Лазерная резка металла станок – . – LaserCut

alexxlab | 27.09.2020 | 0 | Вопросы и ответы

разновидности, оборудование для процесса, преимущества и недостатки

Среди большого количества технологий по обработке железа лазерная резка выделяется экономичностью и производительностью. Эта технология позволяет не только сверхточно производить изделия со сложным геометрическим контуром, но и обеспечивает высокую скорость изготовления этих изделий.

Описание технологии

При применении лазерной резки вальцуемый металл подвергается влиянию эффектов отражения и поглощения излучения от лазера. Изменение габаритов и формы элементов при лазерной обработке достигается благодаря воздействию двух результатов излучения: плавления и испарения. Описание процесса заключается в следующем:

  • Лазерный луч оказывает воздействие на железо в определенной точке.
  • Сначала элементы оплавляются до оптимальной температуры, потом начинается процесс плавки металла.
  • В фазе плавления возникают углубления.
  • Влияние энергии излучения лазера приводит ко 2 фазе процесса — кипит и испаряется металлическое вещество.

Однако, последний механизм требует высоких энергозатрат и осуществим лишь для достаточно тонкого металла. Поэтому на практике резку выполняют плавлением. При этом в целях существенного сокращения затрат энергии, повышения толщины обрабатываемого металла и скорости разрезания применяется вспомогательный газ, вдуваемый в зону реза для удаления продуктов разрушения металла. Обычно в качестве вспомогательного газа используется кислород, воздух, инертный газ или азот. Такая резка называется газолазерной.

Разновидности лазерных приборов

Лазер состоит из элементов:

  • Особенного ключа энергии (системы накачки).
  • Рабочего объекта, обладающего возможностью вынужденного излучения.
  • Оптического резонатора (набор специализированных зеркал).

Принадлежность обработки к той или иной вариации определяется по методу применяемого лазера и его мощи. Сейчас имеется следующее классифицирование лазеров:

  1. Твердотельные (мощь не более 7 квт).
  2. Газовые (мощь до 22 квт).
  3. Газодинамические (мощь от 110 квт).

В производственных целях большей известностью пользуется обработка железа с твердотельным прибором. Светоизлучение может подаваться в импульсном или сплошном режиме. В качестве трудового тела применяется рубин, стекло с добавкой неодима или CaF2 (флюорит кальция). Главным достоинством твердотельных лазеров считается способность создания мощного импульса энергии за несколько секунд.

Газовые лазеры используются для обработки железа в технологических и научных целях. Активным катализатором выступает смесь газообразного азота, углекислого газа и гелия, элементы которых активизируются электрическим разрядом и дают лазерному лучу монохромность и направленность.

Огромной мощностью отличаются газодинамические устройства. Рабочее тело — углекислый газ. Сначала газ прогревается до самой высокой температуры, потом он пропускается через небольшой канал, где случается расширение и последующее охлаждение углекислого газа. В результате этой процедуры выделяется энергия, применяемая для лазерной обработки железа.

Газодинамические устройства можно применять для обработки железа с любой поверхностью. Благодаря небольшому расходу лучевой энергии, их можно разместить на расстояние от обрабатываемой части и при этом сберечь качество резки железа.

Оборудование

Лазерные устройства для резки железа состоят из элементов:

  • Специализированного излучателя (твердотельный или газовый прибор). Должен обладать нужными энергетическими и оптическими показателями.
  • Система формирования лучей и газа. Отвечает за подачу луча от цели излучения к детали, которая обрабатывается, и изменение показателей поступающего к точке рабочего газа.
  • Устройство передвижения (координации) как самого железа, так и воздействующего на него лазерного луча. А также включает в себя электроисполнительный механизм, привод и мотор.
  • АСУ (автоматизированная система управления). Регулирует лазерный луч и управляет координатным механизмом и системой транспортирования и формирования луча и газа. Снабжена разнообразными датчиками и подсистемами.

Современный прибор резки железа способен исполнять любые трудные задачи, даже художественную резку. Их изготовлением занимаются как российские фирмы («Технолазер»), так и иностранные предприятия (немецкая фирма «Trumpf»).

Лазерная резка тонкого железа

Промышленным изготовителям удобнее применять листы металла для нарезки, чем необработанные части большой толщины. При этом можно экономить электроэнергию и применять методы резки листового железа с большей мощностью.

Методы нарезки железа, лист которого подготовлен к обработке, — это кислородная нарезка (выжигание), резка группой газов (аргон, азот) и сжатым воздухом. Среди достоинств лазерной нарезки листового железа перед прочими видами обработки возможно выделить:

  • Большую точность отдачи и нарезки лазерного луча.
  • Возникает меньше пыли на плоскости детали.
  • Маленькая вероятность нанесения повреждений листу железа.
  • Понижение энергетических затрат.
  • Формирование объемных простых конструкций с высокий скоростью и наименьшей площадью отделываемого материала.

Благодаря своим плюсам и применению точного передового оборудования, резка железа используется для создания:

  • Частей машиностроительной техники.
  • Декоративных подставок, полок, стеллажей и оснащения для торговой промышленности.
  • Составляющих котлов, емкостей, дымоходов и печей.
  • Звеньев дверей и ворот, кованных ограждений.
  • Личного дизайна шкафов и корпусов.
  • Своеобразных вывесок, букв и трафаретов.

Использование резки имеет массу преимуществ перед иными видами отделки металла. Потому все больше предприятий употребляют в своем производстве именно лазерную обработку железа.

Инновационные лазерные комплексы

Всемирная станочная индустрия идет в ногу со временем и дает своим потребителям всевозможное электрооборудование для резки железа. Многокоординатные аппараты призваны сменять громкие и низко плодотворные механические резаки. Энергия лазера зависит от специфичности производства и финансового обоснования избранного агрегата. Новейшее поколение прецессионных разделывающих станков с ЧПУ разрешают проводить отделку материалов с верностью до 0,005 мм. Метраж обработки отдельных моделей лазерных установок достигает многих квадратных метров.

Огромным достоинством считается минимизирование человеческого фактора, содержащаяся в высокой автоматизации промышленного процесса. Геометрия компонентов задается в макропрограммный блок, исполняющий управление лазером и трудовым столом с болванкой. Системы настройки фокуса машинально выбирают приемлемое расстояние для действенного резания.

Специфические теплообменники регулируют температуру лазерного агрегата, выдавая оператору контрольные сведения настоящего состояния инструмента. Лазерный механизм оснащается клапанными приспособлениями для подключения газобаллонного снабжения, чтобы снабдить подачу запасных газов в рабочую часть. Система дымоулавливания призвана улучшить расходы на вытяжную вытяжку, включая её прямо в момент обработки. Зона обработки полностью экранируется предохранительным кожухом для защищенности обслуживающего персонала.

Резка листового железа на современном оборудовании преобразуется в легкий процесс задания числовых характеристик и получения на выходе готового компонента. Продуктивность оборудования впрямую зависит от характеристик станочного комплекса и квалификации оператора, формирующего программный код. Методика резки железа пропорционально вписывается в концепцию роботизированного изготовления, призванного полностью избавить человека от тяжелого труда.

Изготовители предлагают разные типы лазерных станков:

  1. Многоцелевые.
  2. Специальные.

Стоимость первых больше, но они дают возможность производить некоторое количество операций и выпускать детали более трудной формы. Немалое количество рыночных услуг дает возможность выбора для заинтересованных покупателей.

Профессионалы машиностроительных предприятий понимают возможности использования предоставленной технологии для изготовления точных деталей с превосходной шероховатостью. Область использования обширна: от обычного раскроя листового металлопроката до приобретения сложных кузовных деталей автомашин.

Видимые плюсы нарезки железа сводятся к нескольким аспектам:

  • Высокое качество отделанной поверхности.
  • Бережливость материала.
  • Умение работы с непрочными материалами и мелкими заготовками.
  • Вероятность получения компонентов сложной конфигурации.

Среди минусов:

  • Высокая цена оснащения.
  • И расходных материалов.

Нарезка железа и цветных металлов пользуется огромным рыночным спросом. Лазерные технологии интенсивно применяются в декоративном творчестве при создании дизайнерских украшений и уникальных сувениров.

Решение об использовании обработки должно приниматься с учетом расчета окупаемости оснащения и величине рабочих расходов. В настоящее время подобные установки могут себе разрешить в основном большие предприятия с немаленьким производственным циклом. С раскручиванием технологии будут уменьшаться стоимость станков и величина употребляемой энергии, поэтому в будущем лазерные агрегаты вытеснят своих конкурентов.

Преимущества и недостатки технологии

Нарезка железных изделий имеет множество значимых преимуществ по сравнению с иными способами резки. Из многочисленных достоинств настоящей технологии стоит в обязательном порядке отметить следующие:

  1. Интервал толщины изделий, которые можно успешно подвергать гравировке, довольно широкий: сталь — от 0,2 до 22 мм, медь и латунь — от 0,3 до 16 мм, сплавы на базе алюминия — от 0,3 до 22 мм, нержавеющая сталь — до 55 мм.
  2. При применении лазерных аппаратов исключается надобность механического контакта с обрабатываемой составной частью. Это позволяет производить, таким образом, резки просто деформирующиеся и хрупкие детали, не волнуясь за то, что они будут испорчены.
  3. Получить с помощью нарезки продукт требуемой конфигурации просто для этого довольно загрузить в блок регулирования лазерного агрегата чертеж, сделанный в специальной программе. Все остальное с наименьшей степенью погрешности (достоверность до 0,2 мм) осуществит оборудование, оснащенное компьютерной системой управления.
  4. Агрегаты для выполнения нарезки могут с большой скоростью обрабатывать нетолстые листы из стали, а также фабрикаты из твердых сплавов.

Лазерная обработка способна полностью заменить дорогостоящие научно-технические операции литья и штамповки, что уместно в тех случаях, когда нужно изготовить маленькие партии продукции. Можно существенно снизить первоначальную стоимость продукции, что достигается за счет более высокой скорости и выработки процесса обработки, снижения объема остатков, отсутствия потребности в последующей механической обработке.

Наряду с высокой мощностью, приборы для лазерной обработки имеют необыкновенную универсальность, что дает возможность вычислять с их помощью задачи любого уровня сложности. В то же время для лазерной обработки характерны и определенные недостатки.

Из-за высокой силы и значительного энергопотребления оснащения для лазерной резки, первоначальная стоимость изделий, изготовленных с его использованием, выше, чем при их производстве способом штамповки. Однако это можно причислить только к тем ситуациям, когда в себестоимость штампованного элемента не включена цена производства технологической оснастки.

tokar.guru

Станки для лазерной резки металла, принцип работы и видео

Образно говоря, станки для лазерной резки уже сейчас воплощают в жизнь то, что совсем недавно казалось исключительно плодами научной фантастики. Однако уже сейчас лазерная обработка конструкционных материалов вполне реальна для техники и уже вовсю используется в ней. В том числе и в обработке металлов. По части материалов, к резанию которых эта аппаратура вполне предназначена, вполне можно говорить об универсальности таких станков.

Материалы, которые могут быть обработаны станками для лазерной резки

Помимо всех разновидностей металлов с помощью этого оборудования могут быть порезаны: древесина, пластмассы, керамика, стекло, камень, кожа, бумага (картон), и прочие материалы.

 

Физику процесса формирования лазерного луча и его воздействие на обрабатываемые материалы рассматривать здесь сколько-нибудь внимательно мы не видим смысла. Если у кого-то из пользователей этих станков есть такое желание, это можно сделать самостоятельно, благо, материала по этому поводу предостаточно. Мы считаем, что глубоко внедряться в физическое описание всех деталей процессов необязательно для того, чтобы успешно использовать станок на производстве. В том числе и на производстве кузнечном, если имеется возможность таковым обзавестись.

Функционал станков

Ограничимся лишь описанием функций, которые способно исполнить лазерное оборудование в обработке металлов и создании различных металлоконструкций. Итак, функциями станков, применяющих лазер, могут быть:

— режущие операции с применением лазера;

— лазерно-гравировальные мероприятия.

При осуществлении резания направленный луч прожигает или в высшей степени локально расплавляет обрабатываемый материал. Осуществляя своё воздействие на достаточную глубину материала, а точнее будет сказать, насквозь, образуется тончайший шов. А при необходимости в нанесении некоего рисунка или изображения на поверхность обрабатываемого объекта, воздействие оказывается на определённую наперёд заданную глубину.

 Видео работы станка с профильными и круглыми трубами


Теоретически всё в точной мере копирует обычные традиционные способы и технологии резания, однако у лазерной резки есть бесспорные преимущества по отношению к более старым и привычным в технике методологическим мероприятиям. Рассмотрим их более пристально.

В чём состоит прогрессивность станков для лазерной резки

Очень во многом. Любой аналог механического типа во время эксплуатационных мероприятий претерпевает очень серьёзное воздействие. Воздействие механико-динамического толка. При резании нагрузки на все звенья и механизмы станка (неважно, фрезеровочного, слесарного или любого другого, задействованного в металлообработке) испытывают комплекс негативных факторов: кручение, изгибные нагрузки, растяжение-сжатие и прочее. Все подающие механизмы от этого приходят в негодность, рано или поздно, у них появляются люфты или признаки износа или даже разрушения. Оттого частые замены запчастей, направляющих по которым движутся сборочные единицы станков, шарнирных элементов и прочих деталей.

Однако ничего этого, или почти ничего нет у станков лазерной резки. Так или иначе, но износ от трения соприкасающихся поверхностей в шарнирах и соединениях происходит. Однако вследствие минимальной нагрузки на них (ещё и без динамической составляющей!) этот износ ничтожен по отношению к тому, что можно видеть у механических режущих аналогов.

Второе заметное преимущество состоит в полном отсутствии такого явления, как стружка. Это объясняется тем, что разрезаемый материал в тех местах, где на него воздействует лазерный луч, не истирается, не вырезается и не превращается в стружку. Он испаряется, в буквальном смысле слова, дематериализуясь под влиянием лазерного луча на него. Испаряется, почти не оставляя следа. А даже при той же плазменной резке, где отходы металла при обработке минимальны, определённая доля пережжённого металла всё же присутствует. При любых раскладах, при применении лазерной резки, отходы материала ещё меньше. Для их удаления в зону резания подаётся газ, с помощью которого происходит удаление продуктов резания. И это мы не приравниваем количество отходов к механическим и термическим способам резки, такое сравнение просто неуместно.

При этом, несмотря на разложение и испарение материала под лазерным лучом, не происходит перегрева и термических остаточных изменений обрабатываемого металла. Его не ведёт, не коробит, не ухудшаются прочностные качества и так далее. А ввиду того, что толщина режущего луча лазера настолько мала, что о толщине в данном случае даже и говорить не совсем уместно, то и безвозвратный расход материала соответствующий.

Скорость

Отдельно нужно сказать о скорости резки или гравирования с применением станков для лазерной резки. Скорость удаления материала со шва очень велика. Выше чем у любого из аналогов. При этом, режуще-гравировальные мероприятия происходят исключительно в машинном режиме, так как, все станки этого типа снабжаются ЧПУ и при крупносерийном производстве оптимальность применения такого оборудования будет наибольшей.

И перенастройка станка с одной выполняемой функции на другую заключается в перепрограммировании модуля без вмешательства во внутреннее устройство и соприкосновения с механикой.

А при выполнении декоративно-гравировочных мероприятий качество полученного изображения будет близким к идеальному. Последующая обработка полученного с помощью лазера рисунка уже совершенно не потребуется. Или почти не требуется.

forgemika.com

Как выбрать станок лазерной резки металла (лазерный резак)?

Как выбрать лазерный станок для резки металла?

Лазерные металлорежущие станки (резаки по металлу) по праву занимают одно из ведущих мест среди инновационного оборудования, используемого в различных отраслях народного хозяйства: металлургии, машиностроении, мебельном производстве и других. Все потому, что с их помощью можно получить детали самой сложной конфигурации с высокой степенью точности без необходимости дальнейшей обработки по контуру. При этом с учетом минимальной толщины реза и рационального раскроя листа можно добиться безотходного производства.

К достоинствам такого процесса можно также отнести:

  • высокую производительность;
  • наличие автоматизированной системы управления;
  • снижение себестоимости продукции

Критерии выбора лазерных металлорежущих станков

Многие руководители рано или поздно задумываются об обеспечении своих предприятий и компаний такого рода высокотехнологичными агрегатными механизмами. Ведь иметь на производстве хотя бы один лазерный станок для резки металла — это отказаться от устаревшего и малоэффективного оборудования и при минимуме энергозатрат обеспечить необходимым объемом деталей и заготовок участок сборки. Но поскольку существует несколько видов такой техники, да еще по высокой стоимости, к выбору модели для каждого определенного случая следует подходить индивидуально. Попробуем разобраться, на что обратить внимание, выбирая лазерный металлорежущий станок для конкретного производства.

Особенности работы лазерного резака

Для начала разберемся с конструкцией лазерного станка и с особенностями его работы. Лазерный резчик, тот же резак по металлу, состоит из следующих узлов:

  • излучателя, который генерирует узконаправленный импульс или поток фотонов;
  • системы перемещения газа, предназначенного для охлаждения излучателя и выдувания расплавленного металла из рабочей зоны;
  • привода, используемого для перемещения излучателя над поверхностью резания;
  • координатного стола, на который укладывается лист металла либо обрабатываемая заготовка;
  • автоматизированной системы управления (АСУ) либо ЧПУ.
Технология лазерной резки заключается в испарении либо выдувании при помощи потока газовой смеси тонкого слоя металла, расплавленного под воздействием мощных излучателей (лазеров). Такой способ обработки гарантирует получение высокого качества среза как всех
видов листовых сталей, так и цветных металлов и сплавов.

Разновидности лазеров: сравнение газовых и волоконных

Определимся с разновидностями лазеров, поскольку принцип работы лазерных установок заключается в фокусировке луча, обеспечивающего высокую концентрацию энергии на поверхности материала. Диаметр этого луча составляет всего несколько десятков миллиметра, что обеспечивает малую толщину реза. Процесс расплавления и изменения структуры металла происходит в случае достижения мощности луча до определенных значений.

Существуют следующие типы лазеров:

  • газовые, в которых роль активной среды играет смесь углекислого газа, азота и гелия;
  • волоконные, использующие в качестве активной среды оптические волокна;
  • твердотельные, где место активной среды занимают кристаллы и особые виды стекла.
  • диодные.
Рассмотрим основные два, занимающие верхние строчки в списке, и проведем их сравнительный анализ. При этом обратим внимание на три важных момента, которые следует учитывать при выборе лазерного станка:
  1. Эффективность резки какого-либо материала зависит от длины волны излучения. Так, волоконные лазеры с коротковолновым излучением показывают высокие показатели качества в случае с резкой тонколистового металла толщиной до 3 мм. Газовые лазеры, у которых волна излучения длиннее, демонстрируют отличные результаты при резке листов металла большой толщины.
  2. Волоконные лазеры имеют более высокую стоимость установки в сравнении с газовыми аналогами.
  3. Оборудование, оснащенное волоконными лазерами, отличается небольшими габаритами и продолжительным сроком службы в 100 тыс. часов, обусловленным качеством оптоволокна и отсутствием перегрева.
  4. Пятно, излучаемое световым лучом волоконного лазера, отличается небольшими размерами при хорошей глубине резкости по сравнению с газовым лазером.
  5. При обработке металлов при помощи волоконных лазеров можно добиться получения более точных квалитетов

Рабочее поле: на что обратить внимание

При выборе лазерного металлорежущего станка также необходимо определиться и с размерами рабочего поля координатного стола. В случае с необходимостью выполнения раскроя материала, следует остановить выбор на модели с большим столом. Если же нужно воплотить идеи, связанные с декоративно-прикладным искусством, можно приобрести лазерный резак по металлу с габаритами поменьше.

Покупая лазерное металлорежущее оборудование, следует знать следующее: если мощность лазера можно увеличить, то стол поменять нельзя — он меняется вместе со станком.

Оборудование, используемое для управления лазерным резаком

Для управления лазерным резаком по металлу, как правило, используется компьютеризованная система управления АСУ либо ЧПУ. С ее помощью производится
контроль и управление параметрами лазера, передача команд на исполнительные модули координатного стола и системы перемещения и излучения газа.

Вывод

В последнее время металлообрабатывающая индустрия предлагает вместе с лазерным оборудованием множество видов металлообрабатывающих агрегатов, позволяющих проводить разделение даже самых твердых сплавов в считанные минуты и с минимальным участием человека в процессе.

Это:

  1. Гильотина, осуществляющая резку металлических листов на полосы при помощи специальных ножей по металлу.
  2. Плазменные станки, используемые для раскройки токопроводных материалов и работающие с применением плазмотронов.
  3. Газокислородные агрегаты, предназначенные для раскройки металла большой толщины путем его нагревания до температуры 1000 градусов и подачи тонкой струи кислорода на заранее подготовленные участки.
  4. Гидроабразивное оборудование, которое обеспечивает резку металла толщиной до 300 мм путем воздействия на срез струи воды, смешанной с абразивным материалом, под давлением 5 тыс. атмосфер.

Однако ни один металлорежущий агрегат не входит ни в какое сравнение с лазерным резаком по металлу, способным осуществлять раскрой любой сложности с получением идеально ровных краев без наплывов и заусенцев.

raymark.ru

«В г.Москва налажен выпуск тяжелых станков лазерной резки металла» в блоге «Производство»

Из этого обзора вы узнаете как мы собираем станки лазерной резки тяжелой серии, на расположенном в Москве собственном производстве. Наш экспертный обзор посвящен особенностям и нюансам конструкции, источнику лазера и конструктивным особенностям, влияющим на точностные характеристики и стабильность работы станка.

Лазерная резка — технология резки и раскроя материалов, при которой используется лазер высокой мощности. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые сплавы металла. В результате можно получить узкие резы с минимальной зоной термического влияния.

Волоконные лазеры компактны и прочны, точно наводятся и легко рассеивают тепловую энергию. Устройства этого типа представляют собой вариацию стандартного твердотельного источника когерентного излучения с рабочим телом из оптоволокна.

Промышленность в настоящее время является крупнейшим потребителем волоконных лазеров. Наибольшим спросом при этом пользуются лазеры мощностью порядка киловатта и выше.

Производство станков лазерной резки

Начальный этап производственного процесса заключается в разработке концепта, схемы компоновки узлов и агрегатов с учетом оптимального сопряжения и расчетов по жёсткости конструкции. Основную работу на этой проводят в один этап. В дальнейшем, при необходимости, в готовый проект могут вноситься изменения.

Большая часть деталей для нового лазерного станка изготавливается также на лазерном станке.

Например, части будущей станины вырезаются из 5-миллемитровой стали, гнутся согласно технологическому заданию, собираются «в пазы» и скрепляются методом сварки. После этого станине необходимо придать вес для стабильной работы станка с ускорением 1,2-2g. Готовая конструкция заливается бетоном, с нее снимается остаточное напряжение, возникшее в процессе термообработки, и она отправляется на фрезеровку.

Фрезеровка станины по всей длине — важный этап, напрямую влияющий на точностные характеристики всего станка. Направляющие, по которым передвигается портал с режущей головой, устанавливаются в технологические пазы в самой станине, без проставок, подпружинивания и прочих хитростей, которые позволяют показать хорошие характеристики точности станка только на этапе запуска, но не в процессе реальной эксплуатации.

При сборке станка процесс фрезеровки станины занимает несколько дней и состоит из четырех этапов: производство замеров, черновая фрезеровка, снятие напряжения, чистовая фрезеровка. После наносится двухкомпонентное защитное покрытие повышенной прочности на полиуретановой основе. Так заканчивается последний этап сборки основы станка — восьми тонной станины, которая обеспечивает высокие динамических показатели, выдерживает многолетнюю эксплуатацию в самых жестких условиях без потери точностей позиционирования и повторяемости.

Портал станка, по которому будет перемещаться лазерная голова, также проходит этап фрезеровки и шлифуется по небольшой, не видной глазу, дуге, что в итоге позволяет получить его параллельное положение относительно стола раскроя с точностью до десятых долей миллиметра. Тщательные расчеты позволили оптимально понять естественный прогиб портала под тяжестью собственного веса и режущей головы.

Режущая голова собственной разработки надежно защищена 4-миллиметровой стальной крышкой, способной выдержать удар листа металла при загрузке. Функция автофокуса в базовой комплектации станка позволяет сократить время на фокусировку луча при раскрое металла разных толщин. Смена линз и защитных стекол может производиться как по «классической» технологии с фронта, рассчитанной для чистых производств, так и снизу головы, с подачей сжатого воздуха, для предотвращения попадания пыли внутрь головы.

Детали внешнего обвеса станка — защитный кабинет, электрошкафы, кожухи, двери, корпус стойки ЧПУ и т. д., — также изготавливаются в несколько этапов: раскрой на лазерном станке, гибка, сверление отверстий и механическая обработка, грунтовка и покраска в камере.

Сменные столы тоже проходят этап фрезеровки. В конструкции станка и первый и второй стол расположены на одном уровне относительно режущей головы. Это очень важно, т.к. схема расположения столов на разном уровне имеет существенные недостатки. Во-первых, в этом случае уменьшается скорость раскроя на более высоком столе, а во-вторых производители вынуждены помещать, а значит утяжелять, режущую голову на выносную консоль, чтобы обеспечить больший ход по оси Z. В купе с одним двигателем перемещения портала такая машина не способна быстро остановить портал с тяжелой режущей головой во время работы, что пагубно сказывается на точности раскроя. Особенно это заметно при перфорировании отверстий: ровный круг на чертеже превращается в эллипс на практике. Мы давно отказались от подобной схемы.

После подготовки станины и внешних деталей станка производится его сборка. Устанавливаются электро- и пневмо-компоненты. Интегрируется источник лазерного излучения российской разработки — IPG Photonics.

Программное обеспечение ЧПУ станка выполнено на операционной системе Linux, что исключает «зависания», «вирусы» и нестабильную работу, присущие системам на OS Windows. Программное обеспечение полностью русифицировано, обладает возможностью удаленного доступа и имеет понятный и простой интерфейс.

В стандартной комплектации на станок устанавливаются закаленные косозубые рейки шестерни немецкой компании WITTENSTEIN. Это позволяет добиться скорости холостого хода в 140 000 мм/мин при ускорении 1,2g. Опционально возможно установить магнитные направляющие, и таким образом получить скорость в 200 000 мм/мин при ускорении в 2g.

Японские серводвигатели Yaskawa Sigma VII с одноименными драйверами управления являются шедевром надежности и прецизионных характеристик. Мы устанавливаем их на все выпускаемые станки. Важно отметить, что наш станок имеет два двигателя с каждой стороны портала.

В результате сборки получаем двенадцатитонный станок лазерной резки, способный работать в круглосуточном режиме не менее 7 лет, без потери точностных характеристик и преждевременного износа узлов и агрегатов.

После сборки станка на собственном производстве, заказчик приглашается на предварительную приемку, в рамках которой наши специалисты демонстрируют работу станка и проводят экспертную консультацию.

Готовая машина монтируется на территории заказчика. При этом проводится обучение персонала, а в дальнейшем обеспечивается онлайн-поддержка на всем сроке эксплуатации.

sdelanounas.ru

МЛ35 – станок лазерной резки и раскроя листовых металлов цена

Общеконструктивная часть

Силовой каркас (станина)

Сварной

Кабинетная защита, закрывающая раскройный стол с 4-х сторон с раздвижными дверями, внутренним освещением и системой блокировок

1 класс лазерной опасности по ГОСТ Р 50723-94

Координатно-кинематический модуль

Тип координатного стола

Портальный

Тип приводов X, Y, Z

Линейный двигатель

Датчик измерения расстояния от сопла до обрабатываемой металлической поверхности

Емкостной сенсор

Компенсация веса оптической головки при аварийном отключении питания

+

Рабочий ход (наибольшее перемещение), по осям ХYZ, мм

1550х3050х200

Дискретность задания перемещений, мм

0.001

Точность воспроизведения заданного контура, мм, не хуже

0.09

Скорость перемещений по осям X-Y, м/мин,рабочая/перемещение

30/180

Лазерно-оптический модуль

Тип лазера

Волоконный иттербиевый

Выходная мощность, Вт

700-3000

Тип режущей головки

ЛиТ-2 с картриджной заменой линз

Емкостной датчик с блоком поддержания зазора БСЗ 2.5

Встроен в оптическую головку

Система автономного охлаждения (чиллер)

+

Фокусировка ручная/автоматическая

Технологические модули

Пневмосистема (Система подготовки и подачи вспомогательных газов)

+

Количество автоматизированных каналов подачи газов

3

Встроенная  система вентиляционных каналов

+

Количество выдвижных паллет

1 или 2

Привод перемещения паллет

Ручной или автоматический

Выдвижной бункер для сбора отходов

+

Модуль управления

Система ЧПУ

на основе программированых виртуальных контроллеров

Пульт управления 

монитор, клавиатура, «мышь», выносной пульт

 Управляющая программа

LaserCNC

CAM-система

TrackLayer 2.0

Операционная система

Windows 7 professional на русском языке

www.laserapr.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о