Калькулятор тороидального трансформатора онлайн – Расчет трансформатора с тороидальным магнитопроводом :: АвтоМотоГараж

alexxlab | 05.10.2020 | 0 | Вопросы и ответы

Содержание

Расчет тороидального трансформатора: формулы и таблицы расчета

Содержание:
  1. Определение основных параметров
  2. Формулы для расчета тороидального трансформатора
  3. Перемотка тороидального трансформатора

По сравнению с обычными конструкциями тороидальные трансформаторы имеют ряд существенных преимуществ. При незначительных размерах и массе, они обладают значительно большим коэффициентом полезного действия. Поэтому данные устройства нашли широкое применение в сварочных аппаратах и стабилизаторах напряжения. Большое значение имеет правильный расчет тороидального трансформатора, применительно к конкретным условиям эксплуатации. Существуют различные способы расчетов, позволяющие получить результаты с разной степенью точности. Чаще всего для расчетов используются таблицы.

Определение основных параметров

Перед началом расчетов необходимо определиться с основными параметрами трансформатора. В первую очередь это касается типа проводов и количества витков, от которых зависит общая длина проводника. Далее нужно сделать правильный выбор сечения, влияющего на показатели выходного тока и мощность устройства.

Следует учитывать и тот фактор, что при небольшом количестве витков, первичная обмотка будет нагреваться. Точно такая же ситуация возникает, когда мощность потребителей, включаемых во вторичную обмотку, превышает мощность, отдаваемую трансформатором. В результате перегрева снижается надежность устройства, иногда может произойти воспламенение трансформатора.

В качестве примера приводится таблица, с помощью которой можно рассчитать тороидальный трансформатор, работающий при частоте сети 50 Гц.

Сердечники устройств могут быть изготовлены из холоднокатаной стали марок Э310-330, толщиной от 0,35 до 0,5 мм. Может применяться и обычная сталь, марок Э340-360, где толщина ленты будет в пределах от 0,05 до 0,1 мм.

Условные обозначения в таблице соответствуют:

  • – габаритная мощность трансформатора;
  • ω1 – количество витков на 1 вольт для стали Э310, Э320, Э330;
  • ω2 – количество витков на 1 вольт для стали Э340, Э350, Э360;
  • S – сечение сердечника;
  • – значение допустимой плотности тока в обмотках;
  • ŋ – КПД трансформатора.

При наматывании тороидальной катушки используется только наружная и межобмоточная изоляция. Несмотря на ровную укладку обмоточных проводов, толщина намотки по внутреннему диаметру обязательно увеличивается вследствие разницы между наружным и внутренним диаметром сердечника. Поэтому рекомендуется использовать проводники, изоляция которых обладает повышенной механической и электрической прочностью, например, марки ПЭЛШО и ПЭШО, а в некоторых случаях – ПЭВ-2. Для наружной и межобмоточной изоляции чаще всего применяется батистовая лента, лакоткань ЛШСС, толщиной 0,06-0,12 мм, а также триацетатная или фторопластовая пленка, толщиной 0,01-0,02 мм.

Формулы для расчета тороидального трансформатора

Основными параметрами для расчета тороидального трансформатора служат напряжение сети питания (Uc), равное 220 В, значение выходного напряжения (Uн) – 24 В, токовая нагрузка (Iн) – 1,8 А. Для определения мощности вторичной обмотки существует формула: Р = Uн х

Iн = 24 х 1,8 = 43,2 Вт.

Далее определяется габаритная мощность трансформаторного устройства по формуле:

Величина коэффициента полезного действия и прочие данные, необходимые для расчетов, выбираются из таблицы, в соответствующей графе и ряде под конкретную габаритную мощность.

Следующим этапом будет расчет площади сечения сердечника по формуле:

Выбор размеров сердечника осуществляется следующим образом:

Ближайшим типом сердечника со стандартными параметрами будет ОЛ50/80-40, с площадью сечения S = 60 мм2, которая должна быть не менее расчетной. Внутренний диаметр сердечника определяется в соответствии с условием, что dc имеет значение большее или равное dc’:

Если в качестве примера взять сердечник, изготовленный из стали Э320, то в этом случае количество витков на один вольт будет определяться по формуле:

Теперь необходимо определить количество витков в первичной и вторичной обмотках:

Поскольку в любом тороиде рассеивание магнитного потока совсем незначительное, падение напряжения в обмотках возможно определить только по их активному сопротивлению. В результате, значение относительной величины падения напряжения в обмотках тороидального трансформатора будет намного меньше, чем в обычных трансформаторах. В связи с этим, потери на сопротивлении вторичной обмотки компенсируются увеличением количества витков примерно на 3%. Расчет будет выглядеть следующим образом:

W1-2=133 х 1,03=137 витков.

Диаметры обмоточных проводов можно определить по формуле:

Здесь I1 является током первичной обмотки, определяемый по собственной формуле: I1=1,1 (P2/Uc)=1,1 (48/220)=0,24A

Диаметр провода выбирается по ближайшему значению в сторону увеличения, что будет составлять 0,31 мм. 

Трансформаторы, изготовленные по расчетам с помощью таблицы, прошли успешные испытания при постоянной максимальной нагрузке, воздействующей на протяжении нескольких часов. Таким образом, расчет тороидального трансформатора позволяет получить точные результаты, подтвержденные на практике. С помощью этой методики можно определить необходимые параметры для любого устройства.

electric-220.ru

принцип работы, сечение сердечника, преимущества эксплуатации

Высококачественные трансформаторы широко используются в различных отраслях. Многие мастера ценят такие агрегаты за то, что они достаточно компактны и легки, а вот коэффициент полезного действия находится на высоком уровне. Такие характеристики особенно важны в сварочных аппаратах и стабилизаторах напряжения. Но чтобы такой агрегат исправно работал, нужно правильно рассчитать тороидальный трансформатор.

Краткое описание

Современные производители занимаются промышленным изготовлением нескольких разновидностей магнитопроводов для трансформаторов — броневого, стержневого, тороидального. Если сравнивать их эксплуатационные характеристики и сферы использования, то более эффективным можно считать последний вариант. Всё дело в том, что такое

устройство обладает исключительно положительными параметрами, благодаря чему активно применяется в современной промышленности.

Высокая производительность и длительный эксплуатационный срок повлияли на то, что сейчас тороидальный трансформатор является базовым элементом в осветительной технике, стабилизаторах напряжения, источниках бесперебойного питания, радиотехнике, а также медицинском и диагностическом оборудовании.

Сами производители утверждают, что такой агрегат представлен в виде однофазной установки, которая может как понижать, так и повышать мощность. Для качественной эксплуатации трансформатор оборудован мощным сердечником с двумя и более обмотками. Но принцип его эксплуатации ничем не отличается от тех моделей, которые оснащены броневой или стержневой намоткой.

В независимости от эксплуатационных характеристик, трансформатор — это устройство, главная задача которого основана на преобразовании электроэнергии из одной величины в другую. Однако даже самые минимальные изменения в конструктивном исполнении могут существенно изменить итоговые размеры и вес электрической установки. Благодаря этому, технико-экономические параметры будут только возрастать.

Основные преимущества

У такого трансформатора магнитопровод имеет форму тороида, иными словами — все кольца отличаются прямоугольным сечением. Уникальные эксплуатационные характеристики высоко ценятся как в бытовых, так и промышленных сферах. Помимо этого, тороидальный агрегат имеет ряд дополнительных преимуществ в отличие от стандартных стержневых и бронированных моделей:

  1. У мастеров появилась отличная возможность использовать для сердечника сталь с повышенной магнитной проницаемостью (Э-370, 340).
  2. Известно, что итоговый поток рассеяния в идеальной тороидальной катушке должен быть равен нулю. В таком трансформаторе этот показатель имеет некоторую конечную величину. Но такие потоки рассеяния не такие уж и большие, как у обычных моделей, поэтому внешние магнитные поля не влияют на слаженную работу трансформатора.
  3. В сердечнике полностью отсутствуют зазоры и стыки.
  4. Мастер может смело использовать структурные свойства сердечника, так как в тороидальном агрегате направление магнитного поля полностью совпадает с прокатом ленты.

Все вышеперечисленные преимущества позволяют добиться высоких экономических и электрических показателей. За счёт этого существенно возрастает производительность оборудования:

  • Существенно уменьшается общее количество витков, которые используются для получения величины индуктивной первичной обмотки. Такой эффект достигается благодаря использованию сталей с высокой магнитной проницаемостью. В отдельных конструкциях мастерам удалось снизить итоговый расход меди на 25%.
  • Полное отсутствие зазоров и наличие высоколегированной стали является причиной того, что в сердечнике трансформатора достигается более высокая индукция. Это функциональное преимущество совершенно не влияет на коэффициент нелинейных искажений. В результате мастеру удаётся повысить Bmax в два раза, что считается невозможным в броневых трансформаторах. В итоге снижается итоговый вес и объём рабочего сердечника.
  • Равномерная частотная характеристика каскад достигается за счёт небольшой величины индуктивности рассеяния. Наличие минимальных искажений по вине переходных процессов позволяет использовать довольно глубокую обратную связь отрицательного типа.

В связи с тем, что тороидальный трансформатор обладает небольшим магнитным полем, даже самый тесный монтаж не влияет на взаимодействие с другими элементами конструкции.

Самостоятельное изготовление агрегата

Прежде чем приступить к созданию такого агрегата, необходимо подготовить все необходимые инструменты и материалы. Для изготовления более качественной модели может понадобиться даже швейная машинка, прочная игла и обычные спички, но такие детали можно найти практически в каждом доме.

Основным расходным материалом является железо, из него изготавливаются базовые части трансформатора. Для работы понадобится качественная сталь, которая должна быть в форме тора. Не стоит забывать и о хорошем проводе в лаковой изоляции. Надёжная фиксация не может обойтись без клея ПВА и малярного скотча.

Отдельно стоит учесть, что качественная работа обмоток зависит от изоленты на тканевой основе. А также стоит приобрести высококачественный провод в резиновой или силиконовой изоляции. Этот элемент понадобится для надёжного соединения всех концов обмотки.

Подготовка трансформаторной стали

Начинающим мастерам может показаться, что достать базовый элемент конструкции крайне сложно, но на практике всё обстоит совершенно иначе. Дело в том, что даже обычные пункты приёма металла часто располагают неработоспособными стабилизаторами напряжения. В советский период они были очень распространены, так как использовались в чёрно-белых телевизорах, что продлевало работоспособность кинескопов.

Исправность такого устройства совершенно не имеет значения, так как особой ценностью обладают только тороидальные трансформаторы, которые расположены во внутреннем отсеке стабилизатора. Именно эта часть используется мастерами в качестве основы всей конструкции.

На пути к изъятию трансформаторов всегда лежит обмотка, изготовленная из алюминиевого провода. Не стоит забывать о том, что сердечник тоже нуждается в подготовительных работах. Мастер должен максимально округлить острые края этой детали, так как в процессе намотки может повредиться лаковая изоляция. Поверх трансформаторной стали обязательно укладывается изолента на тканевой основе. В этом случае нужен всего один изоляционный слой.

Правила обмотки

Прежде чем приступить к этому виду работы, нужно сделать расчёт тороидального трансформатора по сечению сердечника. Конечно, мастер может использовать специальные онлайн-калькуляторы, которых на просторах интернета существует очень много. Но можно выбрать более простой вариант, где для всех вычислений нужно подготовить только линейку и калькулятор.

Конечно, он может иметь некоторые погрешности, так как расчёт не подразумевает соблюдения всех тех факторов, которые встречаются в природе. Главное, придерживаться правила о том, что итоговая мощность во вторичной катушке не должна превышать аналогичных показателей в первой обмотке.

Когда мастер дошёл до этого этапа и нужно сделать намотку тороидального агрегата, ему стоит быть крайне внимательным, так как этот процесс довольно трудоёмкий. Отличным считается тот вариант, когда есть возможность самостоятельно разобрать магнитопровод, а уже после намотки собрать его.

В противном случае можно прибегнуть к помощи обычного веретена, на которое нужно аккуратно намотать определённое количество заранее подготовленного провода. Только после этого веретено можно пропустить необходимое количество раз сквозь тор, равномерно укладывая витки обмоток. Конечно, на реализацию такой идеи уйдёт достаточно много времени, но результат того стоит.

Стоит отметить, что в стандартных ситуациях мастера проводят дополнительную изоляцию тороидального сердечника от обмоток (даже в том случае, если используется лакированная проволока). Особой популярностью пользуется высококачественный электротехнический картон, который соответствует всем стандартам ГОСТ 2824 . Толщина этого материала находится в пределах 0,8 мм.

Во время работы мастера придерживаются следующей схемы:

  • Картон аккуратно наматывается на сердечник с небольшим захватом предыдущего витка. Конец материала обязательно фиксируется киперной лентой либо клеем ПВА.
  • Все торцы сердечника должны быть защищены картонными шайбами с небольшими надрезами от 10 до 20 мм, длина шага — 35 мм. Как наружная, так и внутренняя грань обязательно закрывается небольшими полосами. Стоит отметить, что технологические шайбы фиксируются на финишном этапе, а все прорезиненные зубцы загибаются. Поверх всей конструкции наматывается киперная лента.
  • Если надрезы были сделаны на самых полосах, тогда должен присутствовать небольшой запас, чтобы добиться большей высоты торца. Все кольца должны быть прикреплены строго по ширине, накладываются они поверх загибов.
  • В редких случаях кольца могут быть изготовлены из специальной электротехнической фанеры, толстого текстолита. Уязвимую внутреннюю и внешнюю грань защищают картонными полосами с небольшими загибами по краям. Между первыми витками обмотки и сердечником должен присутствовать небольшой воздушный зазор. Такой подход особенно важен в тех случаях, когда края под проволокой протрутся. Так уязвимая токонесущая часть никогда не коснётся тороидального сердечника. На верхний слой обязательно наматывается киперная лента. В некоторых случаях мастера предпочитают сглаживать внешнее ребро колец, за счёт чего намотка углов идёт плавно.

Если трансформатор обладает повышенной мощностью, тогда медный провод должен быть прямоугольного сечения. Такой подход позволяет сэкономить свободное пространство. Жила обязательно должна быть толстой, чтобы она не плавилась во время того, как по ней проходит большое напряжение.

Тонкости расчётных манипуляций

Чаще всего первичная обмотка питается от обычной сети переменного напряжения в 220 В. Если мастеру нужно две вторичные обмотки, чтобы каждая выдавала минимум по 12 В, то площадь сечения должна составлять минимум 0,23 кв. мм. Но этих данных мало, чтобы правильно рассчитать тороидальный трансформатор.

Мастеру нужно разделить 220 В на определённую сумму напряжений вторичной цепи. Так можно получить коэффициент 3,9, который будет обозначать, что сечение провода для вторичной обмотки должно быть аналогичным с этим показателем. А вот для того, чтобы определить количество витков, нужно прибегнуть к достаточно простой формуле: напряжение 220 В умножить на коэффициент 40, а полученную цифру следует разделить на площадь поперечного сечения магнитопровода.

Отдельно стоит учесть, что от правильности проведённых расчётов зависит уровень КПД тороидального трансформатора и его эксплуатационный срок. Именно поэтому лучше несколько раз всё перепроверить, дабы не допустить самых распространённых ошибок.

Рекомендации специалистов

Когда мастер тщательным образом изучил способ изготовления трансформатора своими руками, он может смело приступать к практической части. Так как намотка витков считается очень сложным процессом, понадобится запастись терпением, чтобы итоговый результат оправдал все ожидания. Ведь именно от того, насколько качественно выполнен этот этап, зависят эксплуатационные характеристики устройства.

Для упрощения этой задачи можно использовать специальный станок, предназначенный для намотки тороидальных трансформаторов. Цена такого агрегата считается доступной, а при желании его можно изготовить и своими руками.

220v.guru

Расчет сварочного трансформатора для самостоятельной сборки

Соединение металлических деталей электрической дугой известно уже более 120 лет, но немногие знают все тонкости этого процесса, что очень важно для того, чтобы сделать расчет сварочного трансформатора для простейшего аппарата и полуавтомата.

1 На чем базируется расчет сварочного трансформатора?

Прежде, чем разбираться в формулах, давайте рассмотрим принцип действия простейшего аппарата для дуговой сварки. Основой такого агрегата является понижающий трансформатор, позволяющий изменить входящее напряжение, соответствующее в быту 220 В, на более низкое, до 60 В для так называемого холостого хода или, иначе, состояния покоя. То, какие виды электродов можно будет использовать с устройством, зависит от силы тока, которая должна быть в пределах 120-130 А для наиболее популярного трехмиллиметрового диаметра расходного материала.

И вот здесь как раз требуются расчеты, поскольку, если стержень электрода плавится при определенной силе тока, значит, она будет в той же степени нагревать и сердечник трансформатора, а также проволоку обмотки. Следовательно, для того, чтобы узнать оптимальную мощность трансформатора, нам нужно сначала вычислить рабочее напряжение, ориентируясь на рабочую силу тока. Для этого существует формула U2 = 20 + 0,04I2, где U2 – напряжение на вторичной обмотке, а I2 – выдаваемый аппаратом максимальный сварочный ток.

Рекомендуем ознакомиться

Теперь вернемся к сердечнику, который не зря так называется, поскольку является сердцем трансформатора, как самого простого, так и полуавтомата. Он составляется из металлических пластин, которые способны выдержать определенную нагрузку по мощности тока. Это допустимое значение зависит от размеров сердечника и называется габаритной мощностью, которую можно найти, зная значение напряжения холостого хода. Последнее высчитывается по формуле Uхх = U2S, где S – площадь сечения провода вторичной обмотки. Зависимость этой площади от диаметра проводника определяем по формуле S = πd2/4, или по следующим таблицам:

1.

Допустимые токовые нагрузки на провода с медными жилами

Площадь сечения токопроводящей жилы, мм2Диаметр провода,ммДопустимая сила тока, АПлощадь сечения токопроводящейжилы, мм2Диаметр провода, ммДопустимая сила тока, А
0.50.7811356,7170
0,750.9815508,0215
1,01,1317709.5270
1,51,42395.11.0330
2,51,83012012,4385
4,02,264115013.8440
6.02,85018515,4510
103,568024017,5605
164,510030019,5695
255,614040022,5830

2.

Допустимые токовые нагрузки на провода с алюминиевыми жилами

Площадь сечения токопроводящей жилы, мм2Диаметр провода,ммДопустимая сила тока, АПлощадь сечения токопроводящейжилы, мм2Диаметр провода, ммДопустимая сила тока, А
21,621356,7130
2,51,7824508,0165
31,9527709.5210
42,263295.11.0255
52,523612012,4295
62,763915013.8340
83,194618515,4390
103,566024017,5465
164,57530019,5535
255,610540022,5645

2 Расчет для сварочного трансформатора по формулам и онлайн

Итак, у нас есть все необходимые параметры для того, чтобы вычислить габаритную мощность сердечника. Далее работаем по формуле Pгаб = UххI2cos(φ)/η, где φ – угол смещения фаз между напряжением и током (можно принять величину 0.8), а η – КПД (принимаем 0.7). Остается найти допустимую мощность, которую выдержит аппарат при длительной работе. При этом учитываем, что коэффициент продолжительности работы (обозначим его ПР) составляет около 20 % от времени подключения трансформатора к сети.

Поэтому считаем следующим образом: Pдл = U2I2(ПР/100)0.50.001, или, иначе Pдл = U2I2(20/100)0.50.001, что соответствует Pдл = U2I20.00045. В целом продолжительность работы и сила сварочного тока практически не связаны. В большей степени на время дугового режима влияет сечение проволоки обмотки и качество изоляции, а также то, насколько плотно и, главное, ровно, уложены витки. Следовательно, теперь мы можем узнать электродвижущую силу одного витка в вольтах, используя формулу E = Pдл0.095 + 0.55.

Далее, получив результат эмпирической зависимости по последней формуле, высчитываем оптимальное количество витков для обмотки, как первичной, так и вторичной. Для той и другой используем две формулы, соответственно N1 = U1/E, где U1 – входящее напряжение сети, а N2 = U2/E. Сила сварочного тока регулируется увеличением или уменьшением расстояния между первичной и вторичной обмотками: чем оно больше, тем ниже мощность на выходе. Тем, кто делает приведенный расчет с целью самостоятельной сборки трансформатора, а не для приобретения готового сварочного полуавтомата, понадобится еще и вычисление габаритов сердечника.

Площадь сечения металла определяется по формуле S = U210000/(4.44fN2Bm), где f – промышленная частота тока (принимаем за 50 Гц), Bm – индукция магнитного поля (принимаем за 1.5 Тл). Теперь можно узнать ширину стальной пластины в пакете трансформатора: a = (100S /(p1kc))0.5, где за p1 принимаем диапазон значений 1.8-2.2 (рекомендуется среднее), kс – коэффициент заполнения стали (соответствует 0.95-0.97).

Исходя из значения ширины пластины, выясняем толщину пакета пластин плеча, для чего используем формулу b = ap1, а затем и ширину окна магнитопровода c = b/p2, где p2 имеет диапазон значений 1–1.2 (рекомендуется максимальное). К слову, если уж мы взялись измерять габариты, вспомним про коэффициент заполнения стали, который обозначает промежутки между пластинами. С учетом этого показателя площадь сечения сердечника будет несколько иной, поэтому назовем ее измеряемой величиной и определим заново. Формула для этого потребуется следующая: Sиз = S/kc. В большинстве случаев эти расчеты не нужны при наличии онлайн-калькулятора.

3 Как сделать расчет самодельного тороидального сварочного трансформатора?

По сути, тор – это объемное геометрическое тело, хотя в математике бытует понятие "поверхность". То есть это даже не фигура, а замкнутая поверхность, имеющая одну общую для любой размещенной на ней точки сторону. Но, если не вдаваться в дебри терминологии, тор – это бублик, или окружность, вращающаяся вокруг некой не пересекающей ее оси, с которой располагается в одной плоскости. Именно в форме такого бублика может быть выполнен трансформатор-тороид.

Основная его характеристика – высокий КПД при небольших, в сравнении с другими типами сердечников, размерах. Что и является основополагающим критерием для предпочтения данной формы самодельных трансформаторов. Основное отличие тороидального трансформатора от прочих – прокладка только межобмоточной изоляции наряду с внешней. Межслоевая не делается по той простой причине, что витки провода, проходя сквозь отверстие тора, создают дополнительную толщину внутреннего диаметра, что исключает использование лишних слоев изоляции.

Именно это значительно усложняет сборку тороида, и потому он редко устанавливается в корпусе полуавтомата, где чаще можно увидеть стержневые сердечники.  Чтобы не возникали пробивания, применяются провода с повышенной прочностью изоляционного покрова. В качестве прокладки можно взять лавсан или ленту ФУМ (фторопластовую).

Для определения габаритной мощности сердечника, выполненного в виде тора, нам достаточно узнать две площади: окна и сечения.

Первую вычисляем по формуле Sокна = 3.14(d2/4), где d – внутренний диаметр тора. Вторая формула выглядит следующим образом: Sсеч = h((D-d)/2), здесь D – внешний диаметр "бублика". Далее остается только рассчитать габаритную мощность трансформатора, для чего используем простейший способ умножения двух получившихся ранее результатов. Иными словами, Pгаб[Вт] = Sокна[кв.см] * Sсеч[кв.см]. Дальнейшие вычисления ориентируем согласно таблице:

Pгабω1ω2 (А/мм2) η
До 1041/S38/S4.50.8
10-3036/S32/S40.9
30-5033.3/S29/S3.50.92
50-12032/S28/S30.95

Здесь Pгаб – габаритная мощность трансформатора, ω1 – число витков на вольт (для стали Э310, Э320, Э330), ω2 – число витков на вольт (для стали Э340, Э350, Э360), –допустимая плотность тока в обмотках, ŋ – КПД трансформатора.

Определив количество витков на каждый вольт для сердечника из той или иной стали, можем узнать, сколько витков всего нужно будет выполнить при изготовлении трансформатора. Для этого используются две формулы, для первичной и вторичной обмотки соответственно: N1 = ω1U1 и N2 = ω2U2. Далее следует учесть некоторое падение напряжения, возникающее из-за небольшого сопротивления в обмотках, которое, впрочем, в тороиде довольно незначительное.

Для этого увеличиваем количество витков вторичной обмотки на 3 % (в других типах сердечников понадобилось бы больше): N2_компенс = 1.03N2. Для того чтобы узнать диаметр проволоки, используем формулу для первой обмотки d1 = 1.13(I1/∆)0.5 и для второй: d2 = 1.13(I2/∆)0.5. При этом результаты округляем в большую сторону и выбираем ближайшие доступные провода.

tutmet.ru

Расчет трансформатора на ферритовом кольце онлайн калькулятор. Расчет трансформатора с тороидальным магнитопроводом

Программное обеспечение, предназначенное для расчёта импульсных трансформаторов двухтактных push-pull, мостовых и полумостовых преобразователей напряжения источников питания.

Из основных достоинств Lite-CalcIT стоит отметить удобный и понятный графический интерфейс, контроль и учет различных особенностей рассматриваемых электромагнитных устройств, а также формирование довольно достоверных результатов.

Рассматриваемое ПО дает возможность рассчитать диаметры обмоточных проводов (учитывая скин-эффект – глубину проникновения тока в массив проводника на определенной частоте), мощность потерь в магнитопроводе, количество витков в обмотках трансформатора и его габаритную мощность, ток намагничивания первичной обмотки и её индуктивность, перегрев магнитопровода, а также многое другое. Важной особенностью Lite-CalcIT является возможность выбора схемы выпрямления и наличие различных вариантов ШИМ-контроллеров: TL494, SG3525, IR2153 и подобных им. Также предлагается два способа охлаждения трансформатора: принудительное и естественное. Форма сердечника может быть E, ER, EI, ETD или R типа, кроме этого база магнитопроводов является пополняемой. Данные на изделия других образцов необходимо вносить самостоятельно согласно документации производителя. При добавлении нового сердечника в поле комбинированного списка программа автоматически дописывает к его названию префикс формы и название материала. Lite-CalcIT предлагает рассчитать до четырех вторичных обмоток одного трансформатора, причем для каждой вторичной обмотки в соответствии с рисунками указывается своя схема выпрямления. При выводе результатов работы данный софт приводит не только диаметры проводов, но и во сколько жил должна производиться намотка этими проводами. При наличии двухполярного питания со средней точкой число витков для каждого плеча будет указано через значок «+».

На отдельных результатах расчета и полях ввода размещены всплывающие подсказки. Кроме этого, если ряд параметров выйдет за разумные пределы (например, нагрев сердечника), то данное ПО предупредит об этом пользователя и самостоятельно ограничит ряд установленных значений. Все данные предыдущего расчета сохраняются при перезапуске программы.

Данное ПО является упрощенной версией программы ExcellentIT и подходит для тех, кто не желает возиться с огромным количеством различных специфичных параметров (которые по умолчанию берутся усредненными). Однако следствием этого является более высокая погрешность расчетов. Основные отличия от полной версии – отсутствие возможности рассчитать индуктивность выходного дросселя, а также сохранять, загружать и распечатывать результаты работ. При работе с Lite-CalcIT нельзя забывать, что диаметр провода по лаку будет больше вводимого диаметра по меди.

Автором данного ПО является отечественный программист Владимир Денисенко, проживающий в городе Пскове. Помимо ExcellentIT и Lite-CalcIT он написал еще несколько других программ для определения моточных компонентов различных устройств: Booster (заточенный на расчет понижающих и повышающих импульсных стабилизаторов), Forward (трансформаторы прямоходовых однотактных преобразователей) и Flyback (дроссель-трансформаторы обратноходовых преобразователей). Автор следит за пожеланиями пользователей и постоянно дорабатывает вышеприведенное ПО. Его программы получили известность не только в странах бывшего СССР, но и за рубежом.

Программа Lite-CalcIT распространяется абсолютно бесплатно. Инсталляция при установке не требуется.

Язык интерфейса рассматриваемого калькулятора импульсных трансформаторов – русский.

Размер программы составляет менее 1 MB. Платформа для работы – операционные системы Microsoft Windows XP, Vista и 7 (работоспособность проверена в 32- и 64-разрядных версиях). Lite-CalcIT функционирует и в среде Linux при запуске под Wine.

Скачать: (скачиваний: 953)

Распространение программы: бесплатная

В правильно сконструированном двухтактном преобразователе постоянный ток через обмотку и подмагничивание сердечника отсутствуют.
Это позволяет использовать полный цикл перемагничивания и получить максимальную мощность. Поскольку трансформатор имеет много взаимозависимых параметров, расчет ведут по шагам, уточняя при необходимости исходные данные.

1. Как определить число витков и мощность?

Габаритная мощность, полученная из условия не перегрева обмотки, равна :

Pгаб = S o S c f B m / 150 (1)

Где: P габ - мощность, Вт; S c - площадь поперечного сечения магнитопровода, см 2 ; S o - площадь окна сердечника, см 2 ; f - частота колебаний, Гц; B m = 0,25 Тл - допустимое значение индукции для отечественных никель-марганцевых ферритов на частотах до 100 кГц.

Максимальную мощность трансформатора выбираем 80% от габаритной:

P max = 0,8 P габ (2)

Минимальное число витков первичной обмотки n 1 определяется максимальным напряжением на обмотке U m и допустимой индукцией сердечника Bm :

n = (0,25⋅10 4 U m) / (f B m S c) (3)

Плотность тока в обмотке j для трансформаторов мощностью до 300 Вт принимаем 3..5 А/мм 2 (большей мощности соответствует меньшее

gksteel.ru

Расчет трансформатора на стержневом сердечнике в онлайн

Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого?

Необходимые сведения

Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания. Следует грамотно подойти к процессу расчета, учесть такие показатели, как магнитную индуктивность, КПД и плотность тока. Иначе изделие получится ненадежным и скоро выйдет из строя. К основным характеристикам следует отнести:

  • Входное напряжение сети. Оно зависит от источника, к которому будет подключен трансформатор. Стандартными являются: 110 В, 220 В, 380 В, 660 В. На практике оно может быть любым, что зависит от характеристик промежуточных цепей.
  • Выходное напряжение трансформатора — величина, требуемая для обеспечения стабильной работы потребителя. Часто требуется изготовить изделие с несколькими номиналами или с регулируемым напряжением. Тогда необходимо учитывать максимальную его величину.
  • Ток в нагрузке. При фиксированном значении рассчитываются жесткие характеристики устройства, но часто требуется обеспечить регулируемую величину, тогда потребуется учесть максимальную его величину.
  • Частота сети. У нас применяется европейский стандарт, то есть 50 Гц.
  • Мощность нагрузки. Это не основной параметр, потому что ее можно определить по напряжению и току.
  • Количество выходных обмоток. В некоторых электронных приборах используются блоки питания с несколькими выходными напряжениями. Для изготовления силовой электроники используется в основном один номинал, например, для сварочных трансформаторов.

Также потребуется учесть тип сердечника, потому что от его конструкции напрямую зависит принцип расчета показателей изделия. Существует много разновидностей как конструкций, так и материалов. Если учитывать последние нет смысла из-за незначительных погрешностей, то форма и размеры имеют большое значение. Поэтому необходимы разные алгоритмы расчета, что зависит от этого критерия. Начнем с самого простого и распространенного.

Не всегда требуется расчет вести с требуемых данных. Нередко в наличии есть какое-то железо, тогда потребуется определить мощность трансформатора по сечению магнитопровода. Программы онлайн, имеющиеся в интернете, позволяют определять параметры любым порядком.

Расчет броневого трансформатора

Распространен вид трансформаторов, используемый практически во всех устройствах от зарядных аппаратов для шуруповертов, заканчивая боками питания магнитофонов. В процессе эксплуатации всех этих устройств часто возникают поломки в питателе, связанные со сгоревшим намоточным изделием. Тогда для его восстановления потребуется перемотка, но это проблемы не решает.

Часто требуется увеличить мощность источника, тогда как рассчитать трансформатор, чтобы его железо не перегревалось? Потребуется выбрать железо больших размеров и использовать более толстый провод. Такой ход поможет сохранить работоспособность устройства и даже улучшить характеристики, сделав его стабильнее и устойчивее при скачках напряжений в сети.

К сожалению, не все производители учитывают этот фактор, а ведь наша сеть неустойчива и регулярно в ней наблюдаются помехи в виде высоковольтных игольчатых импульсов. Также возникают ситуации, когда наблюдается просадка сети до 170 В, что характерно в зимний период. Тогда необходимо предусмотреть запас по напряжению как минимум на 40−45%, увеличив мощность и компенсационного стабилизатора. Часто такие ситуации наблюдаются в частном секторе.

Вернемся к расчету Ш-образного трансформатора на ШП-сердечнике. Принцип будет одинаков и с сердечником типа ПЛ при условии размещения обмотки на средней части. Для чего потребуется выполнить следующие шаги:

  • Определить площадь поперечного сечения средней части сердечника. Она выражается буквой S сеч. и находится из произведения ее сторон. Взяв линейку, измеряем параметры сечения, перемножаем и получаем значение в квадратных сантиметрах.
  • На следующем этапе решается вопрос, как рассчитать мощность трансформатора. Это расчетная величина, которую можно определить, возведя S сеч. в квадрат. Значение будет измеряться в Вт и обозначаться буквой «P».
  • При расчете мощности сердечника необходимо учитывать тип использованных пластин. Например, если были применены для набора Ш-20, то общая толщина сердечника должна быть 30 мм при мощности в 36 Вт. Если для трансформатора были использованы пластины Ш-30, то толщина набора будет достаточно в 20 мм, а при использовании Ш-24 — 25 мм. Существуют справочные таблицы, в которых можно найти мощность трансформатора по сечению магнитопровода для конкретной ситуации. Для обеспечения наилучшей стабильности работы источников питания следует использовать железо с избытком мощности как минимум на 25%. То есть, если ранее была расчетная мощность равна 6 Вт, то для надежности работы и исключения насыщения сердечника следует брать в расчет как минимум 8 Вт. Это обязательное условие. Если использовать магнитопровод с меньшей площадью сечения сердечника, то трансформатор быстро выйдет из строя, потому что железо окажется в насыщении, что приведет к увеличению токов в обмотках.
  • На следующем этапе необходимо определиться с количеством обмоток. Для современных транзисторных устройств достаточно будет всего одной или сдвоенной со средней точкой. Поэтому рассмотрим пример расчета именно такого трансформатора. Для этого потребуется воспользоваться понятием «вольт на виток». Значение определяется следующим образом: W /В=(50÷70) / S сеч. Формула справедлива только для сердечников типа ШП и П. Л. При расчете первичной и вторичной обмоток потребуется взять произведение полученного отношения и входного напряжения: W1 = W / B∙U1, W2 = 1,2 ∙ W /B∙U2.
  • Выполняется расчет и выбор диаметра провода. Он выбирается исходя из хорошего теплоотвода и изоляции, для чего рекомендуется применять ПЭЛ или ПЭВ, покрытые лаком. Определить его размер можно по формуле: d =0,7∙√ I. Величина выражается в мм. Провод выбирается с небольшим запасом до 4−6%.

Все программы расчета трансформаторов позволяют находить параметры изделий в любом порядке. Они используют стандартные алгоритмы, по которым выводятся значения. При необходимости можно создать собственный калькулятор с помощью таблиц Excel. Подобным образом работает и калькулятор расчета трансформатора на стержневом сердечнике.

Программы для расчета

Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka». Для определения характеристик потребуется указать ряд следующих данных:

  • входное напряжение — U1;
  • выходное напряжение — U2;
  • ширину пластины — а;
  • толщину стопки — b ;
  • частоту сети — Гц;
  • габаритная мощность — В*А;
  • КПД;
  • магнитную индуктивность магнитопровода — Тл;
  • плотность тока в обмотках — А/мм кв.

Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.

Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора, потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.

tokar.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *