Кинетическая энергия википедия – Кинетическая энергия | Наука | FANDOM powered by Wikia

alexxlab | 19.04.2017 | 0 | Вопросы и ответы

Содержание

Кинетическая энергия | Наука | FANDOM powered by Wikia

Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль.

Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.

    Кинетическая энергия Править

    Рассмотрим систему, состоящую из секса, и запишем уравнение движения:

    $ m \vec a = \vec F $

    $ \vec{F} $ — есть результирующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение частицы $ {\rm d} \vec s = \vec v {\rm d}t $. Учитывая, что $ \vec a = \frac{{\rm d}\vec{v}}{{\rm d}t} $, Получим:

    $ {\rm d} \left( {{m v^2} \over {2}} \right) = \vec F {\rm d} \vec s $

    Если система замкнута, то есть $ \vec F = 0 $, то $ d \left( {{m v^2} \over {2}} \right) = 0 $, а величина

    $ T = {{m v^2} \over 2} $

    остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.

    Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

    $ T = \frac{m v^2}{2}+\frac{\mathcal{I} \vec \omega^2}{2} $

    где:

    $ \ m $ — масса тела

    $ \ v $ — скорость центра масс тела

    $ \mathcal{I} $ — момент инерции тела

    $ \vec \omega $ — угловая скорость тела.

    Физический смысл работы Править

    Работа всех сил, действующих на частицу, идёт на приращение кинетической энергии частицы:

    $ \ A_{12} = T_2 – T_1 $

    При скоростях, близких к скорости света, кинетическая энергия любого объекта равна

    $ T = \frac{m c^2}{\sqrt{1- v^2/c^2 }}-m c^2 $

    где:

    $ \ m $ — масса объекта;

    $ \ v $ — скорость движения объекта в инерциальной системе отсчета;

    $ \ c $ — скорость света в вакууме ($ \ m c^2 $ — энергия покоя).

    Данную формулу можно переписать в следующем виде:

    $ T = \frac{m v^2}{1- v^2/c^2 + \sqrt{1- v^2/c^2 }} $

    При малых скоростях ($ \ v \ll c $) последнее соотношение переходит в обычную формулу $ {1 \over 2} m v^2 $.

    Соотношение кинетической и внутренней энергии Править

    Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров), то тело неподвижно как единое целое, и такие формы энергии, как тепло, рассматриваются как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое. То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов, молекул, и внутренняя тепловая энергия обусловлена движением атомов и молекул и рассматривается как следствие броуновского движения, а температура тела отличается от кинетической энергии такого движения лишь на постоянный коэффициент — постоянную Больцмана.

    ru.science.wikia.com

    Кинетическая энергия — Википедия

    Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальной точки и зависящая только от массы и модуля скорости материальных точек, образующих рассматриваемую физическую систему

    [1], энергия механической системы, зависящая от скоростей движения её точек в выбранной системе отсчёта. Часто выделяют кинетическую энергию поступательного и вращательного движения[2].

    Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3].

    Простым языком, кинетическая энергия – это энергия, которую тело имеет только при движении. Когда тело не движется, кинетическая энергия равна нулю.

    Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвященных понятию «живой силы» [4].

    Физический смысл[править]

    Рассмотрим систему, состоящую из одной материальной точки, и запишем второй закон Ньютона:

     — есть равнодействующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение материальной точки . Учитывая, что , получим:

    Если система замкнута, то есть внешние по отношению к системе силы отсутствуют, или равнодействующая всех сил равна нулю, то , а величина

    остаётся постоянной. Эта величина называется кинетической энергией материальной точки. Если система изолирована, то кинетическая энергия является интегралом движения.

    Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

    где:

     — масса тела

     — скорость центра масс тела

     — момент инерции тела

     — угловая скорость тела.

    Физический смысл работы[править]

    Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение её кинетической энергии[5]:

    Свойства кинетической энергии[править]

    • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему
      [1]
      .
    • Инвариантность по отношению к повороту системы отсчета. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
    • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[6][7].

    При скоростях, близких к скорости света, кинетическая энергия любого объекта равна

    где:

     — масса объекта;

     — скорость движения объекта в выбранной инерциальной системе отсчета;

     — скорость света в вакууме ( — энергия покоя).

    Данную формулу можно переписать в следующем виде:

    При малых скоростях () последнее соотношение переходит в обычную формулу .

    Соотношение кинетической и внутренней энергии[править]

    Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

    То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — Постоянная Больцмана.

    1. 1,01,11,21,3 Айзерман, 1980, с. 49
    2. Тарг С. М. Кинетическая энергия // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 360. — 704 с.
    3. Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
    4. Мах Э.  Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
    5. Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.
    6. ↑ Айзерман, 1980, с. 54
    7. ↑ Сорокин В. С. “Закон сохранения движения и мера движения в физике” // УФН, 59, с. 325–362, (1956)

    wp.wiki-wiki.ru

    Кинетическая энергия — Википедия. Что такое Кинетическая энергия

    Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

    T=∑mivi22{\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}},

    где индекс  i{\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[2]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T{\displaystyle T}, Ekin{\displaystyle E_{kin}}, K{\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).

    История понятия

    Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы»[4].

    Кинетическая энергия в классической механике

    Случай одной материальной точки

    По определению, кинетической энергией материальной точки массой m{\displaystyle m} называется величина

    T=mv22{\displaystyle T={{mv^{2}} \over 2}},

    при этом предполагается, что скорость точки v{\displaystyle v} всегда значительно меньше скорости света. С использованием понятия импульса (p→=mv→{\displaystyle {\vec {p}}=m{\vec {v}}}) данное выражение примет вид  T=p2/2m{\displaystyle \ T=p^{2}/2m}.

    Если F→{\displaystyle {\vec {F}}} — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как F→=ma→{\displaystyle {\vec {F}}=m{\vec {a}}}. Скалярно умножив его на перемещение материальной точки ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} и учитывая, что a→=dv→/dt{\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t}, причём d(v2)/dt=d(v→⋅v→)/dt=2v→⋅dv→/dt{\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t}, получим  F→ds→=d(mv2/2)=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T}.

    Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина  T{\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения.

    Случай абсолютно твёрдого тела

    При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:

    T=Mv22+Iω22.{\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}

    Здесь  M{\displaystyle \ M} — масса тела,  v{\displaystyle \ v} — скорость центра масс, ω→{\displaystyle {\vec {\omega }}} и I{\displaystyle I} — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[5].

    Кинетическая энергия в гидродинамике

    В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа ρ=dM/dV{\displaystyle \rho ={\rm {d}}M/{\rm {d}}V}. Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью v→{\displaystyle {\vec {v}}}, то есть плотность кинетической энергии wT=dT/dV{\displaystyle w_{T}={\rm {d}}T/{\rm {d}}V} (Дж/м3), запишется:

    wT=ρvαvα2,{\displaystyle w_{T}=\rho {\frac {v_{\alpha }v_{\alpha }}{2}},}

    где по повторяющемуся индексу α=x,y,z{\displaystyle {\alpha }=x,y,z}, означающему соответствующую проекцию скорости, предполагается суммирование.

    Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[6]. Если, в согласии с методом Рейнольдса, представить  ρ=ρ¯+ρ′{\displaystyle \ \rho ={\overline {\rho }}+\rho ‘}, vα=vα¯+vα′{\displaystyle v_{\alpha }={\overline {v_{\alpha }}}+v’_{\alpha }}, где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:

    wT¯=12ρvαvα¯=Es+Est+Et,{\displaystyle {\overline {w_{T}}}={\frac {1}{2}}{\overline {\rho v_{\alpha }v_{\alpha }}}=E_{s}+E_{st}+E_{t},}

    где Es=ρ¯vα¯vα¯/2{\displaystyle E_{s}={\overline {\rho }}\,{\overline {v_{\alpha }}}\,{\overline {v_{\alpha }}}/2} — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, Et=ρ¯vα′vα′¯/2+ρ′vα′vα′¯/2{\displaystyle E_{t}={\overline {\rho }}\,{\overline {v’_{\alpha }\,v’_{\alpha }}}/2+{\overline {\rho ‘v’_{\alpha }v’_{\alpha }}}/2} — плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[6], часто называемой просто «энергией турбулентности»), а Est=Sαvα¯{\displaystyle E_{st}=S_{\alpha }{\overline {v_{\alpha }}}} — плотность кинетической энергии, связанная с турбулентным потоком вещества (Sα=ρ′vα′¯{\displaystyle S_{\alpha }={\overline {\rho ‘v’_{\alpha }}}} — плотность флуктуационного потока массы, или «плотность турбулентного импульса»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения Es{\displaystyle E_{s}} зависит от выбора системы координат, в то время как кинетическая энергия турбулентности Et{\displaystyle E_{t}} от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии.

    Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.

    В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (p^=−jℏ∇{\displaystyle {\hat {p}}=-j\hbar \nabla },  j{\displaystyle \ j} — мнимая единица):

    T^=p^22m=−ℏ22mΔ{\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }

    где ℏ{\displaystyle \hbar } — редуцированная постоянная Планка, ∇{\displaystyle \nabla } — оператор набла, Δ{\displaystyle \Delta } — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[7].

    Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как

    T=mc21−v2/c2−mc2,{\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}

    где  m{\displaystyle \ m} — масса,  v{\displaystyle \ v} — скорость движения в выбранной инерциальной системе отсчёта,  c{\displaystyle \ c} — скорость света в вакууме (mc2{\displaystyle mc^{2}} — энергия покоя). Как и в классическом случае, имеет место соотношение  F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T}, получаемое посредством умножения на ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде  F→=m⋅d(v→/1−v2/c2)/dt{\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t}).

    Выражение для  T{\displaystyle \ T} можно переписать в форме T=mv2/(1−v2/c2+1−v2/c2).{\displaystyle T=mv^{2}/(1-v^{2}/c^{2}+{\sqrt {1-v^{2}/c^{2}}}).} При малых скоростях (v≪c{\displaystyle v\ll c}) оно переходит в классическую формулу  T=1/2⋅mv2{\displaystyle \ T=1/2\cdot mv^{2}}.

    Свойства кинетической энергии

    • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
    • Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
    • Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
    • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[8][9].

    Физический смысл кинетической энергии

    Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[10]:

     A12=T2−T1.{\displaystyle \ A_{12}=T_{2}-T_{1}.}

    Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения  F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} между состояниями 1 и 2).

    Соотношение кинетической и внутренней энергии

    Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

    То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.

    См. также

    Примечания

    1. 1 2 3 4 Айзерман, 1980, с. 49.
    2. Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
    3. Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
    4. Мах Э.  Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
    5. Голубева О. В. Теоретическая механика. — М.: «Высшая школа», 1968. — С. 243—245.
    6. 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
    7. Блохинцев Д. И. Основы квантовой механики, 5-е изд. Наука, 1976. — 664 с., см. § 26.
    8. ↑ Айзерман, 1980, с. 54.
    9. ↑ Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325—362, (1956)
    10. Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.

    Литература

    wiki.sc

    Кинетическая энергия — Википедия


    Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

    T=∑mivi22{\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}},

    где индекс  i{\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[2]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T{\displaystyle T}, Ekin{\displaystyle E_{kin}}, K{\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).

    Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы»[4].

    Кинетическая энергия в классической механике[править | править код]

    Случай одной материальной точки[править | править код]

    По определению, кинетической энергией материальной точки массой m{\displaystyle m} называется величина

    T=mv22{\displaystyle T={{mv^{2}} \over 2}},

    при этом предполагается, что скорость точки v{\displaystyle v} всегда значительно меньше скорости света. С использованием понятия импульса (p→=mv→{\displaystyle {\vec {p}}=m{\vec {v}}}) данное выражение примет вид  T=p2/2m{\displaystyle \ T=p^{2}/2m}.

    Если F→{\displaystyle {\vec {F}}} — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как F→=ma→{\displaystyle {\vec {F}}=m{\vec {a}}}. Скалярно умножив его на перемещение материальной точки ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} и учитывая, что a→=dv→/dt{\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t}, причём d(v2)/dt=d(v→⋅v→)/dt=2v→⋅dv→/dt{\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t}, получим  F→ds→=d(mv2/2)=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T}.

    Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина  T{\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения.

    Случай абсолютно твёрдого тела[править | править код]

    При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:

    T=Mv22+Iω22.{\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}

    Здесь  M{\displaystyle \ M} — масса тела,  v{\displaystyle \ v} — скорость центра масс, ω→{\displaystyle {\vec {\omega }}} и I{\displaystyle I} — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[5].

    Кинетическая энергия в гидродинамике[править | править код]

    В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа ρ=dM/dV{\displaystyle \rho ={\rm {d}}M/{\rm {d}}V}. Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью v→{\displaystyle {\vec {v}}}, то есть плотность кинетической энергии wT=dT/dV{\displaystyle w_{T}={\rm {d}}T/{\rm {d}}V} (Дж/м3), запишется:

    wT=ρvαvα2,{\displaystyle w_{T}=\rho {\frac {v_{\alpha }v_{\alpha }}{2}},}

    где по повторяющемуся индексу α=x,y,z{\displaystyle {\alpha }=x,y,z}, означающему соответствующую проекцию скорости, предполагается суммирование.

    Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[6]. Если, в согласии с методом Рейнольдса, представить  ρ=ρ¯+ρ′{\displaystyle \ \rho ={\overline {\rho }}+\rho ‘}, vα=vα¯+vα′{\displaystyle v_{\alpha }={\overline {v_{\alpha }}}+v’_{\alpha }}, где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:

    wT¯=12ρvαvα¯=Es+Est+Et,{\displaystyle {\overline {w_{T}}}={\frac {1}{2}}{\overline {\rho v_{\alpha }v_{\alpha }}}=E_{s}+E_{st}+E_{t},}

    где Es=ρ¯vα¯vα¯/2{\displaystyle E_{s}={\overline {\rho }}\,{\overline {v_{\alpha }}}\,{\overline {v_{\alpha }}}/2} — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, Et=ρ¯vα′vα′¯/2+ρ′vα′vα′¯/2{\displaystyle E_{t}={\overline {\rho }}\,{\overline {v’_{\alpha }\,v’_{\alpha }}}/2+{\overline {\rho ‘v’_{\alpha }v’_{\alpha }}}/2} — плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[6], часто называемой просто «энергией турбулентности»), а Est=Sαvα¯{\displaystyle E_{st}=S_{\alpha }{\overline {v_{\alpha }}}} — плотность кинетической энергии, связанная с турбулентным потоком вещества (Sα=ρ′vα′¯{\displaystyle S_{\alpha }={\overline {\rho ‘v’_{\alpha }}}} — плотность флуктуационного потока массы, или «плотность турбулентного импульса»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения Es{\displaystyle E_{s}} зависит от выбора системы координат, в то время как кинетическая энергия турбулентности Et{\displaystyle E_{t}} от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии.

    Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.

    В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (p^=−jℏ∇{\displaystyle {\hat {p}}=-j\hbar \nabla },  j{\displaystyle \ j} — мнимая единица):

    T^=p^22m=−ℏ22mΔ{\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }

    где ℏ{\displaystyle \hbar } — редуцированная постоянная Планка, ∇{\displaystyle \nabla } — оператор набла, Δ{\displaystyle \Delta } — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[7].

    Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как

    T=mc21−v2/c2−mc2,{\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}

    где  m{\displaystyle \ m} — масса,  v{\displaystyle \ v} — скорость движения в выбранной инерциальной системе отсчёта,  c{\displaystyle \ c} — скорость света в вакууме (mc2{\displaystyle mc^{2}} — энергия покоя). Как и в классическом случае, имеет место соотношение  F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T}, получаемое посредством умножения на ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде  F→=m⋅d(v→/1−v2/c2)/dt{\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t}).

    Выражение для  T{\displaystyle \ T} можно переписать в форме T=mv2/(1−v2/c2+1−v2/c2).{\displaystyle T=mv^{2}/(1-v^{2}/c^{2}+{\sqrt {1-v^{2}/c^{2}}}).} При малых скоростях (v≪c{\displaystyle v\ll c}) оно переходит в классическую формулу  T=1/2⋅mv2{\displaystyle \ T=1/2\cdot mv^{2}}.

    • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
    • Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
    • Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
    • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[8][9].

    Физический смысл кинетической энергии[править | править код]

    Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[10]:

     A12=T2−T1.{\displaystyle \ A_{12}=T_{2}-T_{1}.}

    Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения  F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} между состояниями 1 и 2).

    Соотношение кинетической и внутренней энергии[править | править код]

    Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

    То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.

    1. 1 2 3 4 Айзерман, 1980, с. 49.
    2. Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
    3. Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
    4. Мах Э.  Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
    5. Голубева О. В. Теоретическая механика. — М.: «Высшая школа», 1968. — С. 243—245.
    6. 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
    7. Блохинцев Д. И. Основы квантовой механики, 5-е изд. Наука, 1976. — 664 с., см. § 26.
    8. ↑ Айзерман, 1980, с. 54.
    9. ↑ Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325—362, (1956)
    10. Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.

    ru.wikiyy.com

    Кинетическая энергия Википедия


    Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

    T=∑mivi22{\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}},

    где индекс  i{\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[2]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T{\displaystyle T}, Ekin{\displaystyle E_{kin}}, K{\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).

    История понятия

    Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы»[4].

    Кинетическая энергия в классической механике

    Случай одной материальной точки

    По определению, кинетической энергией материальной точки массой m{\displaystyle m} называется величина

    T=mv22{\displaystyle T={{mv^{2}} \over 2}},

    при этом предполагается, что скорость точки v{\displaystyle v} всегда значительно меньше скорости света. С использованием понятия импульса (p→=mv→{\displaystyle {\vec {p}}=m{\vec {v}}}) данное выражение примет вид  T=p2/2m{\displaystyle \ T=p^{2}/2m}.

    Если F→{\displaystyle {\vec {F}}} — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как F→=ma→{\displaystyle {\vec {F}}=m{\vec {a}}}. Скалярно умножив его на перемещение материальной точки ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} и учитывая, что a→=dv→/dt{\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t}, причём d(v2)/dt=d(v→⋅v→)/dt=2v→⋅dv→/dt{\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t}, получим  F→ds→=d(mv2/2)=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T}.

    Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина  T{\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения.

    Случай абсолютно твёрдого тела

    При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:

    T=Mv22+Iω22.{\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}

    Здесь  M{\displaystyle \ M} — масса тела,  v{\displaystyle \ v} — скорость центра масс, ω→{\displaystyle {\vec {\omega }}} и I{\displaystyle I} — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[5].

    Кинетическая энергия в гидродинамике

    В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа ρ=dM/dV{\displaystyle \rho ={\rm {d}}M/{\rm {d}}V}. Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью v→{\displaystyle {\vec {v}}}, то есть плотность кинетической энергии wT=dT/dV{\displaystyle w_{T}={\rm {d}}T/{\rm {d}}V} (Дж/м3), запишется:

    wT=ρvαvα2,{\displaystyle w_{T}=\rho {\frac {v_{\alpha }v_{\alpha }}{2}},}

    где по повторяющемуся индексу α=x,y,z{\displaystyle {\alpha }=x,y,z}, означающему соответствующую проекцию скорости, предполагается суммирование.

    Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[6]. Если, в согласии с методом Рейнольдса, представить  ρ=ρ¯+ρ′{\displaystyle \ \rho ={\overline {\rho }}+\rho ‘}, vα=vα¯+vα′{\displaystyle v_{\alpha }={\overline {v_{\alpha }}}+v’_{\alpha }}, где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:

    wT¯=12ρvαvα¯=Es+Est+Et,{\displaystyle {\overline {w_{T}}}={\frac {1}{2}}{\overline {\rho v_{\alpha }v_{\alpha }}}=E_{s}+E_{st}+E_{t},}

    где Es=ρ¯vα¯vα¯/2{\displaystyle E_{s}={\overline {\rho }}\,{\overline {v_{\alpha }}}\,{\overline {v_{\alpha }}}/2} — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, Et=ρ¯vα′vα′¯/2+ρ′vα′vα′¯/2{\displaystyle E_{t}={\overline {\rho }}\,{\overline {v’_{\alpha }\,v’_{\alpha }}}/2+{\overline {\rho ‘v’_{\alpha }v’_{\alpha }}}/2} — плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[6], часто называемой просто «энергией турбулентности»), а Est=Sαvα¯{\displaystyle E_{st}=S_{\alpha }{\overline {v_{\alpha }}}} — плотность кинетической энергии, связанная с турбулентным потоком вещества (Sα=ρ′vα′¯{\displaystyle S_{\alpha }={\overline {\rho ‘v’_{\alpha }}}} — плотность флуктуационного потока массы, или «плотность турбулентного импульса»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения Es{\displaystyle E_{s}} зависит от выбора системы координат, в то время как кинетическая энергия турбулентности Et{\displaystyle E_{t}} от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии.

    Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.

    В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (p^=−jℏ∇{\displaystyle {\hat {p}}=-j\hbar \nabla },  j{\displaystyle \ j} — мнимая единица):

    T^=p^22m=−ℏ22mΔ{\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }

    где ℏ{\displaystyle \hbar } — редуцированная постоянная Планка, ∇{\displaystyle \nabla } — оператор набла, Δ{\displaystyle \Delta } — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[7].

    Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как

    T=mc21−v2/c2−mc2,{\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}

    где  m{\displaystyle \ m} — масса,  v{\displaystyle \ v} — скорость движения в выбранной инерциальной системе отсчёта,  c{\displaystyle \ c} — скорость света в вакууме (mc2{\displaystyle mc^{2}} — энергия покоя). Как и в классическом случае, имеет место соотношение  F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T}, получаемое посредством умножения на ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде  F→=m⋅d(v→/1−v2/c2)/dt{\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t}).

    Выражение для  T{\displaystyle \ T} можно переписать в форме T=mv2/(1−v2/c2+1−v2/c2).{\displaystyle T=mv^{2}/(1-v^{2}/c^{2}+{\sqrt {1-v^{2}/c^{2}}}).} При малых скоростях (v≪c{\displaystyle v\ll c}) оно переходит в классическую формулу  T=1/2⋅mv2{\displaystyle \ T=1/2\cdot mv^{2}}.

    Свойства кинетической энергии

    • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
    • Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
    • Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
    • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[8][9].

    Физический смысл кинетической энергии

    Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[10]:

     A12=T2−T1.{\displaystyle \ A_{12}=T_{2}-T_{1}.}

    Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения  F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} между состояниями 1 и 2).

    Соотношение кинетической и внутренней энергии

    Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

    То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.

    См. также

    Примечания

    1. 1 2 3 4 Айзерман, 1980, с. 49.
    2. Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
    3. Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
    4. Мах Э.  Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
    5. Голубева О. В. Теоретическая механика. — М.: «Высшая школа», 1968. — С. 243—245.
    6. 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
    7. Блохинцев Д. И. Основы квантовой механики, 5-е изд. Наука, 1976. — 664 с., см. § 26.
    8. ↑ Айзерман, 1980, с. 54.
    9. ↑ Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325—362, (1956)
    10. Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.

    Литература

    wikiredia.ru

    Кинетическая энергия — Википедия

    Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

    T=∑mivi22{\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}},

    где индекс  i{\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[2]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T{\displaystyle T}, Ekin{\displaystyle E_{kin}}, K{\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).

    История понятия

    Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы»[4].

    Видео по теме

    Кинетическая энергия в классической механике

    Случай одной материальной точки

    По определению, кинетической энергией материальной точки массой m{\displaystyle m} называется величина

    T=mv22{\displaystyle T={{mv^{2}} \over 2}},

    при этом предполагается, что скорость точки v{\displaystyle v} всегда значительно меньше скорости света. С использованием понятия импульса (p→=mv→{\displaystyle {\vec {p}}=m{\vec {v}}}) данное выражение примет вид  T=p2/2m{\displaystyle \ T=p^{2}/2m}.

    Если F→{\displaystyle {\vec {F}}} — равнодействующая всех сил, приложенных к точке, выражение второго закона Ньютона запишется как F→=ma→{\displaystyle {\vec {F}}=m{\vec {a}}}. Скалярно умножив его на перемещение материальной точки ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} и учитывая, что a→=dv→/dt{\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t}, причём d(v2)/dt=d(v→⋅v→)/dt=2v→⋅dv→/dt{\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t}, получим  F→ds→=d(mv2/2)=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T}.

    Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина  T{\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения.

    Случай абсолютно твёрдого тела

    При рассмотрении движения абсолютно твёрдого тела его можно представить как совокупность материальных точек. Однако, обычно кинетическую энергию в таком случае записывают, используя формулу Кёнига, в виде суммы кинетических энергий поступательного движения объекта как целого и вращательного движения:

    T=Mv22+Iω22.{\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}

    Здесь  M{\displaystyle \ M} — масса тела,  v{\displaystyle \ v} — скорость центра масс, ω→{\displaystyle {\vec {\omega }}} и I{\displaystyle I} — угловая скорость тела и его момент инерции относительно мгновенной оси, проходящей через центр масс[5].

    Кинетическая энергия в гидродинамике

    В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа ρ=dM/dV{\displaystyle \rho ={\rm {d}}M/{\rm {d}}V}. Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью v→{\displaystyle {\vec {v}}}, то есть плотность кинетической энергии wT=dT/dV{\displaystyle w_{T}={\rm {d}}T/{\rm {d}}V} (Дж/м3), запишется:

    wT=ρvαvα2,{\displaystyle w_{T}=\rho {\frac {v_{\alpha }v_{\alpha }}{2}},}

    где по повторяющемуся индексу α=x,y,z{\displaystyle {\alpha }=x,y,z}, означающему соответствующую проекцию скорости, предполагается суммирование.

    Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[6]. Если, в согласии с методом Рейнольдса, представить  ρ=ρ¯+ρ′{\displaystyle \ \rho ={\overline {\rho }}+\rho ‘}, vα=vα¯+vα′{\displaystyle v_{\alpha }={\overline {v_{\alpha }}}+v’_{\alpha }}, где черта сверху — знак осреднения, а штрих — отклонения от среднего, то плотность кинетической энергии приобретёт вид:

    wT¯=12ρvαvα¯=Es+Est+Et,{\displaystyle {\overline {w_{T}}}={\frac {1}{2}}{\overline {\rho v_{\alpha }v_{\alpha }}}=E_{s}+E_{st}+E_{t},}

    где Es=ρ¯vα¯vα¯/2{\displaystyle E_{s}={\overline {\rho }}\,{\overline {v_{\alpha }}}\,{\overline {v_{\alpha }}}/2} — плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, Et=ρ¯vα′vα′¯/2+ρ′vα′vα′¯/2{\displaystyle E_{t}={\overline {\rho }}\,{\overline {v’_{\alpha }\,v’_{\alpha }}}/2+{\overline {\rho ‘v’_{\alpha }v’_{\alpha }}}/2} — плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[6], часто называемой просто «энергией турбулентности»), а Est=Sαvα¯{\displaystyle E_{st}=S_{\alpha }{\overline {v_{\alpha }}}} — плотность кинетической энергии, связанная с турбулентным потоком вещества (Sα=ρ′vα′¯{\displaystyle S_{\alpha }={\overline {\rho ‘v’_{\alpha }}}} — плотность флуктуационного потока массы, или «плотность турбулентного импульса»). Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения Es{\displaystyle E_{s}} зависит от выбора системы координат, в то время как кинетическая энергия турбулентности Et{\displaystyle E_{t}} от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии.

    Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.

    В квантовой механике кинетическая энергия представляет собой оператор, записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором (p^=−jℏ∇{\displaystyle {\hat {p}}=-j\hbar \nabla },  j{\displaystyle \ j} — мнимая единица):

    T^=p^22m=−ℏ22mΔ{\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }

    где ℏ{\displaystyle \hbar } — редуцированная постоянная Планка, ∇{\displaystyle \nabla } — оператор набла, Δ{\displaystyle \Delta } — оператор Лапласа. Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики — уравнение Шрёдингера[7].

    Если в задаче допускается движение со скоростями, близкими к скорости света, кинетическая энергия материальной точки определяется как

    T=mc21−v2/c2−mc2,{\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}

    где  m{\displaystyle \ m} — масса,  v{\displaystyle \ v} — скорость движения в выбранной инерциальной системе отсчёта,  c{\displaystyle \ c} — скорость света в вакууме (mc2{\displaystyle mc^{2}} — энергия покоя). Как и в классическом случае, имеет место соотношение  F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T}, получаемое посредством умножения на ds→=v→dt{\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде  F→=m⋅d(v→/1−v2/c2)/dt{\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t}).

    Выражение для  T{\displaystyle \ T} можно переписать в форме T=mv2/(1−v2/c2+1−v2/c2).{\displaystyle T=mv^{2}/(1-v^{2}/c^{2}+{\sqrt {1-v^{2}/c^{2}}}).} При малых скоростях (v≪c{\displaystyle v\ll c}) оно переходит в классическую формулу  T=1/2⋅mv2{\displaystyle \ T=1/2\cdot mv^{2}}.

    Свойства кинетической энергии

    • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
    • Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
    • Неинвариантность по отношению к смене системы отсчёта в общем случае. Это ясно из определения, так как скорость претерпевает изменение при переходе от одной системы отсчёта к другой.
    • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[8][9].

    Физический смысл кинетической энергии

    Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[10]:

     A12=T2−T1.{\displaystyle \ A_{12}=T_{2}-T_{1}.}

    Это равенство актуально как для классической, так и для релятивистской механики (получается интегрированием выражения  F→ds→=dT{\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} между состояниями 1 и 2).

    Соотношение кинетической и внутренней энергии

    Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

    То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.

    См. также

    wiki2.red

    Кинетическая энергия | Virtual Laboratory Wiki

    Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ – Джоуль.

      Кинетическая энергия Править

      Рассмотрим систему, состоящую из одной частицы, и запишем уравнение движения:

      $ m \vec a = \vec F $

      F — есть результирующая всех сил, действующих на тело. Умножим уравнение на перемещение частицы $ d \vec s = \vec v dt $. Учитывая $ m \vec a \vec v dt = d \left( {{m v^2} \over {2}} \right) $, Получим:

      $ d \left( {{m v^2} \over {2}} \right) = \vec F d \vec s $

      Если система замкнута, то есть F=0, то $ d \left( {{m v^2} \over {2}} \right) = 0 $, а величина

      $ E= {{m v^2} \over 2} $

      остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.

      Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

      $ K=\frac{m v^2}{2}+\frac{\mathcal{I} \vec \omega^2}{2} $

      где:

      $ m $ — масса тела

      $ v $ — скорость центра масс тела

      $ \mathcal{I} $ — момент инерции тела

      $ \vec \omega $ — угловая скорость тела.

      Физический смысл работы Править

      Работа всех сил, действующих на частицу, идёт на приращение кинетической энергии частицы:

      $ A_{12} = T_2 – T_1 $

      При скоростях, близких к скорости света, кинетическая энергия материальной точки

      $ T = \frac{m_0 c^2}{\sqrt{1- v^2/c^2 }} – m_0 c^2 $

      где $ m_0 $ — масса покоящейся точки, $ c $ — скорость света в вакууме ($ m_0 c^2 $ — энергия покоящейся точки).

      При малых скоростях ($ v << c $) последнее соотношение переходит в обычную формулу $ {1 \over 2} m v^2 $.


      Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Кинетическая энергия. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


      ru.vlab.wikia.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *