Лазерная сварка это – Лазерная сварка металла
alexxlab | 17.12.2016 | 0 | Вопросы и ответы
Лазерная сварка металлов: технология, оборудование (аппараты)
Среди используемых способов сварки металлических частей и конструкций наиболее передовым способом, обеспечивающим качественный аккуратный шов, является лазерная сварка металлов.
Ее применяют, когда к точности получаемых форм предъявляются высокие требования. Достигается это за счет высокой точности сварного шва, который при лазерной сварке имеет небольшую ширину и достаточную глубину.
Тонкий шов получается при воздействии на металл мощного лазерного излучения в ограниченной области его воздействия, вызывающего нагрев в этой зоне до высоких температур за короткий период времени.
Технология лазерной сварки
Рассмотрим природу теплового воздействия лазера на металл и последующего расплавления сварной зоны.
Поток лазерных лучей монохроматичен и характеризуется одинаковой длиной волны по сравнению со световым потоком, обладающим различными длинами волн. Поэтому он хорошо поддается фокусировке с помощью зеркал и оптических линз, позволяющих добиться резонанса (когерентности) лазерного луча, что приводит к увеличению мощности потока.
Принцип проведения сварки с помощью лазера основан на фокусировке лазерного луча, полученного с помощью квантового генератора. В основе его работы лежит излучение, которое является источником электромагнитных волн, индуцированных с помощью усилителя.
Направленный пучок лучей при проникновении внутрь металла воздействует на него на электронном уровне, отдавая свою энергию. Это происходит путем поглощения атомами металлов концентрированной лучистой энергии в виде фотонов.
В результате атомы переходят в возбужденное состояние и становятся способными сами излучать энергию в виде фотонов. При совпадении энергии фотонов падающей электромагнитной волны пучка с энергией фотонов возбужденных атомов металлов происходит индуцированное усиленное излучение.
В результате высвобождается тепловая энергия, за счет которой металл в этой области нагревается до температуры плавления. После кристаллизации расплавленных кромок металла образуется прочное межкристаллическое сцепление атомов и формируется качественный сварной шов.
Видео:
Условия и способы осуществления сварочного процесса
Для обеспечения эффективности энергии луча нужно его сфокусировать. Для этого используют отражающие и фокусирующие лазерный луч зеркала. Когерентные лучи имеют минимальный разброс и оказывают действие на точно определенные участки сварной области.
Такой вид сварки можно проводить:
- в разных положениях и при любом расположении свариваемых кромок;
- с помощью сплошного и частичного расплавления сплавляемой области металла;
- непрерывно или импульсами.
При помощи такого метода можно соединять, как тонкостенные металлические листы, так и изделия, имеющие большие габаритные размеры.
Чем точнее сфокусирован лазерный луч, тем выше мощность его излучения.
Оборудование для проведения лазерной сварки
Для выполнения сварки с помощью лазера применяется следующее оборудование:
- источник лазерного излучения;
- блок транспортировки и системы для фокусировки луча;
- при необходимости наличие газовой среды для защиты металла;
- система для перемещения луча и самого изделия.
Устройство лазера включает излучатель и источник электропитания. Излучение обеспечивает генератор, продуцирующий лучи в специальной среде.
В качестве такой среды применяется две разновидности лазеров: твердотельные и на основе газов.
Видео:
Аппараты лазерной сварки металлов
Все аппараты лазерной сварки металлов работают в импульсном или непрерывном режиме.
Аппараты с твердым активным элементом отличаются от устройств на основе активной среды из газов длиной излучающей волны. У них она короче и мощность излучения слабее газовых устройств.
Лазеры с твердым активным элементом
Твердотельные аппараты функционируют в основном с помощью импульсного лазера, но иногда может использоваться непрерывный и импульсный рабочий режим. Их работа осуществляется таким образом:
- Твердый элемент, имеющий форму стержня, являющийся источником лазерного луча, расположен внутри специальной камеры, освещенной лампой для накачки.
- Она обеспечивает при работе световые импульсные вспышки, приводящие в активное состояние рабочее тело.
Твердотельный элемент чаще изготавливают в виде стержня, изготовленного из так называемого «розового» рубина, представляющего собой окись алюминия (Al2O3) с примесью ионизированного хрома (Cr3+).
После воздействия лучей ионы Cr3+ переходят в активное состояние и начинают светиться. С торцов стержень покрыт веществом, отражающим свет, чаще серебром. Лучи хромовых возбужденных ионов, отражаясь от посеребренных зеркал, перемещаются вдоль оси, передавая возбуждение другим ионам. Процесс возбуждения ионов становиться массовым и сопровождается мощным выделением лучистой энергии. Они фокусируются с помощью линзы в сварной области.
Такие лазеры обычно являются источниками импульсов периодического действия с длиной волны 0,69 мкм и максимальной импульсной энергией от 10-2 до 10-3 Дж.
Средние значения мощности излучения элементов на основе твердотельных стержней может доходить до сотен ватт.
Аппараты с элементами на основе газовой среды
Аппараты, использующие для работы активную газовую среду, функционируют как в непрерывном, так и импульсном режиме. Это оборудование является более мощным, работающим при высоком напряжении.
В качестве активной среды может использоваться газ на основе смеси (СО2), (N2) и гелия (He). Он подается под давлением от 2,66 до 13,3 кПа. Возбуждение газовой смеси осуществляют с помощью электрического разряда. Гелий (Не) и азот (N2) осуществляют передачу полученной при возбуждении энергии молекуле СО2 и обеспечивают условия для создания разряда. Газоразрядные аппараты излучают длину волны до 10,6 мкм.
Кпд работы аппарата может достигать от 5 до 15%.
Схема работы аппаратов на основе газовой среды показана на рисунке:
Особенности сварки лазером тонкостенных металлов
В отличие от толстостенных металлов, которым для успешного соединения требуется глубокое расплавление, для тонких металлов глубина проплавления существенный фактор. При лазерной сварке тонких металлов с ней нельзя переборщить.
Параметры, влияющие на эту величину, это:
- мощность лазерного излучения;
- скорость выполнения работы;
- степень фокусировки луча лазера.
В случае непрерывного процесса t — это длительность его проведения. Если работа осуществляется в импульсном режиме, то t – это продолжительность импульса. При высоких показателях мощностной плотности (Е) может наступить кипение металла в области воздействия луча, приводящее к сквозным дефектам.
Для тонких металлов особенно важна характеристика этого показателя. На него влияет кроме времени воздействия степень фокусировки луча. Для уменьшения плотности излучения для тонких металлов производят расфокусировку луча с помощью электронного управления настройкой работы аппарата.
Изменяя показатели (Е) и (t) можно обеспечить режим работы для разных металлических конструкций, имеющих минимальную толщину.
Различия в технологии проведения лазерной сварки разных металлов
Технология проведения сварки с помощью лазера для различных сплавов металлов имеет свои особенности.
Например, перед проведением работ со стальными изделиями их нужно обязательно очистить: снять окалину, избавиться от коррозии.
Изделие должно быть сухим. Это поможет избежать образования пор, оксидной пленки и трещин в самом шве. Последнее особенно важно при сваривании труб из стальных сплавов. Зону сварки нужно обезжирить.
Предварительная обработка нужна и изделиям из алюминия, магния и цветных металлов.
Если изготавливаются трубы из нержавейки, то их сваривают строго встык. Шов внахлест не допускается из-за возникающих напряжений в металле.
Быстрота проведения лазерной сварки исключает образования окисных соединений в зоне расплава, поэтому при ее проведении не требуется создания защитной среды или вакуума в отличие от других видов сварки.
Это свойство особенно важно при сварке титановых сплавов. Они используются в ответственных изделиях атомной и авиационной промышленности. Поэтому, чтобы избежать образования зерен в зоне нагрева этого металла до высоких температур, часто применяют лазерную сварку.
Ручная сварка
Соединение деталей можно осуществлять с помощью ручной лазерной сварки.
Миниатюрный станок для ее самостоятельного проведения сейчас можно выбрать без труда. Их достаточно много в продаже по приемлемой цене с разными параметрами настройки режимов работы.
С помощью такого станка легко можно провести:
- ремонт с помощью сварки миниатюрных изделий, например, ювелирных, оправы для очков;
- точечную спайку (сварку) в стык;
- наплавку;
- ремонт пресс-форм;
- обрабатывать предметы медицинского назначения;
- сварочные работы в области микроэлектроники.
Заключение
Лазерный способ сварки металлов сегодня особенно востребован во многих областях. С помощью этой технологии можно бесконтактно соединять материалы с разными электрохимическими свойствами. Это позволяет проводить работы в труднодоступных местах. Работы можно проводить на малых площадях с большой точностью.
Однако ее применение ограничено значительной стоимостью из-за высокой цены оборудования.
Загрузка…plavitmetall.ru
Лазерная сварка металла: оборудование, технология, методы, аппараты
Лазерная сварка металла — один из самых новых методов создания неразъемных соединений. Он отличается исключительной точностью, производительностью и высоким качеством сварного шва. Нагрев и плавление металла в рабочей зоне проводится лазерным лучом. Метод позволяет сваривать разнородные материалы. Несмотря на высокую стоимость и сложность оборудования, популярность этого метода постоянно растет. Для домашних мастерских становятся доступны аппараты бытового уровня.
Технология лазерной сварки
Световой поток, генерируемый лазером, отличается монохромностью. Все волны потока, в отличие от солнечного спектра, имеют равные длины волн. Это облегчает управление потоком с помощью фокусировки линзами и отклонения призмами. В лазере возникает явление волнового резонанса, что многократно увеличивает мощность пуска.
Принцип действия лазерной сварки базируется на поглощении энергии пучка лазера металлом в рабочей зоне. При этом происходит сильный локальный нагрев.
Технология сварки лазером напоминает технологию газовой сварки. Подготовительные операции заключаются в механической обработке и химическом обезжиривании зоны соединения. Далее луч лазера направляется в начало шва, происходит нагрев металла, его плавление и образование сварочной ванны. Луч перемещается вдоль линии шва, за ним движется сварочная ванна и зона кристаллизации.
Схема лазерной сварки
После кристаллизации шов проводится зачистка шва от окалины и шлаков.
Лазерная сварка позволяет получить однородный, прочный и долговечный шов.
Условия и методы проведения процесса
Для достижения высокой мощности луча необходима его фокусировка. Она проводится в ходе серии последовательных отражений от переднего и заднего полусферических зеркал. Когда интенсивность пучка превышает пороговое значение, он проходит через центр переднего зеркала и далее, через систему направляющих призм, к рабочей зоне.
Лазерная сварка металлов может проводиться при различном взаиморасположении соединяемых заготовок. Глубину проплавления металла в рабочей зоне можно регулировать в широком диапазоне — от поверхностного до сквозного. Работу также можно вести непрерывным лучом или прерывистыми импульсами.
Способ позволяет сваривать как детали из тонкого листового проката, так и сложные профили и детали большой толщины.
Различают следующие виды процесса:
- В стык. Проводится без присадочных материалов и флюсовых порошков в защитной газовой атмосфере.
- Внахлест. Свариваемые кромки накладываются одна на другую. Требуется обеспечить прижим заготовок друг к другу.
Лазерная сварка в стык
Компактные аппараты бытового класса позволяют проводить лазерную сварку своими руками.
Аппараты лазерной сварки металлов
Для проведения точечной или сплошной лазерной сварки необходимо:
- лазер с источником питания ;
- блок оптической фокусировки;
- механизм перемещения луча в рабочей зоне;
- приспособления для подачи инертных газов для защиты рабочей области.
По конструкции активного излучателя все аппараты лазерной сварки разделяют на два типа:
- газовые;
- твердотельные.
- Аппарат для лазерной сварки ЛТА4-1
- Аппарат для лазерной сварки ЛТСК435-20
Оба типа могут работать как в импульсном, так и в непрерывном режиме.
Лазеры с твердым активным элементом
Такие установки могут излучать световой поток как непрерывно, так и дискретными импульсами. Активный излучатель делают из розового искусственного рубина, смешивая оксид алюминия и ионы хрома. Торцы стрежня полируют, создавая на них зеркальные поверхности, отражающие свет. Ионы хрома, облучаемые излучением лампы накачки, переизлучает свет на частоте работы лазера.
Функционирование их проходит следующим способом:
- Стержнеобразный активный элемент помещен вместе с лампой накачки внутри рабочего корпуса.
- Энергия периодических вспышек лампы накапливается в активном элементе, фокусируясь и отражаясь от торцевых зеркал.
- По достижении порогового значения интенсивности светового пучка он проходит излучение рабочего импульса.
Лазер с твердым активным элементом
Аппараты с твердым активным телом работают на волне длиной 0,69 микрон. Мощность их достигает нескольких сотен ватт.
Аппараты с элементами на основе газовой среды
Установки с газообразным активным телом потребляют более высокое напряжение, и позволяет развивать большую мощность — до десятков киловатт. Лампа накачки облучает в таких приборах не твердотельный стержень, а газовую смесь в колбе. Для смеси используют углекислый газ, азот и гелий. Она находится под давлением в несколько атмосфер. Два (или более) электрода периодически инициируют электрический разряд в газовой смеси. Импульс так же усиливается многократным отражением от торцевых зеркал. Когда интенсивность достигает порогового значения, когерентный импульс проходит через полупроницаемое зеркало и сквозь оптическую систему направляется в рабочую зону.
Схема аппарата с элементом на основе газовой среды
Газовые установки работают с длинами волны около 10 микрон. Практический коэффициент полезного действия доходит до 15%
Особенности работы с тонкостенным металлом
При сваривании заготовок средней и большой толщины необходимо проплавление материала на всю толщину. Для этого используют излучение высокой интенсивности. Особенностью сварки лазером тонкостенных металлов является высокий риск прожигания листа. Чтобы избежать этого, необходимо строго контролировать следующие характеристики:
- мощность излучения;
- скорость движения луча;
- фокусировка рабочего пятна.
Сваривание тонкостенных заготовок проводят на минимальной мощности. При непрерывном режиме повышают скорость движения рабочего пятна. В импульсном режиме сокращают длительность импульса и повышают их скважность.
Лазерная сварка тонкостенных металлов
Если же на минимальной мощности плотность потока все равно слишком высока — используют преднамеренную расфокусировку луча. Это снижает КПД, но исключает прожигание листа и разбрызгивание металла.
Различия в технологии для разных металлов
Существуют отличия в технологическом процессе для различных металлов и их сплавов.
При сваривании заготовок из стали требуется провести механическую зачистку от ржавчины и других загрязнений. Детали должны быть тщательно обезжирены и высушены. Присутствие в зоне шва влаги может привести к повышенной гидратации материала шва и снижению его прочности и долговечности.
Аналогичная механическая подготовка и обезжиривание требуется для большинства цветных металлов и сплавов.
Нержавеющие сплавы сваривать допускается только встык. Нахлест может привести к возникновению тепловых напряжений в материале.
Благодаря высокой скорости ведения луча в рабочей области не успевают образоваться окислы. Это позволяет сваривать нержавеющие и титановые сплавы без применения флюсовых порошков и атмосферы защитных газов. Эта уникальная способность делает лазерный метод незаменимым при сваривании особо ответственных конструкций атомной, аэрокосмической и оборонной индустрии.
Ручная сварка
Технический прогресс последних лет позволил создать компактный аппарат для ручной лазерной сварки. На рынке представлено множество моделей с различными параметрами и функциональностью.
Они позволяют провести:
- починку малогабаритных и миниатюрных конструкций;
- точечную сварку;
- наплавочные операции;
- ремонт небольших пресс-форм;
- пайку электронных компонентов;
- дезинфекцию медицинских изделий.
Ручная сварка
Стоимость таких аппаратов все еще значительная. Окупится он при условии большого объема работ.
Применение сварки лазером
Метод применяется для соединения особо ответственных конструкций либо в том случае, когда другими методами соединить заготовки не удается. Наиболее распространен метод в таких областях, как:
- Устройства высокой точности.
- Изделия из легких цветных металлов.
- Соединение чугунных заготовок.
- Сваривание пластика.
Весьма важная область применения лазерной сварки — оборонная промышленность
Плюсы и минусы лазерной сварки
Основные достоинства метода следующие:
- ограниченная зона нагрева снижает риск коробления материала;
- при использовании гибких световодов возможна работа в узкостях и труднодоступных местах;
- сварочный аппарат без дополнительных модификаций применим для резки конструкций и раскроя листового металла;
- исключительное качество и долговечность швов;
- высокая производительность;
- отсутствие расходных материалов.
Минусы, как и у любой действующей технологии, также присутствуют:
- высокая стоимость аппарата;
- малый коэффициент полезного действия;
- высокие требования к образованию и опыту работника.
В конечном счете, сопоставляя преимущества и недостатки сварки лазером, все больше предприятий и даже небольших мастерских принимают решение о переходе на новую технологию.
Используемое оборудование
Несмотря на различные габариты и мощность, оборудование для лазерной сварки относится к одному из основных типов: с твердым или с газообразным рабочим телом. Они различаются лишь методом возбуждения светового излучения. С металлом оба типа станков лазерной сварки работают одинаково.
Твердотельные установки
Такие приборы чаще используются в режиме непрерывного излучения. Они характеризуются более высокими рабочими частотами и ограниченным КПД и мощностью. Твердотельные агрегаты чаще используют для сваривания малогабаритных и тонкостенных изделий.
Импульсный твердотельный лазер
Газовые аппараты
Если требуется соединять заготовки большой толщины, применяют устройства с газообразным рабочим телом. Излучение возбуждается в газовой среде электрическим разрядом. Такие аппараты сваривают детали до 20 миллиметров. Такой способ позволяет достичь высоких мощностей в луче и более высоких значений КПД. Однако устройство прибора более сложное, в нем используется хрупкая стеклянная колба.
Газовый лазер
Гибридные установки
Для сложных конфигураций свариваемых деталей и листов большой толщины были разработаны гибридные сварочные установки. Рядом с лазерной головкой в них располагается горелка электродугового полуавтомата.
Гибридный лазерно-дуговой процесс сварки в среде защитного газа
Проволока используется в качестве присадочного материала и заполняет сварочный зазор, участвуя в формировании шовного материала.
stankiexpert.ru
особенности метода, плюсы и минусы
При сваривании металлической поверхности с помощью лазерной сварки весь процесс осуществляется лазерным лучом, который генерируется квантовым лазерным генератором.
В международной номенклатуре лазерная сварка обозначается следующей аббревиатурой: LWB – сварка посредством лазерного луча.
Техническая особенность лазерной сварки
Лазерный луч по сравнении со световым пучком характеризуется следующими свойствами, которые позволяют использовать его в процессе сваривания двух металлических поверхностей:
- направленность узкого лазерного луча позволяет сосредоточить всю тепловую энергию, которая необходима для образования сварочной ванны, в месте малой площади до десятых долей миллиметра.
Это позволяет производить соединение очень тонким швом;
- лазер имеет более эффективную способность к фокусировке оптическими линзами, так как лазерный поток монохроматичен, имеет одну интерференционную фракцию и одинаковую длину волны, в то время, как световой поток имеет несколько фракций с различными длинами волн;
- когерентность потока означает способность лазерного луча к резонансу, который увеличивает мощность потока.
Для этого в сварочных аппаратах лазерной сварки используются резонаторы колебаний магнитных полей, которые так же позволяют усиливать и уменьшать поток по площади.
По виду сварочные лазеры различают на твердотельные и лазеры с газовой прокачкой:
- Твердотельные лазеры. Лазер представляет собой трубку, которая внутри покрыта зеркальной поверхностью – зеркалом насыщений.
В центре трубки находится цилиндрический трубчатый рубин, который и является преломляющей линзой для образования лазерного луча.
На внешний контр подаются токи возбуждения, которые подаются так же и на лампу возбуждения, которая создает кратковременный высокочастотные световые импульсы, эти импульсы аккумулируются рубиновой трубкой.
После этого внутри рубина возникает ионизированный лазерный пучок. Далее лазерный луч выгоняется направленным магнитным полем.
Отличительная черта таких лазеров – малая мощность лазерного луча, поэтому область применения данной сварки – работа с малогабаритными и легкоплавкими деталями.
Такие лазеры нашли активное применение в микроэлектронной промышленности: производство микросхем, микро распределителей, диодов и тиристоров;
- Газовые лазеры обладают намного большей мощностью. Их отличительной чертой от твердотельных лазеров является тот факт, что полость отражательной трубки заполнена смесью ионизирующего газа, как правило, СО2+N2+Не.
Схема работы такого лазера не отличается сложностью: в трубке расположены два электрода, которые и являются возбудителями для образования направленного лазерного заряда в газе.
Лазерный луч направляется магнитными полями высокой мощности.
Такие сварочные аппараты оснащаются водяной системой охлаждения, так как рабочая полость с азом разогревается от импульсного воздействия электродов.
Газодинамические лазеры по своему устройству похожи на обычные газовые лазеры, но в данном случае газ в номинальной температуре 10000 градусов по Цельсию подается через сопло Лаваля, где он ионизируется и превращается в лазерный поток ионов газа.
Не имеете сварочного аппарата, но есть потребность сделать мелкий ремонт запчастей на автомобиль? Не проблема – используйте холодную сварку.
Много слышали о сварке алюминия, но не знаете что для этого надо? Читайте здесь о всех способах сварки алюминия.
Технология сварки лазером
Для производства работ не требуется вакуум, подойдут и обычные атмосферные условия.
Обычно защиту сварочной ванны производят аргоном, но есть один нюанс: во время взаимодействия металлов и лазера происходит расплав металла и его испарение.
Это может привести к тому, что лазерный луч начнет экранировать и преломляться, нарушая сварной шов.
Чтобы этого избежать в рабочую зону принудительно подается гелий – газ, который гасит возможные плазмообразования и испарения металла.
Лазерный луч несколько углубляется в стыкованные кромки, создавая из них припой.
С помощью такой технологии можно добиться “кинжальной” тонкости и ровности шва, к тому же весь процесс лазерной сварки полностью автоматизирован.
А вы знали что плазмой можно не только паять, но и резать все металлическое, керамическое, каменное и бетонное. Читайте как использовать современный аппарат для плазменной сварки при работе с разного рода металлами.
Всегда хотели знать как правильно соединять полипропиленовые трубы при помощи сварочного аппарата для сварки полипропилена? Здесь описаны все нюансы.
Преимущества и недостатки сварки лазером
К самым явным преимуществам относятся:
- возможность дозировать подаваемую энергию в очень большом диапазоне.
Это позволяет создавать высококачественные сварные соединения любых поверхностей;
- с помощью газовых лазеров можно получить большую глубину оплавления, при этом термическое повреждение не расходится в ширь, что очень важно при производстве радиотехнических деталей малого размера;
- управление лазерным потоком с помощью системы зеркал и отражателей позволяет достигнуть труднодоступных мест и участков.
К примеру, все подводные коммуникации варятся лазерным лучом с постамента, который может быть помещен внутрь трубопровода и управляться по радиопередатчику;
Недостатки:
- лазерная технология является новейшей и обладает малым КПД, высокой стоимостью на производство и эксплуатацию оборудования;
- обучение сварщика лазерной сварке и приемам обучения с агрегатом требует длительных сроков и знаний.
Несмотря на эти недостатки, прогресс не стоит на месте, лазерная сварка – технология будущего.
Флюс намного дешевле инертного газа, который употребляется при газовой сварке, и что это более простая и надежная технология, и к тому же она легко транспортируется? Все преимущества и недостатки читайте в статье про особенности сварки под флюсом.
Хотите узнать более детально как выполнить качественно сварку, как цветного, так и черного металлов? Подробности в этой статье.
Читайте также:
- Холодная сварка Холодная сварка – это способ соединения металлических деталей без применения температурного воздействия. Склеивание происходит за счет пластичной […]
- Холодная сварка для линолеума Часто перед обывателем, затеявшим ремонт, возникает вопрос: чем сварить линолеум между собой?Холодная сварка линолеума – очень эффективный и […]
metallmaster.org
Лазерная сварка – процесс получения высококачественных сварных соединений
Лазерная сварка – это процесс, при котором металл нагревается до температуры плавления лазерным лучом, подающимся посредством оптического квантового генератора (ОКГ), и представляющим собой вынужденное монохроматическое излучение. Существует общепринятое обозначение метода: LBW (Laser Beam Welding) – понятие, переводимое, как сварка лазерным лучом.
Краткое описание процесса
Суть метода лазерной сварки, как термического процесса получения неразъемного соединения металлических деталей, заключается в местном расплавлении материала, который впоследствии кристаллизируется. Во время затвердевания атомы материалов устанавливают прочную химическую связь, которая соответствует типу кристаллической решетки и природе свариваемых элементов.
Энергия излучения, которая поглощается материалами в диапазоне воздействия концентрированного лазерного луча, является источником тепловой энергии, активирующей поверхности свариваемых металлов.
Важно знать! Чем выше концентрация световой энергии на определенном участке, тем выше температура
Применение лазерной сварки
Лазерная сварка металлов широко применяется в приборостроении и машиностроении. По глубине проплавления различают:
- микросварку, соединяющую элементы толщиной менее 100 мкм;
- мини сварку, проплавляющую детали толщиной от 0,1 до 1 мм;
- макро сварка, глубина проплавления которой больше 1 мм.
В первых двух случаях, наиболее распространенных в промышленном производстве, применяется специальное оборудование – импульсные лазеры, в которых удачно сочетаются основные свойства излучения, необходимые для выполнения локального соединения.
Ключевыми моментами лазерной сварки являются:
- мощь излучения;
- показатель диаметра пятна фокусировки;
- скорость перемещения обрабатываемых участков относительно луча.
Преимущества сварки лазером
- Очень точная дозировка энергии, благодаря которой получаются высококачественные соединения мельчайших деталей, является самым важным преимуществом лазерной сварки твердотельными лазерами.
- С помощью мощных газовых лазеров можно получить глубокое проплавление узкого шва, что значительно сокращает зону термического воздействия и снижает уровень сварочного напряжения и деформаций.
- Сварочные работы можно проводить лазером, который находится на достаточно большом расстоянии от места выполнения соединений, что считается экономически эффективным.
- Зеркала и оптоволокно позволяют с легкостью управлять лазерным лучом, что дает возможность выполнить сварные работы в труднодоступных и удаленных из зоны видимости местах.
- Существует возможность соединения нескольких конструкций. Выполняется это лучом одного лазера, расщепленным с помощью призм.
Лазерная сварка своими руками – это экономически эффективный процесс, обеспечивающий высококачественные сварные соединения за сравнительно короткое время.
Эффективность технологии
Так как КПД преобразования световой энергии в лазерное излучение достаточно низок, то технология сварки построена в основном на соединении поверхностей до 1 мм толщиной. Основными элементами стандартной типовой установки являются генератор накачки и активная среда.
Основываясь на этом, проводится разделение лазера на несколько видов:
- полупроводниковый;
- твердотельный;
- газовый.
Средой активности для твердотельного лазера является стержень из розового рубина. Благодаря своей выходной мощи луч концентрирует в фокусе огромную энергию, а температура достигает 1000000 градусов. Недостатком устройства является низкий КПД, менее 2% при работе в импульсном режиме. Лазеры, работающие в непрерывном режиме, обладают более высоким КПД и мощью.
Среда активности для газового лазера – это углеродистые газы или газовые смеси. Генератором накачки обычно является искровой разрядник, либо электронные лучи. Их преимуществом считают КПД и мощь, которые выше твердотельного. Газовый лазер функционирует в непрерывном и импульсном режимах.
Стоимость технологичных лазеров достаточно высока. Улучшить процесс и результат лазерной сварки можно, совместив источник лазерного нагрева с менее дорогостоящими источниками энергии.
Например, лазерно-дуговая сварки имеет хорошую перспективу, как процесс, в котором итоговый показатель проплавления оказался намного выше, чем результаты каждого отдельного источника: дуги и лазера.
Особенности свариваемых металлов: нюансы и рекомендации
Лазерная сварка некоторых металлов имеет свои особенности, о которых необходимо знать новичкам.
- Нержавеющая сталь: высокая скорость кристаллизации металла сварного шва, а также ОШЗ при предельных температурах. Рекомендуется: лазерная сварка высокой производительности на максимальных скоростях.
- Алюминий: в связи с высокой теплопроводностью металла, требуется максимальное количество энергии. Рекомендуется: тщательная подготовка поверхности перед началом сварки, удаление загрязнений, механическая обработка кромок деталей.
- Алюминиевые сплавы: требуется дополнительная защита швов от окисления. Рекомендуется: газовая защита.
- Титан: рост зерна при экстремальных температурах, появление холодных трещин. Рекомендуется: источник нагрева – луч лазера, очищение и механическая обработка свариваемых поверхностей, подгонка деталей.
Лазерная сварка, являясь дорогостоящим методом, считается наиболее эффективной тогда, когда традиционные сварочные технологии не дают нужного результата или их проведение технически невозможно.
stroitel5.ru
Лазерная сварка: преимущества и недостатки
Лазерная импульсная сварка — нечасто встречающийся, но все же заслуживающий внимания метод соединения металлов и стекла. С помощью такого метода возможна быстрая, качественная и эстетичная лазерная сварка нержавейки, лазерная сварка алюминия и даже сварка серебра.
Весь процесс проходит в автоматическом или полуавтоматическом режиме, поэтому шов всегда получается прочным и долговечным, ведь вероятность человеческого фактора невелика. В этой статье мы кратко расскажем, что из себя представляет лазерная сварка, какие преимущества и недостатки есть у этой технологии.
Содержание статьи
Общая информация
Лазерная сварка металлов осуществляется с помощью специального оборудования. Как мы писали выше, оно может быть полуавтоматическим (работать под контролем мастера) и автоматическим, вплоть до роботизированных моделей, осуществляющих работу без присутствия человека. Суть сварки с помощью такого оборудования проста: металл нагревается и плавится за счет лазерного луча, поэтому такой метод часто называют просто «сварка лазерным лучом».
У лазерного луча есть ряд очень важных характеристик, которые как раз и позволяют сваривать детали. Например, пучок луча концентрируется строго в одной точке и не рассеивается. Благодаря такой особенности на одном небольшом участке концентрируется большой поток энергии, за счет которой и плавится металл. Этой энергии достаточно для быстрой и качественной сварки даже толстых металлов.
Одна из самых универсальных лазерных установок — это «Квант 15». Такое оборудование часто используется для сварки однородных и разнородных металлов толщиной до 3 миллиметров. Так, например, такой лазерный сварочник широко применяется в стоматологии при создании протезов. Также с его помощью возможна лазерная сварка нержавейки.
Все лазерные установки делятся на два типа: твердотельные и газовые. Также существует лазерно-дуговая сварка. Это гибрид из лазерной и дуговой сварки, который обладает всеми преимуществами и того, и другого метода соединения металлов. Лазерно-дуговая сварка очень технологична и редко применяется в домашних мастерских или на небольших заводах, так что остановимся подробнее на первых двух типах лазерной сварки.
Применение твердотельного лазера
Твердотельный лазер используется в связке со специальными электродами. Электроды могут быть рубиновыми, стеклянными, с примесями неодимов. Схема стандартного твердотельного лазера изображен на картинке ниже. Мощность таких лазерных установок крайне мала и не превышает 6 кВт. Поэтому твердотельные лазеры используют для сварки деталей малых толщин. Например, детали, которые необходимы в микроэлектронике.
Таким лазером можно сварить детали из золота, нихрома или тантала. Можно расплавить проволоку диаметром менее 1 миллиметра. Также можно точечно сварить фольгированные детали.
Применение лазера с газом
Газовые лазеры более мощные по сравнению с твердотельными, поэтому сфера их применения гораздо шире. Здесь вместо электродов используется защитный инертный газ, зачастую аргон. Схему газового лазера вы можете видеть на картинке ниже.
Единственный недостаток газовых лазеров — это их немалый размер и вес. Но он вполне оправдан, ведь за громоздким тяжелым корпусом скрывается большая мощность, достигающая 20 кВт. А это значит, что с помощью такого оборудования можно соединить даже самые толстые детали, не сбавляя скорости (средняя скорость сварки газовым лазером — 60 метров в час).
Но самые впечатляющие, конечно, газодинамические лазеры. Для их работы требуется нагреть газ до очень высоких температур. Сам лазер выдает до 100 кВт и сваривает металл со скоростью 200 метров в час. Конечно, такие установки используются только на очень крупных производствах.
С помощью газовой установки любой мощности становится возможна лазерная сварка алюминиевых сплавов, лазерная сварка кузова автомобиля, лазерная сварка нержавеющей стали и даже лазерная сварка стекла. Так что сфера применения действительно обширна.
Также есть один нюанс, который нужно учесть. Не важно, что вам предстоит: лазерная сварка алюминиевых сплавов, нержавейки или стекла, в любом случае сварочная зона нуждается в защите от кислорода. Здесь все так же, как и при обычной ручной дуговой сварке. Сварочная зона может сильно пострадать от кислорода, шов получится некачественным. Мы уже писали выше, что при газовой сварке лазером используется аргон, но порой этого недостаточно.
Если установка слишком мощная, луч лазера может быстро рассеиваться из-за стремительного испарения металла. Чтобы этого избежать помимо аргона нужно подавать газ, подавляющий плазму. Для этих целей зачастую используют гелий, поскольку он не препятствует аргону и при этом не дает лучу рассеиваться. Опытные мастера используют в работе равную смесь аргона и гелия, обеспечивая сразу две функции: защитную и плазмоподавляющую.
Преимущества и недостатки
Преимущества лазерной сварки можно описать одним словом — точность. Лазерные установки никогда не ошибаются, с их помощью можно направить луч в конкретную точку и вероятность ошибки будет минимальна. Даже при работе с очень мелкими деталями. При этом качество соединения всегда очень хорошее.
Мощные лазеры, использующие в работе газ, довольно глубоко проваривают деталь, оставляя узкий шов. За счет этого преимущества детали не деформируются даже при воздействии очень высоких температур, поскольку зона повышенного термического напряжения сфокусирована в одной точке.
Следующий плюс просто невозможен для большинства типов сварки. Луч лазера можно направить с довольно большого расстояния, что крайне удобно в труднодоступных местах. К примеру, существует лазерный аппарат, способный ремонтировать подводные трубопроводы. Это становится возможным за счет использования зеркал. Луч прямой, но его всегда можно отразить в любую необходимую сторону. Все это позволяет выполнять лазерную сварку в самых неожиданных местах.
Верх мастерства — сварка двух и более деталей одновременно, используя для этого всего одну установку. Для этого используется призма, которая расщепляет луч и направляет его сразу в несколько сторон. С помощью такого метода можно снизить себестоимость сварки и увеличить производительность.
Единственный недостаток — большая цена лазерных установок и их технологическая сложность. Не каждый сварщик оценит преимущества лазерной сварки и пожелает получить соответствующую квалификацию.
Вместо заключения
Электросварка лазером — это по-настоящему современная технология, которой стоит обучиться, если вы желаете улучшить свои профессиональные навыки. С помощью лазерного сварочника вы без труда соедините металлы больших и малых толщин, вам станет доступна быстрая и качественная лазерная сварка алюминиевых сплавов и нержавеющей стали. Желаем удачи в работе!
svarkaed.ru
Лазерная сварка
В производстве очень важным процессом является сварка. Такой аппарат, где лазер используется как энергетический источник, называется лазерная сварка, которая применяется для соединения одинаковых и разнородных металлов. Это наиболее современный способ для сварки металлических частей, который в последние годы все больше привлекает к себе внимания.
Такая сварка была создана в 60-е годы ХХ века. Плюс излучения лазера — высокое скопление энергии. Это позволяет соединить различные металлы и сплавы толщиной от микрометра до одного сантиметра.
Лазерное излучение создает сварной шов таким способом: наводится в фокусирующую систему, где преобразуется в меньший пучок, поглощает, нагревает и расплавляет свариваемые материалы. Для фокусировки энергии в сварке лазером используются направляющие зеркала.
Микросварка соединяет материал толщиной до 100 мкм, мини-сварка проплавляет на глубине от 0.1 до 1 мм, макросварка способна спаять детали толщиной более 1 мм. В зависимости от положения деталей и лазерного луча, схема спайки может быть:
- встык;
- внахлест;
- угловая;
- прочие варианты.
Типы используемых лазеров
Схема гибридной лазерной сварки.
Установки для сварки лазером бывают твердотельные и газовые.
В твердотельной используется стержень из розового рубина, в котором ионы хрома нагреваются при облучении и отдают запасенную энергию.Концы рубинового основания покрывают серебром, которое имеет свойство отражать свет. Образуются полупрозрачные и прозрачные зеркала, от которых ионы хрома отбиваются и перемещаются вокруг рубинового стержня по спирали, задействуют следующие ионы и формируют беспрерывное действие. Случается энергетический взрыв, который движется через наполовину прозрачное стекло и собирается линзой в точку сварочного аппарата. Минус твердотельного лазера — работа только в беспрерывном режиме, а в импульсном очень низкий КПД (от 0.01 до 1%).
Если сравнивать газовый лазер и твердотельный, то у газового выше мощность и уровень КПД. Устройство такого лазера — круглая трубка, наполненная газом с обеих сторон, прижатая полупрозрачным и непрозрачным параллельными зеркалами. В трубке находятся электроды, между ними под воздействием разряда появляются резвые электроны, которые задействуют частицы газа. Когда они возвращаются в первоначальное состояние, образуются кванты света, которые собираются и направляются в место спайки. Огромным достоинством газовых лазеров является то, что они функционируют в обоих режимах: импульсном и беспрерывном.
Сварка сплавов большой толщины осуществляется с глубоким проплавлением, то есть формируется парогазовый канал, что весьма отличается от соединения металлов меньшей толщины. Для того чтобы при сварке не появлялись недостатки и шов был хорошего качества, подбирается необходимая мощность. Скорость 0.2-0.3 см/с обеспечивает высокую продуктивность и качественное скрепление деталей без дефектов.
Вернуться к оглавлению
Применение сварки лазером
Различие лазерной пайки и лазерной сварки.
Лазерные сварочные аппараты используются все чаще из-за качества, экологичности и скорости процесса.
Аппарат для лазерной сварки применяется:
- Для соединения стали. Такая сварка стали обеспечивает высокую прочность соединений, аккуратность швов, минимизацию коррозий, высокую скорость охлаждения. Перед началом сваривания конструкций необходимо подготовить кромки деталей: очистить от ржавчины окалины и удалить влагу. Подгоняют детали и части конструкции под сварку с наибольшей точностью. Как защитный газ используют чистый гелий или его смесь с аргоном.
- Для спайки металлических конструкций. Лазерная сварка металла осуществляется с глубоким проплавлением. Важным приемом для этого является применение присадочного материала, что обеспечивает возможность регулировать состав шва, а также снизить требования к точности сборки частей конструкции под спайку. Особенность такой сварки в том, что используется присадочная проволока в диаметре до 1 мм и правильная подача ее при помощи специальных механизмов под лазерное излучение. Если работать со скоростью 25-30 мм/с, то снижается количество деформаций, по сравнению с дуговой спайкой металлов. Основные достоинства соединения металла с глубоким проплавлением — мощное излучение, необходимая скорость сварки. Такое сильное излучение увеличивает способность проплавлять и формировать качественный шов. Обратите внимание, что лазерное излучение в диаметре должно быть от 0.5 до 1 мм. Если луч меньше указанного диаметра, это может привести к перегреву металла шва, частичному испарению его и образованию дефектов. Если же луч более 1 мм, то эффективность снижается в несколько раз, что может привести к преломлению шва.
- Для ремонта очков. Лазерная сварка очков — оптимальный способ починить оправы из различных металлов и сплавов. Место соединения получается крепким и однородным благодаря тому, что в сварке не используется припой. Процедура ремонта длится не более 20 минут, шов не загрязнен частицами припоя или электродов, а в месте соединения остается небольшой шов, который незаметен после шлифовки. Для ремонта очков необходимо выбрать правильное оборудование с нужной мощностью, так как маломощные лазеры не могут пропаять материалы с высокой теплопроводностью.
- Для ремонта ювелирных изделий. Лазерная пайка предоставляет возможность ремонта серебряных и золотых изделий максимально аккуратно, без деформации. Украшение не нагревается полностью при проведении работы, а только частично, в местах, которые необходимо соединить. Еще один плюс в том, что не нужно извлекать драгоценные камни из изделия, ведь при использовании лазерного излучения не нарушится целостность украшения.
- Для соединения алюминиевых, магниевых и титановых сплавов. Режимы сварки выбираются для обеспечения нужной геометрии шва, предотвращения формирования холодных трещин и создания хорошего шва.
Вернуться к оглавлению
Ручная лазерная сварка
Устройство лазера для сварки.
Уже существует оборудование для лазерной сварки, которое функционирует в ручном режиме. С его помощью можно производить своими руками:
- точечную спайку;
- ремонт ювелирных украшений;
- уплотнение материалов только поверхностно;
- обработку медицинского оборудования;
- ремонт оправы очков.
Ручной сварочный аппарат может повысить продуктивность, ведь его скорость гораздо быстрее, а сварные изделия более высокого качества. Например, непрерывным лучом стальной лист толщиной 20 мм сваривается за 1 проход со скоростью 100 м/ч, а электрической дугой такой лист сваривают с быстротой в 20 м/ч за 6-8 проходов.
Не стоит забывать о том, что лазеры излучают мощный луч, который бывает видимый и невидимый. В большинстве случаев лазерный сварочный аппарат излучает невидимый луч инфракрасного света. Если не соблюдать меры предосторожности, то такой луч может попасть в глаза или на кожу.
Нужно выбирать качественное оборудование для сварки лазером, которое имеет правильную конструкцию, оснащено крышками для безопасности. Если тщательно соблюдать меры предосторожности, сварочный аппарат не будет опасным для вашего здоровья.
Вернуться к оглавлению
Плюсы и минусы лазерной сварки
Основными причинами, чтоб использовать аппарат лазерной сварки, является:
- скорость соединения материалов;
- соединение различных материалов без механической обработки;
- высокая продуктивность работы;
- чистота, сварочные швы не загрязнены частями припоя;
- высокая прочность изделий и стойкость к коррозии;
- отсутствие ограничений по толщине материалов;
- возможность сваривания ювелирных украшений без потери покрытия;
- минимальная зона нагревания;
- возможность соединения в труднодоступных местах;
- отсутствие выделения вредных паров.
Недостатки лазерного оборудования:
- нужно купить дорогостоящую установку;
- необходим персонал с высокой квалификацией;
- присутствие вибраций;
- необходимо использовать платформы, устойчивые к вибрации;
- нужно защитить персонал от лазерного излучения.
Лазерная сварка может оказаться единственным процессом, который может обеспечить качественные соединения трудно свариваемых материалов и конструкций с труднодоступными швами.
expertsvarki.ru
Лазерная сварка и основы ее применения с металлами
Лазерная сварка – это самый современный вариант соединения металлов, который отличается целым рядом технических особенностей. Нагрев и последующее плавление металла осуществляется посредством лазерного луча ОКГ (оптического квантового генератора).
Лазерная сварка имеет свое международное обозначение: LBW (laser beam welding или сварка лазерным лучом).
Основные свойства технологии
Аппарат лазерной сварки достаточно простой в применении из-за нескольких причин: высочайшая точность, отсутствие физического контакта и высокая мощность. Основные операции, выполняемые данным способом:
- сварка;
- резка;
- поверхностное упрочнение;
- скайбирование.
А также целый ряд других полезных возможностей, которые осуществляются на легко деформируемых материалах.
С технической стороны лазерная проработка требуемого металла – это термический процесс, посредством которого происходит местное плавление материалов, а уже потом кристаллизация. После того, как процесс стыка металлов завершен, их кристаллическая решетка полностью соединяется и образует полноценную систему. Источником тепловой энергии для расплава заготовок служит энергия излучения, которая прекрасно взаимодействует с любыми материалами.
Почти сразу после полной проработки технологии произошло разделение на 3 направления, причем в каждом отдельном случае выбирается своя установка для лазерной сварки:
- Лазерная микросварка – используется очень высоко при производстве высокоточных изделий. Толщина и глубина плавки до 100 мкм.
- Лазерная мини-сварка – используется все чаще для производства предметов обихода. Толщина и глубина плавки от 0,1 до 1 мм.
- Лазерная макро-сварка – грубая работа с глубиной плавки от 1 мм, причем используется достаточно редко. Оборудование по этой части усиленно прорабатывается, чтобы поднять эффективность.
Для первых 2-х вариантов почти всегда в промышленности используются импульсные лазеры, чьи параметры идеально подходят для подобной работы. Вся деятельность четко прорабатывается компьютером, ибо человеческий глаз не способен воспринимать подобную точность.
Импульсные и непрерывные лазеры
Чаще всего используется импульсная лазерная сварка нужного металла, ибо такое оборудование позволяет добиться наилучших результатов при точечном воздействии. Принцип ее действия достаточно простой – накапливается большой объем энергии, который в течение короткого промежутка времени воздействует на материал. Благодаря тому, что зона термического воздействия очень маленькая, энергия оказывает именно на нее максимальное воздействие.
Подход лазерной установкой особенно ценится при взаимодействии легко деформируемых металлов, но глубина проплава лазерной установки весьма ограничена. Дабы избежать лишнего засорения окружающего пространства и разрушения металла импульсы не проплавляют его насквозь, а взаимодействие происходит поверхностно. Вовнутрь тепловая энергия проходит лишь благодаря теплопроводности металлов.
Если же нужно сформировать шов, то используется непрерывная лазерная сварка. Установка позволяет работать с макро-сваркой, причем можно даже делать глубокие швы. По своей технологии лазерная сварка имеет некоторые схожести с электродуговым аналогом, но явственно характеризуется образованием СО2 (парогазовый канал). Этот канал позволяет сваривать предметы любой толщины с узкой зоной проплавления.
Именно благодаря тому, что образуется парогазовый канал, установка для сварки лазером с каждым днем набирает популярность. В данном случае пучок энергии поглощается благодаря многочисленным отражениям от стенок. В особых случаях, когда нужно избежать не сплошных каналов, можно расфокусировать луч. Тут следует учитывать, что идет направленное взаимодействие очень высокой мощности (до 4 кВт), поэтому техника безопасности должна соблюдаться максимально.
Вне зависимости от типа выбранного лазера при использовании мощностей до 1 кВт можно не опасаться интенсивных испарений, поэтому такая сварка не дает глубину проплава металла более 1.5 мм. В данном случае установка по своим свойствам напоминает теплопроводностный режим, но с большей глубиной взаимодействия.
Защита при сварке лазером
Применяя оборудование для лазерной сварки металлов необходимо помнить, что повысить эффективность своей работы можно при помощи газов – аргона и гелия. Они обеспечивают не только защиту, но и повышают качество производимой работы, изменяя свойства плазмы, получаемой при расплаве металла. Попутно идет отвод газов испаренного металла.
При увеличении глубины плавки металлов нужно помнить, что оборудование будет создавать поры в материале, а это значительно снижает итоговое качество. Дабы этого избежать, достаточно не увлекаться использованием газов при сварке металла.
Лазерная сварка имеет следующие достоинства:
- Оборудование для работы не требует наличия вакуумной камеры, на луч не влияют никакие воздействия, к тому же сам луч при правильном использовании безвреден.
- Высочайшая точность и очень высокое качество шва. Достигается благодаря малому пятну прогрева металла.
- Бесконтактный процесс. Процесс лазерной сварки возможен через прозрачные объекты, либо допустима работа в труднодоступных местах.
- Простота настроек и отсутствие лишней оснастки.
Лазерная сварка может быть улучшена еще и путем дополнительного источника нагрева. Чаще всего для такой цели используется электрическая дуга, благодаря чему оборудование ведет себя значительно лучше, и повышается рабочая скорость до четырех раз.
Лазерная установка гораздо надежнее и безопаснее своих собратьев, причем имеет гораздо больший потенциал развития.
Похожие статьиgoodsvarka.ru