражения (142.6) следует, что при малых колебаниях физический маят­ник совершает гармонические колебания с циклической частотой 0 (см (142.5)) и периодом

Т = 2/0=2J/(mgl)=2L/g.

(142.7)

где L = J/(ml) приведенная длина физи­ческого маятника.

Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), по­лучим

т. е. ОО' всегда больше ОС. Точка подвеса О и центр качаний О' обладают свойством взаимозаменяемости: если ось подвеса пе­ренести в центр качаний, то точка О пре­жней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится.

3, Математический маятник— это идеализированная система, состоящая из материальной точки массой т, подвешен­ной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тя­жести. Хорошим приближением математи­ческого маятника является небольшой тя­желый шарик, подвешенный на тонкой длинной нити.

Момент инерции математического маятника J=ml2, (142.8)

где l — длина маятника.

Так как математический маятник мож­но представить как частный случай физи­ческого маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим вы­ражение для периода малых колебаний математического маятника

T=2l/g. (142.9)

Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L фи­зического маятника равна длине l матема­тического маятника, то их периоды коле­баний одинаковы. Следовательно, приве­денная длина физического маятника — это длина такого математического маятни­ка, период колебаний которого совпадает с периодом колебаний данного физическо­го маятника.

studfiles.net

Свободные колебания. Пружинный маятник | ЭТО ФИЗИКА

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

F (t) = ma (t) = –m ω2 x (t).

В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закон Гука:

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.

Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.

Рисунок 2.2.1.

Колебания груза на пружине. Трения нет

Круговая частота ω0 свободных колебаний груза на пружине находится из второго закона Ньютона:

,

следовательно

Частота ω0 называется собственной частотой колебательной системы.

Период T гармонических колебаний груза на пружине равен

При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную

и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае.

Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x: ускорение является второй производной координаты тела x по времени t:

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

или

     (*)

где

Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

x = xm cos (ωt + φ0).

Уравнение (*) называется уравнением свободных колебаний. Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T. Такие параметры колебательного процесса, как амплитуда xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ0 = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость , то

Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ0 определяются начальными условиями.

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил Mупр упругой деформации кручения:

Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k. Второй закон Ньютона для вращательного движения диска записывается в виде

где I = IC – момент инерции диска относительно оси, проходящий через центр масс, ε – угловое ускорение.

По аналогии с грузом на пружине можно получить:

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

Рисунок 2.2.2.

Крутильный маятник

www.its-physics.org

Отправить ответ

avatar
  Подписаться  
Уведомление о